
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 10857–10886

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

HIGGS: Pushing the Limits of Large Language Model Quantization
via the Linearity Theorem

Vladimir Malinovskii†
Yandex, HSE University

Andrei Panferov†

ISTA▽
Ivan Ilin

GenAI CoE, KAUST∗

Han Guo
MIT⋄

Peter Richtárik
GenAI CoE, KAUST∗

Dan Alistarh
ISTA▽ & Red Hat AI

Abstract

Quantizing large language models has become
a standard way to reduce their memory and
computational costs. Typically, existing meth-
ods focus on breaking down the problem into
individual layer-wise sub-problems, and min-
imizing per-layer error, measured via various
metrics. Yet, this approach currently lacks the-
oretical justification and the metrics employed
may be sub-optimal. In this paper, we present
a “linearity theorem” establishing a direct rela-
tionship between the layer-wise ℓ2 reconstruc-
tion error and the model perplexity increase
due to quantization. This insight enables two
novel applications: (1) a simple data-free LLM
quantization method using Hadamard rotations
and MSE-optimal grids, dubbed HIGGS, which
outperforms all prior data-free approaches such
as the extremely popular NF4 quantized format,
and (2) an optimal solution to the problem of
finding non-uniform per-layer quantization lev-
els which match a given compression constraint
in the medium-bitwidth regime, obtained by re-
duction to dynamic programming. On the prac-
tical side, we demonstrate improved accuracy-
compression trade-offs on Llama-3.1 and 3.2-
family models, as well as on Qwen-family mod-
els. Further, we show that our method can be
efficiently supported in terms of GPU kernels
at various batch sizes, advancing both data-free
and non-uniform quantization for LLMs.

1 Introduction

Quantization has become a standard technique for
reducing the memory costs of large language mod-
els (LLMs), e.g. (Dettmers et al., 2022; Dettmers
and Zettlemoyer, 2022; Frantar et al., 2022; Lin
et al., 2023; Chee et al., 2023; Tseng et al., 2024a;

†Equal contribution
⋄Massachusetts Institute of Technology
▽Institute of Science and Technology Austria
*King Abdullah University of Science and Technology,

Saudi Arabia

van Baalen et al., 2024). Most existing high-
performance approaches start from the natural strat-
egy of quantizing layers one-at-a-time, while mini-
mizing a given per-layer error function, such as per-
layer quantization entropy (Dettmers et al., 2023a)
or ℓ1-norm error (Yoshida, 2023).

In this context, a reasonable question regards the
relationship between the individual per-layer quan-
tization error, measured in terms of, e.g., output
MSE, and the model’s output error, measured in
terms of, e.g., validation perplexity (PPL). While
previous work observes that various layers can have
vastly different “sensitivities” towards the model’s
output (Yin et al., 2024; Frantar and Alistarh, 2022),
it is currently not clear how these can be estimated.
Moreover, it is not clear what the correct error met-
ric quantization techniques should be minimizing.

Contribution. In this paper, we start by examining
the relationship between per-layer error and global
error from the theoretical perspective, and identify
a natural “linearity theorem”, which precisely links
the model’s performance in terms of output loss
(or PPL), with the per-layer MSE quantization er-
ror over the weights. Roughly speaking, we show
that, for reasonable quantization bit-widths, the re-
lationship between per-layer MSE and output PPL
is linear, modulo a constant scaling coefficient per
layer, which is independent of the quantization ap-
proach. We show experimentally that the theorem
works remarkably well at predicting quantization
error for different schemes in the 3-8 bit range; see
Figure 1 for an illustration.

The linearity theorem, whose technical prereq-
uisites and complete proof we provide, has a few
non-trivial practical implications. First, it guides
us towards a state-of-the-art data-free quantiza-
tion method. Specifically, we start by observ-
ing that, for a fixed per-layer compression budget,
the linearity theorem implies that minimizing the
perplexity increase can be reduced to minimizing

10857

2 4 6 8
wbits

6

8

10

12

14
Pe

rp
le

xi
ty

 o
n

W
ik

ite
xt

2
Evaluated perplexity
Prediction

Figure 1: Actual measured Perplexity (PPL) of quan-
tized models versus predicted PPL, following Theo-
rem 1, for uniform HIGGS quantization of Llama 3.1
8B in the 2–8 bit range. Vertical line shows the limit of
the theorem’s applicability

the individual, per-layer MSE quantization errors.
Moreover, we observe that we can do this in a
calibration-free fashion if the model weights are
incoherence-processed via Hadamard rotations—
known to make them approximately Gaussian—
and then we quantize using Gaussian-MSE-optimal
grids, which are efficiently computable (Pagès and
Printems, 2003). The resulting method, called
HIGGS (for Hadamard Incoherence with Gaussian
MSE-optimal GridS) is highly accurate and effi-
ciently implementable for various bit-widths and
grid constraints.

The second practical application of the linearity
theorem comes for solving the non-uniform quanti-
zation problem: that is, the problem of finding the
per-layer bit-widths which satisfy a fixed constraint
on the total model size / average bits per parame-
ter, which minimize the perplexity increase. In the
range of applicability of the linearity theorem, we
show that optimal non-uniform compression can
be reduced to knapsack-style dynamic program-
ming over the set of quantization choices at each
layer. Interestingly, in this range, this problem can
be solved optimally using existing linear program-
ming solvers; in practice, solving an LLM-sized
instance can be done in seconds. While this proce-
dure requires computation of the per-layer linear
scaling coefficients, we show that this can be done
efficiently and even data-free, based on randomly
sampled input token sequences. Moreover, inter-
estingly, the two applications can be compounded,
yielding an optimal non-uniform data-free quanti-
zation technique, which we call dynamic HIGGS.

We validate our practical applications experi-
mentally by quantizing the popular Llama 3.1 and
Llama 3.2 models (Dubey et al., 2024), as well as

NF AF
(p=1) (p=2)

HIGGS
(p=3) (p=4)

6.00

6.50

7.00

7.50

8.00

8.50

9.00

FP16

W
ik

i2
 P

PL

Figure 2: Comparison of Normal Float (NF), Abnormal
Float (AF) and HIGGS on Llama 3.1 8B quantization
to 3.19-3.25 bitwidth range. HIGGS is instantiated at
different lattice dimensionalities p.

a Qwen model (Bai et al., 2023), across a wide
range of bit-widths, and evaluating on standard per-
plexity (PPL) and in-context learning (ICL) bench-
marks. The results, sampled in Figure 2, confirm
the fact that HIGGS with uniform quantization can
outperform the Normal Float (NF) and Abnormal
Float (AF) formats for lower bit-widths in the 3-
4 bit range, as well as the recent data-free HQQ
method (Badri and Shaji, 2023). At the same time,
for higher bitwidths, we observe that all meth-
ods produce results in the same accuracy range.
The dynamic, non-uniform variant of HIGGS pro-
vides consistent additional accuracy boosts, and
appears to lead state-of-the-art results for quan-
tization methods with efficient hardware support.
Surprisingly, we observe that dynamic HIGGS can
even outperform calibration-based methods such
as GPTQ (Frantar et al., 2022) and AWQ (Lin
et al., 2023) in the 3-4 bit-width range. More-
over, HIGGS can be applied in conjunction with
GPTQ, leading to state-of-the-art accuracy results
for scalar quantization.

On the runtime side, we show that our approach
can be supported extremely efficiently via GPU ker-
nels. Specifically we show that the recent FLUTE
kernel design (Guo et al., 2024) can be adapted to
support a subset HIGGS multi-dimensional grids,
providing a high accuracy solution that is efficient
across various batch sizes. Our solution can be inte-
grated with both Pytorch (Paszke et al., 2019) and
vLLM (Kwon et al., 2023), leading to speedups of
2-3x relative to FP16 precision, at a low decrease
in accuracy relative to the FP16 baseline.

2 Background and Related Work

Post-training quantization (Nagel et al., 2020; Gho-
lami et al., 2021) of LLMs has become an ex-

10858

tremely active research area. Here, we provide
some background, focusing on the work closest
to ours. The focus of early work in LLM quanti-
zation has been on data-free methods (Dettmers
et al., 2022; Yao et al., 2022; Park et al., 2022)
using direct round-to-nearest (RTN) quantization
over small weight groups. For example, given a
group of g consecutive layer weights, viewed as a
vector x ∈ Rg, we define b-bit RTN as

Q(x, b) = rnd

(
x−min(x)

max(x)−min(x)
(2b − 1)

)

= rnd((x− z(x))/s(x)), (1)

where rnd rounds to the nearest integer level, z =
z(x) = min(x) is the “zero point” and s = s(x) =
(max(x)−min(x))/(2b−1) is the min-max scale.

One key issue with this first wave of data-free
RTN methods is that they tend to yield high accu-
racy loss below 8 bits per parameter. This can be
addressed primarily in two ways: (1) by improving
the rounding function in a data-aware way, and (2)
by using more complex non-uniform grids.

Data-Aware Methods. Calibration-based meth-
ods such as GPTQ (Frantar et al., 2022) im-
proved significantly upon RTN by allowing a
subset of weights to be adjusted during quan-
tization, based on a sample of calibration data.
Follow-up methods such as AWQ (Lin et al.,
2023), SqueezeLLM (Kim et al., 2023), OWQ (Lee
et al., 2024) and SpQR (Dettmers et al., 2023b)
implemented variants of outlier-aware quantiza-
tion, where a small fraction of weights are effec-
tively stored in higher precision. Further, high-
compression methods such as QuIP (Chee et al.,
2023), QuIP# (Tseng et al., 2024a), QTIP (Tseng
et al., 2024b) and AQLM (Egiazarian et al., 2024)
investigated much more complex quantized repre-
sentations, such as lattice quantization, often paired
with incoherence pre-processing of the weights,
and GPTQ-like weight updates. While such meth-
ods can be Pareto-competitive down to 2 bits per
parameter, some practical disadvantages are 1) the
reliance on task-specific calibration data, 2) the rel-
atively high processing time to produce models, as
well as 3) the complexity of efficiently supporting
lattice representations at runtime.

We emphasize that the linearity theorem has no
direct bearing on the data-aware layer-wise MSE
minimization problems considered in references

such as GPTQ and QuIP, which are of the form

min
Ŵl∈Ωl

∥W ⋆
l X − ŴlX∥2F ,

where W ⋆
l is a matrix of pre-trained weights cor-

responding to layer l, Ŵl = Ql(W
⋆
l) represents

the quantized weights, X represents the layer’s in-
put, Ωl represents the collection of feasible/allowed
quantized matrices, and ∥·∥F is the Frobenius norm.
Here, we focus on the data-free case, and relate it
to the quantization MSE over weights.
Data-free Non-Uniform Quantization. Highly-
popular open-source LLM inference frameworks
such as bitsandbytes (BNB) (Dettmers and von
Koeller, 2021) employ data-free quantization, but
under optimized non-uniform grids, designed to
reduce reconstruction error. Specifically, Dettmers
et al. (2023a) proposed Normal Float (NF) grids
which minimize quantization entropy, while Ab-
normal Float (AF) (Yoshida, 2023), optimizes ℓ1
reconstruction error, arguing that it leads to better
accuracy than NF. To optimize for those quantities,
these works assume that LLM weights follow a
zero-mean Gaussian distribution, but do not en-
force this assumption in any way. HQQ (Badri and
Shaji, 2023) provides and data-free algorithm to
optimize the scale and zero-point for uniform grids,
while FLUTE (Guo et al., 2024) provides efficient
GPU support for 1D non-uniform grids.

