
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 10939–10960

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Few-Shot Natural Language to First-Order Logic Translation via Code
Generation

Junnan Liu
Department of Data Science & AI, Monash University

to.liujn@outlook.com

Abstract

Translation of natural language to first-order
logical formula (NL-FOL) has recently gained
significant attention for its critical role in logic-
based NLP applications. Some studies at-
tempt to utilize pretrained language models in a
sequence-to-sequence manner for the NL-FOL
task. However, these methods encounter chal-
lenges such as (1) inconsistency between the
training and inference phases and (2) the data-
intensive and resource-intensive finetuning pro-
cess. This paper introduces a novel NL-FOL
translation method, dubbed CODE4LOGIC,
which is based on in-context learning and em-
ploys code snippets to bridge the gap between
natural language and first-order logic. By con-
verting the translation task into a progressive
code generation task, CODE4LOGIC demon-
strates strong generalization within a training-
free manner, and enhances the performance of
large language models (LLMs) to generate com-
plex first-order logical formulas. Experimental
results on NL-FOL task and downstream task
datasets indicate that CODE4LOGIC surpasses
prominent training-free baselines and is compa-
rable to supervised models trained on the full
training data.

1 Introduction

In recent years, the application of deep neural
networks has achieved tremendous success, espe-
cially with the emergence of large language mod-
els (Ouyang et al., 2022; OpenAI, 2023; Touvron
et al., 2023a,b), greatly driving the development
of artificial intelligence. Nevertheless, deep neural
networks still exhibit limitations, notably in terms
of interpretability and comprehensibility. There-
fore, the combination of interpretable symbolic
logic and machine learning has garnered extensive
attention (Dai et al., 2019; Wang et al., 2019). Par-
ticularly noteworthy is the task of translating nat-
ural language into first-order logical formula (NL-
FOL) (Han et al., 2022), which serves as a funda-

mental component in various logic-based natural
language processing (NLP) applications, such as
textual entailment (Bos and Markert, 2005), natural
language inference (Liu et al., 2021; Yanaka et al.,
2019; Suzuki et al., 2019), machine reading com-
prehension (Liu et al., 2020), and natural language
reasoning (Clark et al., 2020; Tafjord et al., 2021;
Wang et al., 2022). This challenging task demands
a comprehensive understanding of natural language
representation, the extraction of essential informa-
tion, and the subsequent establishment of logical
connections among this information (Abzianidze,
2017; Cao et al., 2019).

To tackle this challenge, the community has in-
troduced diverse methods focused on translating
natural language to first-order logic. Prior meth-
ods rely on handcrafted rules (Bos and Markert,
2005; Zettlemoyer and Collins, 2005; Abzianidze,
2017). As natural language intricacies pose scala-
bility issues, these approaches struggle to extend
to practical scenarios. Recently, there has been a
growing inclination toward neural methods for ad-
dressing this task (Cao et al., 2019; Singh et al.,
2020; Hahn et al., 2022). Specifically, some re-
searchers leverage pretrained language models (De-
vlin et al., 2019; Radford et al., 2018, 2019; Brown
et al., 2020; Ouyang et al., 2022; OpenAI, 2023;
Touvron et al., 2023a,b) to solve the NL-FOL task
in a sequence-to-sequence paradigm (Xu et al.,
2024; Yang et al., 2024b; Olausson et al., 2023).
Typically, these approaches involve fine-tuning or
retraining pretrained language models with logi-
cal form data to enhance their efficacy in specific
scenarios. Notwithstanding their remarkable per-
formance, they still grapple with several notable
challenges: (1) Inconsistency between training
and inference. Current LLMs are trained via exten-
sive unsupervised pretraining on large-scale gen-
eral natural language corpora, which lacks first-
order logical form data, as with other symbolic
data (Wu et al., 2024; Yang et al., 2024b). Conse-

10939

∀x (ConvictedCriminal(x) ∧ FoundGuilty(x) ⟶SentencedToPunishment(x))

If a convicted criminal is found guilty, then they are sentenced to a punishment.NL:

FOL:

Figure 1: Example of natural language to first-order logic task from the FOILO dataset (Han et al., 2022), which
requires the extraction of key information and identification of logical connectives to construct the logical form.

quently, generating the accurate logical form for
LLMs poses a considerable challenge (Nie et al.,
2024). Moreover, finetuning or retraining large lan-
guage models with logical form data may lead to
catastrophic forgetting in models tailored specifi-
cally for natural language tasks (Wu et al., 2024).
(2) Data scarcity and training cost. Most su-
pervised training methods are data-intensive, re-
quiring a significant number of training examples
with expert-annotated steps. Considering both the
limited availability of labeled logical form data in
practical situations and the computational overhead
of finetuning large-scale language models, the gen-
eralization capability in the low resource setting of
the translation model holds significant importance.
Nevertheless, current approaches lack investigating
the performance in zero-shot or few-shot scenar-
ios (Shin et al., 2021).

In this paper, we propose an NL-FOL transla-
tion method CODE4LOGIC, which is based on
in-context learning (Brown et al., 2020; Dong et al.,
2022) of LLMs. To bridge the gap between natural
language and logical form, we utilize pretrained
large code models which are pretrained by natu-
ral language and programming language (Chen
et al., 2021; Li et al., 2023c; Rozière et al., 2023;
Gao et al., 2023; Chen et al., 2023) and intro-
duce code (e.g. Python code snippets) as the in-
termediary (Wang et al., 2023). Benefiting from
the capabilities of LLMs learning from a few ex-
amples (Wei et al., 2022a), CODE4LOGIC could
demonstrate strong generalization ability within
a training-free framework. Specifically, we trans-
form the NL-FOL translation task into a code gen-
eration task, enabling us to generate the logical
form progressively and enhance the performance of
LLMs to generate complex logical formulas (Wei
et al., 2022b). Firstly, we define functions corre-
sponding to components of first-order logic and
implement them in Python. These functions allow
the conversion of each first-order logical formula
into a code sequence (i.e., a function call sequence).
For a sample of NL-FOL pair, we transform the
pair into a code sequence, which, upon execution,
yields the first-order logical formula. To translate

a query natural language, we provide the defined
functions, K demonstration examples in code se-
quence format, and the query natural language to
the LLM. The LLM is then tasked with completing
the code sequence corresponding to the query nat-
ural language to generate the accurate first-order
logic form. Through extensive experiments, we
demonstrate that CODE4LOGIC achieves strong
generalization performance in the NL-FOL transla-
tion task and can also outperform salient baselines
on representative downstream logic-based tasks.

We outline our contributions as follows:

• We propose a novel in-context learning method,
named CODE4LOGIC, for the NL-FOL trans-
lation task. In contrast to current methods,
CODE4LOGIC avoids extensive overhead for
finetuning and mitigates the reliance on vast train-
ing data.

• We convert the NL-FOL translation task to a code
generation task to bridge the gap between natural
language and the first-order logical formula. By
progressively generating the code sequence, our
method can boost the generation performance of
LLMs when generating complex logical formu-
las.

• Experimental results on two NL-FOL translation
datasets demonstrate that our CODE4LOGIC out-
performs salient training-free methods and can
achieve comparable results to those fully super-
vised training methods.

• Moreover, experiments conducted on three cate-
gories of downstream tasks validate the availabil-
ity and efficacy of the first-order logic formulas
produced by our method.

2 Related Work
Natural Language to First-Order Logic. The
task of translating natural language to first-order
logic has long garnered significant attention. Previ-
ous researchers attempt to address this problem us-
ing a rule-based approach (Bos and Markert, 2005;
Zettlemoyer and Collins, 2005; Barker-Plummer
et al., 2009; Abzianidze, 2017). Recently, rein-

10940

forcement learning (Lu et al., 2022) and dual learn-
ing (Cao et al., 2019) have been employed to gen-
erate first-order logical formulas using neural net-
works. Drawing inspiration from the machine trans-
lation task, some studies have tackled this task us-
ing a sequence-to-sequence model (Singh et al.,
2020; Xu et al., 2024; Yang et al., 2024b), such as
large language models. While large language mod-
els exhibit robust generalization capabilities and
can handle diverse language structures, they still
encounter difficulties in generating accurate logi-
cal forms due to their intricate nature. Moreover,
certain studies have concentrated on developing
datasets (Han et al., 2022; Tian et al., 2021; Yang
et al., 2024b), offering substantial assistance for
fine-tuning and context-based learning approaches.

