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Abstract

Property inheritance—a phenomenon where
novel properties are projected from higher level
categories (e.g., birds) to lower level ones (e.g.,
sparrows)—provides a unique window into
how humans organize and deploy conceptual
knowledge. It is debated whether this ability
arises due to explicitly stored taxonomic knowl-
edge vs. simple computations of similarity be-
tween mental representations. How are these
mechanistic hypotheses manifested in contem-
porary language models? In this work, we in-
vestigate how LMs perform property inheri-
tance with behavioral and causal representa-
tional analysis experiments. We find that taxon-
omy and categorical similarities are not mutu-
ally exclusive in LMs’ property inheritance be-
havior. That is, LMs are more likely to project
novel properties from one category to the other
when they are taxonomically related and at the
same time, highly similar. Our findings pro-
vide insight into the conceptual structure of
language models and may suggest new psy-
cholinguistic experiments for human subjects.’

1 Introduction

Categories are fundamental to human semantic cog-
nition. Our knowledge of categories allows us to
draw everyday inferences; a prominent example of
which is property inheritance, where properties are
projected from a category to its members. For ex-
ample, if we learn that dogs have the T9 hormone,
we can reasonably assume that corgis also have the
T9 hormone. In cognitive psychology, an obvious
and previously popular explanation for property
inheritance is that it is the natural consequence of
our minds organizing categories hierarchically into
taxonomies (Collins and Quillian, 1969; Glass and
Holyoak, 1974; Murphy, 2002).

'Data and code available at https://github.com/
aaronmueller/lm-property-inheritance.
*Work partly done at UT-Austin before joining TTIC.

Aaron Mueller”*
"The University of Texas at Austin

Kanishka Misra* X
“Northeastern University

XToyota Technological Institute at Chicago
aa.mueller@northeastern.edu

kanishka@ttic.edu

Given that dogs are daxable, is it true that corgis are daxable?
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Figure 1: Property inheritance involves projecting
properties from a category to its members. For example,
if dogs are daxable, are corgis daxable? Here, daxable
is a nonce word used to study property inheritance with-
out any confounding effects from parametric knowledge.
Language models may rely on taxonomic (left) and/or
similarity (right) relations to perform property inheri-
tance. We investigate the interplay between these two
effects in LMs’ property inheritance judgments using
both behavioral and mechanistic analyses.

At the same time, empirical evidence has called
this assumption into question. Sloman (1998)
showed that humans were highly sensitive to the
similarity of the categories when performing prop-
erty inheritance; for example, they were more likely
to project novel properties from birds to robins
(a more typical bird) than from birds to penguins
(a less typical bird), despite them agreeing that
both were members of the bird category. Sloman
concluded that instead of explicitly using stored
taxonomies, humans might simply be computing
categorical similarities to demonstrate inheritance-
compatible behavior. In such a case, a property is
more likely to be shared between categories insofar
as the similarity between them is high enough.

Debates about the mechanisms that underlie hu-
man property inheritance offer an exciting avenue
to analyze conceptual organization and use in lan-
guage models (LMs). First, due to the close connec-
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tion of a word to its conceptual meaning (Murphy,
2002; Lupyan and Lewis, 2019; Lake and Murphy,
2021), property inheritance provides an opportu-
nity to diagnose meaning-sensitivities in LMs (Pi-
antadosi and Hill, 2022; Bender and Koller, 2020).
Next, similarity effects like those found by Slo-
man (1998) are related to the notion of content
effects shown by humans and LMs on logical rea-
soning tasks (Wason, 1968; Evans, 1989; Lampinen
et al., 2024); the presence of similarity effects goes
against the idea that humans rely on abstract tax-
onomic principles (where every category member
would be equally likely to inherit the property).
Finally, the principles of taxonomy vs. similarity
offer two clear hypotheses about what mechanisms
could govern property inheritance behavior in a
system. This allows us to go beyond prior work
investigating property inheritance in LMs (Misra
et al., 2023), which has largely focused on their
behavior, leaving open questions about the under-
lying mechanisms.

In this study, we empirically investigate the roles
of taxonomic relations and categorical similarities
on LMs’ property inheritance behavior, using both
behavioral and causal interpretability methods on
four LMs. First, we behaviorally analyze LMs’
sensitivity to taxonomic relations when performing
property inheritance (§3.4). We demonstrate that
noun similarity, known to correlate with human
property inheritance behavior (Sloman, 1998), also
correlates strongly with property inheritance judg-
ments in language models, and explains many of
the false positives and false negatives. Then, we
causally localize property inheritance to specific ac-
tivation subspaces (§4) using distributed alignment
search (DAS; Geiger et al., 2024b). By training
and evaluating DAS on controlled subsets of the
data, we show that the subspaces responsible for
property inheritance reflect both taxonomic and
similarity features. Together, these results indicate
that LMs are susceptible to non-trivial content ef-
fects rooted in noun similarities, and moreover that
taxonomy and similarity are fundamentally entan-
gled in model representations.

2 Conceptual Organization in LMs

To what extent is the similarity vs. taxonomy debate
relevant to LMs? By definition, LMs learn repre-
sentations from distributional statistics of tokens
in context, so any reasoning they demonstrate is a
result of distributional similarity. While technically

true, this viewpoint may be an oversimplification:
two words can be distributionally similar if they
participate in antonymy (hot vs. cold), metonymy
(car, wheel), hypernymy (robin, bird), or even if
they share thematic relations (dog, bone). For prop-
erty inheritance, however, it is only the hypernymy
relation that plays a critical role (Murphy, 2002).
Is it possibile that something structural like a tax-
onomy might arise through distributional statistics?
It has been postulated that symbolic behavior can
emerge as a result of sub-symbolic processes inter-
nal to a neural network (Smolensky, 1986, 1988;
McClelland et al., 2010). Empirically, this has been
shown in a number of recent works, e.g., Nanda
et al. (2023) on LMs and modular arithmetic, and
Feng et al. (2023) on LMs learning to simulate
dynamic programming—both of which require op-
erating over symbolic representations.

