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Abstract
Question decomposition has been found to
help large language models’ (LLMs) perfor-
mance on complex question answering (QA)
by breaking these questions into simpler sub-
questions for answering. Nonetheless, perfor-
mance on the task remains dominated by su-
pervised approaches, suggesting room for mak-
ing LLMs better decomposers. One way of
improving LLM training and fine-tuning is to
leverage synthetic training data, but the supe-
rior performance of supervised approaches col-
lapses in the face of distribution shifts, mak-
ing them unsuitable for generating synthetic
data across new domains and at scale. To ad-
dress this, we propose an approach to generate
synthetic decomposition data with only five an-
notated examples; we do this by (i) extending
recent advancements in using LLM-as-judge
and for reranking in novel ways, as well as
(ii) using a panel of smaller-sized LLMs for
data generation instead of resource-intensive
larger models. Through careful validation of
our approach over two benchmark datasets,
we show that our data generation and mod-
elling approaches bring consistent improve-
ments over using few-shot prompting with
LLMs for the task. Our code and models can be
found at https://github.com/hankelvin/
complex_question_decomposition.

1 Introduction

The ability of large language models (LLMs) to
perform on tasks not seen at training, especially
reasoning-related ones, is a keen subject of research
recently (Brown et al., 2020; Wei et al., 2024;
Wang et al., 2023a). However, a “composition-
ality gap” remains as models scale in size, i.e. even
as LLMs with larger parameter sizes show improve-
ments on answering single-hop questions, their
improvements towards answering complex multi-
hop questions lag meaningfully behind the former
(Press et al., 2023). To address this, decomposition-
based approaches (Press et al., 2023; Zhou et al.,

2023; Khot et al., 2023; Dua et al., 2022) have
been proposed, whereby an LLM is prompted to
break a complex question or task into smaller sub-
problems that are incrementally solved,1 the ben-
efits of which include: (i) these simpler tasks are
performed relatively well by LLMs, and (ii) they
facilitate extensions into retrieval, functions calling
and tool usage that can aid the search for the solu-
tion (Press et al., 2023). When these sub-questions
are used with LLMs to answer the complex ques-
tion, it has been referred to as ‘Chain-of-Questions’
(CoQ) (Dua et al., 2022; Zhu et al., 2023) and there
are indications of increased internal reasoning con-
sistency when LLMs are made to answer complex
queries in this way (Radhakrishnan et al., 2023).

Despite the promising performance of
decomposition-based complex question answering
(QA) approaches using LLMs, the current state-of-
the-art (SOTA) for the associated task of question
decomposition (i.e. to produce a sequence of
sub-questions such as the one in Footnote 1) is
achieved with supervised approaches. On the other
hand, as we discuss in Table 1 (see caption there),
the performance of supervised models collapses
in the face of a distribution shift (i.e. changes in
the domain, types of questions, etc.). This makes
neither zero-/few-shot LLMs approaches nor
supervised models perfectly suitable for the task
of question decomposition – the latter suggests
the benefit of a more general-purpose modelling
approach, while the former suggests that there is
room for LLMs to become better at decomposing
complex questions. One direction for improving
LLM capabilities is through training/fine-tuning
with synthetic LLM-generated data (Gunasekar
et al., 2023; Li et al., 2023a), which is what we

1For instance, the same answer to the complex question
“When did Allied troops land in the region where Semitic Phoeni-
cians settled?” could be obtained by answering these two
simpler questions: “Where did the Semitic Phoenicians settle?”
and “When did allied troops land in #1?”.
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explore in this work.

Dataset Model EM Ò SARI Ò GED Ó

break
F -T5 (B) 0.1845 0.8094 0.2098
F -T5 (M) 0.0000 Ó 0.4512 Ó 0.5901 Ó
F -T5 (2) 0.0000 Ó 0.4316 Ó 0.6070 Ó

musique
F -T5 (M) 0.1618 0.7429 0.2283
F -T5 (B) 0.0000 Ó 0.5421 Ó 0.4616 Ó
F -T5 (2) 0.0108 Ó 0.4949 Ó 0.5549 Ó

2wiki
f -T5 (2) 0.8735 0.9865 0.0197
f -T5 (B) 0.0000 Ó 0.5706 Ó 0.5458 Ó
f -T5 (M) 0.2150 Ó 0.7419 Ó 0.4346 Ó

Table 1: Performance for supervised question decompo-
sition models (F -T5 is a model fine-tuned on Flan-T5-
large, see Appendix A for details). (B), (M), (2) denotes
models that were fine-tuned on the training sets of the
break, musique and 2wiki datasets (see Section 4 and
dataset examples in Table B in the appendix). When
tested on data with a different distribution (e.g. F -T5
(M) on break), supervised models’ performance drops
significantly (denoted by a Ó) compared to one trained
on the same distribution. EM, SARI and GED are au-
tomatic metrics used to evaluate decomposition quality,
see Section 5.1 for details. Ò indicates higher the better,
Ó indicates lower the better. Implementation details for
these models can be found in Appendix A.

In this work, we focus on the task of decompos-
ing English complex questions for machine reading
comprehension (MRC), into a sequence of sub-
questions (Wolfson et al., 2020). Our contribu-
tions are: (i) an approach to generate decomposi-
tions with smaller-sized models – of between three
and nine billion parameters, or “compact” LLMs
(CLLMs) as we refer to them in this work – that
are more resource-efficient; (ii) novel extensions
of recent advances in using LLM-as-judge (Zheng
et al., 2024) and LLM-as-rankers (Pradeep et al.,
2023a), together with panel voting (Verga et al.,
2024), in our approach that allows us to derive syn-
thetic training data with only five annotated decom-
position examples; and (iii) an extensive evaluation
comparing against supervised approaches and few-
shot prompting of LLMs, showing that using the
generated data to fine-tune CLLMs brings about
question decomposition performance comparable
with or better than larger models.

Our work is novel in the using of panels of
CLLMs to both produce the synthetic complex
question data and also to rank the generated de-
compositions for quality. Being able to do so with
CLLMs is meaningful as being able to create a
human-annotated decomposition dataset at scale re-
quires substantial resources and comes with restric-

tions.2 Being able to do so with only five annotated
examples for a given dataset allows the automatic
creation of question decomposition data for new
question types and new domains.