In Context Learning with Code-LLMs. In-
context learning with large language models
(LLMs) (Brown et al., 2020) has exhibited robust
few-shot performance across various natural lan-
guage processing (NLP) tasks, such as question an-
swering (Li et al., 2023d; Nie et al., 2024), informa-
tion extraction (Pang et al., 2023; Mo et al., 2024),
and mathematical reasoning (Lewkowycz et al.,
2022; Imani et al., 2023). However, these method-
ologies encounter challenges in scenarios demand-
ing complex reasoning and handling of symbolic
data. Recent studies indicate that LLMs trained
with a code corpus exhibit outstanding complex
and logical reasoning abilities (Chen et al., 2021;
Nijkamp et al., 2022; Gao et al., 2023; Chen et al.,
2023), and the programming language is a good
bridge between natural language and symbolic lan-
guage. Consequently, in-context learning with
code-LLMs has been applied to tasks requiring
complex reasoning, such as knowledge base ques-
tion answering (Li et al., 2023d; Nie et al., 2024),
information extraction (Li et al., 2023b; Wang et al.,
2023), and table reasoning (Cheng et al., 2023).
Typically, these methodologies transform the task
format into code generation, prompting LLMs to
accomplish the original task objective through the
generation of class instances, supplementary code,
or direct generation of required symbolic language
(e.g., query SQL).

3 Preliminary

First-Order Logic. First-order logic (FOL) (Bar-
wise, 1977) is a logical system used for reasoning
about the properties of objects. It involves quanti-
fied variables over non-logical objects, allowing the

formation of sentences with variables. This struc-
ture facilitates statements like there exists x such
that x is Socrates and x is a man, which differs
from simple propositions such as Socrates is a man.
In this context, there exists functions as a quantifier,
with x representing a variable. This logic consists
of two key components: syntax governs the con-
struction of valid symbol sequences in first-order
logic, while semantics clarifies the interpretations
of these expressions. In this paper, we include the
basic elements of first-order logic as follows:

• Constants. Constants represent individuals in
the world, such as Boy, Socrates.

• Variables. Variables indicate variable symbol,
such as x, y, z.

• Function. Function maps individuals to indi-
viduals, for example, FatherOf(Tom) means
the father of Tom.

• Predicate. Predicate maps individuals to truth
values, such as Greater(x, y).

• Logical Connectives. Logical connectives in-
clude ∧,∨,⊕,→,↔.

• Quantifier Symbols. Quantifier symbols con-
sist of ∀ for universal quantification, and ∃ for
existential quantification.

• Equality Symbols. Equality symbols can
be divided into equivalence = and non-
equivalence ̸=.

• Punctuation Symbols. Punctuation symbols
include brackets, dots, and etc.

The full Backus-Naur Form grammar to induce
any first-order logical formula can be found in Ap-
pendix A.

4 Method

In this section, we will introduce how to trans-
late the natural language to the first-order logic via
CODE4LOGIC. Initially, the first-order logical for-
mula is parsed into the tree structure (Section 4.2).
Each node in the tree can be viewed as a function
that generates a subformula of the first-order log-
ical formula, which can be easily implemented in
Python. Based on this, we can construct a code
sequence given a first-order logical formula (Sec-
tion 4.2). Subsequently, when a new natural lan-
guage input necessitates translation, an LLM is em-
ployed to create a code sequence of function calls

10941

based on demonstration examples (Section 4.3).
Finally, a program interpreter is utilized to exe-
cute the generated code sequence and derive the
first-order logical formula. We also discuss the im-
plementation details and the utilization of resulting
first-order logical formulas for downstream tasks
in Appendix D.1.

4.1 Task Formulation

Given a natural language statement xnl, the NL-
FOL task aims to translate it to the first-order logi-
cal formula xfol. In this paper, we reformulate the
task as a code generation task, where xnl and xfol
are denoted in code form as xcnl and xcfol, respec-
tively. When the translation model (e.g., LLM) is
provided with xcnl as input, its objective is to gener-
ate xcfol. Within the context of in-context learning,
the translation model receives a limited set of anno-
tated data comprising K demonstration examples

in the format of pairs
{(

xcnl,i, x
c
fol,i)

)}K

i=1
.

Tree Structure

ConvictedCriminal(x) ∧ FoundGuilty(x)
⟶SentencedToPunishment(x)

ConvictedCriminal(x) ∧ FoundGuilty(x)

SentencedToPunishment(x)∀x

Subformulas

Figure 2: The tree structure of the first-order
logical formula ∀x(ConvictedCriminal(x) ∧
FoundGuilty(x) → SentencedToPunishment(x)).

4.2 Parse First-Order Logic to Code Sequence

To perform in-context learning for NL-FOL trans-
lation in the code generation manner, the primary
challenge lies in the conversion of a first-order log-
ical formula into a code sequence. In practice, we
parse the first-order logical formula to a tree struc-
ture according to the BNF (Backus Normal Form)
grammar. The hierarchical tree structure offers an
effective approach for obtaining code sequence: by
conceptualizing each node in the tree as a func-
tion that processes the child node’s formula and
produces the formula representation of the current
substructure, we can systematically reconstruct the
original first-order logical formula in a bottom-up
fashion. For instance, consider the following first-
order logical formula:

∀x (ConvictedCriminal(x) ∧ FoundGuilty(x)

→ SentencedToPunishment(x)) .

Figure 2 shows the corresponding tree structure.
Moreover, this procedure can be articulated directly
using a programming language format. We can use
the pseudo-code sequence in Algorithm 1 to gen-
erate the first-order logical formula in Figure 2.
In light of the components of first-order logic, we
have devised 15 fundamental functions for gen-
erating first-order logical formulas. We opt for
Python as the implementation platform for these
functions, building upon the proven success of
Code-LLMs (Chen et al., 2021; Li et al., 2023c) in
Python. For comprehensive information on the im-
plementation of all foundational functions, please
refer to Appendix B.

Algorithm 1 Pseudo code sequence
for the first-order logical formula
∀x(ConvictedCriminal(x) ∧ FoundGuilty(x)
→ SentencedToPunishment(x)).

formula_x = Variable('x')
formula1 = Predicate('Convictedcriminal ', formula_x)
formula2 = Predicate('Foundguilty ', formula_x)
formula3 = Predicate('Sentencedtopunishment ',

formula_x)
formula = Conjunction(formula1 , formula2)
formula = Implication(formula , formula3)
formula = UniversalQuantification(formula ,

formula_x)

Also, we provide the pseudo-code for how to
convert the FOL tree structure to Python code se-
quence in Appendix C.

4.3 In-Context Learning for NL-FOL
Translation

In the realm of in-context learning (Brown et al.,
2020), a method typically involves a set of demon-
stration examples {ei}Ki=1 and a query q. Certain
tasks may necessitate an additional task description
or instruction denoted as p. Then, a large language
model is tasked with generating the output y de-
fined as:

y = LLM
(
p; {ei}Ki=1; q

)
. (1)

Here, y may take the form of a label in classifica-
tion tasks (Shome and Yadav, 2023; Yang et al.,
2024a) or a sequence in generative tasks (Li et al.,
2023a; Mathur et al., 2023; Tang et al., 2023). Fig-
ure 3 outlines the framework of CODE4LOGIC and
the aforementioned components, integrated within
the framework of CODE4LOGIC, will be further
elaborated upon in the subsequent paragraphs.

Task Description. Task description serves to of-
fer detailed guidance to the model regarding the

10942

'‘’

Please utilize the functions provided below to

systematically generate the first-order logic

formula that corresponds to the natural

language statement.