The above discussion raises multiple interrelated
questions: when performing property inheritance,
do LMs show sensitivity to taxonomic relations? If
s0, is their behavior graded, where properties are
less likely to be projected to concepts that are taxo-
nomically related to the higher-level category but
low in similarity? Or, is it more binary, where there
is no significant difference between how likely a
property is projected from the higher-level cate-
gory to its high- and low-similarity members? If
their behavior is graded, then does it differ between
non-category members that might share similari-
ties with the higher level category (e.g., bird and
giraffe) vs. those that do not (e.g., bird and chair)?

Related work By focusing on the mechanisms
that underlie LMs’ property inheritance behavior,
our work contributes to a rich body of work that
investigates conceptual representations in language
models (Bhatia and Richie, 2021; Misra et al.,
2021; Patel and Pavlick, 2022; Abdou et al., 2021;
Grand et al., 2022; Wu et al., 2023a; Park et al.,
2024, i.a.). Complementing these, our focus in this
work is to understand how LMs use their concep-
tual structure to project properties from one cate-
gory to another—an important task in the broader
space of inductive problems solved by humans
(Kemp and Jern, 2014).

In this vein, recent works have investigated LMs’
property inheritance behavior—either by purely be-
havioral analyses (Misra et al., 2023; Wu et al.,
2023a), or by manipulating LMs’ internal represen-
tations to edit their taxonomic knowledge (Powell
et al., 2024; Cohen et al., 2024), and measuring
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the implications of the edit. Importantly, these
works assume that changes to taxonomic member-
ship must be directly reflected in the LMs’ behav-
ior, without necessarily considering the impact of
categorical similarity. Grounding our investigation
in empirical observations about humans (Sloman,
1998), we abstract away from this assumption, and
explicitly consider the interplay between similarity
and taxonomic relations by characterizing it using
both behavioral and causal analysis methods.

3 Experimental Materials

3.1 Data

We used the THINGS dataset (Hebart et al., 2019,
2023) as our primary repository of noun cate-
gories. THINGS is a repository of human re-
sponses on odd-one-out tasks for 1,854 unique ob-
ject categories—e.g., dogs and chairs. Each object
concept is also annotated with its superordinate
category (dog—animal). We performed a few mod-
ifications to this dataset. First, many objects be-
longed to more than one category—e.g., cat is an
animal but it is also a mammal; we make these
into separate entries. Second, we also paired each
object with its WordNet sense, since one of the
similarity methods we use involves ground-truth
knowledge of word senses (we expand on this in
§3.2). We discarded instances for which we could
not find a valid sense in WordNet. These manipula-
tions result in 2,016 pairs of taxonomically related
object-category pairs. Our final dataset has 44 su-
perordinate and 1,281 subordinate categories, re-
spectively. Next we describe our method to sample
pairs that are not taxonomically related.

Negative Sampling Because we are explicitly an-
alyzing the effect of similarity in LMs’ property in-
heritance behavior, we include similarity measures
as a central component for deriving pairs of re-
lated categories that are not taxonomically related.
We perform this sampling as follows: for each su-
perordinate category C, we construct the negative
sample space A as the set of items that are outside
that category—e.g., for bird, this could mean non-
birds such as zebra, sofa, etc. We then compute
the similarity of each item in A to the superor-
dinate category using a given similarity measure.
Finally, if k£ is the number of category members
of C, then we sample the top ¥/2 and bottom #/2
concepts from N/, based on the similarity values.
This way, for each superordinate category, we have
k category members, and k non-category members,

with an even split between high and low-similarity
non-taxonomic items.

Stimuli design We follow precedent from re-
search in the psychology of concepts (Osherson
et al., 1990; Sloman, 1998), and create stimuli in a
premise-conclusion format, commonly used to ana-
lyze category-based inference in humans. In each
instance, the premise expresses a statement where a
category is said to have some property (birds have
the T9 hormone), and the conclusion asks if a differ-
ent category also has that property (robins have the
T9 hormone). Following the same precedent, we
use properties that are expressed by nonce words
(e.g., are daxable). Since LMs are likely to have
less—if any—prior knowledge about these nonce
properties, this design decision allows us to isolate
LMs’ inference behavior to the relations between
categories (i.e., taxonomy and similarity), devoid
from any interference from knowledge of real prop-
erties (e.g., can fly) which may already be embed-
ded in their learned weights. We experimented with
multiple different surface form realizations of the
stimuli, and found the following template to work
best on average:>

Answer the question. Given that A is/are

daxable, is it true that B is/are daxable?

Answer with Yes/No. The answer is:
where A and B are the premise and conclusion cate-
gories, respectively. Most nouns were pluralized,
except for those which were more naturally ex-
pressed in singular form (mass nouns, e.g., honey).
A model that is sensitive to taxonomic relations
when performing property inheritance should be
more likely to generate Yes than No for a taxonomic
pair such as (toy, doll), while the reverse should be
true for non-taxonomic pairs such as (fruit, puppy).

3.2 Similarity scores

It is non-trivial to predict the nature of the ‘sim-
ilarity’ that might have an effect on a system’s
category-based inference behavior. This is true
even for humans—most experiments used human
derived similarity ratings to construct their stim-
uli (Osherson et al., 1990; Sloman, 1998), but
what these ratings actually captured was largely
unknown. To this end, we used two different types
of similarity metrics, one sensitive to global dis-
tributional contexts of word-senses, and the other
sensitive to the visual and conceptual properties of

2Some models demonstrated better performance when we

omitted “The answer is:” from this prompt. The entire set
of templates is made available in Appendix C.
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Similarity Type

Category Taxonomic Neighbors

Non-taxonomic Neighbors

Word-Sense vehicle

car (0.85), sled (0.70),
hot-air balloon (0.59)

headlight (0.82), spinach (0.11),
calzone (0.09)

SPOSE bird

eagle (0.95), pelican (0.90),
penguin (0.82)

bee (0.92), gazelle (0.87),
cabinet (0.08)

Table 1: Examples of taxonomically related and non-taxonomically related neighbors of the vehicle and bird
categories determined by the two different types of similarities. Values in parentheses indicate similarities.

objects (animacy, color, etc.). Both metrics were
derived from vector-space embeddings, and simi-
larity was calculated using cosines between vectors
of the input concepts.’