2 Related work

Complex question decomposition
Decomposition-based approaches for answering
complex MRC questions have been proposed –
and found to improve QA performance – from
before the time of LLMs; going back as far as to
linguistically-based question splitting methods
such as those of (Kalyanpur et al., 2012). However,
question decomposition (Perez et al., 2020; Dua
et al., 2022; Patel et al., 2022) is almost always
done in service of QA as the end goal and seldom
directly investigated on its own. In addition, many
proposed solutions also often assume access to
either annotated decompositions (Wolfson et al.,
2020) or to a question decomposition model (Guo
et al., 2022; Zhu et al., 2023).

Synthetic data for improving LLMs Recent
improvements in LLM training for instruction-
following and alignment with human preferences
(Wei et al., 2022a; Ouyang et al., 2024; Rafailov
et al., 2024) have brought about new opportuni-
ties to use LLMs for generating synthetic data, and
research has shown (Zelikman et al., 2022; Gu-
nasekar et al., 2023; Li et al., 2023a; Wang et al.,
2023b; Kumar et al., 2024) that training on such
synthetic data drive further model performance.
The current approach is to produce such synthetic
data using a single LLM of the largest sizes (e.g.
GPT-4, Llama 70B/405B, PaLM (Agrawal et al.,
2023)); however, this entails significant resources
(compute and runtime) and, as we show, do not
yet bring about substantially better question de-
composition performance over smaller-sized LLMs.
Some work has focused on reducing the resource-
intensiveness of the process via knowledge distilla-
tion (Rosenbaum et al., 2022; Zhang et al., 2023;
Li et al., 2024a) from large models to smaller ones.

Initial efforts have also mainly focused on gen-
erating class-conditioned text data used for classifi-
cation tasks (e.g. movie review sentiment analysis)
(Li et al., 2023b; Yu et al., 2024; Ding et al., 2023)
and for instruction-following training data (Hon-

2Many closed-sourced (and even those with open-sourced
weights) LLMs contain usage terms that restrict the use
of the models for annotating data at scale. see https:
//huggingface.co/blog/synthetic-data-save-costs
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ovich et al., 2023). For QA, (Agrawal et al., 2023)
used a 540B-parameter model to generate multilin-
gual questions that can be answered from a single
passage; whereas the datasets in our work are multi-
hop across two or more documents. In computer
vision, (Li et al., 2024b) used templates to generate
decompositions of complex visual questions as a
way to obtain training data to improve LLM com-
plex visual QA performance; though the complex
questions they work with are focused on a narrow
context (a visual chart) unlike the open-domain na-
ture of the complex questions encountered in the
MRC datasets we investigate.

Our approach and findings align with contem-
poraneous work (Bansal et al., 2024) showing that
under a fixed compute budget constraint, the use
of smaller (and weaker) LLMs for generating syn-
thetic training data to fine-tune models for math rea-
soning tasks leads to outcomes that outperform do-
ing the same using costly larger models. It can also
be seen as generalising existing methods that gen-
erate synthetic data by sampling repeatedly (Singh
et al., 2024) from the same model to obtain wider
coverage and diversity of generations before select-
ing the optimal solution.

LLM as judges and rankers (Zheng et al., 2024)
examined the use of a single large chat LLM for
judging LLM outputs. (Verga et al., 2024) recently
extended this to using the majority vote of a panel
of three smaller-sized LLMs to judge and identify
the best candidate for a task, with the motivation
that doing so alleviates the need for using a single
resource-intensive LLM for evaluation. The tasks
they examined include single- and multi-hop QA,
and they found that all of the largest-sized LLMs
they investigated (GPT-4, Command-R and Haiku)
give results that have lower correlations with hu-
man judgements of answer correctness compared
to using a panel of CLLMs. Another line of re-
search has shown that LLMs show promise for use
in ranking tasks in information retrieval (Sun et al.,
2023; Pradeep et al., 2023a,b), finding that it is
possible to use few-shot prompting of LLMs, for
ranking a collection of documents for their rele-
vance to a search query, to obtain performance that
is competitive with supervised approaches.

3 Approach

In this section, we describe (i) our approach for
generating synthetic decomposition data; and (ii)
how we fine-tune CLLMs with this data to bring

about more robust decomposition performance.
The task we explore involves decomposing a

complex question qc (without any additional con-
text) into an ordered sequence of simpler sub-
questions qs P Qs (Wolfson et al., 2020). Depend-
ing on the structure of qc, each qs may contain a
referring variable (i.e. a placeholder) that points to
the answer of a preceding question. In this way, by
successively substituting the obtained answers and
answering each qs in sequence, the final answer
obtained gives the same as answering qc directly.

3.1 Generating synthetic decompositions

There are three main steps in our approach to gener-
ate synthetic question decomposition training data
for any X , a given dataset of complex questions.
Figure 1 contains an illustration giving an overview
of our approach.

Multiple candidate generation First, we use a
series of CLLMs (we denote these as CLLMdqg)
to obtain candidate decompositions. In our ex-
periments, we use four different CLLMdqg and
by doing so, we obtain multiple solutions for
the decomposition instead of relying on a sin-
gle LLM’s output (e.g. via repeated sampling
with temperature). Since the datasets we work
on have different forms of representing the de-
composed sub-questions (see Section 4 and exam-
ples in Appendix B), we use five-shot and chain-
of-thought (CoT) (Wei et al., 2022b) prompting
(example prompt in Appendix G) to help ensure
the CLLM generate decompositions of the desired
form. We only use the complex questions from a
given dataset X (plus the same five randomly cho-
sen exemplars from the training sets of each dataset
for the CoT prompts).

