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Abstract

Large language models (LLMs) have exhibited
certain indirect pragmatic capabilities, includ-
ing interpreting indirect requests and non-literal
meanings. Yet, it is unclear whether the suc-
cess of LLMs on pragmatic tasks generalizes
to phenomena that directly probe inferences
about the beliefs of others. Indeed, LLMs’ per-
formance on Theory of Mind (ToM) tasks is
mixed. To date, the most successful computa-
tionally explicit approach to making inferences
about others’ beliefs is the Rational Speech
Act (RSA) framework, a Bayesian probabilistic
model that encodes explicit representations of
beliefs. In the present study, we ask whether
LLMs outperform RSA in predicting human
belief inferences, even though they do not ex-
plicitly encode belief representations. We focus
specifically on projection inferences, a type of
inference that directly probes belief attribution.
We find that some LLMs are sensitive to fac-
tors that affect the inference process similarly
to humans, yet there remains variance in human
behavior not fully captured by LLMs. The RSA
model, on the other hand, outperforms LLMs in
capturing the variances in human data, suggest-
ing that explicit belief representations might be
necessary to construct human-like projection
inferences.

1 Introduction

What is required to make inferences about the be-
liefs of others? Is it necessary to explicitly encode
beliefs about others’ beliefs? Or does statistical
learning over language produce equally accurate
predictions? These questions are as relevant to
human language comprehension as they are to Nat-
ural Language Understanding. Large Language
Models (LLMs) serve as an important test case
for statistical learning approaches. Although they
lack explicit belief state representations, larger and
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more recent language models appear to perform
well in certain pragmatic reasoning and non-literal
language understanding tasks (Hu et al., 2023a;
Ruis et al., 2024). Yet, recent studies have pro-
duced conflicting results in tasks that involve the
beliefs of others, including those testing their The-
ory of Mind (ToM) abilities (Ullman, 2023; Sap
et al., 2022; Kosinski, 2024). On the one hand, con-
flicting results in pragmatic tasks and ToM tasks
suggest that it is possible to accomplish pragmatic
reasoning through low-level processes that do not
require ToM-like reasoning about the interlocutor’s
mental state. On the other hand, it is possible that
explicit belief representations emerge from expo-
sure to language and are then used to perform prag-
matic tasks (Hu et al., 2023a).

Compared to LLMs, where the inference capaci-
ties and processes are relatively more controversial,
it is widely recognized that human comprehenders
infer both the state of the world and other people’s
mental states from language. For instance, when
the speaker (i.e., Paul), utters the sentence in Ex-
ample (1a), the listener can infer that the attitude
holder (i.e., John), believes the embedded proposi-
tion to be true, i.e., it is raining, since it is asserted
by the sentence. More importantly, the listener can
also infer that it is in fact raining and the speaker
also believes so. This inference persists even when
the sentence is in an interrogative form as in Ex-
ample (1b). In this case, what is questioned is
what the attitude holder believes, yet the speaker is
taken to be committed to the truth of the embedded
proposition. Hence, this inference is considered to
project through the entailment-canceling environ-
ment (Kiparsky and Kiparsky, 1970). This type of
inferences about speaker commitment is commonly
referred to as PROJECTION INFERENCES.

1. (a) Paul said: John knows that it is raining.

(b) Paul asked: Does John know that it is
raining?
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For humans, pragmatic inferences often rely on
Theory of Mind (ToM) abilities (Apperly, 2010).
In particular, listeners infer the intended meaning
of the speaker by reasoning about the speaker’s be-
liefs and communicative goals (Grice, 1975). This
reasoning process has been effectively modeled
using the Rational Speech Act (RSA) framework
(Frank and Goodman, 2012; Goodman and Frank,
2016; Degen, 2023), which represents the infer-
ence process as updating explicit beliefs between
a speaker and a listener in a conversation. Among
its many applications, RSA models qualitatively
reproduce prior human findings in projection in-
ferences through the effects of prior knowledge,
semantics, and the at-issueness of the predicate
(Pan and Degen, 2023; Pan, 2023). Nonetheless,
the RSA framework is expressed at the computa-
tional level in Marr’s level of analysis (Marr, 1982),
where it includes explicit computational representa-
tions of beliefs. It remains unclear whether this ex-
plicit belief representation is required during prag-
matic inference to account for belief attribution
during projection inferences.

In contrast to Bayesian accounts, LLMs do not
explicitly encode belief representations, which al-
lows them to serve as a test case to gauge the ne-
cessity of explicit belief representations in prag-
matic inference. Various studies have found that
language models are able to capture the systematic
variability in human data in scalar implicature (Hu
et al., 2023b). The first goal of this study is thus
to investigate whether LLLMs are sensitive to the
above-mentioned factors in projection inferences,
as RSA is.

Assuming that LLMs capture some variability
in human pragmatic inferences, a second question
compares this predictive power to that of Bayesian,
RSA-based accounts. Recent studies have evalu-
ated the performance of language models to RSA,
which suggest that LLMs do not behave like prag-
matic speakers (Jian and Siddharth, 2024). Yet,
on the comprehension side, Carenini et al. (2023)
show that the predictions of GPT2-XL closely re-
semble and can be simulated by a pragmatic lis-
tener in an RSA framework on the task of inter-
preting metaphors. Motivated by this approach,
and in light of the fact that comparisons between
LLMs and RSA on other pragmatic inference tasks
are still lacking, we directly compare the results
from LLMs and RSA in terms of how well they
predict human results in the case of projection infer-
ences. Since RSA explicitly models belief states of

the interlocutors while LLMs lack such representa-
tions, if LLMs can explain more variance in human
behavior, this would disconfirm the fundamental
assumption of RSA about the need of a recursive
Bayesian process and shed light on the debate about
whether belief representations are needed in prag-
matic reasoning (Sperber and Wilson, 2002).
Hence, the goals of the current study are twofold:
First, we evaluate the performance of LLMs on a
particular pragmatic task and whether they are sen-
sitive to factors that modulate human pragmatic
inferences. Second, we compare whether Bayesian
probabilistic models or LLMs better capture hu-
man performances, in order to provide insight into
whether the explicit representation of mental states
is needed to model human pragmatic inferences.

