
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 11583–11597

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

xLAM: A Family of Large Action Models to Empower AI Agent Systems

Jianguo Zhang*, Tian Lan*, Ming Zhu*, Zuxin Liu*, Thai Hoang*, Shirley Kokane††,
Weiran Yao†, Juntao Tan†, Zhiwei Liu, Yihao Feng, Juan Carlos Niebles,

Shelby Heinecke, Huan Wang, Silvio Savarese, Caiming Xiong
Salesforce AI

Abstract

Autonomous agents powered by large language
models (LLMs) have attracted significant re-
search interest. However, the open-source
community faces many challenges in develop-
ing specialized models for agent tasks, driven
by the scarcity of high-quality agent datasets
and the absence of standard protocols in this
area. We introduce xLAM, a series of large
action models designed for AI agent tasks.
The xLAM series includes five models with
both dense and mixture-of-expert architectures,
ranging from 1B to 8x22B parameters, trained
using a scalable, flexible pipeline that unifies,
augments, and synthesizes diverse datasets to
enhance AI agents’ generalizability and per-
formance across varied environments. Our
experimental results demonstrate that xLAM
consistently delivers exceptional performance
across multiple agent ability benchmarks, no-
tably securing the 1st position on the Berkeley
Function-Calling Leaderboard, outperforming
GPT-4, Claude-3, and many other models in
terms of tool use. By releasing the xLAM se-
ries, we aim to advance the performance of
open-source LLMs for autonomous AI agents,
potentially accelerating progress and democra-
tizing access to high-performance models for
agent tasks.

1 Introduction

The field of autonomous agents has witnessed sig-
nificant advancements in recent years, with large
language models (LLMs) playing a crucial role in
enhancing agent capabilities across diverse tasks.
Researchers have made substantial progress in de-
veloping sophisticated frameworks (Hong et al.,
2023; Team, 2023; Wu et al., 2023; Xie et al., 2023)
and specialized environments (Deng et al., 2023;
Yao et al., 2022; Zhou et al., 2023) to enhance agent
capabilities, such as tool use (Qin et al., 2024) and

* Co-first Authors.
† Essential Contributors.

web browsing (Zhou et al., 2023). Concurrently,
comprehensive benchmarks like AgentBench (Liu
et al., 2023a), ToolBench (Qin et al., 2024), and
AgentBoard (Ma et al., 2024) have been established
to rigorously assess agent performance in reason-
ing, planning, and multi-turn interactions.

While proprietary LLMs developed by indus-
try leaders have demonstrated competitive perfor-
mance in various agent tasks (Anthropic, 2024;
OpenAI, 2023; Reid et al., 2024; Touvron et al.,
2023), the open-source community faces limited
choices for specialized models in this domain. This
scarcity stems from several challenges in adapt-
ing open-source LLMs to agent tasks, primarily
due to the lack of comprehensive, high-quality
datasets and the heterogeneity of existing data for-
mats. These factors complicate the unification of
diverse datasets and obstruct the learning of trans-
ferable knowledge across different agent tasks.

Recently, the agent research community has in-
tensified efforts in open-source agent data process-
ing and model training (Qin et al., 2024; Chen et al.,
2023; Xu et al., 2023; Patil et al., 2023; Zeng et al.,
2023; Yin et al., 2023; Zhang et al., 2024). How-
ever, these works still face challenges in managing
complex environments and generalizing to new sce-
narios, primarily due to limitations in the collected
agent data. A major obstacle is the homogeneity of
content and format in existing datasets, resulting
in models that lack diversity across various tasks
and struggle to adapt to new or slightly different
data structures in practical applications. While pre-
vious efforts have attempted to design pipelines
for unifying data, they typically cover only a few
scenarios or lack flexibility in their unified formats.
For instance, Lumos (Yin et al., 2023) primarily ad-
dresses question answering, web agents, and math-
ematical tasks involving planning and grounding;
while AgentOhana (Zhang et al., 2024), despite en-
compassing a more diverse range of environments,
lacks an extendable unified format to accommodate

11583



new environments.
Moreover, open-source datasets often suffer

from quality issues, such as incorrect agent out-
puts, hallucinated actions, and repeated interaction
turns within trajectories (Zhang et al., 2024; Chen
et al., 2024). The lack of detailed analysis and un-
derstanding of agent data further complicates these
challenges, hindering the development of robust
and versatile open-source agent models. Address-
ing them is crucial for advancing the field of open-
source agent models and bridging the performance
gap with proprietary LLMs in agent tasks.

In this work, we introduce and open-source
xLAM, a series of powerful models with varying
sizes. This diverse set is tailored for a variety of
applications, with smaller models (1B and 7B) opti-
mized for on-device deployment, while larger mod-
els (8x7B and 8x22B) are designed to tackle more
challenging tasks. Alongside the model release, we
offer several insights and lessons learned from our
experience in agent model training:

• Data Processing: We highlight the importance
of data unification and augmentation in enhanc-
ing dataset diversity and mitigating overfitting.
Our developed data preprocess and augmentation
pipeline significantly improves the generalizabil-
ity of agent models across diverse environments.

• Data Synthesis: We showcase the impact of
scalable, high-quality data synthesis on agent
model performance. Our synthetic dataset en-
abled xLAM models to achieve 4 of the top
20 positions on the Berkeley Function Calling
Leaderboard, including securing the top-1 spot,
with smaller models achieving performance com-
parable to much larger counterparts, showing
great potential in this direction.

We evaluate the xLAM series on public agent
benchmarks, demonstrating exceptional perfor-
mance across various agent tasks. By open-
sourcing these models, we aim to advance open-
source agent models and provide valuable insights
into data processing and synthesis techniques, ad-
dressing key challenges in developing competitive
alternatives to proprietary models.

2 Related Work

2.1 LLM Agents

Recent advancements in LLMs have significantly
enhanced their utility in various agent tasks. Sev-

eral innovative prompt techniques have been de-
veloped to improve performance, including Chain
of Thought (Wei et al., 2022), ReACT (Yao et al.,
2023), and Reflection (Shinn et al., 2023). Ad-
ditionally, considerable efforts have been made
to fine-tune open-sourced agent models for bet-
ter capabilities (Qin et al., 2024; Chen et al., 2023;
Patil et al., 2023; Zeng et al., 2023; Zhang et al.,
2024). These include enhancements in data col-
lection and processing to facilitate effective agent
learning (Zeng et al., 2023; Li et al., 2023; Tang
et al., 2023; Yin et al., 2023; Zhang et al., 2024;
Chen et al., 2024), covering a range from simple
question answering to more complex scenarios like
web interactions, tool operations, reasoning, and
planning. However, many of these agent frame-
works still depend on proprietary models as their
core engine to achieve optimal performance, re-
vealing a substantial gap in the availability of high-
quality open-source models for these tasks.