Ranking decomposition candidate quality The
second step involves assessing the quality of the
decomposition candidates. To do so, we use a panel
of CLLMs (that we denote as CLLMrank each) for
ranking all of the candidate decompositions from
the first step; this is in a similar vein as what (Verga
et al., 2024) did for QA. Specifically, we prompt
each CLLMrank to rank the quality of the candidate
decomposition that each CLLMdqg produced for
a given qc. In order to do this, we: (i) extended
RankLLM3 (Pradeep et al., 2023a,b) to the novel
task of ranking question decomposition quality.
RankLLM was however designed for zero-shot

3https://github.com/castorini/rank_llm
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Figure 1: Overview of our approach for generating synthetic question decomposition data.

passage ranking with an LLM fine-tuned for that
task;4 as such, instead of using their model, we use
a CLLM with two-shot prompting. This two-shot
prompting (Figure 5 in Appendix G) is necessary to
provide the CLLMrank with exemplars of our new
ranking task. However, since there is no annotated
data for the task, we obtained the exemplars by
using GPT-4o (gpt-4o-2024-08-06) to systemat-
ically introduce errors to a set of (qc, Qs) tuples
drawn from the training set of X . We do this by
designing a scoring scheme and using it to instruct
GPT-4o (see Figure 6 in Appendix G) to add com-
binations of various types of errors to a Qs so that
the errors sum to a certain score. We do this multi-
ple times to the Qs for a given qc so that the scores
for all its modified Qs fall into even intervals. This
allows us to compose sets of rank-able instances
by sampling from the bins and using these as exem-
plars. We use the same set of exemplars for every
ranking task for a given dataset X . We also use the
same set of CLLMs that were used in the first step
(we explore other CLLM combinations in Section 6
below). To mitigate the effects of positional bias
(Zhao et al., 2021), we randomly shuffled the order

4i.e. Given a query and a set of documents doc P D that
is presented in a listwise manner to an LLM tuned for the
task, it returns a sequence r that orders D by each of its doc’s
relevance for answering query.

of the CLLMdqgs presented in each ranking task.

Selecting decomposition instance Finally, from
the rankings of the decompositions obtained from
step two above, we identify the decomposition can-
didate that is preferred by the panel of CLLMranks.
We refer to the data obtained here as PANEL. Since
we extend from the binary score setting investigated
by (Verga et al., 2024) into ranked preferences,
we use Single Transferable Vote (STV) (Tideman,
1995) to select the top-ranked decomposition can-
didate for each qc in the training set of X .5 Bor-
rowing an analogy from electoral methods, we can
view each CLLMrank as an agent being prompted
to express a preference order for the pool of candi-
dates – an instance of qc corresponds to an electoral
seat, the set of CLLMdqgs’ outputs for qc are the
candidates for the ‘seat’ and the set of CLLMrank

ranks are the votes cast for each candidate.
The four CLLMs that we use for both decom-

position (CLLMdqg) and ranking (CLLMrank), are
the smallest models of the Llama 3.1 (8B) (Dubey
et al., 2024), Gemma 2 (9B) (Team et al., 2024),

5STV allows for more representative winning candidates
for cases of ties or for a multi-seat election, by taking each
voter’s expressed preference into consideration; the surplus
votes of declared loser(s) and/or winner(s) are successively
proportionally reassigned to the remaining candidates until a
winner is chosen/all seats have been filled.
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Phi-3.5 (3.8B) (Abdin et al., 2024) and Qwen-2.5
(7B) (Qwen Team, 2024) model families,6 which
were the highest-ranked at the time of this work.7

To summarise, since the input for the decompo-
sition only requires a complex question without the
need for gold decompositions and their answers
(other than a few exemplars that can be easily ob-
tained), the approach can be easily applied on a
collection of unseen complex queries to obtain new
synthetic training data.

3.2 Question decomposition models

We then use the generated decompositions (i.e.
PANEL) to fine-tune CLLMs (Llama 3.1 (8B) and
Qwen 2.5 (7B)) to give improved models for ques-
tion decomposition. When fine-tuning the CLLMs,
we use LoRA adapters (Hu et al., 2022) with a
rank of 32 for all of the model’s linear layers,8 and
RSLoRA (Kalajdzievski, 2023) for controlling the
α parameter for the LoRA adapters. Here, we use a
three-shot CoT prompt (an example of the prompt
is in Figure 4 of Appendix G) and fine-tune all the
models for two epochs, which took about 8 hours
for one model on an Nvidia A100 GPU.

4 Data

We focus our work on MRC datasets (examples in
Appendix B) whose complex questions have the
answers to their sub-questions distributed across
multiple documents, which are harder to answer
and whose open-domain nature has the most po-
tential benefit from decomposition-based QA with
LLMs (compared to complex questions answer-
able from a single document that can already be
performed well by existing reader models).

‚ break (Wolfson et al., 2020) is a dataset de-
signed specifically for the task of question decom-
position. We use the “high-level” version that con-
tains questions encountered in machine reading
comprehension (MRC) and which was collected
by drawing upon complex questions qc from three
existing datasets. Each qc in break comes with
its Qs – annotated in the QDMR formalism with
the help of crowd workers – but does not contain
any answers. We evaluate on the portion of break

6The model checkpoints are (i) google/gemma-2-9b-it,
(ii) meta-llama/Llama-3.1-8B-Instruct, (iii)
microsoft/Phi-3.5-mini-instruct and (iv) Qwen/
Qwen2.5-7B-Instruct on https://huggingface.co/

7Based on rankings here: https://huggingface.co/
spaces/open-llm-leaderboard/open_llm_leaderboard

8The q, k, v, o, down_proj, gate_proj, and up_proj layers.

drawn from HotpotQA (Yang et al., 2018) (about
45%) which is the only one of the three where the
answers to the complex questions are distributed
over two text documents.9

‚ musique (Trivedi et al., 2022) was designed
to have complex questions that are harder for MRC
models to derive a correct answer via reasoning
shortcuts. It was constructed in a “bottom-up” man-
ner with single-hop questions that were drawn from
five other datasets, whereby sets (of sizes between
two and four) of single-hop questions with bridge
entities between them are put together and pre-
sented to crowd-workers to compose a complex
question covering the set. We use the “answer-
able” version of the dataset where each qc in break
comes with its Qs, which are in natural language
(NL) and come with their answers.10

‚ 2wikimultihop (Ho et al., 2020) was con-
structed using a set of templates based on questions
from HotpotQA. New multi-hop questions were
instantiated from these templates using entity pairs
drawn from Wikidata, with steps taken to ensure
that the supporting information (Wikipedia pages
for the entities) require multi-hop reasoning by an
MRC model. Since this dataset was constructed
from a relatively small set of templates, the distribu-
tion of question types in it is constrained, making it
easier to learn; so we only use it for evaluating su-
pervised models’ out-of-distribution performance
(Table 1) and we focus our subsequent experiments
on the other two datasets above.