2 Related work

2.1 Projection inferences

Projection inferences are not a monolithic phe-
nomenon but can be modulated by various factors.
Results from experimental studies of human prag-
matic inference suggest that the projectivity of the
embedded content varies across predicates (Degen
and Tonhauser, 2022), which supports the gradient
view of factivity and contrasts with the categorical
view that there is a clearly defined class of fac-
tive verbs that trigger the projection inference. In
addition, the inference process is modulated by var-
ious factors, including the identity of the predicate
(Kiparsky and Kiparsky, 1970), the at-issueness
of the embedded content (Tonhauser et al., 2018;
Stevens et al., 2017), prosodic focus (Djédrv and
Bacovcin, 2020), and prior beliefs about the like-
lihood of the embedded content (Mahler, 2020;
Degen and Tonhauser, 2021; Lorson, 2021). In the
current study, we focus primarily on the effects of
predicates and prior beliefs. For instance, going
back to Example 1, if the speaker, Paul, and the
attitude holder, John, live in a city that rarely rains,
it would be odd for Paul to say “John knows it
is raining”, and thus even though the factive verb
“know” is used, Paul is less likely to be taken to
believe that it is raining.

2.2 Large language models and pragmatics

Previous work has attempted to test the inference
abilities of transformer-based models on inference
tasks with various presupposition triggers. For in-
stance, Jiang and de Marneffe (2021) investigate
BERT’s performance on event factivity, and their

11484



results suggest that its strong performance on a few
factuality datasets is due to the statistical regulari-
ties in the data instead of its pragmatic reasoning
ability. Moreover, in the NOPE (Parrish et al., 2021)
and PROPOSE (Asami and Sugawara, 2023) bench-
marks, transformer-based models are evaluated on
the accuracy of predicting the semantic relations
between a sentence with a presupposition trigger
and the presupposed content.

Although these benchmarks consider different
sentence structures, such as negation and interroga-
tives, they do not explicitly control and test for the
effect of world knowledge and the other modulating
factors of projection inferences. In addition, pro-
jection inference is framed as a Natural Language
Inference (NLI) task, where models are evaluated
on the accuracy of predicting the label that cate-
gorizes the relationship between the sentence with
a presupposition trigger and the projected content.
As discussed in the previous section, projection
inference is a general phenomenon that is not lim-
ited to factive verbs that presuppose the truth of the
embedded content, and different clause-embedding
verbs exhibit gradience in the projection inference
patterns. Therefore, using a classification task is
not sufficient in capturing the nuances in the pro-
jection pattern.

On the other hand, LLMs are able to succeed in
certain tasks that involve pragmatic reasoning. For
instance, results from (Ruis et al., 2024) suggest
that instruction-tuned LLMs, including OpenAl’s
text-<engine>-001-series, ChatGPT, and GPT-4,
demonstrate certain pragmatic reasoning abilities
for implicature resolution. Especially when it
is combined with few-shot and chain-of-thought
prompting techniques, GPT-4 is able to achieve
average human-level performance. Furthermore,
Hu et al. (2023a) find that LLMs demonstrate prag-
matic abilities, including understanding non-literal
language in cases that involve explicit reasoning
about the intent of the speaker, such as polite de-
ceit and irony. The errors that LLMs make are
similar to those that humans make, such that they
lean towards literal interpretations of sentences, in-
stead of other heuristics, such as word similarity.
All LLMs tested are distributional learners trained
on text, which lack explicit representations of the
mental states of the interlocutors. It is thus unclear
what existing results mean about whether mental
state representation is needed for pragmatic infer-
ence. As mentioned in the Introduction, LLMs fail
at certain ToM tasks, so it is possible that their suc-

cess on pragmatic tasks might be due to low-level
linguistic heuristics.

2.3 Bayesian models

One way to model the belief update between the in-
terlocutors in a conversation is by explicitly model-
ing the inference process as in the Rational Speech
Act (RSA) framework (Frank and Goodman, 2012;
Goodman and Frank, 2016; Degen, 2023). Under
this framework, language production and interpreta-
tion are formalized as recursive reasoning between
speaker and listener. Specifically, upon observing
an utterance, the pragmatic listener updates their
prior beliefs about the world by reasoning about an
utterance produced by a pragmatic speaker. Both
interlocutors are assumed to be rational and soft-
maximize the utility of utterances and their inter-
pretations. In the probabilistic pragmatic literature,
RSA has been used to model various pragmatic phe-
nomena, such as scalar implicature (Bergen et al.,
2012) non-literal interpretation (Kao et al., 2014),
and polite speech (Yoon et al., 2020).

RSA has also been adapted to projection infer-
ence, where it models the effects of prior and at-
issueness of the predicate on inference patterns,
by taking the inferred speaker belief (bgp) given
the utterance (u) to model the projectivity of the
content (Pan and Degen, 2023; Pan, 2023). Here,
we briefly summarize the core structure of the mix-
RSA model proposed in Pan (2023).