'''

def Constant(constant_name: str):

"""return a constant symbol"""

return constant_name.lower()

omit function definitions

natural_language_statement = 'Larry is a big animal.'

formula1 = Constant('larry')

formula2 = Predicate('Big', formula1)

formula3 = Predicate('Animal', formula1)

formula4 = Conjunction(formula2, formula3)

formula = End(formula4)

natural_language_statement = 'If a convicted criminal is

found guilty, then they are sentenced to a punishment'

Task Description Demonstration Examples Natural Language Query

∀x (ConvictedCriminal(x) ∧ FoundGuilty(x)
⟶SentencedToPunishment(x))

formula1 = Variable('x')

formula2 = Predicate('Convictedcriminal', [formula1])

formula3 = Predicate('Foundguilty', [formula1])

omit code sequence

formula = End(formula)

Code Prompt

Code LLMGenerated Code SequenceCode ExecutionFOL formula

Figure 3: Overall process of CODE4LOGIC.

'''
Please utilize the functions provided below
to systematically generate the first-order
logic formula that corresponds to the nat-
ural language statement.
'''

Figure 4: Python code for comment-style instruction.

task. In CODE4LOGIC, the task description is seg-
mented into two components: (1) comment-style
instructions and (2) implementation of basis func-
tions similar to previous work (Wang et al., 2023;
Li et al., 2023b). As previously stated, all basis
functions are implemented in Python, thus the in-
structions are also provided in the form of Python
comments, as demonstrated in Figure 4. Subse-
quently, the comment-style instructions and the
implementation of basis functions outlined in Ap-
pendix B are merged to compose the task descrip-
tion p.

Demonstration Examples. Demonstration ex-
amples consist of a series of NL-FOL code pairs{(

xcnl,i, x
c
fol,i

)}K

i=1
. Each demonstration exam-

ple consists of (1) a natural language statement
in Python and (2) a code sequence to generate
the corresponding first-order logical formula. The
natural language statement is transformed into
a Python assignment statement, where the nat-
ural language string is assigned to the variable
natural_language_statement. The code se-
quence is obtained from the parse tree of the first-
order logical formula mentioned in Section 4.2.
Referring to the first-order logical formula in
Figure 1 and Figure 2, the demonstration exam-

ple will be reformulated as shown in Figure 5.
Following the execution of the aforementioned

natural_language_statement = 'If a convicted criminal is ' + \
'found guilty, then they are sentenced to a punishment.'
formula1 = Variable('x')
formula2 = Predicate('Convictedcriminal ', [formula1])
formula3 = Predicate('Foundguilty ', [formula1])
formula4 = Predicate('Sentencedtopunishment ', [formula1])
formula5 = Conjunction(formula2, formula3)
formula6 = Implication(formula5, formula4)
formula8 = UniversalQuantification(formula6, formula1)
formula = End(formula8)

Figure 5: Code sequence for If a convicted criminal is
found guilty, then they are sentenced to a punishment.

Python code sequence, the first-order logical for-
mula can be retrieved by accessing the formula
variable. To generate the complete set of demon-
stration examples, K pairs of (xnl, xfol) are ran-
domly sampled from the support dataset and trans-

formed into
{(

xcnl,i, x
c
fol,i

)}K

i=1
. Then, these

pairs are concatenated into a unified prompt de-
noted by

(
xcnl,1, x

c
fol,1

)
⊕

(
xcnl,2, x

c
fol,2

)
. . . ⊕

(
xcnl,K , xcfol,K

)
. Here, ⊕ denotes the concatena-

tion function.

Natural Language Query. Recall that our target
is to generate the code sequence for retrieving the
first-order logical formula for a new query. Thus,
we transform a new natural language statement into
a Python assignment statement, aligning it with the
structure defined in the demonstration examples.
The LLM-based translation model is prompted to
complete the following code sequence correspond-
ing to the new natural language statement via in-
context learning.

10943

5 Experiments

5.1 Experiments on NL-FOL Translation

5.1.1 Setup
Datasets. We use two mainstream datasets for
the NL-FOL translation task, FOLIO (Han et al.,
2022) and MALLS (Yang et al., 2024b). Specifi-
cally, we use the validation set of FOLIO and the
test set of MALLS to assess the performance of
CODE4LOGIC and other baselines.

Baselines. We mainly compare our model with
two salient supervised training methods LOG-
ICLLAMA (Yang et al., 2024b) and Symbol-
LLM (Xu et al., 2024). Both of these models stem
from the fine-tuning or retraining of large language
models using NL-FOL translation datasets. Addi-
tionally, we present performance results for Flan-
T5 (Raffel et al., 2020; Chung et al., 2022) and
Claude-1 (Perez et al., 2023), CodeGeeX2 (Zheng
et al., 2023a), GPT-3.5 (Ouyang et al., 2022), and
GPT-4 (OpenAI, 2023) under few-shot settings,
which is based on the text prompt. Please refer to
Appendix D.3.2 for more details about baselines.

Metrics. Common translation and generation
tasks often employ Rouge (Lin, 2004) and Bleu (Pa-
pineni et al., 2002) as metrics, evaluating n-gram
overlap between the reference and candidate. Nev-
ertheless, these metrics are inadequate for NL-FOL
translation tasks since the focus is on logical equiv-
alence rather than exact word-level matches. Align-
ing with previous works (Yang et al., 2024b; Xu
et al., 2024), we utilize Logic Equivalence (LE) as
the evaluation metric. LE is determined by com-
paring the truth tables of the reference first-order
logical formula and the candidate version, followed
by calculating the overlap ratio. For further de-
tails, please refer to the original paper (Yang et al.,
2024b).

5.1.2 Results
CODE4LOGIC v.s. Supervised Training Meth-
ods. As shown in Table 1, CODE4LOGIC sur-
passes LOGICLLAMA, showcasing strong capa-
bilities in the NL-FOL translation task. Specifi-
cally, CODE4LOGIC gpt-3.5-turbo-16k leads to im-
provements of 7.77 and 9.58 over LOGICLLAMA
for the FOLIO and MALLS datasets, respectively.
Moreover, despite operating in a training-free man-
ner, CODE4LOGIC demonstrates surpassing perfor-
mance relative to Symbol-LLM, which is trained

on a more extensive symbolic dataset than LOGI-
CLLAMA.

CODE4LOGIC v.s. Text Prompt Based Meth-
ods. To illustrate the effectiveness of using code
prompts, we proceed to compare CODE4LOGIC

with a text prompt-based baseline under the same
LLM framework. The results presented in Table 1
indicate that employing a code prompt significantly
enhances performance across both datasets, empha-
sizing the advantages of utilizing code as a bridge
between natural and symbolic languages.

Performance w.r.t. Different Code-LLMs.
We compare the performance of GPT-3.5 and
CodeGeeX to measure the influence of differ-
ent Code-LLMs. Notably, GPT-3.5 outperforms
CodeGeeX due to its superior text understanding
capabilities. CodeGeeX, on the other hand, having
a smaller parameter count (6b), is hindered by its
lack of alignment as a code completion model.

Performance w.r.t. Different Number of Demon-
stration Examples. As shown in Figure 6, we
conduct the experiment concerning different num-
bers of demonstration examples. The model’s
performance improves with an increased number
of demonstration examples. However, the perfor-
mance gains become marginal once a certain thresh-
old is reached. Notably, even with a limited number
of demonstration examples, CODE4LOGIC delivers
competitive results.