5 Evaluation

Existing work on decomposition-based approaches
with LLMs (Khot et al., 2023) focus on the QA
aspect of the task and treat decomposition (in the
form of CoT, CoQ, tree-of-thought etc) as a means
for additional computation to allow the model to
derive better performance on the answering of qc;
as such they focus evaluation on the token F1 of the
final answer obtained for qc. We evaluate on the de-
velopment sets of break and musique (Section 6)

9The other two datasets in the high-level version of break
are (i) ComplexWebQuestions (Talmor and Berant, 2018) for
knowledge base QA, and (ii) DROP (Dua et al., 2019) whose
answers are in a single paragraph (i.e. document).

10 A portion of its qs was originally from the Zero Shot RE
dataset (Levy et al., 2017), where the single-hop questions
are represented as knowledge graph triples (the subject and
predicate form the single-hop question and the object forms
the answer to the question). We wrote a set of templates for
each predicate found in musique and used this to convert the
Zero Shot RE triples into NL questions.
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and include QA (Section 5.2) and we also investi-
gate the generated decompositions (Section 5.1).

5.1 Automatic metrics

Following (Wolfson et al., 2020), we evaluate
generated decompositions Q̂s from musique and
breakeval using these automatic metrics that com-
pare between the Q̂s against the reference decom-
positions (Qs) for each dataset: (i) exact match
(EM), (ii) SARI (Xu et al., 2016), and (iii) graph
edit distance (GED).11 Higher scores are better for
EM and SARI, lower scores are better for GED.

‚ EM measures whether a Q̂s is phrased and
structured in exactly the same way as the reference
in the dataset.

‚ SARI was originally applied towards evalu-
ating text simplification – it measures how much
of the tokens of a reference text have been added,
deleted and kept when comparing a generated text
against it. To evaluate the quality of Q̂s, (i) the
added, deleted or kept n-grams between the Qs

and qc are computed, and (ii) the same is done
between Q̂s and qc. The difference between the
added, deleted and kept sets of tokens for Qs and
Q̂s are then used in computing the SARI score.

‚ GED measures the structure of Q̂s against Qs

by using an alignment-based approach to measure
the cost required for the minimal set of operations
(addition or deletion of nodes and edges, and the
substitution of nodes) to transform one to the other.
Here, each qs (or q̂s) is a node and an edge is an
alignment between qis and q̂is. The GED score pro-
vides an indication of the granularity of a generated
decomposition against a reference; for instance, a
three-hop question could be decomposed into two
questions (of two-hop and one-hop), or three ques-
tions (of one-hop each).

5.2 QA evaluation

We also assess whether the decompositions can
give the same answer as qc by answering the
generated sub-questions with an LLM using
CoQ prompting (LLM-CoQ) for both break and
musique (see Appendix G for prompt example),
as well as a supervised model for musique. For
the LLM-CoQ evaluation, we use two CLLMs,

11We use the script https://github.com/allenai/
break-evaluator from (Wolfson et al., 2020), but lower-
case as well as strip question marks and trailing whitespace in
every question to standardise across datasets.

Llama and Qwen (from their public checkpoints,
i.e. not our fine-tuned decompositions models) and
prompt the model to answer the sub-questions suc-
cessively based on the supporting passages in the
original datasets, giving us the upper-bound perfor-
mance in a retrieval-augmented generation (RAG)
setting. For musique, we also extend (Zhang et al.,
2024)’s code (which was used to achieve SOTA
on the musique leaderboard) to train a supervised
QA model for it. Their initial model was not in-
tended for single-hop QA, but since musique is
comprised of complex questions of between two
and four hops and since we have their decomposi-
tions in the training set, we add all of the single-hop
sub-questions for training this model. We also use
the same templates (see Footnote 10) to realise the
Zeroshot RE instances in it. For break, since there
are no answers annotated for its sub-questions, we
were not able to use a similar supervised QA model
to evaluate it.

6 Results and analysis

Dataset Model EM Ò SARI Ò GED Ó

break
GPT-4o 0.0181 0.6314 0.3666
Llama 3.1 70B 0.0289 0.6675 0.3366
Few-shot
Llama 3.1 8B 0.0188 0.6391 0.3557
Gemma 2 9B 0.0195 0.6325 0.3561
Phi 3.5-mini 0.0051 0.5818 0.4684
Qwen 2.5 7B 0.0072 0.5946 0.4104
PANEL 0.0166 0.6919 0.3649
FT-PANEL
Llama 3.1 8B 0.0217 0.6728 0.3290
Qwen 2.5 7B 0.0145 0.6352 0.3543

musique
GPT-4o 0.0066 0.6050 0.3233
Llama 3.1 70B 0.0083 0.6349 0.3136
Few-shot
Llama 3.1 8B 0.0149 0.6079 0.3786
Gemma 2 9B 0.0161 0.5505 0.4757
Phi 3.5-mini 0.0165 0.5985 0.4077
Qwen 2.5 7B 0.0070 0.5778 0.3994
PANEL 0.0132 0.6553 0.3699
FT-PANEL
Llama 3.1 8B 0.0223 0.6332 0.3296
Qwen 2.5 7B 0.0149 0.6211 0.3559

Table 2: Question decomposition performance (Auto-
matic metrics). FT-PANEL denotes LLM fine-tuned
on PANEL synthetic data (last row of each section). In
bold is top-performing across row.

We compare between using (i) few-shot CoT
prompting of the (C)LLM (Few-shot), (ii) the rank
and panel voting procedure corresponding to Steps
1 to 3 in Section 3.1 to select decomposition candi-
dates (PANEL), and (iii) our decomposition mod-
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break musique
QA: Llama QA: Qwen QA: Llama QA: Qwen

EM F1 EM F1 EM F1 EM F1

GPT-4o 0.4436 0.6580 0.5065 0.6983 0.4638 0.6376 0.4737 0.6380

F -T5 0.4226 0.6285 0.4689 0.6529 0.4253 0.5862 0.4373 0.5897

Few-shot
Llama 3.1 8B 0.4045 0.6131 0.4682 0.6523 0.4154 0.5735 0.4220 0.5811
Gemma 2 9B 0.4479 0.6640 0.5145 0.6998 0.3678 0.5023 0.4137 0.5620
Phi 3.5-mini 0.3632 0.5524 0.4624 0.6484 0.4146 0.5591 0.4286 0.5778
Qwen 2.5 7B 0.4052 0.6261 0.4638 0.6547 0.4249 0.5798 0.4328 0.5874