Recent work on data-aware methods (Chee
et al., 2023; Tseng et al., 2024a; Ashkboos et al.,
2024; Liu et al., 2024) applies incoherence pre-
processing to the weights, often in the form of
Hadamard transforms, to enforce a better match
between the distribution of processed weights and
the Gaussian. Yet, surprisingly, incoherence has
so far only been used in the context of data-aware
and uniform-grid quantization methods.

Our work starts from a simple and general way of
linking per-layer compression error with the global
model loss increase. This inspires two different
applications to data-free and non-uniform quantiza-
tion, complementary to the aforementioned work.
Additional Related Work. The combination
of Hadamard preprocessing and Gaussian MSE-
optimal grids has also been proposed for gradient
compression in distributed optimization (Vargaftik
et al., 2021, 2022; Davies et al., 2020). Gaussian
MSE-optimal grids have been applied to multi-
dimensional numerical integration by Pagès and
Printems (2003). From them, we borrow the CLVQ

10859

algorithm for optimal grid computation given a set
of parameters.

3 The Linearity Theorem

This section provides an overview of the linearity
theorem, which links the layer-wise L2 error in-
duced by quantization, to the increase in model
perplexity, providing a theoretical foundation for
weight quantization methods.

3.1 Notation

Pre-trained model. Let W ⋆ := (W ⋆
1 , . . . ,W

⋆
L),

where for each l in the set {1, . . . , L}, by W ⋆
l ∈

Rdlin×dlout we denote the matrix representing a lin-
ear layer of the pre-trained model we are interested
in compressing/quantizing.
Reshaping operator. Given a layer index l, let
Rl : Rdlin×dlout → Rdlin·dlout be the “reshaping” op-
erator, reshaping a matrix into a large-dimensional
vector. That is, wl = Rl(Wl) is the vector ob-
tained from the matrix Wl by concatenating entries
of Wl into a single dl := dlin × dlout dimensional
vector. The entries can be concatenated in any order
as long as it is always fixed. Note that ∥Wl∥F =
∥Rl(Wl)∥2 = ∥wl∥2. Further, let R−1

l be the in-
verse reshaping operator mapping wl back to Wl,
such that R−1

l (wl) = R−1
l (Rl(Wl)) = Wl. Let

w := (w1, . . . ,wL) ∈ Rd, where d :=
∑L

l=1 d
l,

and R−1(w) := (R−1
1 (w1), . . . ,R−1

L (wL)). De-
fine R in a similar manner, and let w⋆ := R(W ⋆)
be the “vector” representation of the pre-trained
model in Rd.
Perplexity. Let ϕ : Rd → R be the perplexity
function on Rd defined formally as

ϕ(w) := PPL(R−1(w)),

where PPL is the perplexity function operating in
the space of W .

3.2 Technical Assumptions

Our results hold under the following assumptions,
which we describe and discuss below.

Assumption 1 (Local optimality of the pre-trained
weights). The uncompressed model weights w⋆

are a local minimizer of perplexity ϕ.

It is easy to see that if W ⋆ is a local minimizer
of PPL if and only if w⋆ = R(W ⋆) is a local
minimizer of ϕ. We emphasize that Assumption 1
is not needed if the compression mechanism used
to compress each matrix W ⋆

l is unbiased, i.e., if

E
[
Ŵl

]
= W ⋆

l for all l ∈ {1, . . . , L}. We will
leverage this observation in Section 5.

Assumption 2 (Local smoothness of perplexity).
The perplexity function ϕ is three times continu-
ously differentiable in a neighborhood of w⋆.

Recall that W ⋆ = (W ⋆
1 , . . . ,W

⋆
L) represents

the pre-trained weights. Let D⋆
l := ∥W ⋆

l ∥F Idl ∈
Rdl×dl for l ∈ {1, . . . , L}, and

D⋆ := Diag(D⋆
1, . . . , D

⋆
L) ∈ Rd×d,

where Idl is the dl × dl indentity matrix.

Assumption 3 (Regularity of pre-trained weights).
There exists a block-diagonal matrix Z =
Diag(Z1, . . . , ZL), where Zl = zlIdl , zl > 0 for
all l ∈ {1, . . . , L}, such that

D⋆∇2ϕ (R(W ⋆))D⋆ ≈ Z. (2)

Discussion. If ϕ is twice differentiable (which
is implied by Assumption 2), and w⋆ is a local
minimizer of ϕ (see Assumption 1), then the Hes-
sian ∇2ϕ(w⋆) is necessarily positive semi-definite.
Clearly, D⋆ is diagonal with non-negative entries,
and hence it is positive semi-definite. Therefore,
D⋆∇2ϕ (R(W ⋆))D⋆ is also positive semi-definite.
Let λmin (resp. λmax) be the smallest (resp. the
largest) eigenvalue of D⋆∇2ϕ (R(W ⋆))D⋆. Then

λminId ⪯ D⋆∇2ϕ (R(W ⋆))D⋆ ⪯ λmaxId.

We validate that Assumption 3 holds on language
models in Appendix E.

3.3 Theorem Statement
With this in place, we can now state our result.

Theorem 1 (Linearity theorem). Let the above as-
sumptions hold. Given an arbitrary layer index
l and an arbitrary (possibly stochastic) quantizer
function Ql, let Ŵl := Ql(W

⋆
l) be the compressed

version of the layer weights W ⋆
l . For each layer l,

define the parameter tl as the relative quantization
error, i.e.:

t2l = t2l (Wl,Ql) :=
E
[
∥Ŵl −W ⋆

l ∥2F
]

∥W ⋆
l ∥2F

, (3)

Then, as long as t1, . . . , tL are small enough, the
following linear approximation of the expected per-
plexity holds:

E
[
PPL(Ŵ)

]
≈ PPL(W ⋆) +

L∑

l=1

αlt
2
l , (4)

10860

where expectation is taken w.r.t. the randomness
in the compression process, and the terms αl are
layer specific constants that are independent of the
compression process.

Discussion. The proof of the above result can be
found in Appendix D. The result essentially says
that, given an arbitrary (possibly randomized) per-
turbation function applied over the weights, if we
can compute bounds tl on the (relative) Frobenius
norm of the perturbation at each layer, then there
exist layer-wise constant coefficients αl such that
the linear approximation of the global perplexity
increase in Eqn. (4) holds. Importantly, the coef-
ficients αl are “universal,” in the sense that their
values depend only on the layer weights, and not
on the quantization function. In the following, we
will explore two of its practical implications.

4 HIGGS: Hadamard Incoherence and
Gaussian MSE-Optimal Grids

4.1 The Hadamard Incoherence Trick
Theorem 1 defines two sets of coefficients for each
layer l: (1) The error coefficients tl, which measure
the error relative to the layer’s norm; and (2) The
scaling coefficients αl measuring the importance
of the per-layer error towards the output.

Imagine that we would wish to compute these co-
efficients, in order to upper bound the compression
error. One key issue is that, while the scaling coef-
ficients αl are compression-independent, the error
coefficients tl = tl(W

⋆
l ,Ql) defined in Eqn. (3)

are specific to both the layer being compressed and
to the quantizer used for compression.

However, we can remove this weight distribution
dependence of the tl coefficients by applying pre-
processing to the weights. Specifically, it is well-
known (Ailon and Chazelle, 2009; Suresh et al.,
2017; Chee et al., 2023) that multiplication of the
layer weights with the Random Hadamard Trans-
form (RHT) leads the weight distribution to closely
match a Gaussian distribution, independently of the
original weights.

Specifically, let us assume that we are apply-
ing the RHT to the weights, and then rounding
to an arbitrary grid Gp

n. The exact procedure is
described in Algorithm 1. Since, post-RHT, the
weight distribution is approximately Gaussian, we
obtain that, in this case, the layer error coefficients
tl will only depend on the chosen grid, and not on
the original weights. (Please see the proof of this
fact in Appendix F.) More specifically, t2l approxi-

mately equals the per-dimension MSE of rounding
the multivariate standard normal distribution to the
grid Gp

n, which is constant given n and p, and
independent of the original weights.

In this context, Theorem 1 implies that if weights
are Hadamard-transformed, then MSE-optimized
grids should be theoretically-optimal in terms of
end-to-end model error, given a fixed bit budget.

In the following subsection, we detail and ex-
pand these observations.

4.2 MSE-optimal grids for LLM quantization
Our previous insights lead to a simple alternative
to Normal Float (NF) and Abnormal Float (AF)
grids: after Hadamard rotations, we can quantize
to a grid minimizing the L2 (MSE) quantization er-
ror. We call this approach Hadamard Incoherence
and Gaussian MSE-optimal GridS (HIGGS). The
algorithm combines the following components to
achieve minimal quadratic quantization error: 1)
Hadamard preprocessing of the quantized weights,
2) multi-dimensional (vector) quantization, and 3)
Gaussian MSE-optimal quantization grids.

Section 4.1 described the exact quantity we need
to optimize when choosing Gp

n: the expected MSE
of rounding the multivariate Normal distribution
to Gp

n. This problem has a rich history, and it can
be solved optimally by the Pagès and Printems
(2003) algorithm arising in numerical PDEs. We
use the same grid optimization procedure, as well
as some pre-computed optimal grids. Applying
those grids to Algorithm 1 constitutes Algorithm 2.
It important to note that the optimal grid only has
to be computed once for any pair of n and p.

To validate HIGGS, we compare it with
other quantization grids, namely Normal Float
(NF) (Dettmers et al., 2023a) and Abnormal Float
(AF) (Yoshida, 2023). The results, sampled in Fig-
ure 2, indicate that HIGGS outperforms other grids
in terms of output perplexity on WikiText-2 (Mer-
ity et al., 2016a). A more detailed comparison,
including more baselines as well as zero-shot and
few-shot tasks for both low and high bitwidth quan-
tization can be found in Table 3.

4.3 Practical Configurations
HIGGS has a number of hyperparameters: the grid
size n, the grid dimension p and the group size
g. Varying those, we can, in theory, achieve any
per-parameter bitwidth. However, a number of
practical considerations apply if we consider setups
that can be efficiently implemented in practice:

10861

Algorithm 1 Vector Quantization with Random Hadamard Transform (RHT-VQ)
Parameters: grid Gp

n of n elements of dimension p, scales group size g that is a power of 2.
Input: vector w = (w{1}, . . . ,w{D/g}) ∈ RD , RHT seed ξ.
Output: quantized vector q† ∈ {1, 2, . . . , n}D/p, scales vector s ∈ RD/g .

