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Abstract

Recent works have explored using language
models for planning problems. One approach
examines translating natural language descrip-
tions of planning tasks into structured planning
languages, such as the planning domain defi-
nition language (PDDL). Existing evaluation
methods struggle to ensure semantic correct-
ness and rely on simple or unrealistic datasets.
To bridge this gap, we introduce Planetarium, a
benchmark designed to evaluate language mod-
els’ ability to generate PDDL code from natural
language descriptions of planning tasks. Plane-
tarium features a novel PDDL equivalence al-
gorithm that flexibly evaluates the correctness
of generated PDDL, along with a dataset of
145,918 text-to-PDDL pairs across 73 unique
state combinations with varying levels of diffi-
culty. Finally, we evaluate several API-access
and open-weight language models that reveal
this task’s complexity. For example, 96.1% of
the PDDL problem descriptions generated by
GPT-4o are syntactically parseable, 94.4% are
solvable, but only 24.8% are semantically cor-
rect, highlighting the need for a more rigorous
benchmark for this problem.

1 Introduction

Recently, there has been growing interest in using
large language models (LLMs) to solve planning
problems. Some research has focused on generat-
ing plans directly with LLMs (Valmeekam et al.,
2023a, 2022, 2023b; Silver et al., 2022, 2023).
However, this approach has shown limited success;
GPT-4 only achieves 35% accuracy on simple plan-
ning problems (Valmeekam et al., 2023a). Another
line of research uses LLMs to convert natural lan-
guage prompts into structured planning languages,
such as the planning domain definition language
(Liu et al., 2023; Xie et al., 2023; Guan et al., 2023;
Chalvatzaki et al., 2023; Yang et al., 2023b). Early
evidence suggests this method performs better than
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Figure 1: An example of one planning goal correspond-
ing to many correct PDDL goals. All PDDL goals in
the top row represent the displayed goal correctly. The
bottom row illustrates PDDL goals with different error
types, showing instances that are solvable (a planner
can generate a plan, but for a different planning prob-
lem), parseable (the PDDL syntax is correct but will not
produce any plan from a planner), and not parseable (it
is not valid PDDL). See Section 5 for details.

generating plans directly with LLMs (Liu et al.,
2023). Despite its promise, there are no rigorous
techniques or benchmarks for evaluating the trans-
lation of natural language planning descriptions to
PDDL.

Translating natural language to PDDL enables
a hybrid, best-of-both-worlds approach. The LLM
is responsible for interpreting natural language,
and the resulting PDDL can be given to tradi-
tional, symbolic planners that have been developed
over decades (Fikes and Nilsson, 1971; McDermott
et al., 1998; Helmert, 2006; Baier et al., 2009; Vi-
dal and Geffner, 2006). These traditional planners
are efficient and ensure the correctness of their so-
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lutions. In contrast, leaving the planning to LLMs
does not guarantee correctness, making them unre-
liable for critical applications. Despite this short-
coming, LLMs are an enticing approach, as using
traditional planners requires domain expertise and
expertise in modeling planning problems. By using
LLMs to translate natural language into PDDL, we
can better leverage the strengths of existing plan-
ners.

Using LLMs to translate natural language to
PDDL is an instance of a code generation task.
Evaluating code generation tasks, in general, is
highly challenging. Some benchmarks for code
generation use match-based metrics that look for
segments that overlap with ground truth code (Pap-
ineni et al., 2002; Lin, 2004; Ren et al., 2020), but
match-based metrics cannot cover the vast space of
equivalent programs (Chen et al., 2021). Therefore,
benchmarks often test functional correctness using
a suite of unit tests (Roziere et al., 2020; Kulal
et al., 2019). For planning problems, existing work
uses “plan validators” to check if the generated
code can be solved with a traditional planner (Liu
et al., 2023; Silver et al., 2022, 2023; Guan et al.,
2023). We argue using validators alone is insuffi-
cient to determine if PDDL generation is correct.
This is because the LLM can generate valid PDDL
that has nothing to do with the user’s instructions
and still be considered correct—a false positive.

A rigorous evaluation of LLMs as generators of
structured planning languages requires a precise
definition of what it means for generated code to
be correct. This is hard because many instances
of PDDL can represent the same planning prob-
lem, but it is not always obvious when they are
equivalent (Figure 1). Properly checking PDDL
equivalence requires symbolic interpretation.

To address this challenge, we introduce Planetar-
ium, a benchmark to evaluate LLMs on translating
natural language descriptions of planning problems
into PDDL. Our contributions are as follows:

Rigorous Evaluation of PDDL Equivalence.
We formally define planning problem equivalence
and create an algorithm for checking whether two
PDDL problems satisfy this definition. This algo-
rithm transforms the PDDL code into scene graphs,
computes an expansion of the goal states for both
PDDL problems, and then performs isomorphism
checks between the graphs. Our method ensures
two PDDL problems match if and only if they
represent the same underlying planning task. We

show how to make this algorithm efficient for three
domains: Blocks World, Gripper, and a slightly
simplified Floor Tile (McDermott, 2000; Linares
López et al., 2015).

Benchmark Data for PDDL Generation. We
present a dataset based on the International Plan-
ning Competition (IPC) (McDermott, 2000; Val-
lati et al., 2015; Taitler et al., 2024; Seipp et al.,
2022), crafting 145,918 ground truth PDDL prob-
lems and corresponding text descriptions capturing
a range of planning problems. Each task varies in
two dimensions to assess the difficulty of PDDL
generation: abstraction and size.

Broad Evaluation of Current LLMs. Finally,
we evaluate a range of API-access and open-weight
LLMs on Planetarium. We evaluate in both a
zero-shot setting and after fine-tuning. We find
that this task is very challenging. GPT-4o in a
zero-shot setting gets only 24.8% correct. In-
stances with abstract descriptions or many propo-
sitions are particularly challenging. Planetarium
can, therefore, serve as a benchmark of progress
on this important problem. To support future
development and evaluation of LLMs, we re-
lease all the code and data for Planetarium at
github.com/BatsResearch/planetarium.

2 Related Work

LLMs as Planners. There is growing interest in
using LLMs to solve planning problems. Several
papers have demonstrated the potential of using
LLMs for decision-making (Sharma et al., 2022;
Ren et al., 2023; Ichter et al., 2022; Singh et al.,
2022). Some techniques that enable the use of
LLMs as planners involve decomposing abstract
tasks into concrete, atomic executable actions for
an agent to perform (Huang et al., 2022b,a; Sharma
et al., 2022). Other approaches generate plan ac-
tions by scoring the possible next steps in a se-
quence of actions (Ichter et al., 2022; Ren et al.,
2023). When using LLMs to generate plans di-
rectly, the LLM is given a natural language repre-
sentation of a planning problem with the goal of
generating a plan. We refer to this line of work as
“LLMs as planners.” One of the main findings is
that LLMs have limited ability to generate and val-
idate plans on their own, even for simple planning
tasks (Valmeekam et al., 2022; Silver et al., 2022;
Valmeekam et al., 2023b).
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Planner-Augmented LLMs. Given LLMs’
poor performance in classical planning tasks
(Valmeekam et al., 2023a, 2022; Silver et al.,
2022), new approaches extend LLMs by in-
corporating classical planning techniques (Liu
et al., 2023; Guan et al., 2023). Some techniques
frame the problem as a machine translation task,
transforming a natural language text description
of a planning problem into PDDL to use with
classical planners (Liu et al., 2023; Guan et al.,
2023; Xie et al., 2023). We refer to this line
of work as “Planner-Augmented LLMs.” Other
similar approaches translate natural language into
alternative representations of the planning problem,
such as finite state automata (Yang et al., 2023a) or
logic programming (Yang et al., 2023b), to solve
them.