FT-PANEL
Llama 3.1 8B 0.4479 0.6671 0.5145 0.7072 0.4667 0.6343 0.4679 0.6290
Qwen 2.5 7B 0.4211 0.6359 0.4682 0.6583 0.4497 0.6088 0.4485 0.6022

Table 3: QA performance on generated decompositions, with few-shot CoQ prompting using Llama 3.1 8B and
Qwen 2.5 7B. Fine-tuning with data from PANEL always leads to improvements on the CLLM. The highest score
for each dataset is in bold.

els (FT-PANEL) that involve fine-tuning a CLLM
with the generated decompositions obtained on the
training sets of break/musique (i.e. PANEL). The
models we compare with under Few-shot include
the same four models that we use in our data gen-
eration procedure (Gemma 2 (9b), Llama 3.1 (8B),
Phi-3.5 (3.8B) and Qwen 2.5 (7)). For comparison,
we also include larger models GPT-4o and Llama
3.1 (70B). 12 The decomposition performance for
each of these can be found in Table 2, and the re-
sults for the QA evaluation can be found in Table 3
(LLM-CoQ) as well as Table 6 in Appendix D (su-
pervised QA for musique).

6.1 Panel of CLLMs performance

While it can be meaningful to examine EM per-
formance for question decomposition under a su-
pervised setting (where the training and test-time
data are drawn from the same distribution and EM
indicates the ability of such models to learn from
the distribution of the training data), it is less so
for few-shot prompting of LLMs for the task, i.e.
the LLMs have not been trained to match the dis-
tribution of the original datasets and are unlikely
to produce decompositions with the exact phrasing
(despite those decompositions being valid ones).
As such, we focus our attention on SARI and GED
performance (Table 2); and note that to assess the
quality of a decomposition, these two metrics have
to be viewed holistically, together with the QA
evaluation performance (Table 6).

12The OpenAI GPT-4o checkpoint we use is
gpt-4o-2024-08-06 and the Llama model checkpoint
is https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct; we load the latter in 4bit for inference.

‚ PANEL improves on single CLLMdqg per-
formance Despite our use of in-dataset exem-
plars for the few-shot prompting, we observe that
CLLM performance varies between different data
(e.g. the Phi model’s performance relative to the
other CLLMs differs substantially between break
and musique, potentially due to a combination of
factors such as parameter size, training data and
preference tuning). Without advance knowledge
of a CLLM’s decomposition performance on a
given collection of complex questions, using the
approach to obtain PANEL (Steps 1 to 3 of Sec-
tion 3.1) allows us to aggregate over the perfor-
mance possible of each CLLMdqg. Using PANEL
almost always leads to better performance than sin-
gle CLLMs – (i) in the case of break, only the
Llama and Gemma models (0.3557, 0.3561) have
better GED than PANEL (0.3649) and PANEL out-
performs elsewhere for SARI and GED; and (ii) in
the case of musique, PANEL clearly outperforms
every single CLLM.

‚ Fine-tuning with data from PANEL consis-
tently brings improved performance Our de-
composition models FT-PANEL constantly outper-
forms few-shot prompting of the same CLLM they
were based on. This gives between 2.53 (0.6332
vs 0.6079) and 4.33 points (0.6211 vs 0.5778) in-
crease in SARI as well as between 2.67 (0.3290
vs 0.3557) and 5.61 (0.3543 vs 0.4104) points im-
provement in GED. The QA evaluation further val-
idates this, with token F1 gains of up to 5.49 points
for break and 6.08 points for musique with LLM-
CoQ and, and up to 4.49 points for musique using
the supervised QA model.
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‚ Comparable performance with larger LLMs
While CLLMs generally underperform larger
LLMs (first set of column in Table 2), FT-PANEL
gives results that are comparable or better than that
of a large LLM (GPT-4o) on SARI, GED as well
as in the QA evaluation. This shows that our near-
zero-shot synthetic data generation procedure, as
well as fine-tuning, can be used as a means to ob-
tain better decomposition models.

6.2 Analysis: CLLMs for ranking
decomposition

Figure 2: Voting distribution for break (top) and
musique (bottom). The horizontal axes of the heatmaps
show the CLLMdqg models whereas the vertical axes
show the CLLMrank models; they show the number of
times a CLLMrank picks CLLMdqg’s decompositions
as its top choice.

In this section, we evaluate the LLM-as-judge
and panel voting methods that we extend to rank-
ing question decompositions and situate them
against concerns raised recently about LLM self-

preference (Liu et al., 2024; Koo et al., 2024).

‚ Mitigating self-preference It has been shown
recently (Panickssery et al., 2024) that, when they
are deployed for evaluating generated outputs,
LLMs show “non-trivial accuracy at distinguish-
ing themselves from other LLMs and human” and
that there is a correlation between an LLM recog-
nising its own outputs and preferring these over oth-
ers (referred to as “self-preference”), which raises
concerns as self-evaluation is increasingly used in
data generation for LLM training and fine-tuning,
such as for reward modelling (Wang et al., 2024)
and self-correction (Madaan et al., 2023). Our ap-
proach naturally mitigates this by aggregating pref-
erences collected from multiple CLLMs instead
of relying on the same (or a single) LLM to eval-
uate the generated decomposition. A purely self-
preferring ranking choice made by a model, unless
sufficiently supported by other models, would not
be chosen in the STV process we used.

‚ CLLMrank preferences corresponds with
eventual QA performance Besides the consis-
tent improvement of ST-PANEL over that of each
CLLMdqg (Table 2), another indicator supporting
the use of CLLMs for ranking question decompo-
sitions Q̂s, is found in the preference patterns of
the panel broken down by CLLMrank (Figure 2).
Most notably, for break, all CLLMrank models
consistently favour Phi’s decompositions the least
(see Figure 2 top), which the QA evaluation also
validates – those Phi decomposition candidates go
on to obtain the lowest QA scores amongst the four
CLLMsdqg (see ‘Few-shot’ rows in Table 3). Sim-
ilarly, for musique, the decomposition outputs of
the Gemma model were favoured the least, and its
decompositions likewise performed the worst in the
QA evaluation. There is also a general consensus
on the quality of the Gemma model’s decomposi-
tions for break and Qwen’s (three out of four) de-
compositions for musique, which are also broadly
corroborated by their QA evaluation performance.