One key component in the RSA framework is
the utterance space, where each utterance is consid-
ered to be an alternative to the other. In particular,
this mix-RSA model focuses on the projection in-
ference pattern of the factive verb “know” and the
non-factive verb “think” in interrogatives, and each
of the two verbs can be combined with the affirma-
tive (p) and negated embedded clause (not p). In
addition, the unembedded polar interrogative “p?”
is also considered as a possible alternative. Taken
together, the utterance space includes five possible
utterances: “p?”, “know p”, “know not p”, “think
p’, and “think not p”.

The literal listener (Lg) reasons about the literal
semantics of each utterance and has a uniform prior
over the belief. The utterance is felicitous if the
belief in p exceeds the threshold ,, associated with
the verb that is used, as defined in Equation 1.

1 ifbgp >0,
Pr, (bsplu) o { P (1)

0 otherwise
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On the other hand, the pragmatic speaker (S1)
produces an utterance proportional to its utility de-
termined by the optimality parameter . This is
defined in Equation 2.

Pg, (ulbsp) o< exp(ar- U(usbsp))  (2)

The utility is defined as balancing the trade-off
between the informativeness and the cost of that
utterance (Eq. 3), where the informativeness is de-
fined as the probability that a literal listener would
correctly infer the intended meaning based on the
lexical semantics of that utterance. Both the nega-
tion and the presence of an embedded clause are
assumed to contribute to the costs of an utterance,
formulated as (Cneg) and (Cgmped)-

U(u;bsp) = In Pry(bsplu) — C(u), (3)
where C(’U,) = CNeg(u) + CEmbed(“)

At the pragmatic listener (L1) level, projectivity
is modeled as the degree of speaker belief given
the utterance, P(bgsp|u). Instead of updating prior
beliefs based on their internal model of the speaker
following Bayes’ rule in the standard RSA frame-
work, the pragmatic listener in this model combines
the prior belief distribution and the inferred belief
distribution based on the speaker production dis-
tribution, as shown in Equation 4. Specifically,
the pragmatic listener probabilistically considers
the expected speaker production distribution or de-
faults back to their prior beliefs, proportional to the
at-issueness of the embedded content as determined
by the predicate in the utterance, (P(qcc|u)), and
the non-at-issueness, (P(qarc|u)), respectively.

Pr, (bsp|u) x Ps, (ulbsp) -P(quc|u)
—_———
speaker model
+ P(bsp) -P(gcclu), 4)
——

prior belief

where P(qyclu) + P(goc|u) =1

The values of the three free parameters in the
model (the optimality parameter « and the two cost
terms) are estimated using Bayesian Data Analysis
with the projection rating data from Pan and Degen
(2023) and the prior rating data from Degen and
Tonhauser (2021). The predictions of the model
qualitatively capture the patterns in human data

with respect to the effect of prior and the difference
between predicates, especially in the case of “p?”,
“know p”, and “think not p” (Pan, 2023).

In sum, with the explicitly defined inference pro-
cess and alternative sets, RSA models serve as a
state-of-the-art computational theory of inference.
As such, they serve as a useful comparison with
LLMs, which lack clearly defined belief representa-
tions but also seem to accomplish certain pragmatic
tasks.

3 Methods

3.1 Models

We test three GPT models via the OpenAl API:
GPT-3.5-turbo, GPT-4, and GPT-40. These models
are fine-tuned with instruction following and hu-
man feedback, and results from previous studies
suggest that they demonstrate certain pragmatic rea-
soning abilities and are able to interpret language in
context with further fine-tuning (Ruis et al., 2024).
For the RSA model, we use the mix-RSA model
mentioned in the previous section.

3.2 Materials and procedure

To ensure a fair comparison between human re-
sults and model responses, we adopted the setup
used in human experiments as closely as possible
by reusing the stimuli. Specifically, the materials
and procedure mirror Experiment 1 in Degen and
Tonhauser (2021). In the current study, each model
is tested on two separate tasks: the first prior task
elicits the prior belief rating of embedded content
given the two facts, and the second projection task
investigates the effect of prior belief on projection
by embedding the content with different clause-
embedding predicates.

In the prior task, 20 critical items from Degen
and Tonhauser (2021) are used as the embedded
contents. Each of the items is paired with a “high
prior” fact and a “low prior” fact that makes the
content more or less likely a priori, respectively.
For instance, knowing that “Julian is Cuban” (a
high prior fact) makes the embedded content Julian
dances salsa relatively more likely than knowing
that “Julian is German” (a low prior fact). The
notions of “high” and “low” are used in a rela-
tive sense, and these labels were confirmed by and
drawn from human judgments (Degen and Ton-
hauser, 2021).

Therefore, similar to the rating task for human
participants, the models are prompted to provide a
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rating from O to 1 to the question that probes the
likelihood of the content with the carrier sentence
“How likely is that ...?”, as illustrated in the example
below.

Fact: Julian is German.

Question: How likely is it that Julian
dances salsa?

Then in the projection task, all items in the prior
task are used as the embedded content of the 20
clause-embedding predicates, the same as those
included in Degen and Tonhauser (2021). The
sentence is presented as a question asked by a
speaker, and each sentence is paired with a fact.
Then we use the “certain that” diagnostic (Djirv
and Bacovcin, 2020; Tonhauser et al., 2018, inter
alia), where the model is asked to provide a rat-
ing from O to 1 to the question with the structure
“Is SPEAKER certain that...?”, as shown below,
and the response is taken to be the degree of the
ascribed speaker belief.!

Fact: Julian is German.

Sentence: Paul asks: Does John know
that Julian dances salsa?

Question: Is Paul certain that Julian
dances salsa?