Benchmarking LLMs on Planning Tasks. Sig-
nificant efforts have been made to develop bench-
marks to assess the use of “LLMs as Planners.”
PlanBench (Valmeekam et al., 2023a) evaluates
LLMs on various planning-related tasks, including
plan generation, cost-optimal planning, plan verifi-
cation, and others. Their work focuses on evaluat-
ing LLMs on their ability to generate plans. In con-
trast, Planetarium focuses on evaluating “Planner-
Augmented LLMs”. Here, the goal is to determine
whether an LLM can successfully translate natural
language descriptions of planning problems into
the correct PDDL representations of those prob-
lems. This is arguably a more natural use of LLMs,
but it is harder to evaluate because the output is an
internal representation and not the end result of the
planning process.

Planning problem equivalence. There is also
work exploring techniques for determining the
equivalence of planning problems, such as Shri-
nah et al. (2021). Chrpa et al. (2023) and Sievers
et al. (2021) use a lifted graph representation of the
planning domain, with the former specifically using
graph isomorphism to check equivalence. Plane-
tarium also employs graph isomorphism, but our
focus is on evaluating the equivalence of PDDL
problem instances rather than domains. Since do-
mains and problem instances differ, the representa-
tion and isomorphism checks must also be adapted
accordingly.

3 Preliminaries

To present Planetarium, we first introduce plan-
ning, PDDL, and scene graphs.

3.1 Classical Planning Problems

We use the set-theoretic form of classical planning
problems (Ghallab et al., 2004).

Definition 1. A planning problem P is denoted by
the tuple (L, S,A, γ, si, g), where:

• L is a finite set of proposition symbols repre-
senting different facts about the world.

• S ⊆ 2L is a set of states. Each state s ⊆ L is
the set of true propositions in that state.

• A is the set of actions. Each action a is
a triplet (pre(a), add(a), del(a), where
pre(a) is the set of preconditions that must
be satisfied for a to be executed, add(a) is the
set of positive effects that become true after
executing a, and del(a) is the set of negative
effects that become false after executing a.

• The transition function γ(s, a) = (s −
del(a)) ∪ add(a) models how the world
changes by an action.

• si is the initial state of the world from which
the problem begins.

• g ⊆ L represents the goal propositions, indi-
cating which propositions must be true for a
state to be considered a goal state. The set of
goal states is Sg = {s ∈ S | g ⊆ s}.

A plan π =< a1, an, . . . , an > is a sequence
of actions that leads from si to any state in Sg
following γ. This plan is a solution to P .

3.2 Planning Domain Definition Language

PDDL is a specialized language designed to pro-
vide a unified way to represent planning problems.
It can represent various types of planning problems,
including classical planning problems (McDermott,
2000; Gerevini and Long, 2006). A PDDL plan-
ning problem consists of two files: the domain file,
which describes the constant parts of the world
model, and a problem file, which specifies par-
ticular planning scenarios using the world model
outlined in the domain file.

The domain file specifies the set of possible ac-
tions A and their preconditions and effects, which
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collectively define the transition function γ. The
problem file defines the initial state si and the goal
propositions g. Finally, the set of proposition sym-
bols L is created by combining the predicates from
the domain file with the objects defined in the prob-
lem file.

Planetarium focuses on classical planning prob-
lems within the STRIPS subset of PDDL (Mc-
Dermott et al., 1998; Fikes and Nilsson, 1971).
STRIPS provides the basic grammar for describing
actions by specifying a set of preconditions that
must be met for an action to be applicable and a set
of effects that modify the propositions that are true
after the action’s execution. The expressiveness of
problems defined in STRIPS is equivalent to those
characterized by the set-theoretic definition (Defi-
nition 1) of classical planning problems (Ghallab
et al., 2004).

3.3 Scene Graphs
To compare different planning problems, we use
scene graphs. A scene graph is a data structure com-
monly used in fields such as computer vision and
graphics (Johnson et al., 2015; Chang et al., 2023),
rearrangement (Ramachandruni et al., 2023), and
planning to represent objects, their attributes, and
the relationships among them. In our work, we de-
fine scene graphs as directed graphs with types and
attributes for both nodes and edges. We represent a
PDDL problem file with scene graphs as follows.
We create one scene graph (the initial scene) for the
initial state and another for the set of goal proposi-
tions (the goal scene). For every object, we create
a node with an object type. Then, for every propo-
sition that is listed in the problem file, we create a
node with a proposition type. That node is given
an attribute with the name of its predicate. Then,
for each argument to the predicate in that proposi-
tion, we add an edge from the proposition node to
the corresponding object. Each edge is given three
attributes: the name of the predicate, the position of
the argument (first, second, etc.), and whether it is
defined in the initial state or the goal propositions.
A scene graph is thus ({O ∪ P}, E), where O is
the set of nodes with object type, P is the set of
nodes with Proposition type, and E is the set of
edges.

We further define a problem graph as the
combination of an initial scene and goal scene.
Given SceneGraphinit = ({O ∪ Pinit}, Einit) and
SceneGraphgoal = ({O ∪ Pgoal}, Egoal), then a
problem graph merges the scene graphs such that

ProblemGraph = ({O ∪ Pinit ∪ Pgoal}, {Einit ∪
Egoal}). We define graph isomorphism on any of
these graphs as an edge and type-preserving bi-
jection between nodes, meaning that two graphs
share a connectivity structure where all types and
attributes match. See Appendix B for examples of
diagrams of scene and problem graphs.

4 Evaluation Framework

In this section, we describe the design of our bench-
mark. Planetarium consists of two components: an
algorithm that validates whether two PDDL prob-
lem files, a ground truth file and an LLM-generated
file, are equivalent, and a curated dataset of plan-
ning tasks against which an LLM can be evaluated.

4.1 Planning Problem Equivalence
The first step to benchmarking PDDL generation is
determining how to decide whether the generated
code matches ground truth code. One might as-
sume that checking if two PDDL problem files are
equivalent is straightforward. However, the same
goal state could be represented by many PDDL
problem files, as shown in Figure 1.

Given these difficulties, we propose a definition
of equivalence in terms of classical planning prob-
lems. The main idea is to find a bijective function
between the sets of proposition symbols L of the
two problems such that makes the two problems
equal. Our definition assumes that the transition
function γ is shared between the two problems.
Our formal definition of equivalence between two
planning problems follows.

Definition 2. Two planning problems
P1 = (L1, S1, A1, γ, s1i , g

1) and P2 =
(L2, S2, A2, γ, s2i , g

2) with the same transi-
tion function γ are equivalent if there exists a
bijective function f : L1 → L2 such that:

1. S2 = {{f(p) : p ∈ s} : s ∈ S1}

2. s2i = {f(p) : p ∈ s1i }

3. Sg2 = {{f(p) : p ∈ s} : s ∈ Sg1}

4. A2 = {( {f(p) : p ∈ pre(a)} ,
{f(p) : p ∈ add(a)} ,
{f(p) : p ∈ del(a)} ) : a ∈ A1}.

That is, all predicates across the states, action
definitions, initial state, goal specification, and ac-
tions of one problem are replaced with their corre-
sponding predicates from the other.
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Figure 2: A demonstration of how fullySpecify fills
in gaps of the goal state of a planning problem.