‚ Composition of the CLLMrank panel mat-
ters We find that not all CLLMs may be suitable
for use in the task of ranking question decompo-
sitions. Another way to further address the issue
of self-preference may be to use a different set of
CLLMs for the ranking task instead of the same
ones that were used for question decomposition.
We explore this using the Aya 23 (8B) (Aryabumi
et al., 2024), Mistral v0.3 (7B) (Jiang et al., 2023),
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Nvidia-Llama (8B)13 and Olmo (7B) (Groeneveld
et al., 2024) models. These models are, however,
all weaker compared to the four we used in our
main experiments. We find that using these weaker
models for ranking leads to candidates of lower
quality being picked (consistently lower SARI and
GED scores, see Table 4). Even when taking STV
over the preferences expressed by all eight models
together, it does not give better results; this sug-
gests that the added CLLMs do not have sufficient
capabilities to perform that task well, and their
imperfect preferences act instead to skew the candi-
date choices. This is broadly reflected in the more
dispersed voting patterns of these models (Figure 3
in Appendix E)

Dataset Model EM SARI GED

break
4x stronger 0.0153 0.6820 0.4099
4x weaker 0.0150 0.6724 0.4327
8x 0.0166 0.6811 0.4184

musique
4x stronger 0.0132 0.6553 0.3699
4x weaker 0.0128 0.6507 0.3915
8x 0.0141 0.6543 0.3751

Table 4: Varying the composition of the panel of CLLM
rankers. 4x stronger is the use of the Gemma, Llama,
Phi and Qwen models for ranking, 4x weaker is the use
of the Aya, Mistral, Nvidia-Llama and Olmo models.
8x is the use of all eight of these models.

6.3 Out-of-distribution performance

We also go on to investigate the out-of-domain
performance of the fine-tuned CLLMs (i.e. FT-
PANEL). We refer to this as FT-PANEL (OOD)
and test these two settings: (i) train on musique
& test on break (Train-Br/Test-Mu), as well as (ii)
train on break & test on musique (Train-Mu/Test-
Br). We ran the full evaluation suite (EM, SARI,
GED and downstream QA) and provide the results
in Tables 7-8 in Appendix F. Compared to Few-
shot (which gives a baseline), the performance of
FT-PANEL (OOD) is varied, and is tied to (i) the
test dataset (i.e. the nature of the OOD distribution),
and (ii) the model that is fine-tuned.

‚ Test dataset differences While Train-Mu/Test-
Br generally brings improvements over the base-
line, it is less clear for the opposite setting i.e.
Train-Br/Test-Mu. The Train-Br/Test-Mu results
are also broadly consistent with the much larger

13https://huggingface.co/nvidia/
Llama3-ChatQA-1.5-8B

OOD drops for break than for musique in the su-
pervised setting (Table 1). These are likely due
to the nature of the sub-questions in the break
dataset – there, annotators were instructed to use
a restricted set of words when writing the sub-
questions, giving them a specialised form with
limited linguistic variability.14 While this facili-
tates parsing, it means that training/tuning on it for
decomposition will not be as helpful when the re-
sulting model is applied to a dataset like musique
where sub-questions are in natural language.

‚ Underlying CLLM differences We find that
fine-tuning Llama 3.1 (8B) with the synthetic data
brings improved or comparable OOD performance
(both break and musique), but this is not the case
for Qwen 2.5 (7B), which we also found across all
our experiments to be generally weaker in question
decomposition. Furthermore, despite being fine-
tuned with the more specialised synthetic data we
produce from break, Llama 3.1 (8B) is still able
to perform on musique (i.e. FT-PANEL (OOD))
with (i) >2% and >4% improvement in SARI and
GED and (ii) >1.5% improvement or comparable
performance in F1 in the downstream QA evalua-
tions. This provides an indication of the usefulness
of our approach (subject to LLM performance).

7 Conclusion

We propose an approach for producing synthetic
complex question decomposition data using only
five annotated examples and novel extensions of
LLM-as-judge/rankers as well as LLM panel vot-
ing for the task of ranking complex question de-
compositions. We then fine-tune smaller-sized
“compact” LLMs (CLLMs) with the generated data
and show – with validation over two benchmark
datasets and comparisons against supervised mod-
els and few-shot LLM prompting – that it leads
to consistently improved question decomposition
performance. Notably, the improvements give the
CLLMs performance on the decomposition task
that is comparable to or better than larger LLMs.
Having CLLMs that decompose questions better
improves their abilities for decomposition-based
QA, which has been shown to be promising for
closing the “compositionality gap” that they face
in answering complex questions. It can also serve
as a means to produce synthetic data that can be
used to train and fine-tune CLLMs (potentially for
larger ones as well) for further improvements.

14See “QDMR Annotation” in (Wolfson et al., 2020)
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9 Limitations

Notwithstanding the promising performance of
LLM-as-rankers, one unresolved challenge lies
with the observation that current LLMs, when
prompted often produce outputs that vary when the
order of the information in the prompt is shuffled
(Zhao et al., 2021); this includes rank predictions
that are not internally consistent when the order of
the input set is shuffled; a phenomenon generally
referred to as ‘position bias’. This refers to situa-
tions where, given a set of N choices to be ranked,
an LLM often makes a ranking prediction Ri when
the input ordering is Oi, but Rj when the ordering
is shuffled and presented as Oj ; i.e. the rank prefer-
ences expressed in Ri are not fully respected in Rj .
These position biases will have an impact on the
selection of the preferred decomposition candidate,
and while we took care to shuffle the order of the
CLLMrank and the panel of LLM approach we use
may help to mitigate this, methods such as using
repeated sampling with order shuffling to find a
“central” ranking (Tang et al., 2024) more directly
addresses this (but require additional resources for
the repeated sampling).

In this work, we focus on MRC complex ques-
tions that are multi-hop and whose answers to their
sub-questions are across multiple documents, since
such questions are the most challenging to address
in QA and likely to be so for question decomposi-
tion too. We expect similar findings for decompos-
ing complex questions that can be answered from
a single document as these are easier to answer (i.e.
the information sought and the hops in the complex
question have a natural proximity to each other
since they are expressed in the same document)
and therefore likely easier to decompose.