For both tasks, the model is instructed to predict
a continuous rating, which differs from previous
work where the task of the model was to predict the
label of the relationship between the target sentence
with the presupposition trigger and the presupposed
content (Parrish et al., 2021; Asami and Sugawara,
2023). The present approach closely matches hu-
man experimental approaches and avoids the poten-
tial confounds of the lexical overlap between the
target sentence and the presupposed content when
predicting the NLI labels.

3.3 Prompt structure

The prompt consists of two parts: the system
prompt, which introduces the tasks and instructs
the model to provide a numerical number between
0 and 1, and the main prompt, which contains the

'We also tested the models with the prompt “Does
SPEAKER believe that ...?”, which is used in Pan and De-
gen (2023); Pan (2023) to directly elicit belief ratings among
human participants and calibrate the RSA predictions. With
this belief rating prompt, GPT-4 does not capture the variance
among predicates, but its belief ratings against the prior rat-
ings are more in line with the human results. See Appendix B
for the results and discussion.

critical experimental item as described in the previ-
ous section.

3.4 Analysis

To test whether models can capture the effect of
prior in the first task, we fit a linear regression
model predicting the elicited prior belief rating
from the prior type with by-item random intercepts
and prior type by-item slope. To test the effect
of prior type on projection ratings in the second
projection task, we fit another linear regression
model to predict the elicited projection rating from
a fixed effect of the prior type and the by-item
random intercept and random slope for the prior
type.

On the other hand, to compare the LLMs’ pre-
dictions and the RSA predictions to the human
behavioral results in Experiment 1 from Degen and
Tonhauser (2021), we narrowed to the two verbs
“think” and “know” since the RSA model considers
them as alternatives in the utterance space and the
model parameters are estimated with the human be-
lief ratings for these two verbs. For the RSA model
and each LLM, we first fit a linear mixed-effects
regression model predicting the human certainty
ratings from the model predictions and the by-item
random intercept (the base models). We compared
the fit of each model using the Akaike Information
Criteria (AIC).

Then, to quantitatively evaluate how well each
GPT model captures the human data in comparison
to the RSA model, we fit another linear mixed-
effects model with the RSA model predictions as
an additional predictor to predict the human cer-
tainty ratings from the model predictions (the full
models). Following analyses in Jones et al. (2023),
we used a Chi-square (x2) test to compare the full
model of each GPT model to the corresponding
base model. If adding RSA prediction significantly
improves the model fit, then it indicates that the
RSA model captures additional variance in the hu-
man behavior that is not predicted by the LLM.
On the flip side, to quantitatively measure whether
RSA captures additional variance than each GPT
model, we compared each of the full models to
the base RSA model. If having the prediction of
the LLMs as the additional factor improves the
model fit, then LLMs capture additional variance
in human judgments that are not explained by the
RSA model. Structures of all statistical models and
results are summarized in Appendix A.
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Figure 1: The mean prior likelihood of each embedded content, by models and humans. The contents and the
human results are drawn from Degen and Tonhauser (2021). Each piece of content is labeled by a person’s name as
it describes a scenario or a feature of that person. Each dot in the three model facets represents the rating of items,
each dot in the human facet presents the mean rating for each item, and the error bars represent bootstrapped 95%

confidence intervals.

4 Results
4.1 Prior knowledge

Figure 1 shows the model and human predictions
of the prior belief rating for each item. For all
three models, the prior ratings in the high prior
condition are higher than those in the low prior
condition, although compared to human results,
there is less variance in the ratings across items.
This observation was borne out statistically: There
is a significant main effect of prior type (GPT-3.5-
turbo: = 0.56,t = 7.96,p < .001; GPT-4:
B = 0.53,t = 9.03,p < .001; GPT-40: 8 =
0.54,t = 12.67,p < .001). This suggests that
models capture world knowledge, such that each
fact in the two prior conditions makes the content
more or less likely a priori for LLMs, similar to
humans.

4.2 Effect of prior on projection inferences

Figure 2 shows the mean certainty ratings of the
embedded content across 20 items in the two prior
conditions by predicate. GPT-3.5-turbo and GPT-
40 show the effect of prior on the projection rat-
ings, such that the mean ratings in the high prior
condition are higher than those in the low prior
condition. The pattern in the predictions of GPT-
4 is less clear, where the mean ratings for verbs
like “know” are similar in the two prior condi-
tions, while the mean ratings for “acknowledge”
are relatively more distinct. These observations
were borne out statistically in the linear mixed-

effects model predicting the certainty ratings of
each LLM from the fixed effect of prior type. The
results show a significant main effect of prior type
(GPT-3.5-turbo: g = 0.18,t = 4.69,p < .001;
GPT-4:8 = 0.08,t = 2.20,p = .0403 ; GPT-40:
8 =0.20,t = 6.25,p < .001), suggesting that all
three models capture the differences between the
two types of prior belief.

However, even though the results for GPT-4 were
not significant given the statistical model, GPT-4
qualitatively captures the gradience of the ratings
among predicates. On the other hand, although
GPT-3.5-turbo and GPT-40 also capture the gradi-
ent patterns in the high prior condition, both seem
to overestimate the effect of prior. In particular,
except for the ratings for canonically factive verbs
like “annoyed” and “know,” the certainty ratings in
the low prior condition are more uniform among
predicates than those in the high prior condition,
which suggests that the effect of the low prior might
dominate the effect of the predicate during the in-
ference.