This definition is not directly usable for check-
ing equivalence between two PDDL problem files
because it relies on finding a bijection between the
sets L of each problem, and PDDL does not define
these sets directly. To build the set L with PDDL,
one needs to use the predicates in the domain file
and the objects in the problem file, instantiating
each predicate with all possible objects they might
take. We assume the entire PDDL domain is shared
between the problems. This fact entails that the
predicates will be shared, making it necessary to
look for bijective functions for PDDL only over the
objects. The challenge is that each PDDL problem
file can correspond to many pairs of initial and goal
states because the set of goal propositions makes an
open-world assumption. That set can leave implicit
trivial propositions that are necessarily true and
therefore do not change the underlying planning
problem. We must therefore fully specify the goal,
meaning that we identify all propositions that are
true in all reachable goal states when starting from
the initial state.

Our algorithm for checking equivalence is sum-
marized in Algorithm 1. First, we transform each
set of initial state and goal state propositions into
scene graphs. Second, we fully specify the goal
scene graphs by adding all trivially true edges. Fi-

nally, we join the initial state scene graph with
each goal state graph to create problem graphs and
look for a bijection between objects such that the
problem graphs are isomorphic.

Algorithm 1 Planning Problem Equivalence

1: function EQUIVALENT(Pa,Pb, isPlaceholder)
2: si,a, ga ← toSceneGraph(Pa)
3: si,a, ga ← toSceneGraph(Pb)
4: if canDoFast(si,a, ga, si,b, gb) then
5: return fastEquivalent(si,b, ga, si,a, gb)
6: end if
7: g⋆a ← fullySpecify(si,a, ga)
8: g⋆b ← fullySpecify(si,b, gb)
9: if isPlaceholder then

10: init_iso← isIsomorphic(si,a, si,b)
11: goal_iso← isIsomorphic(g⋆a, g

⋆
b)

12: return init_iso ∧ goal_iso
13: else
14: pa ← join(si,a, g⋆a)
15: pb ← join(si,b, g⋆b )
16: return isIsomorphic(pa, pb)
17: end if
18: end function

Transform to Scene Graphs. From each PDDL
problem file, we generate two scene graphs: one
for the initial state and another for the goal state
(lines 2–3). For each transformation, we first cre-
ate an object node for each object. Then, for
each proposition in the collection, we create a new
proposition node and create edges between the
proposition node and the objects it takes as argu-
ments. Edge attributes denote argument order, pred-
icate type, and whether the proposition is in an
initial or goal scene. See Section 3.3 for details.

Check Easy Cases. For speed, we check several
cases and return early if we can (lines 4–6). First,
if the number of object nodes in each graph is not
equal, the problems cannot be equivalent. Second,
if the initial scenes are not isomorphic, then the
problems cannot be equivalent. Finally, if the prob-
lem graphs, composed of the initial and goal scenes,
are isomorphic, then the problems are equivalent.

Fully Specify the Goal Scenes. If the input is
not an easy case, then we have to reason about
the sets of goal states defined by the goal scenes
(Figure 2). Condition 3 of Definition 2 requires
that the sets of goal states that are consistent with
the given goal propositions be equal after substi-
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Table 1: A breakdown of the Planetarium dataset by the level of abstractness of the text description, number of
propositions in the ground truth PDDL problem (size), and train/test split. Each instance consists of a ground truth
PDDL problem description paired with a text description.

Domain Total
Abstractness Num. of Ground Truth Propositions (Size) Split

Explicit to Abstract to
Explicit Abstract Explicit Abstract 1-20 21-40 41-60 61-80 >80 Train Test

Blocks World 85,605 22,595 20,152 20,152 22,706 963 10,011 47,153 25,766 1,712 80,612 4,993
Gripper 54,141 13,683 10,565 12,466 17,427 2,334 13,640 16,405 20,325 1,437 49,363 4,778
Floor Tile 6,172 2,289 797 793 2,293 706 2,114 2,224 404 724 0 6,172

tuting matching propositions. Since PDDL uses
the open-world assumption for goals, we have to
identify all propositions that are true in all reach-
able goal states when starting from the initial state
for each problem. The function fullySpecify
finds all such propositions and adds them to the
goal scenes as additional proposition nodes with
the corresponding edges and attributes (lines 7–8).
We show how to implement fullySpecify effi-
ciently for the three domains in Planetarium in
Appendix C.

PDDL without Object Identity. Our algorithm
runs in two modes, depending on the type of prob-
lem it is checking. Sometimes we want to com-
pare a generated PDDL problem file with many
ground truth problem files and see if the gener-
ated file matches any one of them. For example,
if the natural language description says “make a
tower of height 3,” the specific blocks to use are
unspecified, and any permutation of blocks that
builds a tower of height 3 should be considered
correct. Concretely, we want to treat the objects in
the PDDL goal states as placeholders and accept
any permutation of them. We check this condition
when isPlaceholder is True (determined by the
problem type) simply by checking isomorphism
between initial and goal scenes separately rather
than combining them into problem graphs (lines
10–12).

PDDL with Object Identity. If isPlaceholder is
False, we want to check whether the problem files
are precisely equivalent under Definition 2, mean-
ing that the objects in the initial scenes correspond
to the same objects in the goal scenes as well. We
first join the corresponding initial and scene graphs
into problem graphs as described in Section 3.3
(lines 14–15). Then we check whether the two
problem graphs are isomorphic (line 16).

We illustrate Algorithm 1 with examples in Ap-
pendix B. We also formally state its correctness,

with the proof in Appendix A.

Theorem 1. Equivalent(Pa, Pb, False) returns
True if and only if the PDDL problem files Pa and
Pb represent equivalent planning problems under
Definition 2. Equivalent(Pa, Pb, True) returns
True if and only if Pa represents a planning prob-
lem that is equivalent to some planning problem
represented by Pb after a permutation of the objects
in its goal state.

4.2 The Dataset

The Planetarium dataset includes 145,918 text-to-
PDDL pairs derived from the Blocks World, Grip-
per, and Floor Tile domains (Seipp et al., 2022;
McDermott, 2000). Our dataset captures 25 unique
initial and goal state configurations describing 73
different tasks. In the Blocks World domain, a
robotic hand manipulates blocks arranged in var-
ious configurations on a table, with 5 predicates
and 4 actions. The Gripper domain features a robot
with grippers transporting balls between rooms,
with 7 predicates and 3 actions. While versions
of Blocks World and Gripper domains exist with
:typing, we choose to use the IPC standard ver-
sions, which do not. We simplified the standard
Floor Tile domain (Seipp et al., 2022), where robots
are tasked with painting tiles, by removing the left
and down predicates and relying on the right and
up predicates to check relative positions. We fur-
ther relax the domain by removing the clear pred-
icate (which introduces path constraints) and the
free-color predicate (which IPC problems did
not use and is not modified or required by any ac-
tions in the original domain). Finally, we added
paint-left and paint-right actions, which re-
duced edge cases for the domain, resulting in a
domain with 6 predicates and 9 actions (compared
to 10 predicates and 7 actions in the IPC version).
More details about the dataset can be found in Ap-
pendix D.
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Table 2: Examples of abstract and concrete descriptions for each domain in the benchmark.