Sequentially partition w ∈ RD into D/g subvectors w{i} ∈ Rg , where i = 1, . . . , D/g
for i = 1, . . . , D/g do

si = ∥w{i}∥2
w†

{i} = RandomHadamardTransform(w{i}/si, ξ) ▷ entries of w†
{i} are approx. from N (0, 1)

q†
{i} = RoundToNearest(w†

{i},Gp
n) ▷ Projecting d sequential values together

end for
q† =

[
q†
{1}, ...,q

†
{D/g}

]
▷ † signifies that the vector is in Hadamard transformed space

s =
[
s1, ..., sD/g

]
/
√
g

Algorithm 2 HIGGS Algorithm
Parameters: grid dimensions n and p, scales group size

g that is a power of 2.
Input: Algorithm 1 input.
Output: Algorithm 1 output.

Gp
n = CLVQ(n, p) ▷ (Pagès and Printems, 2003), computed

once
(q†, s) = RHT-VQ(Gp

n, g,w, ξ) ▷ Algorithm 1

Constraint 1: To optimize memory efficiency, n
must be a power of 2. Since most modern architec-
tures support data types with a minimum granular-
ity of 1 byte (8 bits), it is advantageous if log2(n)
is a multiple of 8. When log2(n) is less than 8
but is still a power of 2 (e.g., n=4, 16), standard
bit-packing methods can be used effectively. How-
ever, for cases where log2(n) is not a power of
2 (e.g., n=8, 64), the data can be efficiently man-
aged by partitioning it into multiple sections or
bit-slices (Xia et al., 2024).
Constraint 2: Grid memory access patterns can
be sporadic. The ability to store the whole grid
in low-latency memory would improve the perfor-
mance of both decoding and matrix-multiplication
operations. On modern GPUs, taking into account
the usual shared-memory size of around 128Kb
and 32

k × replication to avoid bank conflicts, that
would mean that the total number of points in the
grid 2k×p can be at most ≈ 210. Increasing the grid
dimension at fixed bitwidth reduces the expected
error, as seen in Figure 2. This limitation creates a
quantization error lower bound dictated by which
dimensions we can use in practice.

The quantized matrix can be either restored via
the Inverse Hadamard Transform or processed in
the transformed space directly with virtually no
matrix multiplication complexity overhead. (Refer
to Appendix G for theoretical and practical jus-
tification). Moreover, the Hadamard Transform
functionality can be fully isolated from the matrix

multiplication itself, allowing us to reuse existing
lookup-table-based kernels for the latter.
FLUTE kernel. LLM decoding is typically
memory-bound in the low-batch regime, making a
GPU kernel that fuses dequantization and GEMM
essential for achieving practical performance gains.
A key component of such a fused HIGGS kernel is
a primitive for vectorized indexing into the grid, im-
plemented via a lookup table. The problem of im-
plementing such kernel has been extensively stud-
ied by Guo et al. (2024), resulting in their develop-
ing FLUTE: a scalar lookup table matrix multipli-
cation kernel. FLUTE efficiently stores the lookup
table in the GPU’s shared memory, enabling faster
on-chip memory access. Moreover, it efficiently
optimizes the dot product computation, speeding
up the processing of larger batch sizes.

The simplicity of the HIGGS design makes it
compatible with FLUTE out of the box for grids
where p = 1. By adapting the kernels for vector-
ized lookups, we were able to unlock this function-
ality also for p = 2. This extension allows us to
handle vector-quantized data, supporting configu-
rations p ∈ {1, 2} and b ∈ {2, 3, 4}. In practice,
p = 2 is always preferable to p = 1. We will refer
to those setups as FLUTE grids.

Table 1 demonstrates the performance of the
FLUTE lookup table approach for HIGGS (p = 2),
relative to MARLIN (Frantar et al., 2024) uniform
quantization, Normal Float (NF) (Dettmers et al.,
2023a), AQLM (Egiazarian et al., 2024) and the
QTIP (Tseng et al., 2024b) specialized trellis quan-
tized matrix multiplication kernels. For the QTIP
and FLUTE kernels, these measurements already
include the cost of the underlying Hadamard trans-
forms. As we can see, FLUTE kernels achieve the
best performance across a variety of bitwidths and
batch sizes.
Constrained HIGGS. To extend our method to

10862

higher bitwidths not supported by FLUTE (e.g.
8bit), we propose to reuse the existing uniform
quantized matrix multiplication kernels (Wang
et al., 2024; torchao maintainers and contributors,
2024). To bridge the gap between HIGGS and
those kernels in this high-density setting, we con-
strain the HIGGS grid to be uniform, essentially
solving for positioning and scaling of uniform grids
to minimize expected MSE over the Gaussian distri-
bution. Such grids might be suboptimal in terms if
MSE, but make up for it in terms of kernel support.
In practice, we use this trick to allow for p = 1,
b = 8 inference, to which we will refer as CH8.

4.4 Application to GPTQ

HIGGS can naturally be used in more sophisticated
rounding schemes that utilize layer activations in-
formation to achieve smaller effect of quantization
on model performance (1-shot quantization meth-
ods). Extension to GPTQ (Frantar et al., 2022), one
of the most popular such methods, in the form as
we propose it can quickly be described as replac-
ing the RoundToNearest operation in Algorithm 1
with a different rounding operator that takes layer
activations information into account. The resulting
1-shot quantized weights are structurally identical
those obtained from Algorithm 1.

In Table 2, we present comparison of original
GPTQ (Frantar et al., 2022), QuIP# (Tseng et al.,
2024a), QTIP (Tseng et al., 2024b) the and GPTQ
extension of HIGGS (for details on this scheme, see
Appendix H). Although the latter does not outper-
form the more complicated quantization schemes
such as AQLM, QuIP# and QTIP, we note that
these methods use a more complex representation,
and therefore provide very limited kernel support
due to complexity of these representations. The
GPTQ extension of HIGGS, on the other hand, can
be mapped to FLUTE kernels (Guo et al., 2024)
achieving high throughput at a variety of setups.
The full results can be examined in Table 1, show-
ing that we can reach close to 3x speedups in some
configurations, and that this speedup is consistent
across batch sizes from 1 to 16.

5 Variable Bitwidth Quantization

The second application of the Linearity Theorem
is in dynamic quantization, i.e. choosing per-layer
quantization bitwdiths that best reflect the “sensi-
tivity” of different layers to quantization. Here,
we leverage the observation that uniform biwidth

Algorithm 3 Error coefficient calibration
Input: Calibration constants t1, . . . , tJ ; pre-trained

model W ⋆ = (W ⋆
1 , . . . ,W

⋆
L)

Output: linear coefficients α1, . . . , αL

for l = 1, . . . , L do
for j = 1, . . . , J do

∆l,j = PPL(W ⋆(l, tj))− PPL(W ⋆)
end for
αl = argmin

α′
l

∑J
j=1

(
∆l,j − α′

l · t2j
)2

end for

compression might be far from optimal in terms of
output error (Yin et al., 2024). Finding the optimal
configuration is challenging due to exponentially-
many possible solutions. We show that our quanti-
zation error model can efficiently find the optimal
configuration for any target bitwidth, without hav-
ing to evaluate all possible configurations.
Discrete Optimization Formulation. Assume a
natural setting in which we wish to quantize each
layer W ⋆

l using one quantizer from a finite set of
options {Q1, . . . ,QJ}, each with its own error. Let
jl ∈ {1, . . . , J} denote the selection of the quan-
tizer for layer l. Assume that quantizer Qjl cor-
responds to a specific bitwidth bjl and specific in-
duced error t2l,jl from Eqn. (3). We wish to find the
optimal assignment minimizing perplexity error,
while matching a specific average bitwidth bmax.
Problem Formulation. Using error linearity from
Theorem 1, and the coefficients α1, . . . , αL esti-
mated via Algorithm 3 as an input, this minimiza-
tion problem can be written as

min
j1,...,jL

L∑

l=1

αl · t2l,jl
L∑

l=1

bjl · dl ≤ bmax · d

jl ∈ {1, . . . , J} for all l ∈ {1, . . . , L}

(5)

where bmax is the target bitwidth, d :=
∑L

l=1 d
l.

Estimating Scaling Coefficients. Theorem 1
shows that the scaling coefficients αl do not de-
pend on the quantization method used. We use this
fact to estimate these coefficients without using a
real quantization method, and instead introduce a
Gaussian noise insertion procedure, described in
Appendix B.2. In this method we add normal noise
to the weights that emulates the quantization error.
An advantage that we get is that we can accuracy
regulate t value. Then we apply multiple (J) cal-
ibration noise levels that are uniformly sampled

10863

batch size 1 4 16

FP16 57 224 862

wbits 2/3/4 2/3/4 2/3/4

MARLIN -/-/133 -/-/530 -/-/1873
NF4 -/-/31 -/-/101 -/-/399
AQLM 69/-/- 81/-/- 312/-/-
QTIP 155/136/122 230/190/166 249/202/177
FLUTE 173/150/139 687/592/548 2432/2122/1979

Table 1: End-to-end throughput (tok/s, higher is better) compari-
son of quantized matrix multiplication kernels for Llama-3.1-8B
at different bitwidths and batch sizes on an NVIDIA RTX 4090
GPU. We observe that MARLIN (which only supports uniform
grids) and FLUTE are the only approaches that support speedups
for batch sizes larger than 1, relative to FP16.

wbits GPTQ QuIP# QTIP
GPTQ
HIGGS
(p = 2)

≈2 - 8.220 6.820 8.637
≈3 5.776 5.600 5.380 5.559
≈4 5.254 5.220 5.170 5.213

16 5.117

Table 2: WikiText-2 PPL comparison of var-
ious 1-shot quantization methods for Llama-
2-7b, at approximately 2,3, and 4 bits. Our
approach with p = 2 approximately matches
QuIP#, but is less accurate than the more com-
plex QTIP method. Relative to QTIP, our ap-
proach is data-free, and easy to implement.

from applicability region to each level to estimate
the coefficients αl. Algorithm 3 describes the pro-
cedure. Note that W ⋆(l, tj) represents the model
W ⋆ with all layers intact except for layer l, which
is replaced by Ŵl via the Gaussian noise insertion
procedure with noise tj , described in Eqn. (9); see
also (12). We found that sampling J = 15 noise
levels from linear theorem applicability range is
enough to get accurate coefficients αl.

Measuring Grid Parameters. Grid bitwidths bj
are inherent grid parameters (e.g. supported bit-
widths) and known by design. The grid distortions
t2l,j can be measured explicitly by quantizing W ⋆

l

with Qj , creating a “database” of per-layer errors,
across supported bitwidths.

Solving the Problem. We then solve the global
minimization problem for the obtained αl, bj and
tlj coefficients, acquiring the optimal quantization
configuration for the given average bitwidth. Since
the error function to be minimized is summable,
Equation 5 can be expressed as a linear program-
ming problem, which can be solved using already
existing optimization libraries. Specifically, we
use the CP-SAT solver from Google OR-Tools
library (Perron and Didier, 2024), that can opti-
mally solve this problem. Figure 3 demonstrates
the practical dependence of the optimized objective
on budged bmax.

Data Free Dynamic Quantization. We also
present a data-free dynamic quantization mode
for our method. Before, we used a calibration
dataset to estimate the error coefficients αl, making
it data-dependent. To avoid the need for calibration
dataset, we can change the metric we use in cali-
bration described in Algorithm 3 from perplexity
on a calibration dataset to KL-divergence between
pretrained and quantized models on randomly sam-

pled text tokens. We evaluate KL-divergence on
287k random tokens that are not shared between
evaluations.