Ablation Study. To assess the significance of
each component of the prompt in CODE4LOGIC,
we conduct ablation experiments as detailed in Ta-
ble 2. The findings indicate that excluding the
comment-style instruction, basis function defini-
tion, or demonstration examples led to a signifi-
cant decline in model performance. Specifically,
the absence of the comment-style instruction could
obscure the task definition, resulting in incorrect
model outputs. Similarly, omitting the basis func-
tion definition hinders the ability of Code-LLMs
to comprehend essential functions, thus impeding
the generation of code sequences. The removal
of demonstration examples complicates the Code-
LLMs’ understanding of task requirements solely
based on instructions. Additionally, we switch com-
ponents from text-based prompts to evaluate the
efficacy of code-based prompts. Analysis of the ex-
perimental outcomes reveals a slight performance
decline with text-based Comment-Style Instruc-
tions, while a notable performance drop occurs

10944

FOLIO MALLSModel Prompt Type LE LE

Flan-T5 (Chung et al., 2022) text 70.67±0.27 68.45±0.35

Claude-1 (Perez et al., 2023) text 74.47±0.69 77.46±0.81

GPT4 (OpenAI, 2023) text 85.53±0.15 84.38±0.34

LOGICLLAMA (Yang et al., 2024b) text 84.90 81.34
Symbol-LLM-7bsingle_sft (Xu et al., 2024) text 90.81 89.24
Symbol-LLM-7b (Xu et al., 2024) text 90.58 88.88
Symbol-LLM-13bsingle_sft (Xu et al., 2024) text 91.59⋆ 89.41
Symbol-LLM-13b (Xu et al., 2024) text 90.65 89.50⋆

CodeGeeX2 (Zheng et al., 2023a) text 56.71±0.42 57.83±0.21

GPT3.5 (Ouyang et al., 2022) text 83.53±0.15 82.72±0.33

CODE4LOGIC CodeGeeX code 84.77±0.05 85.81±0.02

CODE4LOGIC gpt3.5-turbo-16k code 92.67±0.03 90.92±0.04

Table 1: Experimental results on FOLIO and MALLS datasets. Our approach is indicated by the use of
light grey shading . The results for Flan-T5, Claude-1, and GPT-3.5 were obtained by prompting these mod-

els in a few-shot setting. Additionally, the text prompt based results of GPT-3.5 and CodeGeeX are reported for a
clear comparative analysis. ⋆ means the best results of the supervised training methods.

FOLIO MALLSModel LE LE

CodeGeeX
CODE4LOGIC 84.77 85.81
w/o Comment-Style Instruction 30.45 31.77
w Text-based Comment-Style Instruction 82.68 83.71
w/o Basis Function Definition 21.78 20.29
w Text-based Basis Function Definition 20.58 22.81
w/o Demonstration Examples 24.61 22.78
w Text-based Demonstration Examples 27.64 23.11

GPT-3.5
CODE4LOGIC 92.67 90.92
w/o Comment-Style Instruction 29.33 29.61
w/o Basis Function Definition 22.82 23.47
w/o Demonstration Examples 24.91 25.19

Table 2: Ablation Study on FOLIO and MALLS. We
only report the mean of experimental results.

with text-based Basis Function Definitions and text-
based Demonstration Examples. While text-based
Comment-Style Instructions, resembling NL-based
prompts, yield outcomes akin to Python comment-
style instructions, text-based Basis Function Defi-
nitions and Demonstration Examples impede effec-
tive information provision due to their incongruity
with code-style prompts.

5.2 Experiments on Downstream Tasks
First-order logical formulas derived from natural
language expressions enable the completion of
various downstream tasks, such as textual entail-
ment (Bos and Markert, 2005) and natural language
reasoning (Clark et al., 2020; Tafjord et al., 2021;
Wang et al., 2022). These tasks are commonly
tackled through logical reasoning or proving using
external tools like Prover9 (McCune, 2005–2010)1

and Pyke (Frederiksen, 2008)2.
1https://www.cs.unm.edu/~mccune/prover9/
2https://pyke.sourceforge.net/

To verify the validity of Code4Logic in down-
stream tasks, we generate the code sequence using
the proposed framework and subsequently execute
Python code to acquire the first-order logic form,
which is readily convertible and processable by
external logical reasoning engines. Finally, we em-
ploy an external logical reasoning engine to derive
the output. A similar process can be found in pre-
vious work (Pan et al., 2023).

However, there may be ambiguity errors due to
the randomness of the generated results of large
language models. For instance, the terms UK and
UnitedKingdom may both refer to England, yet
they are treated as distinct entities by the reasoning
engine. To solve this problem, we first tokenize all
the first-order logical formulas into tokens. Subse-
quently, we employ a merging algorithm based on
semantic similarity to unify the statements that may
express the same concept. Finally, the unified first-
order logical formulas are fed into the reasoning
engine for following computational processing.

5.2.1 Setup
Datasets. We conduct experiments on three types
of downstream tasks: natural language inference,
logical reasoning, and fact-checking. We chose
three representative datasets: LogicNLI (Tian
et al., 2021) for natural language inference, Rule-
Taker (Clark et al., 2020) for logical reasoning, and
VitaminC (Schuster et al., 2021) for fact-checking.

• LogicNLI. LogicNLI is a NLI dataset. LogicNLI
effectively separates the targeted FOL reason-
ing from common-sense inference and comprises
16k, 2k, and 2k samples for the training, valida-
tion, and test sets, respectively.

10945

https://www.cs.unm.edu/~mccune/prover9/
https://pyke.sourceforge.net/

LogicNLIModel Acc

Flan-T5 70.11±0.16

LLaMA 75.87±0.21

GPT-3.5 82.44±0.11

BERT 55.92±0.05

RoBERTa 68.37±0.02
⋆

XLNet 65.41±0.02

CODE4LOGIC CodeGeeX 85.78±0.24

CODE4LOGIC gpt3.5-turbo 91.34±0.28

Table 3: results on LogicNLI.

RuleTakerModel Acc

Flan-T5 51.26±0.12

LLaMA 48.89±0.09

GPT-3.5 54.74±0.14

RoBRTa 53.50±0.03

Neural Unifier 59.73±0.12
⋆

CODE4LOGIC CodeGeeX 56.36±0.19

CODE4LOGIC gpt3.5-turbo 61.43±0.21

Table 4: results on RuleTaker.

VitaminCModel Acc

Flan-T5 55.33±0.05

LLaMA 57.47±0.14

GPT-3.5 61.26±0.33

FactCC 54.71±0.01

BLANC 55.73±0.04

BARTSCORE 64.22±0.02
⋆

CODE4LOGIC CodeGeeX 55.61±0.21

CODE4LOGIC gpt3.5-turbo 68.39±0.13

Table 5: Results on VitaminC.

1 2 3 4 5

#Demonstration Examples

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

L
og

ic
E

q
u

iv
al

en
ce

GPT-3.5 CodeGeeX

1 2 3 4 5

#Demonstration Examples

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

L
og

ic
E

q
u

iv
al

en
ce

GPT-3.5 CodeGeeX

Figure 6: Performance of the different number of
demonstration examples. The left part is the results
of FOLIO and the right part is the results of MALLS.

• RuleTaker. RuleTaker is a large-scale dataset,
which is designed for logical reasoning tasks.
RuleTaker consists of 480k, 75.9k, and 152k
samples for the training, validation, and test sets,
respectively.

• VitaminC. VitaminC contains more than 450k
claim-evidence pairs for fact-checking based on
over 450k claim-evidence pairs sourced from
over 100k revisions of popular Wikipedia pages,
including “synthetic” revisions.

Baselines. We mainly evaluate CODE4LOGIC

against representative large language models
(LLMs), such as Flan-T5 (Raffel et al., 2020;
Chung et al., 2022), LLaMA (Touvron et al.,
2023a), and GPT-3.5 (Ouyang et al., 2022), which
are under few-shot settings. Additionally, we
compare it with some prominent baseline meth-
ods (Picco et al., 2021; Kryscinski et al., 2020;
Vasilyev et al., 2020; Yuan et al., 2021) that have
been trained on the full training set. Please refer to
Appendix D.4.2 for more details about baselines.

Metrics. We approach the three task types
as multi-classification tasks, with the average
accuracy serving as the performance metric.
CODE4LOGIC and other few-shot methods are eval-
uated directly on the test set. In contrast, additional
methods are trained on the training set, showcasing
the best performance on the test set chosen using
the validation set.

natural_language_statement = ('If something'
' is green and cold then it is furry.')
formula1 = Variable('x')
formula2 = Predicate('Green', [formula1])
formula3 = Predicate('Cold', [formula1])
formula4 = Predicate('Furry', [formula1])
formula5 = Conjunction(formula2, formula3)
formula6 = Implication(formula5, formula4)
formula7 = UniversalQuantification(

formula6, formula1)
formula = End(formula7)

∀x(Green(x) ∧ Cold(x) → Furry(x))

Figure 7: A case of the code sequence generated by
CODE4LOGIC.