2.2 Agent Benchmarks
A variety of benchmarks have been established
to assess the abilities of LLM agents across di-
verse scenarios (Yao et al., 2022; Qin et al., 2024;
Liu et al., 2023a; Ma et al., 2024; Huang et al.,
2023; Liu et al., 2023b; Wang et al., 2023; Liu
et al., 2024a; Du et al., 2024; Wang et al., 2024;
Yan et al., 2024). Notably, AgentBench (Liu
et al., 2023a), Mint-Bench (Wang et al., 2023), and
AgentBoard (Ma et al., 2024) encompass environ-
ments ranging from code generation and games
to web interactions and reasoning tasks. Tool-
Bench (Qin et al., 2024) specifically evaluates
multi-turn reasoning and tool-usage abilities, while
the Berkeley Function-Calling Leaderboard (Yan
et al., 2024) broadly assesses models’ capabilities
in function calling across various contexts.

3 Data Processing Pipeline

In this section, we discuss the data pipeline for
training xLAM, including data unification, aug-
mentation, quality verification, general instruction
data synthesis, and preference data generation.

3.1 Data Unification
Existing agent datasets are collected from di-
verse environments and designed in various for-
mats, introducing noise and complicating data
augmentation and verification. Models like
NexusRaven (Srinivasan et al., 2023), Gorilla-
Openfunctions (Cheng-Jie Ji et al., 2024), and

11584



Error Categorization

Quality Verification

Data Fixing

Data Filtering

Prompt Format

Instruction-Following

Data Augmentation

...

Multi-Stage Checker

API Sampler

Seed QA Sampler

QA Generation

Data Synthesis

Data Mixture

Function-Calling

General Instruction

Planning

Reasoning
...

Data Unification

Environment 2

Environment 3

...

Environment1

Model Training

SFT (Full, LoRA)

DPO (LoRA)

Model Evaluation

ToolBench

Webshop

BFCL

...

Data Flow

Feedback Flow

Figure 1: Overview of the data processing, training and evaluation of xLAM. We take the diagnostic feedback from the model
evaluation results to iteratively improve the data quality.

AgentOhana (Zhang et al., 2024) have demon-
strated superior performance in function-calling,
suggesting that a well-defined, universal format
could significantly enhance model performance.
By standardizing the format of existing data, we
can reduce noise and facilitate easier data augmen-
tation and quality verification, leading to a more
efficient and robust framework for model training
and evaluation. Furthermore, a standardized format
ensures consistency, simplifies model training, and
enhances the model’s ability to generalize across
various benchmarks.

Function-calling formats form the basis for how
models understand and execute tasks, motivating
us to design our unified data format in a function-
calling style. As illustrated in Figure 3, the unified
format consists of several modules: task instruc-
tion, available tools, format instruction, few-shot
examples, query, and steps. Specifically, the avail-
able tools define the agent’s action space, and the
format instruction specifies the output format the
agent should follow when generating a response.
In each step, the agent’s output, the environment’s
feedback/execution results, and the user’s follow-
up input are organized into a dictionary. It’s quite
common for there to be purely conversational inter-
actions between users and agents that don’t trigger
any APIs or receive corresponding observations.
In these instances, the related entry values would
simply remain empty.

This unified format is compatible with various
environments and tasks, making our data process-

ing pipeline adaptable to different datasets and
scalable to large amounts of data. Moreover, the
modularized design allows for fine-grained data
augmentation and quality verification, which are
essential in improving agent data quality. For ex-
ample, by unifying all the available tools and tool
calls, we can easily inspect for hallucination and
function-call errors, and apply various augmenta-
tion techniques.

3.2 Data Augmentation

Our data augmentation strategy focuses on improv-
ing the diversity of the data. It involves apply-
ing various transformations to the existing dataset,
thereby generating new, synthetic data samples.
The data unification step significantly simplifies
the application of various augmentation techniques.
A standardized data format ensures consistency and
ease of implementation, allowing for more efficient
augmentation processes. Specifically, the augmen-
tation techniques we adopted can be categorized
as prompt format augmentation and instruction-
following augmentation.

Prompt Format Augmentation: Prompt format
augmentation focuses on creating various prompt
formats based on the structured, unified data for-
mat. The format augmentation can be further di-
vided into two categories: 1) Order Shuffling. In
the unified format, the available tools are provided
in a list, and each tool contains the name, descrip-
tion, and parameters. To avoid model overfitting to
the specific order of the tools, we randomly shuf-

11585



fle the tool list. Furthermore, we also shuffle the
order of the name, description, parameters, and
within the parameters to present the information
in different ways. We do the same thing within
the tool_calls in each step. Additionally, we also
shuffle the order of different sections of the input,
including task instruction, tools, format instruc-
tion, few-shot examples etc. 2) Concatenation To-
kens. Each training data point is a pair of input and
output sequences. To convert the structured uni-
fied format to the training prompt, we use special
tokens to concatenate different sections into one
sequence. We create several different special to-
ken styles, including "[START/END OF QUERY]",
"<query></query>", and plain text.

Instruction-Following Augmentation: It fo-
cuses on adding diversity to the instructions in or-
der to improve the model’s instruction-following
capability. It involves rephrasing existing instruc-
tions and adding new instructions, without intro-
ducing inaccuracy and inconsistency. Therefore,
verification of the new instructions is a crucial step
for this type of augmentation. We employ two
methods for instruction-following augmentation: 1)
Task Instruction Rephrasing. We rephrase the task
instructions using powerful LLMs to accommo-
date various input styles from users. To ensure the
rephrased instructions still align with the original
version, we verify them by prompting the LLMs
with the rephrased instructions and check if the
LLMs can still follow them and generate correct
function calls. 2) Format Instruction-Following.
In our unified format, the output format is a JSON
string with thought and tool_calls. To avoid the
model overfitting on JSON format and to enable
the model to follow various output formats upon
different format instructions, we prepare 15 differ-
ent output formats along with their corresponding
format instructions and format converters. The for-
mats include JSON, XML, YAML, plain text, etc.

3.3 Data Quality Verification
To further understand the data quality and to thor-
oughly investigate the sources of errors in the evalu-
ation, we conduct a detailed analysis of the unified
dataset. We identify a list of errors in the data using
both rule-based and LLM-as-a-judge approaches.

Undefined Function Call: In function-calling,
a list of available functions is provided, and the
model should generate a function_call using one
of the given functions. However, we found that in
many cases, the predicted function_call is not from

the given list. We match the predicted function
with the given functions by comparing the function
names and the list of parameter names. When the
function_call name does not match any given func-
tions, we refer to it as Undefined Functions Invoked.
When the function name matches but the argument
list contains undefined arguments, we refer to it as
Undefined Arguments Passed. We also take into
consideration optional parameters.

Incorrect Argument Type: Other than the error
types mentioned above, we also observe that some-
times the model generates the correct argument’s
value, but in the wrong types. For example, when
a parameter expects a [val1, val2, val3], the
generated arguments is "[val1, val2, val3]",
which is a string version of the list. When executing
the function call, errors will occur due to incorrect
data type. We identify trajectories containing the
incorrect argument type error by comparing the pa-
rameter type in the available tools and the actual
argument type. We also found that most argument
type errors can be fixed by converting the argu-
ments to the correct parameter types.