2 3 4 5 6
Bitwidth budget bmax

10 1

100

101
W

ik
i2

 P
PL

 In
cr

ea
se

HIGGS (dyn Wiki2)

Figure 3: Demonstration of WikiText-2 PPL increase
as a function of bitwidth budget bmax for layer-wise
dynamic bitwidth quantization for Llama 3.1 8B. Dotted
lines represent Linear Model predictions.

6 Experiments

6.1 Error Model Validation
One key point in the Theorem is that the result
holds for sufficiently small relative per-layer quanti-
zation errors tl. In this section, we seek to validate
the fact that common bit-widths used in practice
provide low enough compression error in order for
the result to apply. We conduct experiments for
data-free weight quantization of the popular Llama
3.1 8B model with HIGGS quantization. To eval-
uate the error model, we compare the predicted
perplexity with the real perplexity of the quantized
model. For that, we uniformly quantize the model
with different grid dimensions p and grid sizes n.
We only use grids on pareto frontier of perplexity
vs bitwidth with 1 ≤ p ≤ 5 and 9 ≤ n ≤ 4096.

Evaluated and predicted perplexities are shown
in Figure 1. We observe that the predicted per-

10864

plexity is close to the real perplexity on relatively
higher bitwidths (b > 3.0) and diverges on lower
bitwidths, where the quantization error is higher.
Thus, we can use the error model in realistic
bitwidth ranges.

Method wbits Wiki2 Avg 0-shot MMLU

FP16 16.00 5.607 69.31 65.35

AF 3.25 8.056 63.80 53.15
NF 3.25 7.683 64.33 55.82
HQQ 3.25 7.317 64.38 56.39
HIGGS (p=2) 3.25 7.110 65.28 57.56
HIGGS (p=3) 3.25 6.807 65.71 60.11
HIGGS (p=4) 3.25 6.643 66.36 59.88

GPTQ 3.25 7.133 62.89 58.37
HIGGS (ddf) 3.25 6.388 66.74 61.62

AF 4.02 6.194 67.35 61.47
NF 4.02 6.225 67.66 62.65
HQQ 4.02 8.057 65.70 57.72
HIGGS (p=1) 4.02 6.142 67.28 61.74
HIGGS (p=2) 4.02 6.015 68.28 63.26
HIGGS (p=3) 4.02 5.981 68.73 62.83

GPTQ 4.02 6.238 66.39 62.96
HIGGS (ddf) 4.00 5.910 68.29 63.86

AF 4.25 5.952 68.62 63.20
NF 4.25 5.964 68.33 64.10
HQQ 4.25 5.944 68.92 63.70
HIGGS (p=1) 4.26 5.978 68.60 63.47
HIGGS (p=2) 4.26 5.908 68.96 63.52
HIGGS (p=3) 4.25 5.872 68.39 64.24

GPTQ 4.25 5.923 67.32 64.06
HIGGS (ddf) 4.25 5.831 68.66 64.06

Table 3: Quantized Llama3.1 8B perplexity on
WikiText-2 (Merity et al., 2016b), accuracy on 5 zero-
shot tasks (Gao et al., 2021), average zero-shot accu-
racy, and 5-shot accuracy on MMLU. All quantization
methods except for GPTQ are data-free. Experiment
configurations are described in Appendix H.

6.2 Methods Evaluation

Methods. We compare HIGGS (Algorithm 2) with
Normal Float (NF) (Dettmers et al., 2023a), Abnor-
mal Float (AF) (Yoshida, 2023) and HQQ (Badri
and Shaji, 2023). We provide detailed configu-
rations and code sources for all the methods in
Appendix H. One important thing to note is that
constant bitwidth HIGGS configurations were cho-
sen to be as close to the default bitwidths of other
method as possible with no regard for availability
of kernels to run them. Dynamic bitwidth HIGGS
results, however, limited the configurations to those
mentioned in Section 4.3: FLUTE grids and CH8.
Models. We compare the aforementioned methods
in application to quantization of models from the
Llama 3 Dubey et al. (2024) and Qwen2.5 (Bai
et al., 2023) families of models. More specifically,

we validate our findings on Llama3.2 1B (Table 8),
Llama3.2 3B (Table 9), Llama3.1 8B (Table 3),
Llama3.1 8B Instruct (Table 10), Llama3.1 70B
(Table 11), and Qwen2.5 7B (Table 12).
Metrics. We report perplexity on WikiText-2 (Mer-
ity et al., 2016b) validation set. We measure
zero-shot accuracy on WinoGrande (Sakaguchi
et al., 2021), PiQA (Tata and Patel, 2003), Hel-
laSwag (Zellers et al., 2019), ARC-easy and ARC-
challenge (Clark et al., 2018), and report average
zero-shot accuracy. We also report 5-shot accuracy
on the MMLU (Hendrycks et al., 2021) benchmark.
Zero-shot and few-shot measurements are done via
the LM Eval Harness (Gao et al., 2021).
Uniform Bitwidths. We present the Llama 3.1 8B
evaluations in Table 3. Evaluations for other mod-
els are present in Appendix I. For bitwidths around
or below 4.0, We can see that HIGGS outperforms
all existing 0-shot compression methods even in
the fixed-bitwidth applications.
Non-Uniform Bitwidths. We present the dy-
namic bitwidth results alongside the constant
bitwidth results, in separate row groups in Ta-
bles 3, 6, 7, 8, 9, 10, 11, and 12. More specifically,
we present results for data-free dynamic bitwidth
quantization expansion of our method (ddf), de-
scribed in detail in Section 5. For calibration we
use J = 15 noise values from linear theorem appli-
cability range. We calibrate on 287k tokens from
WikiText-2 (Merity et al., 2016b) train set.

7 Conclusions

We have presented a new result relating the per-
layer quantization error with the model’s global
error, and have applied this result to two problems
in LLM quantization: accurate data-free quantiza-
tion and optimal non-uniform compression. Our
approach leads to state-of-the-art performance for
data-free quantization, and is compatible with ef-
ficient runtimes (Dettmers and von Koeller, 2021;
Guo et al., 2024). Remarkably, we observe that our
approach is robust to being made completely data-
free via random sampling; moreover, it appears to
outperform popular calibration-based methods in
the 3-4 bits/parameter range.

8 Limitations

One direction for improvement is validating the
approach across several model architecture types
(e.g. Mixture-of-Experts). However, we believe
our result should be generalizable, as the quanti-

10865

zation approach used is model-independent. One
other limitation is the requirement to use Hadamard
transforms for weight incoherence, which may add
runtime overheads in some cases. However, it is
known (Chee et al., 2023) that these runtimes can
be minimized, or that the corresponding matrices
can even be eliminated by “folding them into” the
previous layer (Ashkboos et al., 2024). We aim to
investigate this in future work, as further enhance-
ments to existing kernels such as FLUTE (Guo
et al., 2024).

References
Nir Ailon and Bernard Chazelle. 2009. The fast john-

son–lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on Computing, 39(1):302–
322.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. 2024. Quarot:
Outlier-free 4-bit inference in rotated llms. Preprint,
arXiv:2404.00456.

Hicham Badri and Appu Shaji. 2023. Half-quadratic
quantization of large machine learning models.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and
Christopher De Sa. 2023. Quip: 2-bit quantization
of large language models with guarantees. Preprint,
arXiv:2307.13304.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Peter Davies, Vijaykrishna Gurunathan, Niusha
Moshrefi, Saleh Ashkboos, and Dan Alistarh. 2020.
New bounds for distributed mean estimation and vari-
ance reduction. arXiv preprint arXiv:2002.09268.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning
of quantized llms. Preprint, arXiv:2305.14314.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,

Alexander Borzunov, Torsten Hoefler, and Dan Alis-
tarh. 2023b. SpQR: A sparse-quantized representa-
tion for near-lossless llm weight compression. arXiv
preprint arXiv:2306.03078.

Tim Dettmers and Titus von Koeller. 2021. Accessi-
ble large language models via k-bit quantization for
pytorch.

Tim Dettmers and Luke Zettlemoyer. 2022. The case for
4-bit precision: k-bit inference scaling laws. arXiv
preprint arXiv:2212.09720.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, and et al. 2024. The Llama 3 herd
of models. Preprint, arXiv:2407.21783.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev,
Elias Frantar, Artem Babenko, and Dan Alistarh.
2024. Extreme compression of large language
models via additive quantization. arXiv preprint
arXiv:2401.06118.

Elias Frantar and Dan Alistarh. 2022. SPDY: Accurate
pruning with speedup guarantees. arXiv preprint
arXiv:2201.13096.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Elias Frantar, Roberto L. Castro, Jiale Chen, Torsten
Hoefler, and Dan Alistarh. 2024. Marlin: Mixed-
precision auto-regressive parallel inference on large
language models. Preprint, arXiv:2408.11743.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. 2021. A
survey of quantization methods for efficient neural
network inference. arXiv preprint arXiv:2103.13630.

Han Guo, William Brandon, Radostin Cholakov,
Jonathan Ragan-Kelley, Eric P. Xing, and Yoon Kim.
2024. Fast matrix multiplications for lookup table-
quantized llms. Preprint, arXiv:2407.10960.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen
Dong, Xiuyu Li, Sheng Shen, Michael W Ma-
honey, and Kurt Keutzer. 2023. Squeezellm:
Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629.

10866

https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
https://arxiv.org/abs/2404.00456
https://arxiv.org/abs/2404.00456
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://github.com/TimDettmers/bitsandbytes
https://github.com/TimDettmers/bitsandbytes
https://github.com/TimDettmers/bitsandbytes
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2408.11743
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2407.10960
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun
Kim, and Eunhyeok Park. 2024. Owq: Outlier-
aware weight quantization for efficient fine-tuning
and inference of large language models. Preprint,
arXiv:2306.02272.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, and Song Han. 2023. Awq: Activation-
aware weight quantization for llm compression and
acceleration. arXiv preprint arXiv:2306.00978.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yuandong Tian, and Tijmen
Blankevoort. 2024. Spinquant: Llm quantization
with learned rotations. Preprint, arXiv:2405.16406.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016a. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016b. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,
Christos Louizos, and Tijmen Blankevoort. 2020. Up
or down? Adaptive rounding for post-training quan-
tization. In International Conference on Machine
Learning (ICML).

Gilles Pagès and Jacques Printems. 2003. Optimal
quadratic quantization for numerics: the gaussian
case. Monte Carlo Methods and Applications,
9:135–166.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeong-
wook Kim, Youngjoo Lee, and Dongsoo Lee. 2022.
nuQmm: Quantized matmul for efficient inference
of large-scale generative language models. arXiv
preprint arXiv:2206.09557.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Laurent Perron and Frédéric Didier. 2024. Cp-sat.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar,
and H. Brendan McMahan. 2017. Distributed mean
estimation with limited communication. Preprint,
arXiv:1611.00429.

Sandeep Tata and Jignesh M Patel. 2003. PiQA: An al-
gebra for querying protein data sets. In International
Conference on Scientific and Statistical Database
Management.

torchao maintainers and contributors. 2024. torchao:
Pytorch native quantization and sparsity for training
and inference.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr
Kuleshov, and Christopher De Sa. 2024a. Quip#:
Even better llm quantization with hadamard in-
coherence and lattice codebooks. Preprint,
arXiv:2402.04396.