Moreover, across the models, the difference be-
tween the certainty ratings in the two prior condi-
tions was smaller for verbs like “acknowledge” and
“inform” than for verbs like “pretend” and “think.”
For GPT-3.5-turbo and GPT-40, this difference in
magnitude seems to be driven by the uniformly low
ratings of verbs in the low prior condition since
the prior condition capture the by-predicate vari-
ances. Another possibility is that the “(optionally)
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Figure 2: The mean certainty rating against prior ratings, by predicate and by model. The human results are drawn
from Degen and Tonhauser (2021). Each dot represents the mean belief rating for each verb for models, and the
grand mean across items and across participants for humans. Error bars represent the 95% confidence intervals.

factive” verbs are more robust to the effect of prior
than “non-factive” ones. Yet, this observation does
not apply to all verbs, such as “see,” which is an
“optionally factive,” but have similar ratings in the
two conditions. This demonstrates even LLMs that
are trained on texts and can capture the statistical
patterns in language do not show a clearly defined
class of factive verbs.

4.3 LLMs and RSA compared to human
results

Figure 3 shows the mean certainty ratings of GPT
models, the RSA model, and the human results
against mean prior ratings of the embedded con-
tent.2 Qualitatively, both RSA and two LLMs, GPT-
3.5-turbo and GPT-4o0, capture the effect of prior
on the certainty rating, where the speaker is con-
sidered to be more certain about the embedded
content p when p is more likely a priori. Yet, none
of these three models fully capture the human re-
sults: the predictions of the RSA model are higher
than humans do, whereas both GPT-3.5-turbo and
GPT-40 predict the certainty rating to be lower
than humans. On the other hand, GPT-4 does not
seem to capture the linear relationship between the
prior belief and the certainty ratings. The obser-
vation was borne out statistically: the RSA base
model has the lowest AIC value in comparison to
the LLMs (RSA: AIC = 221.56; GPT-3.5-turbo:
AIC = 380.44; GPT-4: AIC = 309.29; GPT-40:

2For the linear relationship between certainty ratings and
the prior ratings of each model for all 20 predicates, see Figure
6 in Appendix C.

model gpt-3.5-turbo gpt-4 gpt-40 human RSA

1.00+

Mean certainty ratings of p
o )
I3y ~
o o

o
N
a

0.00+

00 02 04 06 08 10
Rating of prior belief in p

Figure 3: The mean certainty ratings against the prior
rating of the embedded content of humans, RSA, and
LLMs. Each dot represents the mean ratings of items
for each verb, and the ribbons represent bootstrapped
95% confidence intervals.

AIC = 341.99), suggesting that the RSA model
fits the human data better than the LLMs.

As described in the Analysis section, for each
LLM, we fit two linear mixed-effects models, one
without the RSA predictions as a predictor (the
base model) and one with the RSA predictions
(the full model) to test whether the RSA model
explains the variance in the human data that is not
captured the LLMs. Across the regression models
for all three LLMs, having RSA predictions as
an additional predictor significantly improves the
model fit (GPT-3.5-turbo: x?(2) = 159.81,p <
.001; GPT-4: x?(2) = 89.91,p < .001; GPT-4o:
x2(2) = 121.04, p < .001), suggesting that there
is variance that is not captured by the predictions
of LLMs but is explained by the RSA model.
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Likewise, we compared the base model of RSA
to each of the three full models that include the
LLM predictions as a predictor to evaluate whether
there is variance in the human judgment that is
not modeled by RSA but is explained by the
LLM. Overall, having each of the LLM predic-
tions does not significantly improve the model
fit (GPT-3.5-turbo: x2(2) = 0.21,p = 0.6393;
GPT-4: x2%(2) = 1.46,p = 0.2274; GPT-4o:
x2(2) = 0.02, p = 0.8951), suggesting that LLMs
do not capture additional variances in the human
data in comparison to the RSA model.

model gpt-3.5-turbo gpt-4 gpt-40 human RSA

know think

=
Q
o

o
3
a

Mean certainty ratings of p
=} o
N @
& 3

e
=3
S

00 02 04 06 08 1000 02 04 06 08 10
Rating of prior belief in p

Figure 4: The mean certainty ratings for “know” and
“think”, against the prior rating of the embedded content.
Each dot represents the mean ratings of items for each
verb, and the ribbons represent bootstrapped 95% confi-
dence intervals.

As an exploratory analysis, since studies with
human participants suggest that the certainty rat-
ings vary across verbs, we analyzed the results for
“think” and “know” separately. Figure 4 shows the
mean certainty ratings against the mean-centered
prior belief ratings when p is embedded under
each verb.> For “know”, GPT-4 is most closely
aligned with the human data, whereas the RSA
model and the other two GPT models overesti-
mate the effect of prior belief. We combined the
certainty ratings from both humans and the four
models and fit a linear mixed-effects model pre-
dicting the combined certainty ratings from the
main effect of the model type (including four lev-
els: human, RSA, GPT-3.5-turbo, GPT-4, GPT-40;
Reference level: human) and the mean-centered
prior belief rating as well as the by-item random
intercept. There is a main effect of prior belief

3We also tested using the categorical prior type distinctions
(i.e., “high” vs. “low” prior), and the same result patterns still
hold. The results of “know” and “think” are summarized in
Tables 7 and 8 in Appendix A.5, respectively.

(B =0.21,t = 4.44,p < .001), such that the cer-
tainty ratings of p are higher when it is more likely
a priori. In terms of the model type, the ratings of
GPT-3.5-turbo are significantly lower than human
results (8 = —0.28,t = —5.34,p < .001), and
the predictions of GPT-40 and the RSA model are
marginally higher than the human results (GPT-4o0:
8 = —0.12,t = —2.29,p = .0226; RSA: § =
0.14,¢t = 2.46, p = .0145). Yet, there is no signifi-
cant difference between the ratings of GPT-4 and
human results (5 = 0.00,¢ = 0.01, p = .9871).
On the other hand, for “think”, all GPT mod-
els underestimate the effect of prior on certainty
ratings, whereas the RSA model tracks the hu-
man data well. We fit another linear mixed-effects
model as the one for “know”, and the results show
that there is a significant main effect of prior rat-
ings (8 = 0.33,t = 10.29,p < .001). Cru-
cially, the ratings of each of the LLMs are sig-
nificantly lower than the human results (GPT-3.5-
turbo: f = —0.16,t = —4.58,p < .001; GPT-
4: B = —0.25,t = —6.97,p < .001; GPT-4o:
6 = —0.22,t = —6.30,p < .001), whereas the
predictions of the RSA are significantly higher than
the human results (3 = 0.22,¢ = 6.01, p < .001).