Domain Abstract Explicit

blocksworld

You have 3 blocks, stacked into 2 towers of heights
1, 2, and your arm is empty. Your goal is to invert
each individual stack of blocks, such that the block
that in each tower that was originally on the bottom
will be on the top.

Your arm is empty. b1 is clear. b1 is on the table.
b2 is clear. b2 is on b3. b3 is on the table. Your goal
is to have the following: Your arm should be empty.
b3 should be clear. b3 should be on b2. b2 should be
on the table. b1 should be clear. b1 should be on the
table.

gripper

You have 2 rooms, 2 balls, and 2 grippers. 1 balls are
distributed across the same number of grippers, and
the rest are in the first room. The robby is in the first
room. Your goal is to gather all balls into one room.

You have 2 rooms, 2 balls, and 2 grippers. 1 balls
are distributed across the same number of grippers,
and the rest are in the first room. The robby is in the
first room. Your goal is to have the following: gripper1
should be free. gripper2 should be free. ball1 should be
at room1. ball2 should be at room1.

floor-tile

You have 1 robots, 2 colors, and 2 unpainted tiles
arranged in a grid with 1 rows and 2 columns. The
first robot is at the top-left corner, and has the first
color. All colors are available. Your goal is to paint
all the tiles with the same color.

You have 1 robot. You have 2 tiles. You have 2 colors.
Tile tile2 is to the right of tile tile1. The robot robot1
has color color1. The robot robot1 is at tile tile1. Color color1
is available. Color color2 is available. Your goal is to have
the following: Tile tile1 should be painted with color color1.
Tile tile2 should be painted with color color1.

Dataset Construction. We focus on these
three domains commonly used in other
works (Valmeekam et al., 2023a; Liu et al.,
2023) but are nevertheless challenging. Each entry
in our dataset is a text-to-PDDL pair consisting of a
text description detailing the initial and goal states
and the corresponding ground truth PDDL. (See
Appendix H for examples.) The composition of the
Planetarium dataset is presented in Table 1, which
categorizes the data according to text description
abstractness and the number of propositions.
The table further delineates the train/test split,
illustrating the distribution of data reserved
for evaluation purposes. For a comprehensive
overview of the task descriptions and the specific
allocation of tasks between training and test sets,
readers are directed to Appendix D. The dataset is
procedurally generated: we handcraft templates for
each task configuration, which we combine with
one another to generate problems at scale.

We vary the data along two dimensions: abstract-
ness (explicit vs. abstract) and size. Explicit plan-
ning problem text descriptions correspond directly
to propositions found in the problem PDDL (e.g.,
“block 1 is on block 2”). Abstract text descriptions
instead summarize a state (e.g., “all blocks are in a
single tower”).

Since our text descriptions contain both initial
and goal states, each can be either an abstract or
explicit description. This leads to four possible
abstractness categories: explicit to explicit, explicit
to abstract, abstract to explicit, and abstract to ab-
stract.

We measure the size of a problem by the number
of propositions listed in the ground truth problem
PDDL. Larger problems typically pose greater chal-
lenges for LLMs.

5 Evaluating LLMs on Planetarium

As an initial snapshot of the field’s current state,
we evaluate several API-access and open-weight
language models on Planetarium in both zero-
shot and fine-tuned settings. We find that while
powerful models like GPT-4o can often generate
valid PDDL problems (in the sense that some plan
solves them), they are rarely correct. This result
underscores the need for Planetarium’s rigorous
approach to evaluation of PDDL generation. The
code to recreate the entire evaluation is available at
github.com/BatsResearch/planetarium.

Models. We evaluate two API-access models,
GPT-4o and o1-mini, and we evaluate three
open-weight models before and after fine-tuning:
Gemma 2 2B IT, Gemma 2 9B IT, and Gemma 2
27B IT (Team, 2024). Details regarding fine-tuning
can be found in Appendix F.

Evaluation Protocol. We evaluate models on the
Planetarium test set, which consists of heldout con-
figurations from the Blocks World and Gripper do-
mains and the entirety of the Floor Tile domain.
Models are prompted with the natural language
description of the task along with the respective do-
main PDDL. We record three metrics for the gener-
ated problems: the number of parseable problems,
the number of solvable problems, and the number
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Figure 3: Performance of various models on the Planetarium test set.

of correct problems. We say a model output is
parseable if a PDDL parser supporting :strips
can extract a valid PDDL problem from a substring
in the output and if it can be converted into our
graph representation. A problem is solvable if it
is parseable and a plan can be applied to the ini-
tial scene that results in the goal scene. Due to
the size and complexity of some of the problems
in our dataset, a generalized classical planner can-
not always reliably and quickly return solutions.
Instead, we built specialized planners for Blocks
World and Gripper problems that work on all prob-
lems in our dataset and generally all validly defined
blocksworld and gripper domain problems ex-
cept for a few invalid edge cases (e.g., one block on
top of two blocks at a time, holding two blocks,
etc.). We use Fast Downward (Helmert, 2006)
for floor-tile problems. We then validate all
plans with VAL (Howey et al., 2004). We then feed
parseable and solvable problems into our PDDL
equivalence algorithm to verify equivalence to our
ground truth PDDL and thereby determine if it is
correct. We found our equivalence algorithm to
take, on average, 12ms per example to compute on
an M2 Apple Silicon laptop with batch paralleliza-
tion.

Results. The performance of Gemma 2 2/9/27B
IT, GPT-4o, and o1-mini on the Planetarium test
set are shown in Figure 3. We report the percentage
of generated plans that were parseable, solvable,
and correct from zero-shot and fine-tuned settings,
averaged across all domains. For o1-mini, we ran-
domly sample 250 problems per domain to evaluate
due to prohibitive costs. In the zero-shot setting,
o1-mini and GPT-4o performed the best, followed
closely by Gemma 27B IT. For all models, the per-
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Figure 4: Breakdown of zero-shot performance by do-
main for Gemma 2 27B IT, GPT-4o, and o1-mini.

centage of generated PDDL that is semantically
correct significantly lags behind the percentage of
generated PDDL that is parseable and solvable.

Fine-tuning improved performance across all
open-weight models, with fine-tuned Gemma 2
27B IT achieving the highest accuracy of all tested
models at 34.2%.

Takeaways We find two key takeaways from the
type of mistakes these language models tended to
make. First, a significant portion of errors come
from models “ignoring” the domain in context
and referring to an incorrect domain, likely from
its prior training corpus. We can see this by the
large increase in accuracy when ignoring :typing,
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shown in Figure 4: our Blocks World and Gripper
domains do not have typing, yet when generating
PDDL, these models confidently and consistently
add object types.

Second, there seems to be a strong correlation be-
tween a model’s performance on a certain domain
and the domain’s frequency in the wild: Gripper
and Blocks World are often used as introductory
PDDL examples, while Floor Tile is less common.
However, Gripper, and to a lesser extent, Blocks
World, is often defined with :typing. This may ex-
plain the difference in performance between Blocks
World and Gripper across models, as well as the dif-
ference in performance between enforcing versus
not enforcing :typing.

Succinctly, we see a trend when relaxing the
:typing requirement that models find problems
in less common domains harder, accounting for
everything else.