Albert Tseng, Qingyao Sun, David Hou, and Christo-
pher De Sa. 2024b. Qtip: Quantization with trel-
lises and incoherence processing. arXiv preprint
arXiv:2406.11235.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Pe-
ter Couperus, Cedric Bastoul, Eric Mahurin, Tijmen
Blankevoort, and Paul Whatmough. 2024. Gptvq:
The blessing of dimensionality for llm quantization.
arXiv preprint arXiv:2402.15319.

Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal
Mendelson, Yaniv Ben-Itzhak, and Michael Mitzen-
macher. 2021. Drive: One-bit distributed mean esti-
mation. Preprint, arXiv:2105.08339.

Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal
Mendelson, Yaniv Ben-Itzhak, and Michael Mitzen-
macher. 2022. Eden: Communication-efficient and
robust distributed mean estimation for federated
learning. Preprint, arXiv:2108.08842.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Ji-
long Xue, Yining Shi, Ningxin Zheng, Ziming Miao,
Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang.
2024. Ladder: Enabling efficient low-precision deep
learning computing through hardware-aware tensor
transformation. In 18th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
24), pages 307–323, Santa Clara, CA. USENIX As-
sociation.

Haojun Xia, Zhen Zheng, Xiaoxia Wu, Shiyang Chen,
Zhewei Yao, Stephen Youn, Arash Bakhtiari, Michael
Wyatt, Donglin Zhuang, Zhongzhu Zhou, et al. 2024.
Fp6-llm: Efficiently serving large language mod-
els through fp6-centric algorithm-system co-design.
arXiv preprint arXiv:2401.14112.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861.

10867

https://arxiv.org/abs/2306.02272
https://arxiv.org/abs/2306.02272
https://arxiv.org/abs/2306.02272
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://arxiv.org/abs/1611.00429
https://arxiv.org/abs/1611.00429
https://github.com/pytorch/torchao
https://github.com/pytorch/torchao
https://github.com/pytorch/torchao
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2105.08339
https://arxiv.org/abs/2105.08339
https://arxiv.org/abs/2108.08842
https://arxiv.org/abs/2108.08842
https://arxiv.org/abs/2108.08842
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,
Mykola Pechenizkiy, Yi Liang, Michael Bendersky,
Zhangyang Wang, and Shiwei Liu. 2024. Outlier
weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. Preprint,
arXiv:2310.05175.

Davis Yoshida. 2023. Nf4 isn’t information the-
oretically optimal (and that’s good). Preprint,
arXiv:2306.06965.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

10868

https://arxiv.org/abs/2310.05175
https://arxiv.org/abs/2310.05175
https://arxiv.org/abs/2310.05175
https://arxiv.org/abs/2306.06965
https://arxiv.org/abs/2306.06965
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

A Table of Notation

Notation Meaning Reference

L number of matrices the entries of which we want to quantize
Wl matrix of floats corresponding to layer l ∈ {1, . . . , L}

dlin × dlout dimensions of matrix Wl

dl = dlin · dlout
Cl a (possibly randomized) compression mapping used to compress Wl

Gl Gaussian noise insertion (a special type of compressor Cl) (9)
Ŵl = Cl(Wl); compressed version of matrix Wl

W = (W1, . . . ,WL)
W ⋆ = (W ⋆

1 , . . . ,W
⋆
L); weights of a pre-trained model

PPL(W) the perplexity of the model associated with weights W
d =

∑L
l=1 d

l
in · dlout; the total number of floats in the model we want to quantize

Gp
n a grid: a collection of n vectors in Rp used for quantization by rounding to the nearest

Table 4: Selected frequently used notation.

B Compression of Linear Layers

B.1 Compressing linear layers
Let Cl : Rdlin×dlout → Rdlin×dlout be a (possibly randomized) compression (e.g., sparsification and/or
quantization) mechanism and let Ŵl := Cl(Wl) ∈ Rdlin×dlout represent a compressed/quantized version of
Wl. Further, let

t2l = t2l (Wl, Cl) :=
E
[
∥Cl(Wl)−Wl∥2F

]

∥Wl∥2F
, l = 1, . . . , L. (6)

That is,
E
[
∥Ŵl −Wl∥2F

]
= t2l (Wl, Cl)∥Wl∥2F , l = 1, . . . , L. (7)

Here we remark that the highly studied class of contractive compressors is characterized by the inequality

E
[
∥Cl(Wl)−Wl∥2F

]
≤ (1− αl)∥Wl∥2F , ∀Wl ∈ Rdlin×dlout , ∀l ∈ {1, . . . , L}, (8)

which is assumed to hold for some 0 < αl ≤ 1. If we apply such a contractive compressor to Wl, we get

t2l (Wl, Cl)∥Wl∥2F
Equation (7)

= E
[
∥Cl(Wl)−Wl∥2F

] Equation (8)
≤ (1− αl)∥Wl∥2F ,

which means that
t2l (Wl, Cl) ≤ 1− αt.

In other words, unlike the contraction factor 1 − αt, which needs to hold universally for all matrices
Wl ∈ Rdlin×dlout , t2l (Wl, Cl) is an “instantaneous” contraction factor corresponding to Wl only, and as
such, is always not worse, and typically much better.

B.2 Gaussian noise insertion
We now describe a synthetic noise insertion procedure whose role is to mimic the error due to compression.
Given a constant t > 0, define

Gl(Wl, t) :=Wl +
t∥Wl∥F√
dlin · dlout

Σl, l = 1, . . . , L, (9)

where the entries of Σl ∈ Rdlin×dlout are all i.i.d. Gaussians with zero mean and unit variance. This means
that the entries of Gl(Wl, t) are also Gaussians, with mean determined by the entries of Wl, and variance
σ2l := t2∥Wl∥2F . This implies that

E
[
∥Gl(Wl, t)−Wl∥2F

]
= t2∥Wl∥2F , l = 1, . . . , L. (10)

Comparing this to (7), we see that
t2l (Wl,Gl(·, t)) = t2.

10869

C Empirical Approximation of Perplexity Around the Pre-trained Model

Let PPL(W) denote the perplexity of the model corresponding to weights W , and let W ⋆ be the weights
corresponding to a pre-trained model. We have made the following (perhaps surprising!) observation
through numerical experimentation: if we replace the pre-trained weights W ⋆

l of the lth layer by Ŵl =
Cl(W ⋆

l), where Cl is a contractive compressor, then

PPL(W ⋆
1 , . . . ,W

⋆
l−1, Ŵl,W

⋆
l+1, . . . ,W

⋆
L) ≈ PPL(W ⋆) + αlt

2
l (11)

for all tl ∈ [0, t̄l], where t̄l is “small enough”, and for some coefficient αl > 0 computed via linear
regression. If we specialize

Ŵl = Cl(W ⋆
l) := Gl(W

⋆
l , t),

then the model W ⋆(l, t) described in Section 5 and Algorithm 3 is defined as

W ⋆(l, t) := (W ⋆
1 , . . . ,W

⋆
l−1,Gl(W

⋆
l , t),W

⋆
l+1, . . . ,W

⋆
L). (12)

Moreover, a stronger experimental observation was made: if we replace the pre-trained weights of all
layers by Ŵl = Cl(W ⋆

l), where Cl is a contractive compressor, then

PPL(Ŵ) ≈ PPL(W ⋆) +
L∑

l=1

αlt
2
l (13)

for tl ∈ [0, t̄l], where t̄l is “small enough”, and for some coefficient αl > 0 computed via linear regression.
This latter observation is formalized as Theorem 1, and proved in the next section.

D Theoretical Approximation of Perplexity Around the Pre-trained Model

D.1 Proof of Theorem 1
Proof. The proof follows from the material included in Section D.4. The material in Sections D.2 and
D.3 provides a simplified treatment, and is included for clarity/pedagogical reasons.

D.2 Approximating the mean of a smooth function perturbed around a local minimizer:
univariate case

Consider a sufficiently smooth function ϕ : R → R. Let w⋆ ∈ R be a local minimizer of ϕ, whence
ϕ′(w⋆) = 0. Let ξ be any random variable with finite second moment:

M2 := E
[
ξ2
]
< +∞.

From Taylor’s approximation of ϕ around w⋆, we get

ϕ(w⋆ + t|w⋆|ξ) ≈ ϕ(w⋆) + ϕ′(w⋆)t|w⋆|ξ + 1

2
ϕ′′(w⋆)t2|w⋆|2ξ2

= ϕ(w⋆) +
1

2
ϕ′′(w⋆)t2|w⋆|2ξ2.

Taking expectation on both sides, we get

E [ϕ(w⋆ + t|w⋆|ξ)] ≈ E

[
ϕ(w⋆) +

1

2
ϕ′′(w⋆)t2|w⋆|2ξ2

]

= ϕ(w⋆) +
1

2
ϕ′′(w⋆)t2|w⋆|2E

[
ξ2
]

= ϕ(w⋆) +
1

2
ϕ′′(w⋆)t2|w⋆|2

= ϕ(w⋆) + αt2M2,

where α := 1
2ϕ

′′(w⋆)|w⋆|2M2.
Let us now make above approximation more precise. In order to do so, we will rely on two additional

assumptions:

10870

(i) the third derivative of ϕ is bounded by B3 > 0: |ϕ′′′(t)| ≤ B3 for all t ∈ R;

(ii) the third moment of |ξ| is finite: M3 := E
[
|ξ|3
]
< +∞.

Under these assumptions, there exists θξ on the interval defined by w⋆ and w⋆ + t|w⋆|ξ such that

ϕ(w⋆ + t|w⋆|ξ) = ϕ(w⋆) + ϕ′(w⋆)t|w⋆|ξ + 1

2
ϕ′′(w⋆)t2|w⋆|2ξ2 + 1

6
ϕ′′′(θξ)t

3|w⋆|3ξ3

= ϕ(w⋆) +
1

2
ϕ′′(w⋆)t2|w⋆|2ξ2 + 1

6
ϕ′′′(θξ)t

3|w⋆|3ξ3.

By taking expectation on both sides, we get

E [ϕ(w⋆ + t|w⋆|ξ)] = ϕ(w⋆) +
1

2
ϕ′′(w⋆)t2|w⋆|2M2 + E

[
1

6
ϕ′′′(θξ)t

3|w⋆|3ξ3
]
,

from which we get the estimate

∣∣∣∣E [ϕ(w⋆ + t|w⋆|ξ)]−
(
ϕ(w⋆) +

1

2
ϕ′′(w⋆)t2|w⋆|2M2

)∣∣∣∣ ≤
∣∣∣∣E
[
1

6
ϕ′′′(θξ)t

3|w⋆|3ξ3
]∣∣∣∣

≤ E

[∣∣∣∣
1

6
ϕ′′′(θξ)t

3|w⋆|3ξ3
∣∣∣∣
]

=
1

6
|t|3|w⋆|3E

[∣∣ϕ′′′(θξ)
∣∣ |ξ|3

]

≤ 1

6
|t|3|w⋆|3B3M3.