Argument Hallucination: Upon examining the
unified dataset from public sources, we discovered
that tool calls frequently include argument values
not present in the user query or prior steps. This
issue arises because much of this data is gener-
ated by LLMs, which are prone to hallucination, a
common problem in LLM-generated content. We
identified two types of hallucination: 1) the gen-
erated tool names or argument names do not ap-
pear in the provided tool and argument list; and
2) the argument values do not align with the user
query or observations from previous steps. The first
type of hallucination is straightforward to address
by searching the generated tool call and argument
names and matching them with the provided tool
list, as they are all structured in JSON, making
this process efficient. However, detecting the sec-
ond type, where argument values are misaligned,
is more challenging, as simple string matching is
ineffective for complex queries and tasks. To tackle
this, we use LLMs as judges to perform step-wise
argument hallucination detection, detecting if there
is a mismatch between the arguments and the in-
tended query or prior observations.

Low-Quality Reasoning and Planning: We
observe many data trajectories where the rea-
soning and planning steps are of low quality,
which is a common issue in the outputs of many
LLMs. To address this, we first filter out low-

11586



quality data using rule-based methods informed by
heuristics, then prompt models like Mixtral-8x22b-
Instruct-v0.1 (Jiang et al., 2024) and DeepSeek-
V2 (DeepSeek-AI, 2024) to evaluate both the over-
all trajectory and individual thought steps on the
selected data. A portion of these rating results is
then sampled and verified by humans. We also at-
tempted to iterate on this process using specifically
fine-tuned models.

3.4 Data Synthesis
Based on our findings in Sec. 3.3, we observe that
most of these publicly available datasets have sev-
eral limitations. First, these datasets are often static,
synthesized by weak models, limited in scope, and,
more importantly, not verified by execution. Sec-
ond, these datasets mainly focus on a single type of
function-calling category, i.e., outputting a single
function call based on the provided tools. However,
real-world scenarios might consist of many other
types of use cases, such as the parallel function-
calling scenario (Yan et al., 2024), where the user
query contains multiple requests and the model
should respond with concurrent function calls in
parallel within a single response.

To address these two issues, we utilize a sys-
tematic data synthesis framework called APIGen
(Liu et al., 2024b), to generate 50k verifiable data
points based on a collection of 3,673 executable
APIs. The key idea is a multi-stage verification
process to ensure the accuracy and quality of the
generated data. This process includes format veri-
fication, semantic verification and quality control
as we developed in Sec. 3.3, along with execution
verification. Together, these steps collectively help
to identify and filter out low-quality data points,
such as those with hallucination issues or inaccu-
rate argument parameter values.

3.5 Data Mixture
For supervised fine-tuning (SFT), our dataset com-
bines training samples from three main sources:
cleaned and augmented agent datasets, a synthetic
function-calling dataset, and general instruction-
tuning datasets. These sources are used to train the
general xLAM models.

Specifically, to enhance the general instruc-
tion capability of xLAM, we integrate di-
verse instruction-tuning datasets from DialogStu-
dio (Zhang et al., 2023) and Data Prove-
nance (Longpre et al., 2023, 2024). This instruction
data comprises 20% to 30% of our training set. To

enhance the function-calling capability of xLAM-
7b-fc-r and xLAM-1b-fc-r, we employ a targeted
training approach, with 50% of their training data
drawn from our high-quality synthetic function-
calling dataset. The remaining 50% of the data is
sampled from other tasks within our training set.

For Direct Preference Optimization
(DPO) (Rafailov et al., 2023), we prompt
less powerful models to generate and rate re-
sponses for selected data from each source, then
sample a subset for human verification. After
adjustments to models and prompts, we classify
the selected responses as rejected samples.

4 Model Training

4.1 Modeling

We use a supervised fine-tuning (SFT) approach,
further aligning model checkpoints with the DPO
method, and leverage the robustness of our flexi-
ble data pipeline. Our training code is based on
the HuggingFace Transformers and Accelerate li-
braries(Wolf et al., 2020; Gugger et al., 2022), as
well as PyTorch FSDP(Zhao et al., 2023a).

The fine-tuning of general xLAM models is con-
ducted on Nvidia H100 GPUs. For SFT, we use a
full fine-tuning framework that employs the fully
sharded data parallel algorithm (Zhao et al., 2023b).
In the case of xLAM-8x22b-r, we integrate LoRA
(Hu et al., 2021; Dettmers et al., 2023) to better pre-
serve the model’s original capacities and prevent
catastrophic forgetting (Liu et al., 2023c). LoRA
is also used for DPO alignment across all xLAM
models. We utilize a total batch size of 128 and a
learning rate that ranges from 5×10−6, to 5×10−5.
Additionally, we use a cosine learning rate sched-
uler with 100 warm-up steps to optimize perfor-
mance. Training times range from 6 to 40 hours.

4.2 xLAM Model Series

We introduce a series of agent models tailored for
different use cases. Our flagship model series,
xLAM, is built upon the Mixtral Instruct (Jiang
et al., 2024) models and aims to achieve balanced
performance across a diverse range of agent tasks,
from complex multi-turn interactions to function-
calling applications.

In addition to general xLAM models, we develop
two specialized models for function-calling use
cases, xLAM-7b-fc-r and xLAM-1b-fc-r, based on
DeepSeek-Coder-7B-instruct-v1.5 and DeepSeek-
Coder-1.3B-instruct, respectively (Guo et al.,

11587



2024). The smaller model sizes offer increased
accessibility, allowing users to easily host them on
a single GPU to address various function-calling
tasks, ranging from simple user queries to parallel
concurrent requests.

By offering a suite of models with varying sizes
and specializations, the xLAM series caters to a
wide range of user needs and computational re-
sources, making powerful agent capabilities more
accessible and adaptable to real-world applications.

5 Experiments

5.1 Benchmarks

After considering the stability of environments and
research budget limitations, we evaluate the per-
formance of models across four rigorous bench-
marks: Webshop (Yao et al., 2022), ToolQuery
(Ma et al., 2024), ToolBench (Qin et al., 2024), and
the Berkeley Function-Calling Benchmark (BFCL)
(Yan et al., 2024). Each benchmark is designed to
assess different aspects of model capabilities under
a variety of settings and constraints.
Webshop is an interactive web environment de-
signed to mimic online shopping experiences, test-
ing an agent’s ability to navigate and assist in e-
commerce tasks. Webshop comprising approxi-
mately 250 test cases.
ToolQuery evaluates an agent’s skills in using tools
to retrieve and process information across domains.
ToolQuery features 60 test cases across three dis-
tinct settings: Weather, Movie, and Academia. We
use the testing configurations of AgentBoard (Ma
et al., 2024) with Success Rate and Progress Rate
for both Webshop and ToolQuery.

We also evaluate on ToolQuery-Unified, which
is essentially ToolQuery but requires an agent to
ingest the task instruction and tools following the
augmented prompt format described in §3.2 and
likewise solve the task following the unified format.
The purpose of testing agents in this setting is to
assess their reasoning and tool-use abilities when
evaluated on structured formats (Tam et al., 2024).
ToolBench is developed for real-time evaluation of
multi-turn reasoning and interactive capabilities via
RapidAPI, includes around 1,000 test cases. It asks
GPT-4 to evaluate Pass Rate of agent responses in
both in-domain and out-of-domain settings, includ-
ing unseen instructions with familiar tools, unseen
tools within previously known categories, and en-
tirely new categories of unseen tools. Due to space
limit, we put testing results into Appendix A.2.