Word-sense Similarity We used the LMMS-
ALBERT-xx1 model (Loureiro et al., 2022) which
was constructed by aggregating contextualized em-
beddings from the ALBERT-xxI LM (Lan et al.,
2020) for lexical items with tagged WordNet senses.
This model can be considered as a distributional se-
mantic model like Glove (Pennington et al., 2014)
that isolates the distributional information of the
particular sense of a word—i.e., the embedding for
bat when used as a mammal is different from that
used as sporting equipment.

SPoSE Similarity We used SPoSE (Zheng et al.,
2019), a sparse, non-negative vector space model
fitted to human behavioral judgments on odd-one-
out tasks, where participants were tasked to choose
a concept from a triple that was least similar to
the other two (e.g., {crow, sparrow,ship}). We
used the 49-dimensional embedding released by
(Hebart et al., 2023), which achieved a correlation
of up to 0.9 with human judgments of perceived
similarity (Kaniuth et al., 2024). Since the em-
beddings in SPoSE are for subordinate categories,
we augmented this dataset with superordinate cat-
egory vectors by taking the mean of the vector
representations of the category members for each
category—e.g., for bird, we took the average of the
embeddings of {crow, sparrow, ...}.

Table 1 shows examples of taxonomically and
non-taxonomically related neighbors of a few cate-
gories according to both types of similarity.* For
each similarity type, we bin the category pairs in
our stimuli into ‘high’ or ‘low’ similarity by calcu-
lating the median similarity for premise category
and categorizing instances where the similarity be-
tween the premise and the conclusion is above the
median to be ‘high’, and those below to be ‘low’.

3We discuss other possible metrics we could have used,
and our reasons for not using them in the limitations.
* Additional examples are given in Appendix E.

This way, every premise category in our stimuli
is associated with equal numbers of high and low
similarity conclusion categories. In total, we have
4032 category pairs, for each type of similarity.

3.3 Models

We analyze four instruction-tuned LMs: Mistral
7B Instruct v0.2 (Jiang et al., 2023), the 2B and
the 9B parameter variants of the Gemma 2 family
(Riviere et al., 2024), and the 8B parameter variant
of Llama 3 Instruct (Dubey et al., 2024).5 We
found varying degrees of success in using the chat-
templates for these LMs, and therefore used it only
when it resulted in a non-trivial improvement over
the standard method of passing inputs to the LMs.
All models were accessed using the transformers
library (Wolf et al., 2020).

3.4 Behavioral Characterization of Property
Inheritance

We begin by characterizing the role of taxonomic
relations and similarity in LMs’ property inheri-
tance behavior. To this end, we collect LMs’ re-
sponses to our stimuli, and analyze the conditions
under which they are more likely to extend the prop-
erty from the premise category to the conclusion
category. We do this by comparing their relative
probabilities for ‘Yes” vs. ‘No’ on our stimuli,
which we compute as follows:®

po( | prefix)

>>  po( | prefix)’
x€{Yes, No}

Prel(x) =

where ‘prefix’ is the stimulus, formatted as dis-
cussed in §3, and py(.) denotes the LM’s next

*Initial experiments showed these LMs’ non instruction-
tuned counterparts to perform worse at property inheritance,
which corroborates recent evidence about the advantage of
instruction-tuning for property inheritance (Misra et al., 2024).

®The LM:s that we use have two different tokens to repre-
sent ‘Yes’—one with and one without space, and similarly for
‘No’. To address this potential issue, we take the maximum of
the probabilities over the two options for both cases. That is,
po(Yes) = max(po(Yes), po(_Yes)), and similarly for ‘No’.
We note that these tokens appeared as the top predicted tokens
for all models evaluated except Gemma-2-2B-IT.

11518



Model Word-Sense SPoSE

TS PS MS p TS PS MS »p
Gemma-2-2B-1T 0.84 0.85 089 026 079 0.79 0.88 0.59
Mistral-7B-Instruct-v0.2 0.84 0.85 0.84 0.42 0.80 0.81 0.83 0.62
Llama-3-8B-Instruct 0.86 0.86 098 0.37 079 0.79 0.98 0.68
Gemma-2-9B-IT 090 0.89 085 034 085 0.84 0.84 0.65

Table 2: Behavioral sensitivities of LMs across both similarity types (Word-Sense and SPoSE). TS: Taxonomic
Sensitivity; PS: Property Sensitivity; MS: Mismatch Sensitivity; p: Spearman correlation of model scores (Pre; (Yes))

with similarity (p < .001 throughout).

token distribution which we computed using the
minicons library (Misra, 2022). Using these rela-
tive probabilities, we compute the following met-
rics to analyze LMs’ property inheritance behavior:

Taxonomic Sensitivity (TS) We measure the ex-
tent to which LMs are sensitive to the taxonomic
relations between the premise and conclusion cat-
egory. We do so by computing the proportion
of examples where Pre;(Yes) > 0.5 when the
premise and conclusion are taxonomically related,
and Pre1(Yes) < 0.5 when they are not.

Property Sensitivity (PS) The TS metric is com-
puted for stimuli where the only nonce property
is is/are daxable. To what extent does the spe-
cific surface form of the property play a role in
LMs’ property inheritance behavior? To this end,
we generate a different set of stimuli where we
randomly replace both instances of is/are daxable
with has/have feps for half of the examples. We
maintain the even balance between taxonomically
and non-taxonomically related premise-conclusion
pairs. Given this data, we then compute the tax-
onomic sensitivity in this setting as before. This
metric penalizes bias for a particular property.

Mismatch Sensitivity (MS) We measure the ex-
tent to which the LMs are sensitive to whether
the properties mentioned in the premise and con-
clusion match. If they are mismatched, then re-
gardless of the taxonomic relationship between the
concepts, the LMs should always prefer ‘No’ over
‘Yes’. To test this, we generate stimuli where we
uniformly substitute either the premise or the con-
clusion with a different property (e.g., birds are
daxable vs. robins have feps), and compute the
proportion of time Pre;(Yes) < 0.5.