5.2.2 Results

Performance on LogicNLI. The results for Log-
icNLI are presented in Table 3. CODE4LOGIC

significantly outperforms fully supervised train-
ing baselines. This superiority can be attributed
to the specific requirement of logical reasoning
imposed by the LogicNLI dataset, a criterion for
which previous pre-trained models (e.g., BERT,
and RoBERTa) exhibit limitations in their logical
reasoning capabilities.

Performance on RuleTaker. RuleTaker dataset
requires models to have complex logical reasoning
ability compared to LogicNLI. The performance
of CODE4LOGIC and other baselines is shown in
Table 4. We can find that CODE4LOGIC surpasses
salient baselines, which demonstrates the effective-
ness of our CODE4LOGIC to understand complex
logical structures.

Performance on VitaminC. The experimental
results on the VitaminC dataset are presented in
Table 5. The fact-checking task requires the model
to have a more complete understanding of the text
structure and the facts contained within it than the
previous task. We can find that our CODE4LOGIC

outperforms the few-shot methods reliant on large

10946

language models, indicating the efficacy of employ-
ing logical expressions as transitional tools for ad-
dressing the fact-checking task. Furthermore, our
CODE4LOGIC exhibits comparable performance
over conventional text generation evaluation mod-
els, providing additional confirmation of our hy-
pothesis.

Case Study. Additionally, we illustrate sev-
eral cases of the code sequence generated by
CODE4LOGIC and the corresponding first-order
logical formula, which are available in Figure 7
and Appendix E.2. These cases demonstrate
CODE4LOGIC’s capability to produce efficient
code sequences and high-quality first-order logi-
cal formulas.

6 Conclusion

This paper introduces CODE4LOGIC, a training-
free method that leverages the code based prompt
for NL-FOL translation task within an in-context
learning framework. Through utilizing code as a
connector linking natural language and first-order
logical formulas, our approach adeptly bridges the
gap between training and inference in large lan-
guage models, showcasing robust generalization
capabilities. Extensive experiments demonstrate
the superiority of our model not only in NL-FOL
translation but also in various downstream tasks.

Limitations

In this paper, we introduce a new NL-FOL transla-
tion method. We believe this method still has much
room for improvement:

• Multilingual expansion. Currently, our
method is constrained to translation between
English and first-order logical formulas, ne-
cessitating additional investigation for other
languages;

• Inference efficiency. Since our approach is
based on a large language model and a long
prompt, our approach is less efficient when in-
ference, which is sensitive in some scenarios.

References
Lasha Abzianidze. 2017. Langpro: Natural language

theorem prover. In EMNLP (System Demonstra-
tions), pages 115–120. Association for Computa-
tional Linguistics.

Priyanka Agrawal, Ayushi Dalmia, Parag Jain, Ab-
hishek Bansal, Ashish R. Mittal, and Karthik Sankara-
narayanan. 2019. Unified semantic parsing with
weak supervision. In ACL, pages 4801–4810. As-
sociation for Computational Linguistics.

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic parsing as machine translation. In
ACL, pages 47–52. The Association for Computer
Linguistics.

Dave Barker-Plummer, Richard Cox, and Robert Dale.
2009. Dimensions of difficulty in translating natural
language into first-order logic. In EDM, pages 220–
229.

Jon Barwise. 1977. An introduction to first-order logic.
In Stud. Logic Found, volume 90, pages 5–46. Else-
vier.

Johan Bos and Katja Markert. 2005. Recognis-
ing textual entailment with logical inference. In
HLT/EMNLP, pages 628–635. The Association for
Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Ruisheng Cao, Su Zhu, Chen Liu, Jieyu Li, and Kai
Yu. 2019. Semantic parsing with dual learning. In
ACL, pages 51–64. Association for Computational
Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

10947

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages. In ICLR. OpenRe-
view.net.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
IJCAI, pages 3882–3890. ijcai.org.

Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua
Zhou. 2019. Bridging machine learning and logical
reasoning by abductive learning. In NeurIPS, pages
2811–2822.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186. Associ-
ation for Computational Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM:
general language model pretraining with autoregres-
sive blank infilling. In ACL, pages 320–335. Associ-
ation for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,

Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Bruce Frederiksen. 2008. Applying expert system tech-
nology to code reuse with pyke. PyCon: Chicago.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: program-aided language
models. In ICML, volume 202 of Proceedings of
Machine Learning Research, pages 10764–10799.
PMLR.

Christopher Hahn, Frederik Schmitt, Julia J. Tillman,
Niklas Metzger, Julian Siber, and Bernd Finkbeiner.
2022. Formal specifications from natural language.
CoRR, abs/2206.01962.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Kasai,
Tao Yu, Rui Zhang, Shafiq R. Joty, Alexander R. Fab-
bri, Wojciech Kryscinski, Xi Victoria Lin, Caiming
Xiong, and Dragomir Radev. 2022. FOLIO: natu-
ral language reasoning with first-order logic. CoRR,
abs/2209.00840.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR. OpenReview.net.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. In ACL (industry), pages 37–42.
Association for Computational Linguistics.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
EMNLP, pages 9332–9346. Association for Compu-
tational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.

10948

BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL, pages 7871–7880. Association
for Computational Linguistics.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay V. Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur,
Guy Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models. In
NeurIPS.

Chunyou Li, Mingtong Liu, Hongxiao Zhang, Yufeng
Chen, Jinan Xu, and Ming Zhou. 2023a. MT2: to-
wards a multi-task machine translation model with
translation-specific in-context learning. In EMNLP,
pages 8616–8627. Association for Computational
Linguistics.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023b.
Codeie: Large code generation models are better few-
shot information extractors. In ACL, pages 15339–
15353. Association for Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023c. Starcoder: may the source be with
you! CoRR, abs/2305.06161.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023d. Few-shot in-context learn-
ing on knowledge base question answering. In ACL,
pages 6966–6980. Association for Computational
Linguistics.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. CoRR, abs/1309.4408.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Hanmeng Liu, Leyang Cui, Jian Liu, and Yue Zhang.
2021. Natural language inference in context - investi-
gating contextual reasoning over long texts. In AAAI,
pages 13388–13396. AAAI Press.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In IJCAI, pages 3622–3628.
ijcai.org.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Xuantao Lu, Jingping Liu, Zhouhong Gu, Hanwen Tong,
Chenhao Xie, Junyang Huang, Yanghua Xiao, and
Wenguang Wang. 2022. Parsing natural language
into propositional and first-order logic with dual rein-
forcement learning. In COLING, pages 5419–5431.
International Committee on Computational Linguis-
tics.

Yash Mathur, Sanketh Rangreji, Raghav Kapoor, Medha
Palavalli, Amanda Bertsch, and Matthew R. Gormley.
2023. Summqa at mediqa-chat 2023: In-context
learning with GPT-4 for medical summarization. In
ClinicalNLP@ACL, pages 490–502. Association for
Computational Linguistics.

W. McCune. 2005–2010. Prover9 and mace4.
Http://www.cs.unm.edu/ mccune/prover9/.

Ying Mo, Jian Yang, Jiahao Liu, Shun Zhang, Jingang
Wang, and Zhoujun Li. 2024. C-ICL: contrastive
in-context learning for information extraction. CoRR,
abs/2402.11254.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning
for knowledge-based question answering. In AAAI,
pages 18833–18841. AAAI Press.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. CoRR, abs/2203.13474.

Theo Olausson, Alex Gu, Benjamin Lipkin, Cedegao E.
Zhang, Armando Solar-Lezama, Joshua B. Tenen-
baum, and Roger Levy. 2023. LINC: A neurosym-
bolic approach for logical reasoning by combining
language models with first-order logic provers. In
EMNLP, pages 5153–5176. Association for Compu-
tational Linguistics.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke

10949

Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Wang. 2023. Logic-lm: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In EMNLP (Findings), pages 3806–
3824. Association for Computational Linguistics.

Chaoxu Pang, Yixuan Cao, Qiang Ding, and Ping Luo.
2023. Guideline learning for in-context information
extraction. In EMNLP, pages 15372–15389. Associ-
ation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In ACL, pages 311–318.
ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In NeurIPS, pages 8024–8035.

Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina
Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kada-
vath, Andy Jones, Anna Chen, Benjamin Mann,
Brian Israel, Bryan Seethor, Cameron McKinnon,
Christopher Olah, Da Yan, Daniela Amodei, Dario
Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson,
Guro Khundadze, Jackson Kernion, James Landis,
Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua
Landau, Kamal Ndousse, Landon Goldberg, Liane
Lovitt, Martin Lucas, Michael Sellitto, Miranda
Zhang, Neerav Kingsland, Nelson Elhage, Nicholas
Joseph, Noemí Mercado, Nova DasSarma, Oliver
Rausch, Robin Larson, Sam McCandlish, Scott John-
ston, Shauna Kravec, Sheer El Showk, Tamera Lan-
ham, Timothy Telleen-Lawton, Tom Brown, Tom
Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-
Dodds, Jack Clark, Samuel R. Bowman, Amanda
Askell, Roger Grosse, Danny Hernandez, Deep Gan-
guli, Evan Hubinger, Nicholas Schiefer, and Jared Ka-
plan. 2023. Discovering language model behaviors
with model-written evaluations. In ACL (Findings),
pages 13387–13434. Association for Computational
Linguistics.

Gabriele Picco, Thanh Lam Hoang, Marco Luca Sbo-
dio, and Vanessa López. 2021. Neural unification for
logic reasoning over natural language. In EMNLP
(Findings), pages 3939–3950. Association for Com-
putational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21:140:1–140:67.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin c! robust fact verification with
contrastive evidence. In NAACL-HLT, pages 624–
643. Association for Computational Linguistics.

Richard Shin, Christopher H. Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and
Benjamin Van Durme. 2021. Constrained language
models yield few-shot semantic parsers. In EMNLP,
pages 7699–7715. Association for Computational
Linguistics.

Debaditya Shome and Kuldeep Yadav. 2023. Exnet:
Efficient in-context learning for data-less text classi-
fication. CoRR, abs/2305.14622.

Hrituraj Singh, Milan Aggarwal, and Balaji Krishna-
murthy. 2020. Exploring neural models for pars-
ing natural language into first-order logic. CoRR,
abs/2002.06544.

Riko Suzuki, Hitomi Yanaka, Masashi Yoshikawa, Koji
Mineshima, and Daisuke Bekki. 2019. Multimodal
logical inference system for visual-textual entailment.
In ACL, pages 386–392. Association for Computa-
tional Linguistics.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and ab-
ductive statements over natural language. In ACL/I-
JCNLP (Findings), Findings of ACL, pages 3621–
3634. Association for Computational Linguistics.

Xiangru Tang, Andrew Tran, Jeffrey Tan, and Mark Ger-
stein. 2023. Gersteinlab at mediqa-chat 2023: Clini-
cal note summarization from doctor-patient conver-
sations through fine-tuning and in-context learning.
In ClinicalNLP@ACL, pages 546–554. Association
for Computational Linguistics.

Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through logicnli. In

10950

EMNLP, pages 3738–3747. Association for Compu-
tational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Oleg V. Vasilyev, Vedant Dharnidharka, and John Bo-
hannon. 2020. Fill in the BLANC: human-free qual-
ity estimation of document summaries. In Eval4NLP,
pages 11–20. Association for Computational Linguis-
tics.

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico
Kolter. 2019. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiabil-
ity solver. In ICML, volume 97, pages 6545–6554.
PMLR.

Siyuan Wang, Wanjun Zhong, Duyu Tang, Zhongyu
Wei, Zhihao Fan, Daxin Jiang, Ming Zhou, and Nan
Duan. 2022. Logic-driven context extension and
data augmentation for logical reasoning of text. In
ACL (Findings), pages 1619–1629. Association for
Computational Linguistics.

Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4struct:
Code generation for few-shot event structure pre-
diction. In ACL, pages 3640–3663. Association for
Computational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent abilities of large language models. TMLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022b. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao
Wang, Ye Feng, Ping Luo, and Ying Shan. 2024.
Llama pro: Progressive llama with block expansion.
CoRR, abs/2401.02415.

Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei
Yuan, Shuai Yuan, Qika Lin, Yu Qiao, and Jun Liu.
2024. Symbol-llm: Towards foundational symbol-
centric interface for large language models. In ACL,
pages 13091–13116. Association for Computational
Linguistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and
Johan Bos. 2019. HELP: A dataset for identifying
shortcomings of neural models in monotonicity rea-
soning. In SEM@NAACL-HLT, pages 250–255. As-
sociation for Computational Linguistics.

Songhua Yang, Xinke Jiang, Hanjie Zhao, Wenx-
uan Zeng, Hongde Liu, and Yuxiang Jia. 2024a.
Faima: Feature-aware in-context learning for multi-
domain aspect-based sentiment analysis. CoRR,
abs/2403.01063.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2024b. Harnessing the power of
large language models for natural language to first-
order logic translation. In ACL, pages 6942–6959.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In NeurIPS, pages 5754–5764.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. In NeurIPS, pages 27263–27277.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan
Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023.
GLM-130B: an open bilingual pre-trained model. In
ICLR. OpenReview.net.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In UAI, pages 658–666. AUAI Press.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023a.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
KDD, pages 5673–5684. ACM.

10951

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x. CoRR,
abs/2303.17568.

10952

A BNF Grammar of First-Order Logic

The BNF grammar of first-order logic is illustrated
in Figure 8.

B Implementation of Basis Functions
The definitions of basis functions in Python are as
follows:
def Constant(constant_name: str):

"""return a constant symbol"""
return constant_name.lower()

def Variable(variable_name: str):
"""return a variable symbol,
which starts with `$`"""
return '$' + variable_name

def Function(function_name: str, terms: List[str]):
"""return a function symbol, for example,
father(x) means the father of x"""
return '{}({})'.format(

function_name.lower(), ', '.join(terms))

def Predicate(predicate_name: str, terms: List[str]):
"""return an atomic formula with a predicate,
whose name starts with uppercase"""
return '{}({})'.format(

predicate_name.lower().capitalize(), ', '.join(terms))

def Equal(term_a: str, term_b: str):
"""return an atomic formula with equal operation"""
return '{} = {}'.format(term_a, term_b)

def NonEqual(term_a: str, term_b: str):
"""return an atomic formula with equal operation"""
return '{} \u2260 {}'.format(term_a, term_b)

def Negation(formula: str):
"""return the negation of the input formula"""
return '\u00ac({})'.format(formula)

def Conjunction(formula_a: str, formula_b: str):
"""return the conjunction of the input formulas"""
return '{} \u2227 {}'.format(formula_a, formula_b)

def Disjunction(formula_a: str, formula_b: str):
"""return the disjunction of the input formulas"""
return '{} \u2228 {}'.format(formula_a, formula_b)

def Implication(antecedent_formula: str, consequent_formula: str):
"""return the implication formula of the
antecedent formula and consequent formula"""
return '{} \u2192 {}'.format(

antecedent_formula, consequent_formula)

def Equivalence(formula_a: str, formula_b: str):
"""return the logical equivalence formula of
the input formulas"""
return '{} \u2194 {}'.format(formula_a, formula_b)

def Nonequivalence(formula_a: str, formula_b: str):
"""return the logical non-equivalence formula of
the input formulas"""
return '{} \u2295 {}'.format(formula_a, formula_b)

def ExistentialQuantification(formula: str, variable_symbol: str):
"""return an existential quantification of the input formula
and the input variable symbol"""
assert variable_symbol in formula
return '\u2203{}({})'.format(variable_symbol, formula)

def UniversalQuantification(formula: str, variable_symbol: str):
"""return an universal quantification of the input formula
and the input variable symbol"""
assert variable_symbol in formula
return '\u2200{}({})'.format(variable_symbol, formula)

def End(formula: str):
return formula

C Algorithm of FOL Grammar Tree to
Python Code Sequence

The Python-style pseudo code of the FOL grammar
tree to Python code sequence is shown in Algo-
rithm 2.