5 Discussion

This study evaluated the performance of three
LLMs and one RSA model on projection inferences
to determine how well each predicts previously re-
ported human data. First, we found that LLMs
can capture the world knowledge that either makes
the embedded content more or less likely a priori.
This type of world knowledge serves as the prior
belief that affects projection inference of the em-
bedded content in humans. In addition, we also
showed that these attested LLMs are sensitive to
factors that affect projection inferences in humans
by various degrees. Specifically, all three models
are sensitive to the effect of prior on projection
inferences, similar to humans. GPT-4 shows the
gradient projection patterns across predicates as
humans do. Nonetheless, although GPT-3.5-turbo
and GPT-4o capture the gradience in the high prior
condition, both overestimate the effect of the low
prior, where they show little variance among pred-
icates. It is possible that although these models
show the effect of world knowledge, they do so in
a more coarse-grained way and do not incorporate
it into inference in the same way that humans do.
In addition, for both prior and projection tasks,
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some variance in the human data cannot be fully
explained by the LLMs predictions, suggesting that
there might be additional information or cognitive
processes needed to capture world knowledge and
projection inference, beyond distributional infor-
mation and fine-tuning from prompting and human
feedback as in the LLMs.

Specifically, in terms of their abilities to approx-
imate human judgments in projection inferences
between these two types of computational models,
RSA outperforms the three attested LLMs as mea-
sured by AIC. The results are more nuanced when
we analyze the results of each verb individually.
For “know”, GPT-4 closely matches the projection
inference patterns in human results, while the other
models overestimate the effect of prior and either
predict higher certainty ratings (RSA) or lower cer-
tainty ratings (GPT-3.5-turbo and GPT-40) than the
human results. Yet, both LLMs and RSA models
fail to capture the projection inference patterns of
“think” in the human data, where all three models
underestimated the effect of prior and RSA overes-
timated it. This might be because “think™ is used
more frequently and pervasively across different
scenarios (Pan and Degen, 2023). For instance,
“John thinks Julian dances salsa” might be inter-
preted as an indirect answer to the question “Who
should we invite to give a performance”, where
“think” has a parenthetical reading and does not con-
tribute to the meaning of the utterance. Nonethe-
less, the same sentence can be used to express in-
credulity about John’s belief if everyone in the con-
versation knows that Julian doesn’t dance salsa.

Moreover, the likelihood ratio test reveals that
adding RSA predictions improved predictions of
human judgments over LLM predictions alone.
Thus, there is some variance in the human data
that is not fully captured by LLMs. On the flip side,
having the LLM predictions does not improve the
fit of the RSA predictions on the human data. This
suggests that models with explicit belief represen-
tations are able to more accurately mirror human
pragmatic inference. Contrary to the findings that
GPT2-XL behaves similarly to the pragmatic lis-
tener in the RSA model for metaphor interpreta-
tions (Carenini et al., 2023), LLMs in the present
study fail to capture some of the factors that affect
projection inferences and cannot explain nuances
in the human data.

Lastly, although we did not directly test Theroy
of Mind (ToM) in this study, the results seem to
suggest reasoning about other people’s belief in

a ToM-like way is needed at least in the case of
inferring the interlocutors’ belief. Even if language
models can approximate the communicative intents
of the interlocutors by only having accessing texts
and can have partial representations of beliefs to
guide the generation of subsequent texts, as argued
in Andreas (2022), it is not enough to fully predict
human pragmatic inference abilities. Explicit belief
representations might be needed to infer the beliefs
of others.

Taken together, clearly defined belief states
might be necessary for belief attribution at least
in the case of projection inferences, and the recur-
sive reasoning between the interlocutors is crucial
in pragmatic inference in general. Granted, it is
possible that projection inference is complex and
requires additional epistemic reasoning not only
about the speaker but also about the person whose
belief is being reported, which might make the be-
lief representation prominent, and future studies
can adopt a similar methodology to compare dif-
ferent types of models and investigate the need for
belief representation in other pragmatic phenom-
ena.

Limitations

The conclusions are contingent on the structure
of this particular mix-RSA model. It is possible
that there might exist more optional RSA models
to capture projection inferences, and these might
more closely match the human performance than
the LLMs.

In addition, the current study used prompting
as a way to elicit the model response given that it
is not possible to obtain the probability distribu-
tion of these GPT models. However, results from
prompting do not always align with the raw log
probabilities, especially in complex tasks that are
less similar to next-word predictions Hu and Levy
(2023). Therefore, as pointed out by one reviewer,
the results are limited to the choice of prompting,
and future studies should explore other open-source
models for a more direct comparison between RSA
and LLMs in terms of their predictive power.

Another limitation of the study is that both the
human results and the model predictions of LLMs
and RSA are English only. Thus, future studies
should investigate what projection inferences are
like in other languages, especially in those that have
complex evidential markings or different types of
verbs, and whether LLMs can capture the inference
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patterns in those languages. Especially for low-
resource languages with limited LLM availability,
it is possible that explicit belief attribution might
be better at capturing human results.