D.3 Approximating the mean of a smooth function perturbed around a local minimizer:
multivariate case

Let’s now consider the multivariate case. Consider a sufficiently smooth function ϕ : Rd → R. Let
w⋆ ∈ Rd be a local minimizer of ϕ, whence ∇ϕ(w⋆) = 0. Let ξ = (ξ1, . . . , ξd) be a random vector such
that the second moment

M2,i := E
[
ξ2i
]

is finite for all i ∈ {1, . . . , d}. Let T = Diag(t1, . . . , td) and D = Diag(|w⋆
1|, . . . , |w⋆

d|), where
t1, . . . , td > 0. From Taylor’s approximation of ϕ around w⋆, we get

ϕ(w⋆ +DTξ) ≈ ϕ(w⋆) + ⟨∇ϕ(w⋆), DTξ⟩+ 1

2

〈
∇2ϕ(w⋆)DTξ,DTξ

〉

= ϕ(w⋆) +
1

2

〈
∇2ϕ(w⋆)DTξ,DTξ

〉

= ϕ(w⋆) +
1

2

〈
D∇2ϕ(w⋆)DTξ, Tξ

〉
.

Let’s assume that D∇2ϕ(w⋆)D is approximately diagonal, i.e., there exists a diagonal matrix Z =
Diag(z1, . . . , zd) with zl > 0 for all l such that D∇2ϕ(w⋆)D ≈ Z. Under this assumption,

〈
D∇2ϕ(w⋆)DTξ, Tξ

〉
≈ ⟨ZTξ, Tξ⟩ =

d∑

i=1

zit
2
i ξ

2
i , (14)

10871

and hence

E [ϕ(w⋆ +DTξ)] ≈ E

[
ϕ(w⋆) +

1

2
⟨ZTξ, Tξ⟩

]

= ϕ(w⋆) +
1

2
E [⟨ZTξ, Tξ⟩]

Equation (14)
= ϕ(w⋆) +

1

2
E

[
d∑

i=1

zit
2
i ξ

2
i

]

= ϕ(w⋆) +
1

2

d∑

i=1

zit
2
iE
[
ξ2i
]

= ϕ(w⋆) +
1

2

d∑

i=1

zit
2
iM2,i

= ϕ(w⋆) +
d∑

i=1

αit
2
i ,

where αi :=
ziM2,i

2 .

D.4 Approximating the mean of a smooth function perturbed around a local minimizer:
multivariate block case

Let’s now extend the last result to the multivariate block setting. Consider a sufficiently smooth function
ϕ : Rd → R, where d = d1 + · · ·+ dL. For w ∈ Rd we shall write w = (w1, . . . ,wL), where wl ∈ Rdl

is the lth block of vector w. Let w⋆ = (w⋆,1, . . .w⋆,L) ∈ Rd be a local minimizer of ϕ, whence

∇ϕ(w⋆) = 0. (15)

Let ξ = (ξ1, . . . , ξL) be a random vector in Rd such that the block ξl ∈ Rdl has finite second moment:

M2,l := E
[
∥ξl∥22

]
(16)

for all l ∈ {1, . . . , L}.
For each l ∈ {1, . . . , L}, let Tl := tlIdl ∈ Rdl×dl and Dl := ∥w⋆,l∥2Idl ∈ Rdl×dl . Further, let

T := Diag(T1, . . . , TL) ∈ Rd×d and D := Diag(D1, . . . , DL) ∈ Rd×d. That is, D (resp. T) be the
blog-diagonal matrix whose blocks are formed from the matrices {Dl} (resp. {Tl}). From Taylor’s
approximation of ϕ around w⋆, we get

ϕ(w⋆ +DTξ) ≈ ϕ(w⋆) + ⟨∇ϕ(w⋆), DTξ⟩+ 1

2

〈
∇2ϕ(w⋆)DTξ,DTξ

〉

Equation (15)
= ϕ(w⋆) +

1

2

〈
∇2ϕ(w⋆)DTξ,DTξ

〉

= ϕ(w⋆) +
1

2

〈
D∇2ϕ(w⋆)DTξ, Tξ

〉
.

Let’s assume that D∇2ϕ(w⋆)D is approximately block-diagonal, i.e., there exists a block-diagonal
matrix Z = Diag(Z1, . . . , ZL) such that D∇2ϕ(w⋆)D ≈ Z. Moreover, assume that Zl = zlIdl for
some zl > 0 and all l ∈ {1, . . . , L}. Under this assumption,

〈
D∇2ϕ(w⋆)DTξ, Tξ

〉
≈ ⟨ZTξ, Tξ⟩ =

L∑

l=1

⟨ZlTlξl, Tlξl⟩ =
L∑

l=1

t2l zl∥ξl∥22, (17)

10872

and hence

E [ϕ(w⋆ +DTξ)] ≈ E

[
ϕ(w⋆) +

1

2
⟨ZTξ, Tξ⟩

]

= ϕ(w⋆) +
1

2
E [⟨ZTξ, Tξ⟩]

Equation (17)
= ϕ(w⋆) +

1

2
E

[
L∑

l=1

t2l zl∥ξl∥22

]

= ϕ(w⋆) +
1

2

L∑

l=1

t2l zlE
[
∥ξl∥22

]

Equation (16)
= ϕ(w⋆) +

1

2

L∑

l=1

t2l zlM2,l

= ϕ(w⋆) +
L∑

l=1

αlt
2
l ,

where αl :=
zlM2,l

2 .

E Experimental Justification of Assumption 3

In this section we justify Assumption 3 by analyzing the Hessian of the OPT-125M model (Zhang
et al., 2022). This model consists of 12 blocks, each containing multiple matrices. Computing the full
Hessian for even a single matrix from the self attention of the first layer is infeasible due to its size –
768× 768 = 589, 824 parameters, leading to a Hessian with around 400 Billion entries.

Given these constraints, we focused on a smaller scope of t ∈ N parameters of the module from every
layer. Figure 4 illustrates the structure of the product in Equation (2).

We can see a clear diagonal structure of the product D⋆∇2ϕ (R(W ⋆))D⋆. We observed the same diag-
onal structure under several other parameter samples for OPT-125M for the product D⋆∇2ϕ (R(W ⋆))D⋆

in Assumption 3. Hence, this suggests that Assumption 3 is satisfied.

E.1 Experimental setup

To justify the Assumption 3 we have made various experiments with a OPT-125M model (Zhang et al.,
2022). The OPT-125M model consists of B = 12 subsequent blocks, each containing multiple layers
(matrices). For every block i ∈ {1, · · · , B} we have the following linear layers:

• Self attention:

– q_proj: Qi ∈ R768×768

– v_proj: Vi ∈ R768×768

– k_proj: Ki ∈ R768×768

– out_proj: Oi ∈ R768×768

• First fully connected layer: Ci ∈ R768×3072

• Second fully connected layer: Si ∈ R3072×768

Let us define m ∈ N – the number of layers in a blocks. For OPT-125M, m = 6. Since we have
B = 12 blocks with m = 6 layers in each, in total there are L = Bm = 72 layers, so l ∈ {1, · · · , 72}.

10873

0 200 400 600 800 1000 1200 1400 1600 1800
Columns

0

200

400

600

800

1000

1200

1400

1600

1800
Ro

ws

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

es

Figure 4: Visual representation of part of the product |D⋆∇2ϕ (R(W ⋆))D⋆|. The diagonal-dominant structure
justifies the Assumption 3. Please see Appendix Figure 5) for additional subsets.

E.2 Single layer from a single block
Computing the full Hessian ∇2ϕ (R(Q1)) for even a single Q1 ∈ R768×768 matrix from a self attention
of the first block is infeasible due to its size – 768 × 768 results in 589, 824 parameters, leading to a
Hessian with around 400 billion elements.

Given these constraints, we decided to focus on a smaller scope of t ∈ N parameters of the module. Let
us consider some layer Wl ∈ Rdlin×dlout .

In this section we will use the following notation for entries of vectors and matrices: for any vector
r, we denote [r]i as the i-th element of the vector r. Similarly, for any matrix A, we denote [A]ij as the
element of A in the intersection of the i-th row and j-th column.

Now let us consider the first t ∈ {1, · · · , dlin·dlout} entries of the matrixWl – the vector W̃l = [R(Wl)]:t,
W̃l ∈ Rt. With these notation we define a concatenation function ψWl

: Rt → Rdlin·dlout :

ψWl
(W̃l) =

(
W̃l, [R(Wl)]t:

)
.

Finally, let us define the perplexity function ϕ̃Wl
: Rt → R as a function of W̃l:

ϕ̃Wl
(W̃l) := ϕ

(
ψWl

(W̃l)
)
.

For a subset of parameters we define a matrix D̃l ∈ Rt×t: D̃l := ∥Wl∥F It ∈ Rt×t. Then we define the
analog of the product (2) for a subset of t parameters:

10874

D̃l∇2ϕ̃Wl
(W̃l)D̃l ≈ Z̃l,

where Z̃l = zlIt, zl > 0.

E.3 All layers from a single block

If we aim to consider all sub-modules of a single block i ∈ {1, · · · , B}, then we define W̃ i :=

(W̃mi+1, · · · , W̃mi+m), where W̃mi+s ∈ Rt is the subset of the first t parameters of the s-th sub-
module from the i-th block: W̃mi+s = [R(Wmi+s)]:t, W̃mi+s ∈ Rt. In this case, the perplexity function
ϕ̃i : Rtm → R can be represented the the following way:

ϕ̃i(W̃ i) := ϕ
(
ψWmi+1(W̃mi+1), · · · , ψWmi+m(W̃mi+m)

)
.

Then we define
D̃i := Diag(D̃mi+1, . . . , D̃mi+m) ∈ Rtm×tm,

where D̃mi+s := ∥Wmi+s∥F It ∈ Rt×t. Then the analog of the product (2) will be

D̃i∇2ϕ̃i(W̃ i)D̃i ≈ Z̃i,

where Z̃i = Diag(Z̃mi+1, . . . , Z̃mi+m) ∈ Rtm×tm.

E.4 Single sub-module from all blocks

If we aim to consider a single sub-module Qi for all i ∈ {1, · · · , B}, then we define Q̃ :=

(W̃1, W̃m+1, W̃2m+1, · · · , W̃Bm+1), where W̃im+1 ∈ Rt is the subset of the first t parameters of the
first sub-module from the i-th block: W̃im+1 = [R(Qi)]:t, W̃im+1 ∈ Rt. In this case, the perplexity
function ϕ̃Q : RBt → R can be represented the the following way:

ϕ̃Q(Q̃) := ϕ
(
ψW1(W̃1), ψWm+1(W̃m+1), ψW2m+1(W̃2m+1), · · · , ψWBm+1

(W̃Bm+1)
)
.

Then we define

D̃Q := Diag(D̃1, D̃m+1, D̃2m+1, . . . , D̃Bm+1) ∈ RBt×Bt,

where D̃im+1 := ∥Qi∥F It ∈ Rt×t, Qi is the first module from the i-th layer. Then the analog of the
product (2) will be

D̃Q∇2ϕ̃Q(Q̃)D̃Q ≈ Z̃Q,

where Z̃Q = Diag(Z̃1, Z̃m+1, Z̃2m+1, . . . , Z̃Bm+1) ∈ RBt×Bt.