Spearman correlation with similarity (p) Fi-
nally, we measure the Spearman correlation be-
tween Pre1(Yes) and the similarity between the
premise and conclusion categories, to quantify the

role of similarity on LMs’ inference behavior.

We compute these metrics separately for both
types of similarity. For the three sensitivity metrics
(TS, PS, MS), chance sensitivity is 0.5, as they all
involve pairwise comparisons. We also measure
the average Pre1 (Yes) across four slices of our data
based on when the premise and conclusion cate-
gories were (i) non-taxonomically related, low sim-
ilarity (-Tax, -Sim), (ii) non-taxonomically related,
high similarity (-Tax, +Sim), (iii) taxonomically
related, low similarity (+Tax, -Sim), and (iv) taxo-
nomically related, high similarity (+Tax, +Sim).

3.5 Results and Analysis

Table 2 shows the aforementioned metrics for all
four LMs, across both similarity types, while Fig-
ure 2 shows their average P (Yes) values across
the four different slices of our data. For both simi-
larity types, all four LMs demonstrate substantially
high TS and PS values—i.e., they are more likely
to extend the novel property when the premise cat-
egory is a superordinate of the conclusion category.
This suggests a non-trivial role of taxonomic cate-
gory membership in the models’ inference behav-
ior. At the same time, the LMs also show positive
correlation with categorical similarity, suggesting
that their tendency to extend properties from the
premise to the conclusion is also sensitive to the
similarity between the two. More specifically, they
show greater correspondence with similarities de-
rived from SPoSE (p € [0.59, 0.68]) than from the
sense embeddings (p € [0.26, 0.42]).

While LMs demonstrate sensitivity to similarity,
their tendency to produce ‘Yes’ over ‘No’ seems to
correspond better with the presence of taxonomic
relations. In Figure 2, LMs on average prefer to
extend the property from premise to conclusion
for high-similarity pairs than for low-similarity
ones. However, we see the average Pre1(Yes) to
be largely greater than 0.5 for the slices of our
data where the premise is a taxonomic superordi-
nate of the conclusion, regardless of the similar-
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Conclusion Condition

-T: -Tax +Tax +Tax
-Sim +Sim -Sim +Sim

Gemma-2-2B-IT Llama-3-8B-Instruct

Mistral-7B-Instruct-v0.2 Gemma-2-9B-IT

Ave

Ol )

Word-Sense SPOSE Word-Sense SPoSE

Word-Sense SPoSE Word-Sense SPoSE

Similarity Type

Figure 2: LMs’ Average Relative Probability of ‘Yes’ for different conclusion categories and different types of
similarities (Word-Sense vs SPoSE). LMs show a clear sensitivity to taxonomic relations, but also show an effect of
similarity, where they are more likely to extend the property to a conclusion category when the premise and the
conclusion categories are highly similar. Chance behavior is 0.50, as indicated by the dashed line.

ity bin (high vs. low), for both types of similarity.
For non-taxonomically related premise conclusion
pairs, while the LMs show greater Pre; (Yes) value
when the premise and conclusion are highly sim-
ilar, it is seldom above 0.5 (with the exception of
Llama-3-8B-Instruct, for the SPoSE similarity). Fi-
nally, all LMs show robustness to cases where the
property being projected between the premise and
conclusions was different (largely high MS values).
That is, whatever taxonomic/similarity sensitivities
LMs demonstrate are largely for the well-formed
instances of the task (i.e., when the properties be-
tween premise and conclusion match). These re-
sults suggest that LMs’ property inheritance be-
havior can be explained jointly by taxonomic
relations as well as categorical similarity.

4 Causal Investigation of Taxonomy and
Similarity

Given that LMs perform property inheritance with
high taxonomic sensitivity, we now use causal in-
terpretability tools (Mueller et al., 2024a; Geiger
et al., 2024a) to localize this behavior. We then in-
vestigate (i) whether the subspaces that are causally
responsible for inheritance perform inductive gen-
eralization in a manner that is better explained by
the similarity of the noun concepts, rather than their
taxonomic relationship; and (ii) whether taxonomic
information and noun similarity are fundamentally
entangled in the model representations. We investi-
gate both questions using distributed alignment
search (DAS; Geiger et al., 2024b), a causal inter-
pretability method which has been used to localize
and mechanistically explain syntax-sensitive be-
haviors (Arora et al., 2024) and arithmetic abilities
(Wu et al., 2023b) in LMs. To avoid needing to
search over all possible subspaces of an activation
vector manually, we employ the Boundless DAS

variant (Wu et al., 2023b) implemented in pyvene
(Wu et al., 2024) to learn the appropriate subspace.

We use DAS rather than other causal inter-
pretability techniques’ because it allows us to inves-
tigate to what extent a specific hypothesized causal
model is being implemented by the neural network.
Because DAS isolates a specific subspace corre-
sponding to a given hypothesized causal variable,
the subspace can be evaluated in novel contexts
post hoc to better characterize its functional role.
We leverage this to evaluate whether subspaces that
are sensitive to taxonomic relationships are also
sensitive to similarity-based but non-taxonomic re-
lationships. This type of experimental design in-
volving ambiguous training sets with separate test
and generalization sets has been used to charac-
terize the inductive biases of LMs (McCoy et al.,
2019; Si et al., 2023; Mueller et al., 2024b), though
this has typically been evaluated behaviorally rather
than at the level of internal mechanisms. There is a
limited but growing literature validating how well
discovered mechanisms (or explanations thereof)
generalize to novel types of contexts (Geiger et al.,
2020; Huang et al., 2023, 2024, i.a.).

Given an LM M, a hypothesized causal graph L,
and counterfactual input (source, base) pairs (s, b)
that target a specific intermediate variable V' in the
causal graph, DAS learns a rotation R for the acti-
vations of a given submodule, and then performs
counterfactual interventions in this rotated space.
This is done as follows: Ly (s), the value of vari-
able V in L when applied to source s, is patched
into the corresponding variable of the base b,

Ly (b) <= Ly (s),

"For example, those based on sparse autoencoders
(Bricken et al., 2023; Marks et al., 2024; Huben et al., 2024)
or neurons (Vig et al., 2020; Finlayson et al., 2021).
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Premise
concept

&z Given that birds are daxable,
Q" s it true that are daxable?