Algorithm 2 Pseudo code for obtaining code se-
quence from a first-order logic grammar tree in
Python-style.

class FOLGrammarTreeNode:
def __init__(self, start, end, string, type):

start position in natural language statement
self.start = start
end position in natural language statement
self.end = end
string expression
self.string = string
type, can be `variable`, `constant`, e.t.c.
self.type = type
children node list
self.children = []

assign each subformula a unique index
expression2idx = {}
code_sequence = []

def construct_code_sequence(node: FOLGrammarTreeNode):
store the children node information
children_attributes = []
for child in node.children:

children_attributes.append(
construct_code_sequence(child))

Get the variable that carries the child node
formula according to the different node.type,
and then generate the code.

code = get_code(node.type, children_attributes)
code_sequence.append(code)
idx = len(expression2idx) + 1
expression2idx[node.string] = idx

return the information corresponding to current
node

return {
'type': node.type,
'string': node.string,

}

construct_code_sequence(tree)
code_sequence.append('expression␣=␣End({})'.format(

code_sequence[-1].split('=')[0].strip()))

D More Details of Experiments

D.1 Implement Details
FOL Parse. To parse the first-order logical for-
mula into a tree structure, we develop the FOL
parser using Pyleri3. Pyleri is a user-friendly parser

3https://github.com/cesbit/pyleri

10953

https://github.com/cesbit/pyleri

FOL Grammar

< variable > ::= variable_string

< constant > ::= constant_string

< function_name > ::= function_name_string

< predicate_name > ::= predicate_name_string

< term > ::= < variable >

| < constant >

| < function_name > ‘(’ < term > {‘,’ < term > } ‘)’

< atomic_formula > ::= ‘True’

| ‘False’

| < term > = < term >

| < term > ̸= < term >

| < predicate_name > ‘(’ < term > {‘,’ < term > } ‘)’

< formula > ::= < atomic_formula >

| ‘¬’ < formula >

| < formula > ‘ ∧ ’ < formula >

| < formula > ‘ ∨ ’ < formula >

| < formula > ‘ ⊕ ’ < formula >

| < formula > ‘ → ’ < formula >

| < formula > ‘ ↔ ’ < formula >

| ‘(’ < formula > ‘)’

| ‘ ∀ ’ < variable > < formula >

| ‘ ∃ ’ < variable > < formula >

Figure 8: The BNF grammar of first-order logic. An item with a string suffix represents a character (e.g., letters
and common punctuation) terminal symbol.

build tool and can readily export the tree structure
for subsequent code generation.

Code-LLMs. For Code-LLMs, we aim to con-
duct experiments with Codex from OpenAI align-
ing with previous works (Wang et al., 2023; Li
et al., 2023b). However, the Codex models have
been deprecated from the OpenAI APIs. Conse-
quently, we opt to use the gpt-3.5-turbo-16k
model from OpenAI for our experiments. Addi-
tionally, to facilitate a comparison of the perfor-
mance among various code-LLMs, we also con-
duct experiments on the open-source code com-
pletion model CodeGeeX2. CodeGeeX2 (Zheng
et al., 2023a) is constructed on the ChatGLM2 (Du
et al., 2022; Zeng et al., 2023) architecture and
trained on a more extensive dataset of code. For

gpt-3.5-turbo-16k, we use the official API4 to
obtain model results, whereas we employ the open-
source model parameters for CodeGeeX25. During
the generation process, the temperature is set to
0.7, the max_tokens is set to 500, and other param-
eters are kept at default values.

Construction of Demonstration Examples. In
our experiments, the construction of demonstration
examples is mainly based on the public datasets
FOLIO (Han et al., 2022) and MALLS (Yang et al.,
2024b). FOLIO, curated by expert annotators, func-
tions as a natural language reasoning dataset that
presents new challenges in first-order logical rea-
soning. It offers a wide array of natural language
variations, an extensive vocabulary, and diverse
logic patterns, comprising 8k NL-FOL pairs. Con-

4https://openai.com/api
5https://huggingface.co/THUDM/codegeex2-6b

10954

https://openai.com/api
https://huggingface.co/THUDM/codegeex2-6b

Prompt of CODE4LOGIC

'''
Please utilize the functions provided below to systematically generate the
first-order logic formula that corresponds to the natural language statement.
'''
<There are basis function definition>

natural_language_statement = 'If a convicted criminal is found guilty' +\
', then they are sentenced to a punishment.'
formula1 = Variable('x')
formula2 = Predicate('Convictedcriminal ', [formula1])
formula3 = Predicate('Foundguilty ', [formula1])
formula4 = Predicate('Sentencedtopunishment ', [formula1])
formula5 = Conjunction(formula2, formula3)
formula6 = Implication(formula5, formula4)
formula7 = UniversalQuantification(formula6, formula1)
formula = End(formula7)
<There are K demonstration examples>

natural_language_statement = <query natural language statement>

Figure 9: The detailed prompt of CODE4LOGIC.

Prompt of Few-Shot Baselines

Please convert the statement from natural language into first-order logical formula.

natural language statement: All heavy things are still.
first-order logic formula: ∀x (Heavy(x) → Still(x))
<There are K demonstration examples>

natural language statement: <query natural language statement>
first-order logic formula:

Figure 10: The detailed prompt of LLM-Based few-shot baselines.

versely, MALLS is an NL-FOL dataset generated
by GPT-4 (OpenAI, 2023). Compared to FOLIO,
MALLS introduces a broader range of contextually
rich NL-FOL pairs, encompassing 34K instances.
In practice, we merge all NL-FOL pairs from the
training sets of FOLIO and MALLS, converting
them into code sequence format to construct the
supporting dataset D. During in-context learning,
we randomly sample a fixed number (3 or 5, based
on the input constraints of the Code-LLMs) of sam-
ples from D for each basis function to serve as
demonstration examples.

D.2 Full Prompt of CODE4LOGIC

We provide the detailed prompt of CODE4LOGIC

in Figure 9.

D.3 NL-FOL Translation Baselines

D.3.1 LLM-Based Few-Shot Baselines

For all of the large language model based few-shot
baseline models (e.g., Claude-1, GPT4, text prompt
based CodeGeeX, and GPT3.5), we use the follow-
ing prompt template as shown in Figure 10.

When generating, the temperature is set to 0.7,
the max_tokens is set to 200, and other parameters
are kept at default values.

10955

Prompt of Few-Shot Baselines For LogicNLI

Given the premise and hypothesis, please determine the relationship between the two, and choose
from the following options:
A: contradiction. B: self_contradiction. C: neutral. D: entailment.

<There are K demonstration examples>

premise: <query premise>
hypothesis: <query hypothesis>
choice:

Prompt of Few-Shot Baselines For RuleTaker

Given context and question, please determine whether the question can be entailment by the
context and output yes or no.

<There are K demonstration examples>

context: <query context>
question: <query question>
output:

Prompt of Few-Shot Baselines For VitaminC

Given evidence and claim, please determine whether the claim can be supported by evidence,
choose from the following options:
A: SUPPORTS. B: NOT ENOUGH INFO. C: REFUTES.

<There are K demonstration examples>

evidence: <query evidence>
claim: <query claim>
choice:

Figure 11: Prompt of few-shot baselines for downstream datasets.

D.3.2 Supervised Training Baselines
We mainly compare CODE4LOGIC with two promi-
nent baselines:

• LOGICLLAMA (Yang et al., 2024b). LOG-
ICLLAMA is a translation model for translat-
ing natural language to first-order logic based
on LLaMA (Touvron et al., 2023a), fine-tuned
with LoRA (Hu et al., 2022). The authors begin
by curating a high-quality and diverse dataset
consisting of NL-FOL pairs at the sentence level
obtained from GPT-4. Subsequently, they gener-
ate a perturbed variation of the logical formula
in each pair to establish a controlled perturbation
dataset. Additionally, they introduce the innova-

tive SFT+RLHF framework, which trains LOGI-
CLLAMA on the artificially perturbed NL-FOL
pairs.

• Symbol-LLM (Xu et al., 2024). Symbol-LLM
comprises a series of models designed for text-
to-symbol tasks. The authors undertake an exten-
sive collection of 34 text-to-symbol generation
tasks, encompassing approximately 20 standard
symbolic forms introduced with instruction tun-
ing format. Then they employ a two-stage con-
tinual tuning framework to tune the LLaMA-2-
Chat (Touvron et al., 2023b) model.