6 Conclusion

Planetarium is a new benchmark for assessing the
ability of LLMs to translate natural language de-
scriptions of planning problems into PDDL. Our
work reveals that language models find it challeng-
ing to generate semantically correct structured plan-
ning language descriptions. Models like GPT-4o
can often produce valid, seemingly correct descrip-
tions (94.4%) when, in reality, only a small fraction
(24.8%) are genuinely correct. We hope that Plan-
etarium will drive progress on hybrid approaches
combining LLMs and classic planners, setting a
standard for evaluating such tasks.
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Limitations

Planetarium has a few important limitations: Plan-
etarium currently only supports the Blocks World,
Gripper, and Floor Tile domains. While these do-
mains have been popular for studying LLMs and
their relation to planning, incorporating more ex-
pressive domains in the future will widen the scope

of Planetarium. This benchmark is also currently
restricted to the STRIPS subset of PDDL. Extend-
ing it to support more expressive subsets of PDDL
will allow us to evaluate more complex, real-world
planning problems such as non-deterministic, tem-
poral, and numeric domains.

Potential Impacts

A potential societal impact of this research is ensur-
ing the correctness of translating natural language
into structured planning languages. If this transla-
tion method becomes widespread but its evaluation
remains inaccurate, systems could produce mis-
leading or misaligned results that could cause harm
if acted upon. Planetarium highlights the impor-
tance of assessing the correctness of translations.
We achieve this by reasoning about PDDL seman-
tics and the inherent structure of classical planning
problems.

References
Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIl-

raith. 2009. A heuristic search approach to planning
with temporally extended preferences. Artificial In-
telligence, 173(5):593–618. Advances in Automated
Plan Generation.

Georgia Chalvatzaki, Ali Younes, Daljeet Nandha,
An Thai Le, Leonardo FR Ribeiro, and Iryna
Gurevych. 2023. Learning to reason over scene
graphs: a case study of finetuning GPT-2 into a robot
language model for grounded task planning. Fron-
tiers in Robotics and AI, 10.

Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li,
Xiaojiang Chen, and Alex Hauptmann. 2023. A com-
prehensive survey of scene graphs: Generation and
application. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):1–26.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya

11231

https://doi.org/10.1016/j.artint.2008.11.011
https://doi.org/10.1016/j.artint.2008.11.011
https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/TPAMI.2021.3137605
https://doi.org/10.1109/TPAMI.2021.3137605


Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Lukáš Chrpa, Carmine Dodaro, Marco Maratea, Marco
Mochi, and Mauro Vallati. 2023. Comparing plan-
ning domain models using answer set programming.
In Logics in Artificial Intelligence: 18th European
Conference, JELIA 2023, Dresden, Germany, Septem-
ber 20–22, 2023, Proceedings, page 227–242, Berlin,
Heidelberg. Springer-Verlag.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized LLMs. Preprint, arXiv:2305.14314.

Richard E. Fikes and Nils J. Nilsson. 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3):189–
208.

A. Gerevini and D. Long. 2006. Plan constraints and
preferences in PDDL3. In ICAPS Workshop on Soft
Constraints and Preferences in Planning.

Malik Ghallab, Dana Nau, and Paolo Traverso. 2004.
Automated planning. The Morgan Kaufmann Series
in Artificial Intelligence. Morgan Kaufmann, Oxford,
England.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,
and Subbarao Kambhampati. 2023. Leveraging pre-
trained large language models to construct and utilize
world models for model-based task planning. arXiv
preprint arXiv:2305.14909.

Malte Helmert. 2006. The fast downward planning
system. J. Artif. Int. Res., 26(1):191–246.

R. Howey, D. Long, and M. Fox. 2004. Val: auto-
matic plan validation, continuous effects and mixed
initiative planning using pddl. In 16th IEEE Inter-
national Conference on Tools with Artificial Intelli-
gence, pages 294–301.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022a. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. ArXiv:2201.07207.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet,
Tomas Jackson, Noah Brown, Linda Luu, Sergey
Levine, Karol Hausman, and brian ichter. 2022b. In-
ner monologue: Embodied reasoning through plan-
ning with language models. In 6th Annual Confer-
ence on Robot Learning.

Brian Ichter, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, Dmitry Kalashnikov, Sergey Levine, Yao Lu,
Carolina Parada, Kanishka Rao, Pierre Sermanet,
Alexander Toshev, Vincent Vanhoucke, Fei Xia,
Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown,

Michael Ahn, Omar Cortes, Nicolas Sievers, Clayton
Tan, Sichun Xu, Diego Reyes, Jarek Rettinghouse,
Jornell Quiambao, Peter Pastor, Linda Luu, Kuang-
Huei Lee, Yuheng Kuang, Sally Jesmonth, Nikhil J.
Joshi, Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine
Hsu, Keerthana Gopalakrishnan, Byron David, Andy
Zeng, and Chuyuan Kelly Fu. 2022. Do as I can, not
as I say: Grounding language in robotic affordances.
In CoRL, pages 287–318.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia
Li, David A. Shamma, Michael S. Bernstein, and
Li Fei-Fei. 2015. Image retrieval using scene graphs.
In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3668–3678.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. SPoC: Search-based pseudocode to code. In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Carlos Linares López, Sergio Jiménez Celorrio, and
Ángel García Olaya. 2015. The deterministic part
of the Seventh International Planning Competition.
Artificial Intelligence, 223:82–119.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. LLM + P: Empowering large language models
with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Drew McDermott, Malik Ghallab, Adele Howe, Craig
Knoblock, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. PDDL – The plan-
ning domain definition language. Technical Report,
Tech. Rep.

Drew M. McDermott. 2000. The 1998 AI Planning
Systems Competition. AI Magazine, 21(2):35.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th annual meeting of the Association for
Computational Linguistics, ACL ’02, page 311–318,
USA. Association for Computational Linguistics.

Kartik Ramachandruni, Max Zuo, and Sonia Chernova.
2023. ConSOR: A context-aware semantic object re-
arrangement framework for partially arranged scenes.
Preprint, arXiv:2310.00371.

Allen Z. Ren, Anushri Dixit, Alexandra Bodrova,
Sumeet Singh, Stephen Tu, Noah Brown, Peng Xu,
Leila Takayama, Fei Xia, Jake Varley, Zhenjia Xu,
Dorsa Sadigh, Andy Zeng, and Anirudha Majum-
dar. 2023. Robots that ask for help: Uncertainty
alignment for large language model planners. In 7th
Annual Conference on Robot Learning.

11232

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/978-3-031-43619-2_16
https://doi.org/10.1007/978-3-031-43619-2_16
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://doi.org/10.1109/ICTAI.2004.120
https://openreview.net/forum?id=6NT1a56mNim
https://openreview.net/forum?id=6NT1a56mNim
https://openreview.net/forum?id=6NT1a56mNim
https://openreview.net/forum?id=3R3Pz5i0tye
https://openreview.net/forum?id=3R3Pz5i0tye
https://openreview.net/forum?id=3R3Pz5i0tye
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://doi.org/10.1109/CVPR.2015.7298990
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1016/j.artint.2015.01.004
https://doi.org/10.1016/j.artint.2015.01.004
https://doi.org/10.1609/aimag.v21i2.1506
https://doi.org/10.1609/aimag.v21i2.1506
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/2310.00371
https://arxiv.org/abs/2310.00371
https://openreview.net/forum?id=4ZK8ODNyFXx
https://openreview.net/forum?id=4ZK8ODNyFXx


Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. CodeBLEU: a method
for automatic evaluation of code synthesis. Preprint,
arXiv:2009.10297.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. In Proceed-
ings of the 34th International Conference on Neu-
ral Information Processing Systems, NIPS ’20, Red
Hook, NY, USA. Curran Associates Inc.