E.5 All layers from all blocks

Finally, if we aim to consider all layers and all sub-modules, then we define W̃ := (W̃1, · · · , W̃L). The
perplexity function ϕ̃ : RtL → R in this case will be

ϕ̃(W̃) := ϕ
(
ψW1(W̃1), · · · , ψWL

(W̃L)
)

and D̃⋆ := Diag(D̃1, . . . , D̃L) ∈ RtL×tL, the analog of the product (2) will be

D̃⋆∇2ϕ̃(W̃)D̃⋆ ≈ Z̃,

where Z̃ = Diag(Z̃1, . . . , Z̃L) ∈ RtL×tL.

10875

E.6 Experimental results
Firstly, let us consider t = 768 parameters from only the first layer’s Q1 ∈ R768×768. On (Fig. 5a) we can
see a diagonal structure of the product D̃1∇2ϕ̃W1(W̃1)D̃1 ∈ R768×768. In this particular case W̃1 is the
first row of the matrix Q1.

On the next step, we considered all sub-modules of the first layer – from each matrix W ∈
{Q1, V1,K1, O1, C1, S1}, we selected t = 300 parameters (Fig. 5b). We can see a clear diagonal
structure of the product D̃1∇2ϕ̃1(W̃ 1)D̃1 ∈ R1800×1800.

Then we expanded the Hessian computation to include parameters from multiple layers – from each
layer, we selected t = 150 parameters of the matrix Qi and repeated this for i ∈ {1, · · · , B}, yielding a
product D̃Q∇2ϕ̃Q(Q̃)D̃Q ∈ R1800×1800 (Fig. 5c).

Finally, we expanded the Hessian computation to include parameters from all layers and all sub-modules
– from each layer Wl, we selected t = 25 parameters (Fig. 5d). As before, we can see a clear diagonal
structure of the product D̃⋆∇2ϕ̃(W̃)D̃⋆ ∈ R1800×1800.

In all considered subsets of parameters of OPT-125M we observed a diagonal structure of the product s
from Assumption 3. Hence, we have fairly strong reasons to believe that Assumption 3 is satisfied for
LLM’s.

E.7 Implementation details
To be able to compute the Hessian for only a subset of the network’s parameters, we manually defined
a perplexity function as a function of the specific subset of parameters. We used this with the PyTorch
(Paszke et al., 2019) autograd routines to compute the Hessian quickly and accurately.

Note that Hessian computation induces significant memory consumption when using larger batch sizes.
A larger batch size is crucial for accurate perplexity computation, and therefore for accurate Hessian
computation (for instance, a batch size of 140 yields a WikiText-2 perplexity for OPT-125M of 27.65,
while a batch size of 4 results in a WikiText-2 perplexity of 30.06). To mitigate the memory overflow
problem, we modified the perplexity function to exhibit an additive property (Sec. E.8). This means that
we can compute the Hessian for the full batch by averaging Hessians, computed over smaller batches.
With this adjustment, we were able to use PyTorch’s autograd routine to compute the Hessian on a full
batch size without encountering memory overflow issues.

E.8 How to compute a Hessian for large batch sizes
The perplexity function is computed by the following sequence of events:

1. Take the input X ∈ Rb×l and compute the output of the model by the function f : Rb×l → Rb×l×n,
where b is a batch size and l is an output sequence length and n is the size of the embedding space. For
OPT-125M, l = 2048, n = 50272. Elements of f(X) are called logits and represent the probability
for each word to be the next token in the output sequence.

2. Compute the Cross Entropy Loss of the output by the function g : Rb×l×n → Rb,

g(f(X)) := nn.CrossEntropyLoss(f(X)).

3. Average the Cross Entropy Loss for all elements from a batch:

c̄ :=
1

b

b∑

i=1

ci.

4. Compute the Perplexity:
PPL(c̄) := ec̄.

Let us change steps (3) and (4): on the step (3) we will not divide the sum by b, so we define

c̄′ =
b∑

i=1

ci,

10876

on the step (4) we will not use the exponential function – instead we will use the identity function:

PPL′(c̄′) := c̄′. (18)

0 100 200 300 400 500 600 700
Columns

0

100

200

300

400

500

600

700

Ro
ws

0.5

1.0

1.5

2.0

2.5

Va
lu

es

(a) |D̃1∇2ϕ̃W1(W̃1)D̃1|, t = 768 parameters.

0 200 400 600 800 1000 1200 1400 1600 1800
Columns

0

200

400

600

800

1000

1200

1400

1600

1800

Ro
ws

2

4

6

8

10

12

14

16

Va
lu

es

(b) |D̃1∇2ϕ̃1(W̃ 1)D̃1|, t = 300 parameters.

0 200 400 600 800 1000 1200 1400 1600 1800
Columns

0

200

400

600

800

1000

1200

1400

1600

1800

Ro
ws

0.2

0.4

0.6

0.8

1.0

Va
lu

es

(c) |D̃Q∇2ϕ̃Q(Q̃)D̃Q|, t = 150 parameters.

0 200 400 600 800 1000 1200 1400 1600 1800
Columns

0

200

400

600

800

1000

1200

1400

1600

1800

Ro
ws

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu

es

(d) |D̃⋆∇2ϕ̃(W̃)D̃⋆|, t = 25 parameters.

Figure 5: Visual representation of different parts of the product D⋆∇2ϕ (R(W ⋆))D⋆ for different subsets of
parameters. For clarity, we have plotted the absolute values of the entries in all cases to better visualize the
magnitude of the elements. For all considered subsets we can clearly see a diagonal structure of the corresponding
product. This justifies the Assumption 3.

Theorem 2. PPL′(c̄′) defined in (18) has the additive property. In other words, the perplexity computed
for the full batch b will be equal to the sum of perplexities, computed for b subsequent samples.

Proof. Let us define the functions f̂ : Rl → Rl×n and ĝ : Rl×n → R to be the same as f : Rb×l →
Rb×l×n and g : Rb×l×n → Rb, but with fixed b = 1, so we effectively have a reduction of one dimension.

10877

Since the output [f(X)]i ∈ Rl×n for each sample i from a batch is computed independently, the full
output f(X) can be obtained by concatenation of b outputs from f̂(Xi,:) for i ∈ {1, · · · , b}:

f(X) =
(
f̂(X1,:), · · · , f̂(Xb,:)

)
.

The same is true for a Cross Entropy Loss function g(f(X)):

g(f(X)) = (g(f(X))1, · · · , g(f(X))b) =
(
ĝ(f̂(X1,:)), · · · , ĝ(f̂(Xb,:))

)
,

hence the equation (19) holds:

PPL′(X) =
b∑

i=1

[g(f(X))]i =
b∑

i=1

ĝ(f̂(Xi,:)) (19)

where Xi,: ∈ Rl.
In essence, equation (19) means that the perplexity computed for the full batch b will be equal to the

sum of perplexities, computed for b subsequent samples.

Corollary 2.1. We can compute the Hessian of the perplexity function (18) over large batch of samples
by summing up several Hessians, computed on a single sample:

∇2PPL′(g(f(X))) =
b∑

i=1

∇2PPL′(ĝ(f̂(Xi,:))). (20)

F Proof of Expected Error

t2l (Wl,Gp
n) :=

:= E
[
∥Ŵl −Wl∥2F

]
/∥Wl∥2F =

=

∑D/g
i=1 E

[
∥ŵ{i} − w{i}∥2F

]
∑D/g

i=1 ∥w{i}∥2F
=

=

∑D/g
i=1 s

2
iE
[
∥q†{i} − w†

{i}∥2F
]

∑D/g
i=1 ∥w{i}∥2F

≈

≈

∑D/g
i=1 s

2
iEw†

{i}∼N (0,1)

[
∥q†{i} − w†

{i}∥2F
]

∑D/g
i=1 ∥w{i}∥2F

:=

:=

∑D/g
i=1 s

2
i · g · t2(Gp

n)
∑D/g

i=1 ∥w{i}∥2F
=

= t2(Gp
n)

∑D/g
i=1 ∥w{i}∥2F∑D/g
i=1 ∥w{i}∥2F

=

= t2(Gp
n)

That is, t2l approximately equals the expected element-wise MSE of rounding the multivariate standard
normal distribution to the grid Gp

n

10878

Table 5: Throughput comparison for FLUTE kernels utilizing and omitting the Hadamard transform.

Batch Size wbits
Throughput with
Hadamard, tok/s

Throughput w.o.
Hadamard, tok/s

1
2 174 179
3 150 154
4 139 143

4
2 687 706
3 592 607
4 549 562

16
2 2433 2517
3 2122 2205
4 1980 2058

G Processing Hadamard Rotated Matrices

The output q† and s of the Algorithm 1 represent a vector to which an RHT has been applied. Additional
scale 1√

g ensures that this transform preserves the L2 norm of the vector is preserved, thus making it a
random rotation, controlled by seed ξ, within the rotation groups of size g. This fact opens number of
possibilities on how those quantized weights can be processed in the context of LLM inferece.

For the purposes of this section, let us consider a matrix W ∈ RN×N quantized with grid Gp
n and scales

group size g with Algorithm 1 that we want to multiply by some activation matrix X ∈ RK×N .
Dequantization. Performing LUT restoration of w† from q† and Gp

n, then performing a reverse Hadamard
rotation in groups and unscaling with s aligns the representation with the original quantized matrixW . This
is useful for validation of the representation’s correctness, but the time complexity of O(KN2+N2 log g)
it too slow for matrix-vector product operations (K = 1) that are crucial for text generation inference.
Rotating Activations. The fact that RHT is a rotation, and that it’s controllable by the means of
seed ξ allow to use it’s scalar product preserving properties to compute matrix-vector or matrix-matrix
multiplication fully in the rotated space. More specifically, we can apply RHT to a matrix W in weight
groups W{i} spanning sequential blocks of output dimension 1 and input dimension g (i.e. W{1} =
W[0,0:g], W{2} =W[0,g:2g],...). Then, when computing the matrix-matrix product between X and
W , we can apply the same RHT (same ξ) to X in the same groups along the input dimension and multiply
the rotated matrices directly. This will result in time complexity of O(KN2 +KN log g) = O(KN2).
That is, online RHT is asymptotically negligible in terms of time complexity. This approach, among
other works, was used by Tseng et al. (2024a). Table 5 showcases the effect of activations Hadamard
transforms on end-to-end throughput of Llama-3.1-8B running on an RTX 4090 GPU. The observed
difference doesn’t exceed four percent.

H Experiment Configurations

H.1 Methods Specifics

• HIGGS: for fixed bitwidth we evaluate multiple grid dimensions p by fitting grid size n to match
the bitwidth. For 3.25 bits, we use grids with (p = 2, n = 88) and (p = 3, n = 830). For 4.02
bits, we use (p = 1, n = 16) and (p = 2, n = 256). And for 4.25 bits, we use (p = 1, n = 19) and
(p = 2, n = 361). We use scaling groups of size 1024 for all HIGGS experiments.

• Dynamic HIGGS: for dynamic bitwidth we only use FLUTE grids and CH8. We benchmark FLUTE
kernel speed through its custom vLLM integration.