In the study, we utilized the public model param-
eters of LOGICLLAMA and Symbol-LLM for the

10956

experiment, maintaining consistency with the gen-
eration hyperparameters as reported in the original
paper.

D.4 Downstream Tasks Baselines
D.4.1 LLM-Based Few-Shot Baselines
All of the large language model-based few-shot
baseline models evaluated on the LogicNLI, Rule-
Taker, and VitaminC datasets use the prompt tem-
plate illustrated in Figure 11.

Similarly, the temperature is set to 0.7, the
max_tokens is set to 200, and other parameters
are kept at default values.

D.4.2 Supervised Training Baselines
We include different supervised training based base-
line models on each of the three downstream task
datasets.

• LogicNLI. Pretrained sequence-to-sequence
models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019) are employed for solving the logical
reasoning task. Each sample’s premise and hy-
pothesis from the dataset are concatenated and
fed into the model. Then, a classifier head is
utilized to make predictions.

• RuleTaker. In addition to RoBERTa (Liu et al.,
2019) as the baseline model similar to LogicNLI,
we introduce Neural Unifer (Picco et al., 2021),
a novel architecture that emulates unification and
fact-checking algorithms to enhance the gener-
alization capability for responding to complex
queries.

• VitaminC. We compare CODE4LOGIC with
three salient supervised training based baselines:
FactCC (Kryscinski et al., 2020), BLANC (Vasi-
lyev et al., 2020), and BARTSCORE (Yuan et al.,
2021). FactCC is a novel weakly supervised
BERT-based model designed to verify factual
consistency. The model is trained using syn-
thesized data created from source documents
through a set of rule-based transformations in-
spired by error analysis of outputs from state-
of-the-art summarization models. BLANC is a
BERT-based (Devlin et al., 2019) method for au-
tomatically assessing the quality of document
summaries, which can also be utilized for evalu-
ating factual consistency. BARTSCORE assesses
factual consistency by framing it as a text gener-
ation task and resolves the modeling challenge
using the Bart (Lewis et al., 2020) model.

For baselines with open-source code, we make
direct use of the hyperparameters reported in the
paper. For other baselines, we select the optimal
hyperparameters on the validation set and report
the results.

D.5 Dataset Statistics
The statistics of FOLIO and MALLS are summa-
rized in Table 6 and the statistics of three down-
stream task datasets are shown in Table 7.

Dataset #Train #Valid #Test

FOLIO 1,001 203 -
MALLS 27,284 - 1,000

Table 6: Statistics of FOLIO and MALLS.

Dataset #Train #Valid #Test

LogicNLI 16,000 2,000 2,000
RuleTaker 480,152 75,872 151,911
VitaminC 370,653 63,054 55,197

Table 7: Statistics of LogicNLI, RuleTaker, and Vitam-
inC.

D.6 Hardcore Configurations
We conducted all experiments in the following hard-
ware environment:

• Operating System: Ubuntu 22.04.3 LTS.

• CPU: Intel Xeon Gold 6148 CPU @ 2.40GHz
with 384GB DDR4 of Memory.

• GPU: NVIDIA Tesla A100 SMX4 with 80GB of
Memory.

• Software: CUDA 11.8, Python 3.9.14, Py-
Torch (Paszke et al., 2019) 2.3.0.

E Additional Experimental Results

E.1 Performance w.r.t. Different LLMs
Table 8 illustrates the experimental results of
CODE4LOGIC using different LLms. We can
observe that even with non-code-tuned LLMs,
Code4Logic can achieve prominent results.

Model FOLIO MALLS

CodeGeeX (Zheng et al., 2023b) 84.77 85.81
GPT3.5-turbo-16k 92.67 90.92
LLaMA3-8b (Dubey et al., 2024) 86.31 86.73
CodeLLaMA-7b (Rozière et al., 2023) 88.62 87.97

Table 8: Results on FOLIO and MALLS using different
LLMs.

10957

E.2 Case Study of CODE4LOGIC

The cases are shown in Figure 12. We randomly
sample cases from LogicNLI, RuleTaker, and Vita-
minC.

F More Discussion about Studies on
Semantic Parsing

Semantic parsing (Zettlemoyer and Collins, 2005;
Liang, 2013; Andreas et al., 2013; Agrawal et al.,
2019; Shin et al., 2021) involves transforming natu-
ral language into formal languages like lambda ex-
pressions, SQL, and graphs, which computers can
understand. These formal languages are commonly
used for creating queries and commands. Although
these formalisms are quite direct, first-order logic
presents a wider range of potential uses. Method-
ologically, our study investigates the viability of
utilizing large language models in logical transfor-
mation, moving away from the traditional approach
of semantic representation combined with parsing
models, without the need for supplementary model
training.

10958

natural_language_statement = 'If all people are not dramatic, ' +\
'then Clyde is impatient and Clyde is not eager.'
formula1 = Variable('x')
formula2 = Predicate('Dramatic', [formula1])
formula3 = Negation(formula2)
formula4 = Constant('clyde')
formula5 = Predicate('Impatient, [formula4])
formula6 = Predicate('Eager', [formula4])
formula7 = Negation(formula6)
formula8 = Conjunction(formula5, formula7)
formula9 = Implication(formula3, formula8)
formula10 = UniversalQuantification(formula9, formula1)
formula = End(formula10)

∀x(¬Dramatic(x) → Impatient(clyde) ∧ ¬Eager(clyde))

natural_language_statement = 'Someone is eager if and only if he is not super.'
formula1 = Variable('x')
formula2 = Predicate('Eager', [formula1])
formula3 = Predicate('Super', [formula1])
formula4 = Negation(formula3)
formula5 = Equivalence(formula2, formula4)
formula6 = UniversalQuantification(formula5, formula1)
formula = End(formula6)

∀x(Eager(x) ↔ ¬Super(x))

natural_language_statement = 'If someone is round then they are green.'
formula1 = Variable('x')
formula2 = Predicate('Round', [formula1])
formula3 = Predicate('Green', [formula1])
formula4 = Implication(formula2, formula3)
formula5 = UniversalQuantification(formula4, formula1)
formula = End(formula5)

∀x(Round(x) → Green(x))

natural_language_statement = 'Sky Sports Mexico has the rights to a ' +\
'couple of live matches.'
formula1 = Constant('skysportsmexico')
formula2 = Constant('livematches')
formula3 = Predicate('Hasrights', [formula1, formula2])
formula = End(formula3)

Hasrights(skysportsmexico, livematches)

10959

natural_language_statement = 'Greg Kot was commented favorably on ' +\
'Ride the Lightning.'
formula1 = Constant('gregkot')
formula2 = Predicate('Commentfavorably', [formula1])
formula3 = Constant('ridethelightning')
formula4 = Predicate('On, [formula1, formula3])
formula5 = Conjunction(formula2, formula4)
formula = End(formula5)

Commentfavorably(gregkot) ∧ On(gregkot, ridethelightning)

natural_language_statement = 'If Carrick is not noisy, then Arnold is not ' +\
'huge and Nick is intelligent.'
formula1 = Constant('carrick')
formula2 = Predicate('Noisy', [formula1])
formula3 = Negation(formula2)
formula4 = Constant('arnold')
formula5 = Predicate('Huge', [formula4])
formula6 = Negation(formula5)
formula7 = Implication(formula3, formula6)
formula = End(formula7)

¬Noisy(carrick) → ¬Huge(arnold)

natural_language_statement = 'If there is someone who is not crystal, then ' +\
'Roger is not clean and Adley is not glamorous.'
formula1 = Variable('x')
formula2 = Predicate('Ctysral', [formula1])
formula3 = Negation(formula2)
formula4 = Constant('roger')
formula5 = Predicate('Clean', [formula4])
formula6 = Negation(formula5)
formula7 = Constant('adley')
formula8 = Predicate('Glamorous', [formula7])
formula9 = Negation(fromula7)
formula10 = Conjunction(formula6, formula9)
formula11 = Implication(formula3, formula10)
formula = End(formula11)

∀x(¬Crystal(x) → ¬Clean(roger) ∧ ¬Glamorous(adley))

Figure 12: Cases of CODE4LOGIC.

10960