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann.
2022. PDDL generators. https://doi.org/10.
5281/zenodo.6382173.

Pratyusha Sharma, Antonio Torralba, and Jacob An-
dreas. 2022. Skill induction and planning with latent
language. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1713–1726, Dublin,
Ireland. Association for Computational Linguistics.

Anas Shrinah, Derek Long, and Kerstin Eder. 2021.
D-VAL: An automatic functional equivalence val-
idation tool for planning domain models. CoRR,
abs/2104.14602.

Silvan Sievers, Gabriele Röger, Martin Wehrle, and
Michael Katz. 2021. Theoretical foundations for
structural symmetries of lifted PDDL tasks. Proceed-
ings of the International Conference on Automated
Planning and Scheduling, 29(1):446–454.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B.
Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. 2023. Generalized planning in PDDL domains
with pretrained large language models. In PRL Work-
shop Series – Bridging the Gap Between AI Planning
and Reinforcement Learning.

Tom Silver, Varun Hariprasad, Reece S Shuttle-
worth, Nishanth Kumar, Tomás Lozano-Pérez, and
Leslie Pack Kaelbling. 2022. PDDL planning with
pretrained large language models. In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2022. Prog-
Prompt: Generating situated robot task plans using
large language models. CoRR, abs/2209.11302.

Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke,
Daniel Fišer, Michael Gimelfarb, Florian Pommeren-
ing, Scott Sanner, Enrico Scala, Dominik Schreiber,
Javier Segovia-Aguas, and Jendrik Seipp. 2024. The
2023 International Planning Competition. AI Maga-
zine.

Gemma Team. 2024. Gemma 2: Improving open lan-
guage models at a practical size. arXiv preprint
arXiv:2408.00118.

Mauro Vallati, Lukas Chrpa, Marek Grześ, Thomas Leo
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A Proof of Theorem 1

Proposition 1. Equivalent(Pa, Pb, False) returns
True if and only if the PDDL problem files Pa and
Pb represent equivalent planning problems under
Definition 2.

Proof. To prove this proposition, we need to prove
each direction of the biconditional. First, we will
prove the forward implication. There are two
possible ways the algorithm can return True: Ei-
ther in the isIsomorphic check (line 16) or in
fastEquivalent (line 5).
Case 1: When isIsomorphic(pa, pb) returns True,
we know that there exists a bijection φ from
vertices Vpa to vertices Vpb . Since φ is a type-
preserving bijection, it means the two graphs share
a connectivity structure where all types and at-
tributes match.

By using Lemma 1, we can build a new bijection
f from φ. Instead of mapping vertices in the scene
graph, f maps propositions from La in planning
problem Pa to propositions in Lb in planning prob-
lem Pb. Given that φ is a type-preserving bijection,
we know that the bijection f derived from φ also
maps objects to objects, predicates to predicates,
vertices in the initial scene si,a to vertices in si,b,
and vertices in the goal scene g∗a to vertices in g∗b .

To prove Property 1, we can build the set La for
each planning problem by taking each predicate
in the PDDL domain and instantiating it with all
possible combinations of objects from the problem
PDDL Pa. Then, we can construct the set of all
possible states of the problem by taking the power
set Sa = 2L

a
. For each proposition p ∈ s in each

state s ∈ Sa, we apply the bijection f to show that
we get Sb:

S = {{f(p) : p ∈ s} : s ∈ Sa}
= {{⟨φ(qa), φ(oa1), . . . , φ(oak)⟩ : p ∈ s} : s ∈ Sa}
= {{⟨qb, ob1, . . . , obk⟩ : p ∈ s} : s ∈ Sa}
= {{pb : p ∈ s} : s ∈ Sa}
= Sb.

To prove Property 2, we go through each propo-
sition p in the initial state sai of the problem PDDL
Pa, and apply the bijection f to show that we get
sbi :

si = {f(pa) : pa ∈ sai }
= {⟨φ(qa), φ(oa1), . . . , φ(oak)⟩ : pa ∈ sai }
= {⟨qb, ob1, . . . , obk⟩ : pa ∈ sai }
= {pb : pa ∈ sai }
= sbi .

To prove Property 3, we first observe that the
fullySpecify function adds all possible trivial
propositions to the goal scene graph. By definition,
trivial propositions are those that are known not
to change the underlying planning problem when
added or removed. We can use the same bijection
f constructed from φ. We don’t need to add or
remove non-trivial predicates, as doing so would
change the planning problem by definition. This
implies that the augmented goal state represents
any other possible goal state in Sg. With this, we
can use the bijection f built from φ to apply it to
any state in Sga and show that we get Sgb :

Sg = {{f(p) : p ∈ s} : s ∈ Sga}
= {{⟨φ(qa), φ(oa1), . . . , φ(oak)⟩:p ∈ s}:s ∈ Sga}
= {⟨qb, ob1, . . . obk⟩ : p ∈ s} : s ∈ Sga}
= {{pb : p ∈ s} : s ∈ Sga}
= Sgb .

Finally, to prove Property 4, we observe that
Equivalent(Pa, Pb, False) assumes that the do-
main files are shared between Pa and Pb. As a
result, any bijection φ found by the algorithm must
preserve the equality of actions across both prob-
lems, since the shared domain enforces consistency
in their action sets.
Case 2: We can use the same arguments
from Case 1 with one slight modification.
Here, fastEquivalent returns True only if
isIsomorphic(join(si,a, ga), join(si,b, gb)) re-
turns True. The difference with Case 1 is that we
join the initial states with the goal propositions
scene graph g instead of the fully specified scene
graph g⋆.

In Case 1 we have proven that when
isIsomorphic(pa, pb) returns True, the planning
problems Pa and Pb are equivalent under the bi-
jection f . Since pa = join(si,a, g

⋆
a) and pb =

join(si,b, g
⋆
b), we can let g⋆a = ga and g⋆b = gb.

This is because, by definition, trivial propositions
do not change the underlying planning problem
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when added or removed, and in this case, we are
only removing trivial propositions. Hence, by the
proof of Case 1 we conclude that this case has also
to be true.

Now, we will prove the backward implication.
In this case, we will assume that there exists a bi-
jection f that follows properties 1, 2, and 3 of Defi-
nition 2. By Lemma 1, we know that f comes from
φ, and since both are bijections, we can recover φ
by doing the inverse process. We need to prove that
these conditions lead to isIsomorphic (line 16) or
fastEquivalent (line 5) returning True.

Since there exists a bijection φ that comes from
f , the number of objects must be the same for plan-
ning problems Pa and Pb, as stated in Property 1.
With Property 2, we know that this bijection φmust
also make the initial scenes isomorphic. Assume
that the sets of goal propositions have the same size.
By using Property 3, we know that the bijection φ
would make fastEquivalent (line 5) return True.

Conversely, assume that the sets of goal proposi-
tions have different sizes. In this case, canDoFast
would not allow fastEquivalent to execute. In
the case of isIsomorphic (line 16), we know
that pa = join(si,ag

⋆
a) and pb = join(si,b, g

⋆
b).