Moreover, the current study uses projection in-
ference as a test case and compares the predictive
power of LLMs to RSAs to investigate whether ex-
plicit belief representations are needed during the
inference process. Future studies can expand the
range of pragmatic inferences, both in English and
across other languages. As suggested by one re-
viewer, the RSA framework has been adapted cross-
linguistically in the case of manner implicatures
in Mandarin Chinese (Cong, 2021) and pronoun
resolution in French (Schulz et al., 2021). Thus,
comparing the predictions of LLMs and RSA cross-
linguistically in different pragmatic tasks will better
inform the pragmatic theories in terms of the role
of explicit representations of interlocutors’ mental
states during conversations.
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A Summary of the statistical results

A.1 Prior knowledge

model_prior_predictions ~ prior_type + (1]item)

Model Coefficient Estimate Std. Error df tvalue Pr(>ltl)
35.0urhg  (ntercepy 0.16 005 37.57  3.02 0.00455 **
Ept->. prior_typehigh_prior 0.56 007 19.00  7.96 <001 *#*
o (Intercept) 0.16 0.04 38.00 377 <.001 ***
&P prior_typehigh_prior 0.53 006 3800  9.03 <001 *++
o (Intercept) 0.13 003 3679 394 <001 *++
&P prior_typehigh_prior 0.54 004 19.00 12.67 <.001 ***

Table 1: Combined regression results from three models testing whether the model captures the high vs. low prior
distinctions.

A.2 Prior on projection inferences

model_certainty_ratings ~ prior_type + (1 + prior_type|item)

Model Coefficient 3 Estimate Std. Error df tvalue Pr(>ltl)
35.urhg  (ntercepy 0.13 002 19.00 699 <.001 ***
Ept->. prior_typehigh_prior 0.18 004 19.00  4.69 <.001 *++
» (Intercept) 0.30 004 19.00 835 <.001 *+
&P prior_typehigh_prior 0.08 004 19.00 220  0.0403 *
o (Intercept) 0.06 001 19.00  4.63 <.001 **+
&P prior_typehigh_prior 0.20 003 19.00 625 <001 #**

Table 2: Combined regression results from three models testing the effect of prior on projection inferences.

A.3 Additional predictive power of RSA results for each LLM

Base model (LLM only, without RSA predictions):
human_results ~ model_certainty_ratings + (1|item) + (1|participant)
Full model (with RSA predictions):
human_results ~ model_certainty_ratings + RSA_predictions + (1]item) + (1|participant)

Model Coefficient npar AIC BIC logLik deviance Chisq x> Df Pr(>Chisq)

gpt35_base 5.00 367.41 388.68 -178.71 357.41
gpt35_full 6.00 209.60 235.12  -98.80 197.60 159.81 1.00  <.001 ***

gpt4_base 5.00 296.27 317.54 -143.14 286.27
gpt4_full 6.00 208.36 233.88 -98.18 196.36 89.91 1.00 <.00] #**

gptdo_base 5.00 328.84 350.11 -159.42 318.84
gptdo_full 6.00 209.80 23532 -98.90 197.80 121.04 1.00 <.001 ***

gpt-3.5-turbo

gpt-4

gpt-4o

Table 3: Combined model comparison results testing whether RSA model explains the variance in human results
that is not captured by LLMs.
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A.4 Additional predictive power of each LLM’s responses for RSA

Base model (RSA only, without LLM responses):
human_results ~ RSA_predictions + (1]item) + (1|participant)
Full model (with RSA predictions):
human_results ~ model_certainty_ratings + RSA_predictions + (1]item) + (1|participant)

Model Coefficient npar AIC BIC logLik deviance Chisq x? Df Pr(>Chisq)
-3.5-turbo rsa_base 5.00 207.82 229.09 -98.91 197.82

P> gpt3.5_full  6.00 209.60 235.12 -98.80 197.60 022 1.00 0.6393
o rsa_base 5.00 207.82 229.09 -98.91 197.82

&P gptd_full 6.00 208.36 233.88 -98.18 196.36 146 1.00 0.2274
4o rsa_base 5.00 207.82 229.09 -98.91 197.82

&P gptdo_full 6.00 209.80 235.32 -98.90 197.80 0.02 1.00 0.8951

Table 4: Combined model comparison results, testing whether there is variance in human results that is not modeled
by RSA but is explained by LLM responses.

A.5 Comparing human with model results for “know” and “‘think”

With mean-centered prior ratings
projection_rating ~ model + centered_prior_rating + (1|item), reference level = “human”

Coefficient Estimate 5 Std. Error df tvalue Pr(>ltl)
(Intercept) 0.70 0.02 436.00 37.92 <.001 ***
gpt-3.5-turbo -0.28 0.05 436.00 -5.34  <.00]
gpt-4 0.00 0.05 436.00 0.02 0.9871
gpt-4o -0.12 0.05 436.00 -229  0.0226 *
RSA 0.14 0.06 436.00 246  0.0145 *
centered_prior_rating 0.21 0.05 436.00 444 <001 ***

Table 5: Results of the linear mixed-effects regression predicting the certainty ratings given “know” from the model
type (human, RSA, or LLM) and prior belief ratings.

Coefficient Estimate 5 Std. Error df tvalue Pr(>lItl)
(Intercept) 0.31 0.01 436.00 24.62 <.001 ***
gpt-3.5-turbo -0.16 0.04 436.00 -4.58 <.001 ***
gpt-4 -0.25 0.04 436.00 -6.97 <.001 ***
gpt-4o -0.22 0.04 436.00 -6.30 <.001 ***
RSA 0.22 0.04 436.00 6.01 <.001 ***
centered_prior_rating 0.33 0.03 436.00 10.29 <.001 ***

Table 6: Results of the linear mixed-effects regression predicting the certainty ratings given “think” from the model
type (human, RSA, or LLM) and prior belief ratings.