10 Ethics statement

Our proposed approach is for the generation of syn-
thetic question decomposition data, with the view
that they can be used to improve LLM performance
on the task. On the one hand, clear gains have been
obtained from the use of synthetic data for LLM
training/fine-tuning – from performance on bench-
marks as well as validation through the production-
usage of LLMs that have been trained partly on
synthetic data (e.g. the Phi family of models (Gu-
nasekar et al., 2023; Li et al., 2023a)). On the
other hand, a singular reliance on synthetic LLM-
generated data (without being complemented with
human-produced data) for training models is ex-
pected to lead to ‘model collapse’ (Shumailov et al.,
2024). This refers to a phenomenon when models
(including LLMs) are cyclically trained/fine-tuned
on synthetic data (i.e. trained with synthetic data,
used to generate new data, which is then used to
train the next generation of the model and so on) to
the effect that they no longer learn the true distribu-
tions of human-produced data (including the long-
tails) and ‘collapse’ to the distributions represented
by the synthetic data (with their own sets of errors
and biases). The risk is that, with an anticipated
widespread adoption and reliance on LLMs, ‘model
collapse’ could lead to societal harms such as those
arising from stereotypes, misinformation or inaccu-
racies being propagated at scale. Research on the
topic is, however, nascent, and it is not yet clear (i)
the extent (Dohmatob et al., 2024) of the risk, (ii)
the boundaries where using synthetic training data
tip over to cause harm, and (iii) what methods may
be identified to mitigate the phenomenon.
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Kamilė Lukošiūtė, Newton Cheng, Nicholas Joseph,
Nicholas Schiefer, Oliver Rausch, Sam McCandlish,
Sheer El Showk, Tamera Lanham, Tim Maxwell,
Venkatesa Chandrasekaran, Zac Hatfield-Dodds,
Jared Kaplan, Jan Brauner, Samuel R. Bowman, and
Ethan Perez. 2023. Question decomposition im-
proves the faithfulness of model-generated reasoning.
Preprint, arXiv:2307.11768.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Ste-
fano Ermon, Christopher D. Manning, and Chelsea
Finn. 2024. Direct preference optimization: your
language model is secretly a reward model. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Andy Rosenbaum, Saleh Soltan, Wael Hamza, Amir
Saffari, Marco Damonte, and Isabel Groves. 2022.
Clasp: Few-shot cross-lingual data augmentation for
semantic parsing. In AACL-IJCNLP 2022.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin
Gal, Nicolas Papernot, and Ross Anderson. 2024.
The curse of recursion: Training on generated data
makes models forget. Preprint, arXiv:2305.17493.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,
James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T
Parisi, Abhishek Kumar, Alexander A Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Fathy Elsayed, Hanie Sedghi, Igor Mor-
datch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek,
Jeffrey Pennington, Jiri Hron, Kathleen Kenealy,
Kevin Swersky, Kshiteej Mahajan, Laura A Culp,
Lechao Xiao, Maxwell Bileschi, Noah Constant, Ro-
man Novak, Rosanne Liu, Tris Warkentin, Yamini
Bansal, Ethan Dyer, Behnam Neyshabur, Jascha
Sohl-Dickstein, and Noah Fiedel. 2024. Beyond hu-
man data: Scaling self-training for problem-solving
with language models. Transactions on Machine
Learning Research. Expert Certification.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 14918–14937, Singapore. Association for
Computational Linguistics.

1202

https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2023.emnlp-main.647
https://doi.org/10.18653/v1/2024.findings-acl.753
https://doi.org/10.18653/v1/2024.findings-acl.753
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://arxiv.org/abs/2404.13076
https://arxiv.org/abs/2404.13076
https://doi.org/10.18653/v1/2022.emnlp-main.302
https://doi.org/10.18653/v1/2022.emnlp-main.302
https://doi.org/10.18653/v1/2020.emnlp-main.713
https://doi.org/10.18653/v1/2020.emnlp-main.713
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2309.15088
https://arxiv.org/abs/2309.15088
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2307.11768
https://arxiv.org/abs/2307.11768
https://dl.acm.org/doi/abs/10.5555/3666122.3668460
https://dl.acm.org/doi/abs/10.5555/3666122.3668460
https://www.amazon.science/publications/clasp-few-shot-cross-lingual-data-augmentation-for-semantic-parsing
https://www.amazon.science/publications/clasp-few-shot-cross-lingual-data-augmentation-for-semantic-parsing
https://arxiv.org/abs/2305.17493
https://arxiv.org/abs/2305.17493
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923


Alon Talmor and Jonathan Berant. 2018. The web
as a knowledge-base for answering complex ques-
tions. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 641–
651, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Raphael Tang, Crystina Zhang, Xueguang Ma, Jimmy
Lin, and Ferhan Ture. 2024. Found in the middle:
Permutation self-consistency improves listwise rank-
ing in large language models. In Proceedings of
the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 2327–2340, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, Johan Ferret, Peter
Liu, Pouya Tafti, Abe Friesen, Michelle Casbon,
Sabela Ramos, Ravin Kumar, Charline Le Lan,
Sammy Jerome, Anton Tsitsulin, Nino Vieillard,
Piotr Stanczyk, Sertan Girgin, Nikola Momchev,
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill,
Behnam Neyshabur, Olivier Bachem, Alanna Wal-
ton, Aliaksei Severyn, Alicia Parrish, Aliya Ah-
mad, Allen Hutchison, Alvin Abdagic, Amanda
Carl, Amy Shen, Andy Brock, Andy Coenen, An-
thony Laforge, Antonia Paterson, Ben Bastian, Bilal
Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A.
Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogozińska,
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A Contextualising supervised models and
few-shot LLMs

For investigating the performance of supervised
methods in the face of distribution shifts (Table 1),
we train one model for each of the datasets that
we use in this work (Section 4). Of these, only
break (Wolfson et al., 2020) was designed with
the task of question decomposition in mind and is
the only one that has a public leaderboard tracking
decomposition performance.15 The current SOTA
for it is held by a model that was fine-tuned on
Flan-T5-large16; and so we do the same for each
of the datasets to obtain supervised decomposition
models for them.

B Dataset examples

Examples from each of the datasets can be found
in Table 5.

15https://leaderboard.allenai.org/break_high_
level/submissions/public

16https://huggingface.co/google/flan-t5-large
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Dataset Complex Question Reference decomposition / evidences
break How many yards did all offensive touchdowns com-

bine for?
return yards of offensive touchdowns; return the
sum of #1

The football club FC Nürnberg is loaning Lucas
Hufnagel from is based in what city?

return the football club that FC Nürnberg is loan-
ing Lucas Hufnagel from; return the city that #1 is
based in

musique When did Allied troops land in the region where
Semitic Phoenicians settled?