Since we know that we can construct the bijec-
tion φ that maps vertices from the bijection f , we
also know that since φ comes from f , this bijec-
tion respects initial states (Property 2) and goal
states (Property 3). Furthermore, the algorithm
does not modify any actions in the domain file, and
since a single domain is shared across all problems,
the actions remain consistent between them (Prop-
erty 4). Therefore, isIsomorphic(pa, pb) must
return True.

With this, we have proven that if two problems
are equivalent under Definition 2, then the equiva-
lence algorithm must return True.

Since we have proven both directions of the bi-
conditional, Proposition 1 is true.

Proposition 2. Equivalent(Pa, Pb, True) returns
True if and only if Pa represents a planning prob-
lem that is equivalent (under Definition 2) to some
planning problem represented by Pb after a permu-
tation of the objects in its goal state.

Proof. To prove this proposition, we need to prove
each direction of the biconditional. First, we will
prove the forward implication. There are two pos-
sible ways the algorithm can return True: Either in
fastEquivalent (line 5) or in isIsomorphic(si,a,
si,b) ∧ isIsomorphic(g⋆a, g⋆b ) (line 12).

To prove the case where fastEquivalent (line
5) returns True, we can use the same argument as
in Case 1 of the forward implication in the proof
of Proposition 1. This is because the placeholder
being True does not affect the fastEquivalent
function.

Now, assume that isIsomorphic(si,a, si,b) ∧
isIsomorphic(g⋆a, g⋆b ) is True. This implies that
there exist two bijections: one φ on the vertices
Vsi,a to Vsi,b , and another ψ between vertices Vg⋆a
to Vg⋆b . Now, by using Lemma 1, we can build
two new bijections, f and h, that map between
propositions in L instead of nodes in the scene
graph, as φ and ψ do.

Since the underlying mappings of f and h can
be different, we need a way to combine them into a
single bijection. One way to construct this bijection
is to permute the mappings of f until they fit the
mappings of h. This implies that there are many
pairs of f and h, and each pair can be combined
into a global bijection using function composition
f ◦ h. For each of these permutations, we can
then use the arguments in Case 2 of the proof of
Proposition 1 to show that these pairs hold all three
properties of Definition 2.

Now, we will prove the backward implication.
First, since fastEquivalent remains the same, we
do not need to prove anything new about it; we can
simply reuse the previous results.

Assume Pa represents a planning problem that is
equivalent to some planning problem represented
by Pb after a permutation of the objects in its goal
state. This implies that there are several bijections
f from the predicates in Pa to the predicates in Pb.
For each of these bijections f , we can use Lemma 1
to transform it into φ. Since we know by Property2
that φ maps initial states, there is an isomorphism
between the initial states. By Property 3, we know
that φ maps any goal state of Pa to any other pos-
sible state in Pb. Hence, s⋆a has to be isomorphic
with s⋆b since φ is a bijection between their nodes.

Since we have proven both directions of Propo-
sition 2, we know it is true.

Proof of Theorem 1. Having the proof of Proposi-
tion 1 and the proof of Proposition 2, we know that
the theorem, which is just the conjunction of these
propositions, must be true.

Lemma 1. Let φ be an isomorphic bijection be-
tween nodes in two scene graphs (propositions or
objects). There exists a bijection f over the propo-
sitions in L such that for any proposition p ∈ L,
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f(p) = ⟨φ(q), φ(o1), φ(o2), . . . , φ(ok)⟩, where q
is the predicate and O = {o1, o2, . . . , ok} is a set
of objects.

Proof. Take any proposition p ∈ L and identify
its predicate q and the ordered set of objects it
acts on, O = ⟨o1, o2, . . . , ok⟩. Then, we can
transform the proposition p into the ordered tu-
ple p = ⟨q, o1, o2, . . . , ok⟩. Finally, we can build
f(p) = ⟨φ(q), φ(o1), φ(o2), . . . , φ(ok)⟩, which is
a bijection over the propositions in L.

B Examples of Algorithm 1

Figure 5 shows examples of how Algorithm 1
checks whether two PDDL problems are equiv-
alent.

C Implementation of fullySpecify

The fullySpecify function adds trivial edges
(edges that must exist but are not currently present)
to our scene graphs. We build the fullySpecify
function using our domain knowledge of the Blocks
World and Gripper domains.

Blocks World The following helpful facts are
true about Blocks World:

• If all blocks have its behavior above it defined
(they are either clear, have something on top
of it, or is being held), then any block that
does not have its bottom behavior specified,
must be on the table (on-table).

• If all blocks have its behavior beneath it de-
fined (they are either on top of something
else, are on the table (on-table), or are being
held), then any block that does not have its
behavior above it defined must be clear.

• Following the last two facts: if there is a block
A which has its behavior above it unspecified
and block B which has its behavior below it
unspecified, then the only way that (on B A)
can exist is if there isn’t already a chain of
predicates that leads A to B or vice versa. If
there already exists a chain connecting these
two blocks, that means A and B are already
connected by being in the same tower, and
that they are the top and bottom of the tower
they are a part of.

• If there are no “floating” blocks (blocks that
have both its top and bottom behavior defined),
and the arm’s behavior is undefined (neither

arm-empty nor holding) is present, then the
arm must be empty. This is because there is no
block that the arm could possibly hold here.

Using these rules, we can add all possible trivial
edges, until no more trivial edges can be found.
Further, these facts will discover all possible trivial
edges in Blocks World, meaning the fully speci-
fied scene graph will be in its canonical form after
fullySpecify.

Gripper Similarly, we can build a set of facts
that operate on the Gripper domain:

• If all balls are assigned a room (at ball
room), then all unassigned grippers (no (free
gripper) or (carry ball gripper)) must
be free.

• If there is only one room, and if all grippers
are already specified (either (free) or (carry
ball gripper)), then any unspecified balls
must be in the only room that exists.

• If there is only one room, the robby must be
in it (at-robby onlyRoom).

These are the only rules we can find. This is
because, if a ball’s position is unspecified, it can
always be assigned to any arbitrary room. If the
robby is unspecified (no at-robby), then it too,
can always be specified to any arbitrary room.

Floor Tile In the standard Floor Tile, we know
that:

• A tile cannot be unpainted.

• All available colors (available-color
color) are unchangeable and cannnot be
added.

• Relative positional propositions (right tile1
tile2) and (up tile1 tile2) are unchangeable
and cannot be added.

Further, given our simplifications, we have the
following characteristics in our domain:

• Traversal is bidirectional.

• Painting a tile and other robots do not block
path-finding.

• From the last two facts, robots cannot block
themselves off through actions, so the only
way the position of a robot is fixed is if:
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(:objects a b) 
(:init (clear a)  
       (clear b)  
       (on-table a)  
       (on-table b) 
       (arm-empty))

(:objects d e) 
(:init (clear d)  
       (clear e)  
       (on-table d)  
       (on-table e) 
       (arm-empty))
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Figure 5: An illustration of the algorithm to check if two PDDL problems are equivalent. It shows each of the
stages of the algorithm: transforming to scene graphs, fully specifying the goal propositions, and checking for graph
isomorphism.

1. It is explicitly defined in the goal descrip-
tion.

2. The robot is on an isolated tile to begin
with.

Applying these rules allows us to fully specify a
Floor Tile goal description.