With binary prior type
projection_rating ~ model + prior_type + (1|item), reference level = “human’
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Coefficient Estimate  Std. Error df tvalue Pr(>lItl)

(Intercept) 0.76 0.03 2287 2634 <.001 ***
gpt-3.5-turbo -0.29 0.05 41796 -544 <001 ***
gpt-4 -0.01 0.05 41796 -0.14 0.8894
gpt-4o -0.13 0.05 41796 -253 0.0118*
RSA 0.14 0.06 418.72 245  0.0149 *
low_prior -0.11 0.04 19.85 -3.03 0.0067 **

Table 7: Results of the linear mixed-effects regression predicting the certainty ratings given “know” from the model
type (human, RSA, or LLM) and prior type.

Coefficient Estimate  Std. Error df tvalue Pr(>ltl)
(Intercept) 0.38 0.02 2434 1924 <.001 ***
modelgpt-3.5-turbo -0.16 0.04 418.37 -427 <.001 ***
modelgpt-4 -0.25 0.04 418.37 -6.71 <.00]1 ***
modelgpt-40 -0.23 0.04 418.37 -6.25 <.001 ***
modelRSA 0.24 0.04 420.44 6.11 <.001 ***
prior_typelow_prior -0.16 0.02 2653 -646 <.001 ***

Table 8: Results of the linear mixed-effects regression predicting the certainty ratings given “think” from the model
type (human, RSA, or LLM) and prior type.

B Alternative belief prompt

For the projection task, we tested the model predictions with the belief prompt used in Pan and Degen
(2023), as in the structure “Does SPEAKER believe that ...?””. One example is shown below.

Fact: Julian is German.
Sentence: Paul asks: Does John know that Julian dances salsa?

Question: Does Paul believe that Julian dances salsa?

Figure 5a shows the mean belief ratings of the embedded content across 20 items by predicate and
by model. Both GPT-3.5-turbo and GPT-40 show the effect of prior on the projection ratings, and
this observation is statistically borne out (GPT-3.5-turbo: 5 = 0.40,t = 6.43,p < .001; GPT-4o:
8 =0.46,t = 13.03,p < .001).

Moreover, GPT-40 qualitatively captures the gradience in the ratings among predicates, similar to
the results with human participants. However, both models seem to overestimate the effect of prior. In
particular, the ratings in the low prior condition are lower than those in the high prior and are more
uniform among predicates, which suggests that the effect of the low prior might dominate the effect of the
predicate during the inference.

In contrast, GPT-4 does not seem to capture the effect of prior (5 = 0.03,¢ = 1.30, p = 0.21), as shown
in the top right facet in Figure 5a. Furthermore, except for the canonically factive verbs like “annoyed”
and “know,” the ratings seem to be random, centered around 0.5. These results are different from those
reported above with the “certain that” prompt, which suggests that the prompt might affect the results.

In terms of the comparison between RSA and LLMs with respect to how well they capture the
human data, we fit four regression models predicting the human certainty ratings drawn from Degen and
Tonhauser (2021) from the predictions of each model as well as the by-item random intercept. According
to the AIC, RSA outperforms all LLMs in capturing the human results (RSA: AIC' = 215.95), whereas
GPT-40 captures human judgments better than other LLMs (GPT-3.5-turbo: AIC' = 447.45; GPT-4:
AIC = 377.30; GPT-40: AIC = 388.34).
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(b) The mean belief ratings for “know” and “think”, against the prior rating of the embedded content.

Figure 5: Results of the belief rating tasks 5a and the comparison between LLMs responses and RSA predictions
5b. Each dot in 5a represents the mean belief rating for each verb for models and the grand mean across items and
across participants for humans. The error bars in 5a and the shaded ribbon in 5b represent the 95% confidence
intervals.

Figure 5b shows the mean belief ratings for “think™ and “know” against prior belief ratings. The
pink line represents the human data, and the other lines represent the prediction of LLMs and the
RSA model. We fit the linear mixed-effects model similar to the one reported in the main content for
exploratory analysis for “think™ and “know.” For “know”, the RSA predictions are marginally different
from the human data (beta = 0.14,t = 2.53,p = 0.0117), whereas the predictions of the LLMs are
not (GPT-3.5-turbo: 8 = —0.05,t = —0.96,p = 0.338; GPT-4: 8 = 0.06,t = 1.17,p = 0.242;
GPT-40: 5 = 0.04,t = 0.79,p = 0.4295;). For “think”, the predictions of RSA, GPT-3.5-turbo, and
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GPT4 (RSA: 8 = 0.22,¢t = 5.60,p < .001; GPT-3.5-turbo: S = 0.20,¢t = 21.66,p < .001; GPT-4:
8 =0.16,t = 4.30, p < .001) are significantly different from human results. Interestingly, GPT-40 is not
significantly different from human results (5 = 0.05,¢ = 1.45, p = .149). In sum, this seems to suggest
that models seem to be better at capturing the results of “know” but not those of “think.”

C Effect of prior on certainty ratings by all 20 predicates

Figure 6 shows the by-predicate mean certainty ratings of all three GPT models and human participants
against their own prior belief ratings of each item.
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Figure 6: The mean certainty ratings for all 20 verbs against the prior rating of the embedded content. The human
data are drawn from (Degen and Tonhauser, 2021). Each dot represents each model’s certainty and prior rating of

items for each verb, and the ribbons represent bootstrapped 95% confidence intervals.
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