Berkeley Function-Calling Benchmark offers
an extensive evaluation of an agent’s ability to
reason and execute function calls across various
programming languages and application domains.
With 2,000 test cases, it tests complex scenarios
such as parallel and multiple function calls in lan-
guages including Java, JavaScript, and Python. The
evaluation metrics include: Abstract Syntax Tree
(AST) accuracy for non-executable test queries, ex-
ecutable accuracy by running the APIs to get the
results, and relevance detection score which mea-
sures the agent’s ability to distinguish non-relevant
queries and provided tools. Since BFCL updates
frequently, we used their stable V2 version, which
has a cutoff date of September 19, 2024.

5.2 Experimental Results

5.2.1 Webshop and ToolQuery

Webshop. Table 1 presents detailed comparisons
of state-of-the-art language and agent models in the
Webshop and ToolQuery environments, illustrating
the robust and strong performance of the xLAM
models. In the Webshop environment, xLAM-7b-
r not only achieves the highest Success Rate at
0.414, surpassing other general LLMs like GPT-4-
0125-preview, GPT-4o-2024-0523, and Claude2,
but also outperforms specialized agent models such
as AgentOhana-8x7b and Lemur-70b. This shows
xLAM’s superior ability to navigate and execute
tasks effectively in the web interactions.

ToolQuery. In the more complex and unseen
ToolQuery environment, xLAM-8x7b-r and xLAM-
8x22b-r also demonstrate high performance as
shown in Table 1, ranking second with a Suc-
cess Rate of 0.683. This shows a significant
improvement over the baseline performance of
Mixtral-8x7b-inst and Mixtral-8x22b-inst, which
are 0.167 and 0.400, respectively. Notably, all three
xLAM models surpass the Mixtral-8x22B-Instruct
model. Despite Mixtral-8x22B-Instruct having a
large number of parameters and specialized tun-
ing for advanced functionalities such as function
calling, reasoning, and complex tool usage, it falls
short of the xLAM models’ performance. Further-
more, same as other general LLMs, it lacks trans-
parency regarding the data collection, unification
processes, and other critical details, contrasting
with the open source purposes provided for xLAM.
These results show the efficacy of our proposed
data unification and synthetic data pipeline.

ToolQuery-Unified. When the system prompt

11588



LLM Webshop ToolQuery

Success Rate Progress Rate Success Rate Progress Rate

xLAM-7b-r 0.414 0.767 0.550 0.674
xLAM-8x7b-r 0.410 0.763 0.683 0.745
xLAM-8x22b-r 0.390 0.763 0.683 0.758

GPT-4-0125-preview 0.375 0.760 0.750 0.803
GPT-4o-2024-0523 0.323 0.694 0.633 0.801
AgentOhana-8x7b (Zhang et al., 2024) 0.331 0.737 0.533 0.766
Claude2 0.378 0.746 0.483 0.735
Mixtral-8x22b-inst (Jiang et al., 2024) 0.383 0.739 0.400 0.740
DeepSeek-67b-chat (Bi et al., 2024) 0.319 0.727 0.400 0.714
GPT-3.5-Turbo-0125 0.323 0.749 0.367 0.545
Llama3-70b-inst (AI@Meta, 2024) 0.299 0.746 0.367 0.526
Lemur-70b-chat-v1 (Xu et al., 2023) 0.116 0.718 0.283 0.720
Mixtral-8x7b-inst (Jiang et al., 2024) 0.222 0.766 0.167 0.654
CodeLlama-34b-inst (Roziere et al., 2023) 0.235 0.717 0.133 0.600
Llama2-70b-chat (Touvron et al., 2023) 0.131 0.536 0.000 0.483

Table 1: Testing results on Webshop and ToolQuery. Bold and Underline results denote the best result and the second best
result for Success Rate, respectively.

Success Rate Academia Movie Weather

xLAM-7b-r 0.466 (0.550) 0.45 0.25 0.35
xLAM-8x7b-r 0.533 (0.683) 0.45 0.40 0.45
xLAM-8x22b-r 0.733 (0.683) 0.75 0.40 0.60

GPT-4-0125-preview 0.566 (0.750) 0.65 0.35 0.25
GPT-4o-2024-05-13 0.366 (0.633) 0.45 0.20 0.25

Table 2: Testing results on ToolQuery-Unified. Bold and
Underline results denote the best result and the second best re-
sult for Success Rate, respectively. Values in brackets indicate
corresponding performance on ToolQuery.

from ToolQuery is presented to the model in the
unified format shown in Fig. 4, and the model is
required to follow the provided format instructions
to generate a structured output, we observe that
xLAM’s performances are more consistent com-
pared to GPT models, as shown in Table 2. While
GPT-4o’s performance significantly degrades by
42% compared to ToolQuery, our best xLAM
8x22b model maintains comparable performance.
This can be attributed to xLAM being trained on
trajectories that adhere to the unified format, en-
abling it to perform consistently during inference.
Concurrent research (Tam et al., 2024) observed a
similar decline in performance on reasoning tasks
when LLMs are constrained to produce output in
specific formats. Deeper analysis indicated that the
degradation is more than just due to incorrectly for-
matted output in a specific format, but rather due to
a drop in the reasoning ability of the model itself.

5.2.2 Berkeley Function-Calling Benchmark
Table 3 presents the experimental results on the
BFCL v2 benchmark (cutoff date 09/19/2024),
which shows the exceptional performance of our
xLAM model series in function-calling tasks. No-

tably, xLAM models secure four out of the top
twenty positions, demonstrating the effectiveness
of our data pipeline and training methodology
across various model sizes.

Our flagship model, xLAM-8x22b-r, achieves
the highest overall accuracy of 87.31%, surpassing
all other models in the benchmark. This result
validates the effectiveness of our data processing
and model training pipeline in improving models’
function-calling ability. Following closely, xLAM-
8x7b-r ranks 6th, outperforming most prominent
models including GPT-4o-mini and Claude-3.

The performance of our models demonstrates
clear scaling with model size, a trend exemplified
by xLAM-7b-r, which ranks 14th with an accuracy
of 80.33%. This model outperforms several larger
and more resource-intensive alternatives, including
multiple GPT-4 and GPT-4o versions. Remark-
ably, our smallest model, xLAM-1b-fc-r, achieves
a 32nd place ranking with an accuracy of 75.43%,
surpassing much larger models like Claude-3-Opus
(FC) and GPT-3.5-Turbo. This performance un-
derscores the power of our data synthesis frame-
work in producing high-quality, diverse datasets
that enhance function-calling effectiveness even
for smaller language models.