Where did the Semitic Phoenicians settle?; when
did allied troops land in #1

Who established the first Committee of Correspon-
dence in the city where a member of the Original
Memphis Five was born, and why?

Original Memphis Five » has part; #1 » place of
birth; who established the first committee of corre-
spondence in #2 in 1772 and why *

2wikimultihop Who is the mother of the director of film Polish-
Russian War (Film)?

xPolish-Russian War, director, Xawery Żuławski y,
x Xawery Żuławski, mother, Małgorzata Braunek y
**

Which film has the director who was born later, El
Extraño Viaje or Love In Pawn?

x El extraño viaje, director, Fernando Fernán
Gómez y, x Love in Pawn, director, Charles Saun-
ders y, x Fernando Fernán Gómez, date of birth, 28
August 1921 y, x Charles Saunders (director), date
of birth, 8 April 1904 y **

Table 5: Examples of complex questions and their reference decompositions in break and musique; or in the case
of 2wikimultihop their evidences. *:We converted the musique instances which had sub-questions taken from
Zero Shot RE (in the form of entity-predicate tuples) into natural language questions (see Section 4). For instance,
the first two sub-questions were converted to: “Who has a part in Original Memphis Five” and “What is the birth
place of #1”. **: We converted the evidences provided in 2wikimultihop to NL questions and added sub-questions
where necessary (e.g for comparison questions) to complete the reasoning chains to obtain the final answers; see
Appendix C.

C Natural language questions for
Zeroshot RE instances in 2wiki

We wrote a set of templates to convert the triples
(corresponding to a simple question (SQ)) here
into NL questions. In addition, for ‘comparison’
and ‘bridge comparison’ types of questions in
2wikimultihop where the evidence alone does
not constitute a complete reasoning chain, we
identified the templates within these two sets and
wrote rules to add SQs to complete the reason-
ing chain. For instance, the CQ “Which film has
the director who died earlier, The Marseille Con-
tract or Strangers Of The Night?” with the answer
“Strangers Of The Night” in the dataset is paired
with evidence that allows us to construct this set
of SQs: “Who directed The Marseille Contract”,

“Who directed Strangers of the Night”, “When did #1
die”, “When did #2 die”. Our rules added “Which
is first/earlier #3 or #4?”, “Which director died on
#5?”, and “What film did #6 direct?” to complete
the reasoning chain and allow a reader model to be
able to obtain the final answer.

D QA Evaluation: supervised

musique
EM F1

GPT-4o 0.4915 0.5931

F -T5 0.4741 0.5702

Few-shot
Llama 3.1 8B 0.4617 0.5610
Gemma 2 9B 0.4117 0.4919
Phi 3.5-mini 0.4808 0.5771
Qwen 2.5 7B 0.4758 0.5726

FT-PANEL
Llama 3.1 8B 0.5060 0.6059
Qwen 2.5 7B 0.4894 0.5877

Table 6: QA performance on generated decompositions.
Fine-tuning with the synthetic decomposition always
leads to improvements on the CLLM (i.e. FT variants
with the few-shot results). The highest score for each
dataset is in bold.
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E Using weaker CLLMrank models

Figure 3: Voting distribution for break (top) and
musique (bottom). The horizontal axes of the heatmaps
show the CLLMdqg models whereas the vertical axes
show the CLLMrank models; they show the number of
times a CLLMrank picks CLLMdqg’s decompositions
as its top choice.
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F Out-of-domain application: FT-PANEL (OOD)

break: Train-Mu/Test-Br musique: Train-Br/Test-Mu

Decomposer
model

EM ↑ SARI ↑ GED ↓ EM ↑ SARI ↑ GED ↓

Few-shot Llama 3.1 8B 0.0188 0.6391 0.3557 0.0149 0.6079 0.3786
Qwen 2.5 7B 0.0072 0.5946 0.4104 0.0070 0.5778 0.3994

FT-PANEL
(OOD)

Llama 3.1 8B 0.0260 0.6517 0.3626 0.0174 0.6210 0.3620
Qwen 2.5 7B 0.0224 0.6390 0.4000 0.0050 0.5812 0.4420

Table 7: Question decomposition performance (Automatic metrics). Few-shot is an off-the-shelf application of
the model with few-shot prompting (i.e. same as Table 2). FT-PANEL (OOD) is the out-of-distribution setting
where the model has been fine-tuned on synthetic data generated on the another dataset. In bold are cases where
FT-PANEL (OOD) outperforms the corresponding Few-shot.

break: Train-Mu/Test-Br musique: Train-Br/Test-Mu

Decomposer
Model

QA: Llama QA: Qwen QA: Llama QA: Qwen
EM F1 EM F1 EM F1 EM F1

Few-shot Llama 3.1 8B 0.4045 0.6131 0.4682 0.6523 0.4154 0.5735 0.4220 0.5811
Qwen 2.5 7B 0.4052 0.6261 0.4638 0.6547 0.4249 0.5798 0.4328 0.5874

FT-PANEL
(OOD)

Llama 3.1 8B 0.4457 0.6446 0.5007 0.6875 0.4274 0.5835 0.4282 0.5802
Qwen 2.5 7B 0.4175 0.6367 0.4602 0.6622 0.3666 0.5061 0.3736 0.5125

Table 8: QA performance on generated decompositions, with few-shot CoQ prompting using Llama 3.1 8B and
Qwen 2.5 7B. Few-shot is an off-the-shelf application of the model with few-shot prompting (i.e. same as Table 3).
FT-PANEL (OOD) is the out-of-distribution setting where the model has been fine-tuned on synthetic data generated
on the another dataset. In bold are cases where FT-PANEL (OOD) outperforms the corresponding Few-shot.
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G Prompt examples

Figure 4: Few-shot Chain-of-Thought prompt used in complex question decomposition.
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Figure 5: Few-shot Chain-of-Thought prompt used in ranking the quality of candidate complex question decomposi-
tion.
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Figure 6: Scoring scheme, error typology and prompt used for generating question decomposition ranking data with
GPT-4o.
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Figure 7: Few-shot Chain-of-Question prompt used in QA evaluation.
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