B has property P

Bis akind of A

Conclusion
concept

Premise
concept

& Given that birds are daxable,
&> st true that robins are daxable?

Figure 3: We hypothesize that language models rely on this causal graph to perform the categorical inference task.
We are interested specifically in the node responsible for taxonomic judgments, so we use DAS (§4) to isolate the
subspace encoding this causal variable. We causally verify its sensitivity to taxonomy by setting its value to what it
would have been on counterfactual source inputs, and observing whether model behavior changes appropriately.
Here, activations at the isolated subspace for the base are replaced with activations from the source. I1A measures to
what extent this intervention results in the expected behavior given the hypothesized causal graph across inputs.

and then the final output of L is computed. Translat-
ing this to operations on the low-level computation
graph, a rotation R is learned for activations in the
network M from a position ¢ to position j. We
patch R(M (s);) into M (b);:

M(b);  R(M(s):),

and then compute the output of M.

After learning the rotation, we compute the inter-
change intervention accuracy (IIA) on a held-out
test set. This scores how frequently the learned
subspace performs as expected given the hypoth-
esized causal graph. Intuitively, IIA is defined as
the proportion of (s, b) pairs where patching in the
rotated source activation into the base model M
causes M'’s output to match the causal model L’s
output after the intervention. It thus measures the
degree of alignment between the neural network
and the causal graph. The intuition for learning
a rotation is that the features of interest may not
necessarily be aligned to the bases of the original
activation space (Hinton et al., 1986; Smolensky,
1986; Elhage et al., 2022; Mueller et al., 2024a),
rendering neuron-based approaches insufficient for
capturing the target variable. We refer readers to
Geiger et al. (2024b) for details.

In our experiments, we hypothesize that a
given subspace will be sensitive to taxonomic
relationships—if this is true, then passing an acti-
vation into this subspace from taxonomically unre-
lated inputs should yield a variable output of False.
However, if we intervene on this subspace passing
in activations from an alternate input where the
nouns are taxonomically related (while holding all
other activations in the model constant), then the

variable’s output should flip to True. We illustrate
the intuition and the causal graph that we hypothe-
size LMs implement in Figure 3. By only changing
the premise and conclusion nouns across inputs
(e.g., birds, robins, orchids), and keeping the rest
of input constant, we effectively target the node “B
is a kind of A” in Figure 3.8

We train DAS on a subset of 3,000 stimuli and
evaluate on the rest. Implementation and training
details are given in Appendix D. Next, we describe
variations of the training and test sets used in our
experiments.

Balanced For each base stimulus in the set of
3,000 stimuli, we pick a source counterfactual stim-
ulus by sampling from this set of stimuli without
replacement. This ensures a balanced coverage of
counterfactual stimuli in terms of similarity and
whether or not the premise and conclusion are taxo-
nomically related. This experimental setting is used
to localize property inheritance in the network.

Control DAS requires training, raising concerns
that its expressivity may lead to discovered causal
effects where none exist (Arora et al., 2024), simi-
lar to concerns raised in the probing literature (He-
witt and Liang, 2019). To mitigate this, we follow
Arora et al. (2024) and map the labels Yes and No to
the semantically irrelevant words chart and view,
respectively. This setting evaluates the extent to
which DAS memorizes an arbitrary token mapping
versus learning task-specific structure.

8We target this node since our focus is on taxonomic rela-
tions rather than property binding—where the goal is to check
if LMs have appropriately bound the property with the noun
concept—which has been investigated in other work (Feng
and Steinhardt, 2024).
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Figure 4: Interchange Intervention Accuracies (IIA) for the causal graph in Figure 3 for Gemma-2-9B-IT (Top) and
Mistral-7B-Instruct-0.2 (Bottom), when intervening at various layers and token positions, with negative samples
derived using SPoSE similarities. Since the premise and conclusion nouns are often multiple tokens, we show IIA
when intervening at the first and last positions of each. Note: Both models have different numbers of layers.

Ambiguous In this setting, we filter the training
set such that learned rotations can be consistent
with either similarity or taxonomic features. By
only training on taxonomic examples with high
similarity and negative examples with low similar-
ity, we learn an intervention which is ambiguous
with respect to what features it is using. To disam-
biguate these, we evaluate on two different test sets:
an in-domain (Ambiguous-Test) test set composed
in the same way as the train set (taxonomic exam-
ples with high similarity and negative examples
with low similarity), and an out-of-domain gener-
alization test set (Ambiguous-Gen), composed of
taxonomic examples with low similarity and non-
taxonomic examples with high similarity. A drop
in IIA values between the Test and Generalization
settings would show that learned interventions rely
more on similarity than taxonomic features.

Unambiguous Finally, we test whether the sub-
space sensitive to taxonomic relationships is also
sensitive to similarity-based relationships—i.e.,
whether taxonomic information and noun similarity
are entangled in the model. To do this, we take the
intervention trained under the Balanced setting and
evaluate it on (Ambiguous-Gen), defined above.
Here the training signal for DAS is unambigious—it
is only compatible with capturing taxonomic infor-
mation. A drop in scores would then indicate that
taxonomic and similarity features are entangled.
We use Pre1(Yes) rather than the top predicted
token as done in (Wu et al., 2023b) when com-

puting IIA across experiments, in order to have a
reasonable comparison against the control setting.”

4.1 Results and Analysis

Figure 4 shows the IIA results for Gemma-2-9B-
IT and Mistral-7B-Instruct-v0.2 for the first three
settings, and Table 3 shows results on the Unam-
biguous setting. Full results for the other models
are given in Appendix B. Higher IIA values indi-
cate a better causal alignment between the inter-
vention at a particular location in the network and
the causal graph. The activations at the premise to-
ken positions have poor alignment with the causal
graph, while activations around the last conclusion
token at layer 10 (for Mistral) and layers 10-20
(for Gemma) have a much bigger causal effect on
property inheritance.