It is also worth noting that the BFCL v2 bench-
mark (Yan et al., 2024) includes a live dataset re-
leased after our model training date. These fresh
data are collected from real-world user queries that
were entirely unseen by our models. Nevertheless,
our models exhibit strong generalization capabil-
ities in handling these real-world use cases. The
consistently strong performance across our model

11589



Rank
Overall

Accuracy
Model

Abstract Syntax Tree (AST) Evaluation Evaluation by Executing APIs
Relevance
Detection

Simple Multiple Parallel
Parallel
Multiple

Simple Multiple Parallel
Parallel
Multiple

Irrelevance Relevance

1 87.31 xLAM-8x22b-r (FC) 72.79 86.37 87.13 84.75 98.57 94.00 92.00 85.00 74.96 97.56
2 85.79 GPT-4-0125-Preview (Prompt) 78.82 88.44 91.00 83.75 99.00 96.00 82.00 80.00 61.35 97.56
3 85.00 GPT-4-1106-Preview (Prompt) 78.75 89.12 94.12 83.25 99.00 96.00 82.00 72.50 64.98 90.24
4 84.74 GPT-4-0613 (Prompt) 78.76 85.46 91.75 82.67 98.29 96.00 86.00 70.00 75.57 82.93
5 83.89 GPT-4-turbo-20240409 (Prompt) 80.47 88.81 88.12 84.25 99.00 96.00 80.00 77.50 61.82 82.93
6 83.38 xLAM-8x7b-r (FC) 73.12 86.09 71.00 82.50 92.57 96.00 90.00 77.50 72.35 92.68
7 83.35 GPT-4o-mini-20240718 (Prompt) 75.88 81.64 85.12 79.42 98.29 94.00 82.00 77.50 79.20 80.49
8 83.13 GPT-4o-2024-05-13 (Prompt) 76.18 86.01 92.12 81.00 98.00 94.00 76.00 72.50 77.44 78.05
9 82.55 Functionary-Medium-v3.1 (FC) 74.34 87.59 81.62 80.67 98.29 94.00 90.00 75.00 73.23 70.73

10 81.78 GPT-4-1106-Preview (FC) 69.32 84.19 86.38 71.92 95.43 94.00 86.00 75.00 72.70 82.93
11 81.59 Llama3-70B-Instruct (Prompt) 72.87 85.91 84.00 77.83 94.14 94.00 84.00 80.00 50.47 92.68
12 80.88 Claude-3-Opus (Prompt) 76.65 87.47 78.38 75.17 98.57 94.00 82.00 75.00 56.15 85.37
13 80.87 GPT-4-0125-Preview (FC) 68.76 84.95 80.38 74.00 84.21 94.00 88.00 75.00 74.03 85.37
14 80.33 xLAM-7b-r (FC) 69.85 84.00 63.00 79.17 75.71 94.00 92.00 80.00 72.88 92.68
15 80.23 Nemotron-340b-inst (Prompt) 68.51 80.38 78.62 79.17 86.00 90.00 80.00 77.50 84.10 78.05
16 80.21 Functionary-Small-v3.1 (FC) 72.70 83.31 85.62 72.92 87.79 90.00 86.00 70.00 68.36 85.37
17 80.18 xLAM-7b-fc-r (FC) 70.52 78.22 73.88 68.50 95.21 90.00 88.00 77.50 79.54 80.49
18 79.66 mistral-large-2407 (FC Any) 81.01 87.42 90.50 83.50 98.29 92.00 86.00 77.50 0.34 100.00
19 79.55 GPT-4o-2024-05-13 (FC) 70.40 82.33 89.00 76.08 88.93 84.00 88.00 72.50 73.50 70.73
32 75.43 xLAM-1b-fc-r (FC) 64.63 72.33 64.50 61.42 80.21 92.00 86.00 75.00 60.65 97.56
33 75.41 GPT-3.5-Turbo (FC) 69.79 83.58 71.88 68.83 95.14 88.00 86.00 57.50 35.83 97.56
34 74.97 Mistral-Nemo-2407 (FC Auto) 64.57 79.99 80.25 74.00 91.36 86.00 86.00 62.50 59.14 65.85

Table 3: Performance comparison on BFCL-v2 leaderboard (cutoff date 09/19/2024). The rank is based on the overall accuracy,
which is a weighted average of different evaluation categories. “FC" stands for function-calling mode in contrast to using a
customized “prompt" to extract the function calls. The complete table can be found in the Appendix Table 5.

Figure 2: Ablation study for data augmentation and data
quality verification (cleaning).

series, ranging from 8x22 billion to 1 billion pa-
rameters, demonstrates the scalability and versa-
tility of our approach. This scalability is particu-
larly noteworthy, as it enables strong results from
compact models suitable for resource-constrained
environments to large-scale models for more de-
manding applications. Furthermore, the ability of
our smaller models to compete with much larger al-
ternatives suggests significant potential for efficient
deployment in various real-world scenarios.

5.3 Ablation Study

We conducted an ablation study on the 7B mod-
els to measure the impact of various steps in our
data pipeline. Three datasets were prepared for
this analysis: raw data, augmented data, and aug-
mented + cleaned data. The raw data represents
the dataset before data unification, while the other

two datasets are post-unification. Figure 2 presents
the evaluation results of models trained on these
three datasets. The metrics used for this evalua-
tion are G1_instruction from ToolBench and suc-
cess_rate from both Webshop and ToolQuery. The
results indicate that augmented data consistently
outperforms raw data across all metrics, with im-
provements of 2.3% on ToolBench, 5.8% on Web-
shop, and 18.3% on ToolQuery. Furthermore, the
addition of data cleaning leads to a substantial per-
formance increase on ToolQuery, with a further
improvement of 23.4%. The results highlight the
effectiveness of data augmentation and cleaning
processes in the data pipeline.

6 Conclusion

This paper introduces xLAM series, a set of large
action models for autonomous AI agents. Our mod-
els, ranging from 1B to 8x22B parameters, were
trained with a scalable and flexible data pipeline
that unifies, augments, and synthesizes diverse
datasets. Evaluations show that xLAM models
consistently perform exceptionally across various
benchmarks. The insights we learned from training
these models highlight the importance of rigorous
data processing and the potential of data synthe-
sis in developing capable AI agents. By releasing
the xLAM series, we aim to democratize access to
high-performance models for agent tasks, thereby
accelerating progress in the field.

11590



7 Limitations

Our data synthesis pipeline relies on large LLMs
such as DeepSeek-V2 and Mixtral-8x22b-Inst.
This dependence may result in extended data gener-
ation times when utilizing less powerful GPUs. Fu-
ture work will focus on developing more efficient
pipelines capable of operating effectively with both
smaller and larger LLMs.

Additionally, due to the instability of some
benchmarks and environments, along with the
heavy reliance on API calls from commercial mod-
els such as OpenAI GPT-4, and constrained by
limited research budgets, we face challenges in
evaluating our models across even more bench-
marks. Consequently, this may result in perfor-
mance discrepancies on certain benchmarks. Mov-
ing forward, we aim to enhance our contributions
to the research community by addressing instabil-
ity and better maintaining and unifying existing
benchmarks and environments.

References
AI@Meta. 2024. Llama 3 model card.

AI Anthropic. 2024. The claude 3 model family: Opus,
sonnet, haiku. Claude-3 Model Card.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881.

Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan,
Shishir Patil, Tianjun Zhang, Ion Stoica, and
Joseph Gonzalez. 2024. Gorilla openfunctions v2.
In https://gorilla.cs.berkeley.edu//blogs/
7_open_functions_v2.html.

DeepSeek-AI. 2024. Deepseek-v2: A strong, economi-
cal, and efficient mixture-of-experts language model.
Preprint, arXiv:2405.04434.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for the
web. arXiv preprint arXiv:2306.06070.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Preprint, arXiv:2305.14314.

Yu Du, Fangyun Wei, and Hongyang Zhang. 2024. Any-
tool: Self-reflective, hierarchical agents for large-
scale api calls. arXiv preprint arXiv:2402.04253.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2023. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.
Preprint, arXiv:2308.00352.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xu-
anyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. 2023a. Agent-
bench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
et al. 2023b. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint
arXiv:2308.05960.

11591

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://gorilla.cs.berkeley.edu//blogs/7_open_functions_v2.html
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352


Zhiwei Liu, Weiran Yao, Jianguo Zhang, Liangwei
Yang, Zuxin Liu, Juntao Tan, Prafulla K Choubey,
Tian Lan, Jason Wu, Huan Wang, et al. 2024a.
Agentlite: A lightweight library for building and
advancing task-oriented llm agent system. arXiv
preprint arXiv:2402.15538.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu,
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao,
Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei
Yang, Silvio Savarese, Juan Carlos Niebles, Huan
Wang, Shelby Heinecke, and Caiming Xiong. 2024b.
Apigen: Automated pipeline for generating verifiable
and diverse function-calling datasets. arXiv preprint.

Zuxin Liu, Jesse Zhang, Kavosh Asadi, Yao Liu,
Ding Zhao, Shoham Sabach, and Rasool Fakoor.
2023c. Tail: Task-specific adapters for imitation
learning with large pretrained models. arXiv preprint
arXiv:2310.05905.

Shayne Longpre, Robert Mahari, Anthony Chen, Naana
Obeng-Marnu, Damien Sileo, William Brannon,
Niklas Muennighoff, Nathan Khazam, Jad Kabbara,
Kartik Perisetla, et al. 2023. The data provenance
initiative: A large scale audit of dataset licensing &
attribution in ai. arXiv preprint arXiv:2310.16787.

Shayne Longpre, Robert Mahari, Ariel Lee, Camp-
bell Lund, Hamidah Oderinwale, William Brannon,
Nayan Saxena, Naana Obeng-Marnu, Tobin South,
Cole Hunter, et al. 2024. Consent in crisis: The
rapid decline of the ai data commons. arXiv preprint
arXiv:2407.14933.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An analyt-
ical evaluation board of multi-turn llm agents. arXiv
preprint arXiv:2401.13178.

OpenAI. 2023. Gpt-4 technical report. ArXiv.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and
Joseph E. Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ICLR.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven:
a commercially-permissive language model for func-
tion calling. In NeurIPS 2023 Foundation Models for
Decision Making Workshop.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-
Yen Lin, Hung-yi Lee, and Yun-Nung Chen. 2024.
Let me speak freely? a study on the impact of format
restrictions on performance of large language models.
arXiv preprint arXiv:2408.02442.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Jize Wang, Zerun Ma, Yining Li, Songyang Zhang,
Cailian Chen, Kai Chen, and Xinyi Le. 2024. Gta:
A benchmark for general tool agents. arXiv preprint
arXiv:2407.08713.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. arXiv preprint
arXiv:2309.10691.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

11592

https://arxiv.org/abs/2303.08774


Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. 2023. Auto-
gen: Enabling next-gen llm applications via multi-
agent conversation framework. arXiv preprint
arXiv:2308.08155.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu-
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao,
Qian Liu, Che Liu, et al. 2023. Openagents: An
open platform for language agents in the wild. arXiv
preprint arXiv:2310.10634.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, et al. 2023. Lemur: Harmonizing nat-
ural language and code for language agents. arXiv
preprint arXiv:2310.06830.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard.html.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,
35:20744–20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2023. Lumos: Learning Agents
with Unified Data, Modular Design, and Open-
Source LLMs. arXiv preprint arXiv:2311.05657.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang,
Yihao Feng, Zuxin Liu, et al. 2024. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Jianguo Zhang, Kun Qian, Zhiwei Liu, Shelby Hei-
necke, Rui Meng, Ye Liu, Zhou Yu, Silvio Savarese,
and Caiming Xiong. 2023. Dialogstudio: Towards
richest and most diverse unified dataset collection for
conversational ai. arXiv preprint arXiv:2307.10172.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Des-
maison, Can Balioglu, Pritam Damania, Bernard

Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Math-
ews, and Shen Li. 2023a. Pytorch fsdp: Experiences
on scaling fully sharded data parallel. arXiv preprint
arXiv:2304.11277.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Des-
maison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Math-
ews, and Shen Li. 2023b. Pytorch fsdp: Experi-
ences on scaling fully sharded data parallel. Preprint,
arXiv:2304.11277.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

11593

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277


A Appendix

A.1 Benchmarks

After considering the stability of environments and
research budget limitations, we evaluate the perfor-
mance of models across four rigorous benchmarks:
Webshop (Yao et al., 2022), ToolQuery (Ma et al.,
2024), ToolBench (Qin et al., 2024), and the Berke-
ley Function-Calling Benchmark (Yan et al., 2024).
Each benchmark is designed to assess different
aspects of model capabilities under a variety of
settings and constraints.
Webshop is an interactive web environment de-
signed to mimic online shopping experiences, test-
ing an agent’s ability to navigate and assist in e-
commerce tasks. Webshop comprising approxi-
mately 250 test cases.
ToolQuery evaluates an agent’s skills in using tools
to retrieve and process information across domains.
ToolQuery features 60 test cases across three dis-
tinct settings: Weather, Movie, and Academia.

We use the testing configurations from Agent-
Board (Ma et al., 2024) for both Webshop and
ToolQuery. These configurations assess overall
performance using the Success Rate and evaluate
progressive performance across interactive turns
with the Progress Rate, with Success Rate being
the more critic metric.