D Dataset Details

To obtain interesting problems for each domain, we
crafted a set of tasks instead of randomly generat-
ing instances. Below are descriptions of each do-
main and their corresponding task configurations.
Blocks World. This domain involves using a
robotic hand to manipulate a set of blocks arranged
in various configurations on a table. Blocks World
configurations:

• Stacked: All the blocks are in a single tower.

• Unstacked: All blocks are separately placed
on the table.

• Holding a Block: All blocks except one are
separately placed on the table, the robot holds
the last block.
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Figure 6: A visualization of the different tasks in Blocks
World. Training set displayed in “magma” color map
(purple to yellow). Test set displayed in “viridis” color
map (blue to yellow).
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Figure 7: A visualization of the different tasks in Grip-
per. Training set displayed in “magma” color map (pur-
ple to yellow). Test set displayed in “viridis” color map
(blue to yellow).

• Staircase: Towers are in incrementing heights
(1, 2, 3, . . .).

• Equal Towers: Blocks are in towers of equal
height.

• Swap (tied): Goal and initial configurations
are tied: given two towers, swap the base
blocks, and leave the rest of the structure un-
changed.

• Invert (tied): Goal and initial configurations
are tied: Given a set of stacks, flip each stack.

• Towers: Build towers to match a specified list
of heights.

Gripper. This domain features a robot equipped
with grippers, tasked with transporting balls from
one room to another. Gripper Configurations:

• Single Room: All balls are in one room.

• Evenly Distributed: Each room has the same
number of balls.

• Distribute: Each room has a predefined num-
ber of balls.

• Swap Rooms (tied): Goal and initial configu-
rations are tied: swap ball locations between
two rooms.

• Move to Max (goal only): Move all balls to
the room that started with the most number of
balls.

• Move to Min (goal only): Move all balls to
the room that started with the fewest balls.

Pai
nt 

All

Pai
nt 

X

Pai
nte

d R
ing

s

Che
cke

rbo
ard

One
 Til

e,

One
 Colo

r

Disc
on

ne
cte

d

Ro
ws

Goal Configuration

Grid

Ring
s

Disc
on

ne
cte

d

Ro
wsIn

iti
al

 C
on

fig
ur

at
io

n

1304 192 744 736

48 28 100 28

2992

Figure 8: A visualization of the different tasks in Floor
Tile. Training set displayed in “magma” color map
(purple to yellow). Test set displayed in “viridis” color
map (blue to yellow).

• Pickup (goal only): Pick up all the balls

• Drop and Pickup (goal only): Drop all the
balls in the first room, and pick up all the balls
that started in rooms.

• Juggle (tied): Goal and initial configurations
are tied: given that the robot is holding some
balls, shuffle which arm holds which ball.

Floor Tile. This domain features a group of robots
tasked with painting some tiles. Floor Tile configu-
rations:

• Grid (initial only): Tiles are arranged in a
grid.

• Rings (initial only): Tiles are arranged in a
grid in concentric rings.

• Disconnected Rows (tied): Goal and initial
configurations are tied: tiles are in rows, but
the rows are disconnected from one another.
The goal is to paint both ends of each row.

• Painted Rings (goal only): Tiles are arranged
in a grid in concentric rings, and each ring is
painted.

• Paint All (goal only): All tiles are painted
with one color.

• Painted X (goal only): The robot must paint
an X across all the tiles.

• One Tile, One Color (goal only): Each tile is
painted a different color.

• Checkerboard (goal only): The tiles are
painted in a checkerboard pattern with two
colors.
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E License Information

The data for Planetarium is available on Hugging-
Face1 and released under a Creative Commons CC-
BY-4.0 license. In addition, all code to create the
dataset and evaluate models on the benchmark is
available on GitHub2 and released under a BSD 3
license. The authors are responsible for the content
of the dataset.

In our study, we use the Blocksworld, Grip-
per, and Floor Tile domains, which are sourced
from the IPC (McDermott, 2000). The specific do-
main files used in our research are obtained from
pddl-generators (Seipp et al., 2022), which is
distributed under the GNU General Public License.
The domain file for Floor Tile is a modified version
of the one found from pddl-generators (Seipp
et al., 2022)

GitHub Copilot was used to assist in writing the
code for this paper.

F Fine-tuning

Hyperparameters Value

Optimizer adamw_torch
Learning rate 2e-5
Batch Size 1
Betas (0.9, 0.999)
Epsilon 1e-8
Weight Decay 0.01

Max Sequence Length 1500

LoRA rank 16
LoRA alpha 32
LoRA Dropout 0.05

Table 3: Training hyperparameters when fine-tuning
all models included in the paper. The hyperparameters
are separated into three parts: supervised fine-tuning,
generation-related, and LoRA-related.

We fine-tuned the open-weight models using
QLoRA with a rank of 16, adhering to the hy-
perparameter recommendations for small mod-
els provided by the original authors (Dettmers
et al., 2023). Models were loaded with 4-bit pre-
cision and trained over the training set for a sin-
gle epoch. Fine-tuning for each model used either
two NVIDIA GeForce RTX 3090 GPUs or two

1hf.co/datasets/BatsResearch/planetarium
2github.com/BatsResearch/planetarium

NVIDIA A6000 GPUs, operating with data paral-
lelization for approximately 15 hours. We truncate
the longest 5% of our training dataset due to GPU
memory constraints.

Table 3 displays the hyperparameters used for
fine-tuning across all models. In addition, mod-
els are loaded using 4-bit NF4 quantization with
double quantization to reduce the average memory
footprint. We also use the bfloat16 compute data
type for faster training.

G Maintenance Plan

The research group that created Planetarium will
maintain the Planetarium dataset and benchmark
with an open GitHub repository and issue submis-
sion system, and the dataset will be hosted on Hug-
gingFace. The maintenance plan includes regular
issue tracking, with reviews and categorization of
issues, aiming to resolve high-priority issues within
a week and scheduling minor updates quarterly.
Comprehensive documentation and automated test-
ing will ensure quality and compatibility.
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H Text-to-PDDL Pair Example

BLOCKS WORLD

Ground Truth PDDL

( d e f i n e ( problem e q u a l _ t o w e r s _ t o _ e q u a l _ t o w e r s _ 5 )
( : domain b l o c k s w o r l d )
( : r e q u i r e m e n t s : s t r i p s )
( : o b j e c t s b1 b2 b3 b4 b5 )
( : i n i t ( arm−empty )

( c l e a r b5 )
( on b2 b1 )
( on b3 b2 )
( on b4 b3 )
( on b5 b4 )
( on− t a b l e b1 ) )

( : g o a l ( and ( arm−empty )
( on− t a b l e b1 )
( on b2 b1 )
( on b3 b2 )
( on b4 b3 )
( on b5 b4 )
( c l e a r b5 ) ) )

)

Natural Language Description
(objects: You have 5 blocks, b1 through b5, stacked into 1 towers of equal heights, and your arm is
empty. ) (abstract init: stacked into 1 towers of equal heights, and your arm is empty. | explicit
init: Your arm is empty. b1 is on the table. b2 is on b1. b3 is on b2. b4 is on b3. b5 is on b4. b5 is
clear. ) Your goal is to have the following: (abstract goal: stack the blocks into 1 towers of equal
heights. | explicit goal: Your arm should be empty. b1 should be on the table. b2 should be on b1.
b3 should be on b2. b4 should be on b3. b5 should be on b4. b5 should be clear. )
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