ITA values for the control experiment are always
lower than for the balanced setting; thus, despite its
expressivity, DAS can yield task-dependent results
(i.e., comparatively lower IIA values in the con-
trol setting establishes that DAS is telling us some-
thing about the LM’s property inheritance abilities).
High values for IIA occur in roughly the same po-
sitions for Ambiguous-Test and Ambiguous-Gen.
There is a substantial drop from Ambigious-Test
to Ambigious-Gen for all models and for every in-

The interventions are not strong enough to force the
model to output either of the control tokens chart, or view
as their top-predicted token, resulting in 0% accuracy; on the
other hand the difference between using the top predicted to-
ken and Pr.1(Yes) was negligible in most other settings (<0.02
across experiments, except for Gemma-2-2B-IT).

11522



Model Word-Sense SPoSE
Bal Gen Bal Gen
Gemma-2-2B-1T 0.86 0.81 0.80 0.63
Mistral-7B-Instruct-v0.2 0.88 0.85 0.83 0.65
Llama-3-8B-Instruct 087 0.82 0.80 0.63
Gemma-2-9B-1T 090 0.85 0.85 0.67

Table 3: Maximum ITA values for the Unambiguous ex-
periment. Interventions are trained under the Balanced
train set, and evaluated on both the Balanced test set
(Bal) as well as the Ambiguous-Gen set (Gen). The drop
on the generalization test set suggests that the learned
interventions rely non-trivially on similarity.

tervention position, showing that, when given am-
biguous data, the learned rotations tend to rely
on similarity rather than taxonomic relations.
Similar observations hold for the Unambigious ex-
periment, with a drop in scores showing that, even
when trained on data that is unambigiously consis-
tent with taxonomic relations rather than similarity,
the causal model is sensitive to similarity effects.
In other words, similarity and taxonomic features
appear to be fundamentally entangled.

5 Discussion and Conclusions

Our goal in this paper was to characterize category-
based inferences in LMs. We derived inspiration
from psychological experiments that have sought
to understand how humans transfer properties from
a higher level category like mammals to lower
level ones such dogs and cats (Collins and Quil-
lian, 1969; Glass and Holyoak, 1974; Murphy,
2002)—i.e., show property inheritance. Findings
from these experiments show that instead of rely-
ing purely on abstract category-membership princi-
ples (where all members of a category are equally
likely to inherit properties), humans show graded
behavior proportional to the similarity between the
categories (Sloman, 1998).

Through behavioral and representational analy-
ses methods across four LMs, we found that lan-
guage models’ property inheritance behavior is
sensitive to both taxonomic relations and similar-
ity. Behaviorally, LMs were more likely to extend
the property from the premise to the conclusion
when they were taxonomically related, and at the
same time, showed positive correlations with the
similarity between them. This finding was further
reinforced in our representational investigations,
where we found taxonomy and similarity to be
largely entangled in the LM subspaces causally
responsible for property inheritance. Our results

cast doubt on previous works’ assumption of pure
taxonomic principles with respect to property in-
heritance in LMs, without considering similarity
(Misra et al., 2023; Powell et al., 2024; Wang et al.,
2024). In the broader context of LMs’ reasoning be-
haviors, our results showcase yet another instance
where LMs were susceptible to human-like content
effects (Lampinen et al., 2024).

Our findings also suggest interesting hypotheses
for future human analyses. Importantly, Sloman
(1998)’s experiments never tested humans on cases
where the categories in a property inheritance set-
ting did not share taxonomic relations (e.g., birds
and bats). This makes it unclear if the principles
of taxonomy and similarity are also not mutually
exclusive for humans (Murphy et al., 2012)—e.g.,
it could be possible that both mechanisms are at
play, where taxonomic relations demarcate the in-
ference (i.e., whether the property will be inherited)
and similarity modulates its strength. Future exper-
iments could test this hypothesis and shed further
light on the extent to which LMs and humans show
similar sensitivities and biases during reasoning.
Overall, our work shows how tools from modern
interpretability research, primarily used to isolate
sub-structures in neural networks, may also be used
to perform hypothesis testing of the abstractions
encoded within them.

Limitations

Alternative similarities There are other similar-
ities that we could have used in our experiments.
Examples include similarities computed over Word-
Net (e.g., Wu-Palmer similarity; Wu and Palmer,
1994), co-occurrence based similarities, or simi-
larities computed from LM token embeddings or
activations (Chronis and Erk, 2020). While it is
tempting to use these, there are various shortcom-
ings to each of them. WordNet similarities do not
distinguish between co-hyponyms: concepts that
are at the same level will have the same similarity
with a given high level concept. Next, the sense
based similarity used in this work is a form of
distributional similarity as it is formed by aggregat-
ing distributional semantic embeddings of words
occurring in free-text corpora, and has the added
advantage of being informed by the sense of the
word. Finally, using LM-specific similarities makes
it difficult to use the same stimuli across models,
since similarities from different models would have
resulted in different negative samples. However,
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future work could explore possible correlations be-
tween LM-derived similarities and their property
inheritance behavior.

Abstract and Ad-hoc Concepts We have exclu-
sively focused on concrete, object noun concepts
in this work. However, these do not account for
the entire range of concepts that humans acquire
in their life times—i.e., it is unclear how property
inheritance applies to abstract concepts like love or
ad-hoc concepts (Barsalou, 1983) like things you
would pack for a camping trip, which may not have
taxonomic structure. We leave these investigations
to future work.

Knowledge editing Previous work has studied
whether language models are able to carry out in-
ferences related to entities (Cohen et al., 2024) or
concepts (Wang et al., 2024; Powell et al., 2024)
which have been modified through knowledge edit-
ing. While we do not engage directly with knowl-
edge edits, it would be interesting to measure the
impact of knowledge editing on the LMs’ rotated
subspaces during property inheritance.

Broader space of inductive problems While
property inheritance is an important consequence
of category structure and organization, it is only
one type of inductive generalization that humans ex-
hibit (Kemp and Jern, 2014). For instance, humans
may also learn about novel concepts and ascribe
known features to them (Smith and Estes, 1978;
Murphy, 2002; Kemp, 2011), or they might learn a
new higher level category and judge category mem-
berships of known concepts (Xu and Tenenbaum,
2007), or they might generalize in a completely
non-deductive manner (e.g., from robins to birds,
or to its co-hyponyms, see Rips, 1975; Osherson
et al., 1990).