We additionally evaluate on ToolQuery-Unified,
which is essentially ToolQuery but requires an
agent to ingest the task instruction and tools follow-
ing the augmented prompt format described in §3.2
and likewise solve the task following the unified
format. The purpose of testing agents in this setting
is to assess their reasoning and tool-use abilities
when evaluated on structured formats (Tam et al.,
2024).
ToolBench is developed for real-time evaluation
of multi-turn reasoning and interactive capabilities
via RapidAPI, and includes around 1,000 test cases.
It uses Pass Rate as the metric, where the trajectory
and final response are sent to GPT-4-0125-preview
to determine whether the agent’s final response suc-
cessfully addresses the given user query. The eval-
uations cover both in-domain and out-of-domain
settings, including unseen instructions with famil-
iar tools, unseen tools within previously known
categories, and entirely new categories of unseen
tools.
Berkeley Function-Calling Leaderboard Bench-
mark (Yan et al., 2024) provides a comprehensive
evaluation framework for assessing an agent’s ca-

pability to reason about and execute function calls
across a variety of programming languages and
application domains. The benchmark comprises
over 2,200 test cases, challenging models with com-
plex scenarios such as parallel and multiple func-
tion calls in languages like Java, JavaScript, and
Python. The evaluation metrics include Abstract
Syntax Tree (AST) accuracy for non-executable
test queries, executable accuracy by running APIs
to obtain results, and a relevance detection score
that measures the agent’s ability to distinguish non-
relevant queries and provided tools.
Importantly, our evaluation utilizes the most stable
BFCL v2 version, as of the cutoff date 09/19/2024.
The v2 version introduces live function calls and
real-world scenarios contributed by users, address-
ing issues such as data contamination, bias, and
fairness by leveraging user-provided data. This
updated dataset better reflects real-world distribu-
tions, characterized by a higher demand for se-
lecting among multiple functions and a reduced
demand for parallel function calls. For instance,
our analysis indicates that in the v2 benchmark, the
average number of available functions has doubled,
while the average number of function calls has been
halved compared to the non-live v1 data. It is im-
portant to note that all our models were trained
prior to the release of the BFCL v2 live data.

A.2 ToolBench
Table 4 presents the results on ToolBench, where
xLAM models demonstrate impressive perfor-
mance. They surpass both TooLlama-V2 and GPT-
3.5-Turbo-0125 across all test settings. Moreover,
xLAM models outperform AgentOhana-8x7b in
scenarios involving unseen instructions and unseen
tools, while achieving performance comparable to
GPT-4-0125-preview in the unseen tools setting.
These results show xLAM models’ robust capa-
bilities in multi-turn reasoning and complex tool
usage, effectively handling both in-domain and out-
of-domain tasks.

A.3 Berkeley Function-Calling Leaderboard
Benchmark

Table 5 is an extended version of Table 3. It provide
a comprehensive table with the results of various
models.

11594



{
"unique_trajectory_id": "id",
"task_instruction": "...",
"few_shot_examples": [],
"query": "The task or the question that the user provides.",
"tools": [

{
"name": "api_name1",
"description": "description of this api",
"parameters": {

"param1": {
"type": "string",
"description": "",

},
}

},
],
"steps": [

{
"thought": "thinking and/or planning process",
"tool_calls": [

{
"name": "api_name1",
"arguments": {

"argument1": "xxx.",
"argument2": "xxx"

}
}

],
"step_id": 1,
"next_observation": "observations or feedbacks from the environment/APIs after execution

function."
"user_input": "User follow up input at this turn if any."

},
],

}

Figure 3: Unified function calling data format.

Unseen Insts & Same Set Unseen Tools & Seen Cat Unseen Tools & Unseen Cat

xLAM-7b-r 0.5308 0.5300 0.5850
xLAM-8x7b-r 0.5308 0.5450 0.5700

AgentOhana-8x7b (Zhang et al., 2024) 0.5077 0.5200 0.5650
GPT-4-0125-preview 0.5462 0.5050 0.5450
GPT-3.5-Turbo-0125 0.5000 0.4900 0.5150
TooLlama-V2 (Qin et al., 2024) 0.4385 0.4350 0.4300

Table 4: Pass Rate on ToolBench on three distinct scenarios. Bold and Underline results denote the best result and the second
best result for each setting, respectively. The results for xLAM-8x22b-r are unavailable due to the ToolBench server being down
during the evaluation phase in September 2024 and additional GPU budget limit for further testing.

11595



Prompt:
[BEGIN OF TASK INSTRUCTION]
Based on the previous context and API request history, generate an API
request or a response as an AI assistant.
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
[

{
"name": "get_fire_info",
"description": "Query the latest wildfire information",
"parameters": {

"location": {
"type": "string",
"description": "Location of the wildfire.",
"required": true,

},
"radius": {

"type": "number",
"description": "The radius (in miles) around the location.",
"required": false,

}
},

},...
]
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
Your output should be in the JSON format, which specifies a list of
function calls. The example format is as follows. Please make sure the
parameter type is correct. If no function call is needed, please make

tool_calls an empty list "[]".
"""
{"thought": "the thought process, or an empty string", "tool_calls":
[{"name": "api_name1", "arguments": {"argument1": "value1", "argument2":
"value2"}}]}
"""
[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
Can you give me the latest information on the wildfires occurring in California?
[END OF QUERY]

[BEGIN OF HISTORY STEPS]
[

{
"thought": "Sure, what is the radius (in miles) around the
location of the wildfire?",
"tool_calls": [],
"step_id": 1,
"next_observation": "",
"user_input": "User: Let me think... 50 miles."

},
]
[END OF HISTORY STEPS]

Output:
{"thought": "", "tool_calls": [{"name": "get_fire_info",
"arguments": {"location": "California", "radius": 50}}]}

Figure 4: Example prompt and output for function-calling using xLAM.

11596



Rank
Overall

Accuracy
Model

Abstract Syntax Tree (AST) Evaluation Evaluation by Executing APIs
Relevance
Detection

Simple Multiple Parallel
Parallel
Multiple

Simple Multiple Parallel
Parallel
Multiple

Irrelevance Relevance

1 87.31 xLAM-8x22b-r (FC) 72.79 86.37 87.13 84.75 98.57 94.00 92.00 85.00 74.96 97.56
2 85.79 GPT-4-0125-Preview (Prompt) 78.82 88.44 91.00 83.75 99.00 96.00 82.00 80.00 61.35 97.56
3 85.00 GPT-4-1106-Preview (Prompt) 78.75 89.12 94.12 83.25 99.00 96.00 82.00 72.50 64.98 90.24
4 84.74 GPT-4-0613 (Prompt) 78.76 85.46 91.75 82.67 98.29 96.00 86.00 70.00 75.57 82.93
5 83.89 GPT-4-turbo-20240409 (Prompt) 80.47 88.81 88.12 84.25 99.00 96.00 80.00 77.50 61.82 82.93
6 83.38 xLAM-8x7b-r (FC) 73.12 86.09 71.00 82.50 92.57 96.00 90.00 77.50 72.35 92.68
7 83.35 GPT-4o-mini-20240718 (Prompt) 75.88 81.64 85.12 79.42 98.29 94.00 82.00 77.50 79.20 80.49
8 83.13 GPT-4o-2024-05-13 (Prompt) 76.18 86.01 92.12 81.00 98.00 94.00 76.00 72.50 77.44 78.05
9 82.55 Functionary-Medium-v3.1 (FC) 74.34 87.59 81.62 80.67 98.29 94.00 90.00 75.00 73.23 70.73