Contextual similarities While we experimented
with different types of similarities, human inductive
inferences might not be explained by the same sim-
ilarity every time—i.e., similarity in inductive prob-
lems can be context-sensitive (Heit and Rubinstein,
1994; Rogers and McClelland, 2004; Kemp and
Tenenbaum, 2009). For instance, generalization
of biological-sounding properties (has an ulnar
artery) are often sensitive to taxonomic similarities.
Bears and whales are likely to share these proper-
ties since they are mammals. On the other hand,
behavioral properties (studies its food before at-
tacking) might be influenced by similarities derived
from other, non-taxonomic conceptual structures.

The aforementioned property could be shared by
predatory animals such as tigers and eagles. It is,
however, important to note that these caveats ap-
ply only when the properties are not nonce, like
in our work—e.g., it is not clear if is daxable or
has feps are biological or otherwise. Future studies
could explore these deeper nuances of similarity
and category-based inferences in LMs using the
methods we employ in this work.
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A Sensitivity to directionality

Our previous analyses suggest that LMs demon-
strate non-trivial taxonomic sensitivity in their
property inheritance behavior. Are they also sen-
sitive to the fact that the taxonomic relation is, in
its strictest sense, asymmetrical (Murphy, 2002)?
For instance, while robins are birds, one cannot
say that birds are robins. Is this fact captured in
LMs’ property projections? That is, if robins are
daxable, are birds daxable? A finding of insen-
sitivity might not necessarily be a negative result
in the context of LMs’ conceptual representations.
After all, generalizing from subordinates (robins)
to superordinates (birds) is directly connected to
contemporary work targeting property induction
in LMs (Misra et al., 2022; Han et al., 2022; Bha-
tia, 2023; Han et al., 2024), where similarity has
more of an uncontroversial role (Osherson et al.,
1990; Sloman, 1993), and where humans show a
myriad of interesting phenomena (Hayes and Heit,
2018).10 Instead, it might be informative to further
characterize the LMs’ subspaces responsible for
property inheritance—our previous findings sug-
gest that they are sensitive to similarity, are they
also sensitive to directionality? Or are they simply
encoding the presence of taxonomic (and similar-
ity) relations?

We behaviorally evaluate the sensitivity of LMs
to the direction of the property projection as fol-
lows. We measure the Directional Sensitivity (DS)
as the fraction of times an LM flips its relative
preference from Yes to No when the order of the
premise and conclusion nouns in our stimuli is
swapped, only over all taxonomically related items.
Additionally, we also measure the spearman corre-
lation of DS with that of TS—i.e., the taxonomic
sensitivity metric computed for the non-reversed
property inheritance stimuli, computed for the tax-

10We refer to this analysis as the directionality of property
projection given that induction is often used more generally
to refer to many kinds of reasoning which are ampliative, and
not determined by deductive logic (Kemp and Jern, 2014).
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Given that food is daxable,
is it true that are daxable?

Given that birds are dax
is it true that robins are

Evaluation Pairs

Given that robins are d.
is it true that birds are

Given that is dax
is it true that food are o

Figure 5: DAS interventions on pairs where the direc-
tion of the inference is flipped. Low IIA values for this
experiment reveal whether the learned subspaces for
property inheritance are sensitive to direction.

onomically related premise and conclusion. We
refer to this as pps

Next we consider whether the learned DAS in-
terventions from §4 generalize when reversing the
direction of the premises and conclusions. We con-
sider interventions trained under the Balanced set-
ting with high IIA values (i.e., which localized
property projection behavior in the regular prop-
erty inheritance direction and showed taxonomic
sensitivity), and evaluate them on source and base
pairs with flipped premise and conclusion nouns.
In order to measure the effect of direction, we only
evaluate on examples where the intervention suc-
cessfully flipped the label from No to Yes in the
non-reversed direction, as illustrated in Figure 5.
The evaluation set is constructed from source and
base pairs where the premise and conclusions are
taxonomic and non-taxonomic, respectively. We
then filtered these so that (i) the LM predicts the
right labels in the non-reversed case (i.e., shows
taxonomic sensitivity) and (ii) the DAS interven-
tion correctly flips the label from No to Yes. The
order of the nouns are then reversed to establish
whether the intervention causes the same behavior
when the direction of inheritance is flipped. This is
illustrated in Figure 5.

We refer to the ITA values for this evaluation as
Subspace Directional Insensitivity (SDI), since
higher scores mean the subspace is less sensitive to
direction.

Results The behavioral DS results across mod-
els are given in Table 4. Gemma-2-9B-IT is the
most directionally sensitive model: the order of the
premise and conclusion concepts has an impact on
property projection roughly half of the time. The
other three models are far less sensitive to direction.
This is also reflected in higher Spearman correla-

Model DS PDS

Gemma-2-2B-IT 0.24 0.54
Mistral-7B-Instruct-v0.2  0.37 0.37
Llama-3-8B-Instruct 0.38 0.40
Gemma-2-9B-IT 0.49 0.31

Table 4: Directional sensitivities of LMs. DS: Direc-
tional Sensitivity; p: Spearman correlation of Pre1(Yes)
between the original and reverse directions. DS and p
are computed only over the taxonomic items.

Model Word-Sense SPoSE
Con-¢ Last Con-¢ Last
Gemma-2-2B-IT 071 077 0.77 0.83
Mistral-7B-Instruct-v0.2 040 031  0.29 0.38
Llama-3-8B-Instruct 0.06 052 0.16 0.45
Gemma-2-9B-IT 0.08 0.57 0.07 0.39

Table 5: SDI results with interventions at conclusion-
last token position (Con-¢) and final token position
(Last). Lower numbers indicate that the subspace in-
volved in property inheritance in the deductive case is
sensitive to the directionality of the inference.

tions for those models.