10 81.78 GPT-4-1106-Preview (FC) 69.32 84.19 86.38 71.92 95.43 94.00 86.00 75.00 72.70 82.93
11 81.59 Llama3-70B-Instruct (Prompt) 72.87 85.91 84.00 77.83 94.14 94.00 84.00 80.00 50.47 92.68
12 80.88 Claude-3-Opus (Prompt) 76.65 87.47 78.38 75.17 98.57 94.00 82.00 75.00 56.15 85.37
13 80.87 GPT-4-0125-Preview (FC) 68.76 84.95 80.38 74.00 84.21 94.00 88.00 75.00 74.03 85.37
14 80.33 xLAM-7b-r (FC) 69.85 84.00 63.00 79.17 75.71 94.00 92.00 80.00 72.88 92.68
15 80.23 Nemotron-340b-inst (Prompt) 68.51 80.38 78.62 79.17 86.00 90.00 80.00 77.50 84.10 78.05
16 80.21 Functionary-Small-v3.1 (FC) 72.70 83.31 85.62 72.92 87.79 90.00 86.00 70.00 68.36 85.37
17 80.18 xLAM-7b-fc-r (FC) 70.52 78.22 73.88 68.50 95.21 90.00 88.00 77.50 79.54 80.49
18 79.66 mistral-large-2407 (FC Any) 81.01 87.42 90.50 83.50 98.29 92.00 86.00 77.50 0.34 100.00
19 79.55 GPT-4o-2024-05-13 (FC) 70.40 82.33 89.00 76.08 88.93 84.00 88.00 72.50 73.50 70.73
20 79.25 GPT-4o-mini-2024-07-18 (FC) 67.83 80.16 85.38 77.17 83.21 92.00 82.00 70.00 71.83 82.93
21 79.14 Open-Mixtral-8x22b (Prompt) 73.47 76.14 79.12 73.67 91.86 96.00 84.00 75.00 71.42 70.73
22 79.10 Gorilla-OpenFunctions-v2 (FC) 70.81 79.47 75.75 66.67 95.86 96.00 78.00 70.00 73.13 85.37
23 79.09 GPT-4-turbo-2024-04-09 (FC) 64.21 82.72 82.50 75.75 88.71 88.00 86.00 72.50 79.79 70.73
24 78.96 Functionary-Small-v3.2 (FC) 69.50 81.50 80.12 73.50 90.64 88.00 86.00 67.50 72.32 80.49
25 78.87 GPT-4o-2024-08-06 (FC) 70.71 80.97 83.25 75.58 85.36 90.00 84.00 72.50 82.91 63.41
26 78.78 mistral-large-2407 (FC Auto) 68.28 86.44 90.25 83.50 76.86 92.00 86.00 77.50 48.93 78.05
27 77.92 Claude-3-Sonnet (Prompt) 71.80 85.26 82.75 73.92 96.14 90.00 84.00 77.50 30.01 87.80
28 77.45 FireFunction-v2 (FC) 74.11 81.49 73.62 67.58 94.43 88.00 82.00 72.50 52.94 87.80
29 76.63 Granite-20b (FC) 65.27 73.05 60.75 67.83 85.36 90.00 84.00 72.50 72.43 95.12
30 76.31 Mistral-Nemo-2407 (Prompt) 72.89 81.37 81.50 73.75 92.50 94.00 86.00 80.00 13.25 87.80
31 76.29 Claude-3.5-Sonnet (Prompt) 76.98 80.27 72.62 65.33 98.50 92.00 70.00 72.50 83.46 51.22
32 75.43 xLAM-1b-fc-r (FC) 64.63 72.33 64.50 61.42 80.21 92.00 86.00 75.00 60.65 97.56
33 75.41 GPT-3.5-Turbo (FC) 69.79 83.58 71.88 68.83 95.14 88.00 86.00 57.50 35.83 97.56
34 74.97 Mistral-Nemo-2407 (FC Auto) 64.57 79.99 80.25 74.00 91.36 86.00 86.00 62.50 59.14 65.85
35 74.78 Hermes-2-Pro-Llama3-70B (FC) 66.29 73.49 70.25 78.33 80.64 88.00 84.00 72.50 53.80 80.49
36 74.75 Gemini-1.5-Pro-0514 (FC) 56.15 78.89 82.38 65.50 75.71 88.00 84.00 75.00 83.31 58.54
37 74.57 Claude-2.1 (Prompt) 68.21 78.08 74.12 66.17 94.64 88.00 64.00 62.50 74.36 75.61
38 74.56 Gemini-1.5-Pro-0409 (FC) 55.08 79.43 83.12 64.75 76.00 88.00 80.00 72.50 83.27 63.41
39 74.12 GPT-4o-2024-08-06 (Prompt) 65.76 76.86 72.12 71.67 70.57 88.00 78.00 75.00 89.56 53.66
40 74.11 Command-R-Plus (Prompt) 68.14 78.13 77.50 62.17 91.29 86.00 78.00 55.00 69.31 75.61
41 73.12 Mistral-Nemo-2407 (FC Any) 67.98 82.46 77.38 76.08 92.07 86.00 86.00 62.50 0.72 100.00
42 72.19 Mistral-Medium-2312 (Prompt) 63.77 80.22 69.12 59.25 93.43 88.00 70.00 57.50 84.54 56.10
43 72.04 Command-R-Plus (FC) (Original) 64.25 72.45 66.25 62.33 89.14 86.00 82.00 52.50 52.75 92.68
44 70.75 Gemini-1.5-Flash-0514 (FC) 65.80 83.26 63.87 63.50 57.93 86.00 74.00 75.00 74.69 63.41
45 69.55 DBRX-Instruct (Prompt) 69.97 80.35 66.88 51.50 90.50 86.00 60.00 62.50 44.86 82.93
46 68.88 Claude-3.5-Sonnet (FC) 73.95 82.09 65.38 62.75 95.36 86.00 44.00 40.00 75.91 63.41
47 66.19 GPT-3.5-Turbo (Prompting) 59.01 67.74 65.25 48.58 44.50 86.00 78.00 55.00 69.97 87.80
48 66.18 Hermes-2-Pro-Llama3-8B (FC) 62.32 74.96 61.62 57.83 68.71 90.00 80.00 57.50 55.16 53.66
49 65.44 Hermes-2-Pro-Mistral-7B (FC) 60.98 71.49 60.38 50.42 60.50 90.00 84.00 62.50 38.55 75.61
50 64.83 Hermes-2-Theta-Llama3-8B (FC) 58.53 67.82 59.62 58.33 69.14 88.00 78.00 55.00 62.66 51.22
51 62.70 Llama3-8B-Instruct (Prompt) 58.53 70.26 53.50 53.25 84.50 88.00 68.00 50.00 22.88 78.05
52 61.89 Claude-3-Opus (FC) 69.41 79.95 39.38 27.92 84.64 86.00 52.00 30.00 76.40 73.17
53 60.82 Open-Mixtral-8x7b (Prompt) 61.49 70.70 47.12 36.83 71.86 74.00 56.00 52.50 71.84 65.85
54 60.34 Claude-3-Haiku (Prompt) 74.64 84.49 51.88 45.17 89.43 94.00 32.00 27.50 18.90 85.37
55 58.89 Open-Mixtral-8x22b (FC Any) 73.23 85.42 10.75 63.08 92.57 92.00 24.00 47.50 0.34 100.00

Table 5: Performance comparison on BFCL-v2 leaderboard (cutoff date 09/19/2024). The rank is based on the overall accuracy,
which is a weighted average of different evaluation categories. “FC" stands for function-calling mode in contrast to using a
customized “prompt" to extract the function calls. See (Yan et al., 2024) for details.

11597