Subspace Directional Insensitivity results are
shown in Table 5 for interventions at different net-
work locations. Since IIA values were high at both
the final token position (Last) and the last token of
the conclusion noun (Con-£), we evaluated with in-
terventions at both, in each case selecting the layer
with highest ITA across each token position.'!

SDI is nearly always lower for Con-¢ than for
Last positions: it is harder to use the taxonomically
sensitive property inheritance intervention to make
the LM behave in the same way with reversed ex-
amples when intervening earlier in the network.
Similar to the behavioral results, the subspace at
conclusion-last token position and layer 15 for
Gemma-2-9B-IT is the most sensitive to the direc-
tionality of the inference, while Gemma-2-2B-IT is
the least sensitive. We note, however, that this only
holds for the prompts used in our experiments—
for example, using Prompt 2 with chat template
(Appendix C) makes Gemma-2-2B-IT more direc-
tionally sensitive than it is with Prompt 1 without
chat template.'?

"For Gemma-2-9B-IT, this was layer 15 for Con-/, and
layer 35 for Last; for the other models this was layer 10 for
Conl-¢ and layer 15 for Last.

12Speciﬁcally, DS increases from 0.24 to 0.55, and SDI
decreases (e.g., for Con-/, to 0.22 and 0.27 for Word-Sense
and SPoSE, respectively). Future work could systematically
explore direction sensitivity for different prompts.
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B Additional DAS Results

Additional results for the DAS experiments for
Gemma-2-2B-IT and Llama-3-8B-Instruct are
given in Figure 6. This figure also includes the
full set of results from using the sense-based simi-
larity measure to derive our negative samples. The
full set of results from the Unambiguous DAS
experiments are shown in Figure 7.

C Prompts

The formats for the prompts used in our experi-
ments are given below.
Prompt 1: Answer the question. Given that A

is/are daxable, is it true that B is/are
daxable? Answer with Yes/No.\n

Prompt 2: Answer the question. Given that A
is/are daxable, is it true that B is/are
daxable? Answer with Yes/No. The answer is:

Prompt 3: Answer the question. Given that A
is/are daxable, is it true that B is/are
daxable?<@x@A>Answer with Yes/No.<0xQA>

Prompt 4: Given that A is/are daxable, is it
true that B is/are daxable? Answer with
Yes/No:

Table 6 indicates which the prompts used for
each language model and whether the chat tem-
plate'? was used. These selections were made on
the basis of the models’ behavioral taxonomic sen-
sitivities.

Model Prompt Chat Template
Gemma-2-2B-IT Prompt 1 No
Mistral-7B-Instruct-v0.2  Prompt 3 No
Llama-3-8B-Instruct Prompt 2 No
Gemma-2-9B-IT Prompt 2 Yes

Table 6: Prompt formats used in our experiments.

D DAS Implementation Details

Boundless DAS interventions were trained for 2
epochs, with a batch size of 16 on NVIDIA RTX
A6000 and NVIDIA A40 GPUs. We used the
Adam optimizer with a learning rate of 1e-3, in-
cluding gradient accumulation and a temperature
schedule.'* All DAS experiments were performed

Bhttps://huggingface.co/docs/transformers/
main/en/chat_templating

“As used in https://github.com/stanfordnlp/
pyvene/blob/main/tutorials/advanced_tutorials/
Boundless_DAS. ipynb

using the pyvene library, version 0.1.1. We loaded
all models using the default huggingface con-
figuration, except for Gemma-2-9B-IT, which we
loaded with torch_dtype torch.bfloat16 due to
memory constraints. For the Balanced, Unam-
biguous and Control experiments, we trained on
3,000 stimuli and evaluated on 1,018 stimuli. For
the Unambigious setting we trained on 1,527 stim-
uli for the Word-Sense dataset and 2,017 stimuli
for the SPoSE dataset. The Ambiguous-Test set
contained 536 stimuli for Word-Sense and 671
for SPoSE, while the Ambiguous-Gen test set
containd 482 stimuli for Word-Sense and 347 for
SPoSE.

E Premise and Conclusion Concepts

The list of all premise categories used in our exper-
iments is shown in Table 9. Tables 7 and 8 show
examples from different slices of our data using
both SPoSE and sense-based embeddings.

Slice Pair Similarity Pre;(Yes)
Tgxon(-)m'lcal'ly related, garden tool — shovel 0.83 0.99
High similarity
Taxon‘on?lca.l ly related, garden tool — hose 0.72 0.76
Low similarity
Non taxonomically related,

y . .5
High similarity garden tool — spear 0.81 0.55
Non taxonomically related, garden tool — ham 0.13 001

Low similarity

Table 7: Examples of the four slices in our data, where
similarity is calculated using SPoSE (Zheng et al., 2019;
Hebart et al., 2023), and the model responses are from
Gemma-2-9B-IT.

Slice Pair Similarity Pre;(Yes)
Te?xon(?m'lcallly related, sea animal — whale 0.79 0.99
High similarity

Taxon'omlca'l ly related, sea animal — coral 0.70 0.74
Low similarity

me la?(oporr.llcally related, sea animal — aquarium 0.75 0.42
High similarity

Non taxonomically related, sea animal — rack 0.45 0.05

Low similarity

Table 8: Examples of the four slices in our data, where
similarity is calculated using the sense-based embed-
dings (Loureiro et al., 2022), and the model responses
are from Gemma-2-9B-IT.
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plant

home decor
vegetable
accessory

dessert

furniture
breakfast

fruit

musical instrument
toy

fastener

toiletry

auto part

sea animal

bird

kitchen tool
medical equipment
school supply
office supply
seafood

kitchen equipment
drink

game

headwear

water vehicle
women’s clothing
livestock

garden tool

insect

outerwear
protective clothing
candy

condiment
footwear

jewelry

291
177
142
107
105
88
74
70
48
47
45
42
37
36
36
35
34
33
33
31
31
30
30
28
27
26
26
24
24
20
19
19
19
19
19
18
17
17
16
16
15
15
15
15

Table 9: List of premise categories and their sizes (in
terms of number of members), sorted by size. Many
of these categories overlap—e.g., mammals are also

animals, etc.
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