• Normal Float (NF): for ≈ 4 bits configurations we use the grid from bitsandbytes library. We use
group_size=64 (default) for 4.25 bits and group_size=1024 (same as HIGGS) for 4.02 bits. For

10879

≈ 3 bits we obtain the entropy-optimal grid and implement quantization-dequantization ourselves.
We do not use double quantization. We benchmark kernel speed through its vLLM integration.

• Abnormal Float (AF): we reuse the grid generation process of (Yoshida, 2023) from the correspond-
ing repository. We apply it to 3 and 4 bit grids of group size 64 and 1024, resulting in 3.02, 3.25,
4.02 and 4.25 bit configurations.

• HQQ: we use the official implementation of Half-Quadratic Quantization. We use group_size=64
for nbits.25 bits and group_size=1024 for nbits.02 bits, where nbits∈ {2, 3, 4, 8}. We disable
double quantization for fair comparison with other methods that don’t use it.

• GPTQ: we use GPTQ implementation from the autogptq library. We set bits=3,group_size=64
for 3.25 bits, bits=4,group_size=1024 for 4.02 bits and bits=4,group_size=64 for 4.25 bits.
We always clip=True,mse=1 for MSE-optimal grid clipping. We benchmark MARLIN kernel
speed through its vLLM integration.

• AQLM: we re-report the perplexity metric specifically for the w/o fine-tuning version of AQLM
from the corresponding paper’s ablation study (Egiazarian et al., 2024). We benchmark kernel speed
through its vLLM integration.

• QuIP#: we re-report the perplexity metric specifically for the w/o fine-tuning version of QuIP# from
the corresponding paper’s ablation study (Tseng et al., 2024a).

• QTIP#: we re-report the perplexity metric specifically for the w/o fine-tuning version of QTIP from
the corresponding paper’s ablation study (Tseng et al., 2024b). We re-report the metrics selectively
for the 3INST grid for 2 and 4 bits and for the 1MAD grid for 3 bits. We use the end-to-end
generation speed measurement scripts provided in the official repository.

I Additional Evaluations

Comparison With Data-Aware Methods. Additionally, we compare our data-free dynamic bitwidth
HIGGS method with popular data-aware 1-shot quantization methods: GPTQ (Frantar et al., 2022) and
AWQ (Lin et al., 2023). Alongside dynamic data-free method (ddf), we present results for method
calibrated on WikiText-2 PPL itself (dyn Wiki2). The results, shown in Table 6, indicate that HIGGS
consistently outperforms those quantization methods as well. Moreover, we observe little difference in
few-shot performance between data-free and data-dependent method.

10880

https://github.com/davisyoshida/abnormal-floats
https://github.com/mobiusml/hqq
https://github.com/AutoGPTQ/AutoGPTQ

Method wbits Wiki2 MMLU

FP16 16 5.606 65.36

GPTQ 3.25 7.133 58.37
HIGGS (ddf) 3.25 6.388 61.62
HIGGS (dyn) 3.25 6.359 61.37

GPTQ 4.02 6.238 62.96
AWQ 4.02 6.228 62.88
HIGGS (ddf) 4.00 5.910 63.86
HIGGS (dyn) 4.00 5.870 63.69

GPTQ 4.25 5.923 64.05
AWQ 4.25 5.905 63.83
HIGGS (ddf) 4.25 5.831 64.06
HIGGS (dyn) 4.25 5.802 64.26

Table 6: Comparison of dynamic data-free (ddf) HIGGS and dynamic data-dependent HIGGS (dyn) with 1-shot
quantization methods for Llama 3.1 8B quantization.

Method wbits Wiki2 ArcC ArcE PiQA Wino HellaS Avg MMLU

FP16 16.00 5.607 51.28 81.52 80.03 73.72 60.01 69.31 65.35

AF 3.25 8.056 43.94 75.25 77.53 69.38 52.91 63.80 53.15
NF 3.25 7.683 42.66 75.63 77.97 70.48 54.92 64.33 55.82
HQQ 3.25 7.317 43.17 76.14 78.24 68.98 55.37 64.38 56.39
HIGGS (p=2) 3.25 7.110 44.11 76.35 77.09 73.09 55.77 65.28 57.56
HIGGS (p=3) 3.25 6.807 44.71 77.95 77.75 71.11 57.01 65.71 60.11
HIGGS (p=4) 3.25 6.643 47.27 78.41 78.45 70.72 56.97 66.36 59.88

GPTQ 3.25 7.133 41.13 72.81 75.14 71.51 53.86 62.89 58.37
HIGGS (ddf) 3.25 6.388 47.10 79.12 78.78 71.59 57.09 66.74 61.62

AF 4.02 6.194 46.84 78.54 79.16 73.95 58.28 67.35 61.47
NF 4.02 6.225 47.95 79.38 79.27 73.24 58.44 67.66 62.65
HQQ 4.02 8.057 46.84 78.16 77.91 70.17 55.44 65.70 57.72
HIGGS (p=1) 4.02 6.142 47.27 79.63 78.78 72.45 58.29 67.28 61.74
HIGGS (p=2) 4.02 6.015 48.29 81.06 79.54 73.95 58.54 68.28 63.26
HIGGS (p=3) 4.02 5.981 50.17 80.26 80.30 73.72 59.17 68.73 62.83

GPTQ 4.02 6.238 45.82 78.66 78.02 72.53 56.91 66.39 62.96
HIGGS (ddf) 4.00 5.910 49.23 80.98 79.38 72.85 59.00 68.29 63.86

AF 4.25 5.952 49.57 80.85 79.27 74.27 59.13 68.62 63.20
NF 4.25 5.964 49.32 80.81 78.94 73.40 59.16 68.33 64.10
HQQ 4.25 5.944 50.09 81.44 79.76 73.88 59.44 68.92 63.70
HIGGS (p=1) 4.26 5.978 50.26 80.98 79.54 73.24 58.96 68.60 63.47
HIGGS (p=2) 4.26 5.908 50.60 81.48 79.38 74.19 59.17 68.96 63.52
HIGGS (p=3) 4.25 5.872 49.57 81.27 79.38 72.38 59.33 68.39 64.24

GPTQ 4.25 5.923 47.18 79.59 79.16 72.22 58.43 67.32 64.06
HIGGS (ddf) 4.25 5.831 50.43 81.27 79.43 72.85 59.33 68.66 64.06

Table 7: Quantization evaluations for Llama3.1 8b

10881

Method wbits Wiki2 ArcC ArcE PiQA Wino HellaS Avg MMLU

FP16 16.00 8.644 31.31 65.53 74.54 60.54 47.73 55.93 32.04

AF 3.25 19.750 25.85 50.46 66.10 54.46 37.64 46.90 25.46
NF 3.25 17.761 24.15 49.83 66.70 53.99 38.57 46.65 26.70
HQQ 3.25 17.965 26.28 52.90 68.01 55.56 38.76 48.30 25.52
HIGGS (p=2) 3.25 13.196 26.96 56.10 69.97 54.06 40.79 49.58 24.62
HIGGS (p=3) 3.25 12.423 29.10 56.78 69.37 58.33 41.00 50.91 25.87
HIGGS (p=4) 3.25 12.185 28.41 57.53 69.80 57.85 41.86 51.09 28.01

HIGGS (ddf) 3.25 11.082 30.03 59.68 71.27 58.17 43.20 52.47 27.27
HIGGS (dyn) 3.25 10.949 30.38 60.14 70.89 57.70 43.37 52.49 28.24

AF 4.02 10.183 30.29 61.95 73.39 58.56 44.59 53.76 28.28
NF 4.02 10.703 28.07 60.90 73.12 57.77 44.47 52.87 25.53
HQQ 4.02 26.516 25.43 49.75 64.15 53.83 36.96 46.02 26.26
HIGGS (p=1) 4.02 10.167 31.83 62.58 72.96 58.88 45.19 54.29 26.37
HIGGS (p=2) 4.02 9.735 32.25 64.48 74.16 57.77 46.28 54.99 28.12
HIGGS (p=3) 4.02 9.641 29.18 61.36 72.63 59.59 45.45 53.64 26.95

HIGGS (ddf) 4.00 9.520 31.40 63.34 74.27 60.22 45.79 55.00 27.83
HIGGS (dyn) 4.00 9.375 31.66 63.09 73.94 59.43 46.26 54.87 27.87

AF 4.25 9.543 30.63 63.47 73.88 59.67 46.17 54.76 30.29
NF 4.25 9.575 30.89 62.37 74.21 60.54 45.58 54.72 28.83
HQQ 4.25 9.646 32.25 62.42 73.56 59.83 46.20 54.85 29.52
HIGGS (p=1) 4.26 9.600 30.29 62.12 72.69 59.83 46.10 54.20 28.36
HIGGS (p=2) 4.26 9.336 30.89 64.18 73.56 59.35 46.18 54.83 28.79
HIGGS (p=3) 4.25 9.299 30.29 63.43 73.29 60.77 46.32 54.82 30.91

HIGGS (ddf) 4.25 9.341 31.91 63.51 74.37 59.91 46.07 55.15 29.44
HIGGS (dyn) 4.25 9.205 31.57 63.59 74.27 59.91 46.68 55.20 28.29

Table 8: Quantization evaluations for Llama3.2 1b

10882

Method wbits Wiki2 ArcC ArcE PiQA Wino HellaS Avg MMLU

FP16 16.00 6.979 42.15 74.45 76.71 69.93 55.29 63.71 56.07

AF 3.25 10.81 33.11 65.61 71.65 64.40 47.41 56.44 42.00
NF 3.25 10.04 37.29 70.37 73.94 65.35 49.45 59.28 44.71
HQQ 3.25 9.252 36.35 68.14 74.21 64.33 50.01 58.61 44.42
HIGGS (p=2) 3.25 9.156 35.75 67.89 74.32 64.96 50.16 58.61 46.76
HIGGS (p=3) 3.25 8.711 37.37 71.59 74.37 66.30 50.62 60.05 46.82
HIGGS (p=4) 3.25 8.669 37.88 70.58 73.18 67.32 51.40 60.07 48.94

HIGGS (ddf) 3.25 8.007 39.25 71.72 74.97 67.64 51.76 61.07 51.09
HIGGS (dyn) 3.25 7.979 38.40 71.97 75.14 67.25 52.42 61.03 50.59

AF 4.02 7.697 41.13 73.36 76.39 68.67 53.81 62.67 53.08
NF 4.02 7.819 39.68 73.57 76.01 67.56 53.17 62.00 51.13
HQQ 4.02 12.57 34.73 68.77 72.74 64.09 47.66 57.60 36.89
HIGGS (p=1) 4.02 7.695 41.30 73.99 75.95 67.80 53.35 62.48 53.01
HIGGS (p=2) 4.02 7.507 41.64 73.86 76.33 68.27 54.11 62.84 53.82
HIGGS (p=3) 4.02 7.464 40.44 71.76 76.66 68.82 53.87 62.31 54.20

HIGGS (ddf) 4.00 7.399 39.76 73.19 76.22 67.96 53.70 62.17 54.37
HIGGS (dyn) 4.00 7.295 41.04 73.27 76.44 68.51 53.75 62.60 54.43

AF 4.25 7.365 40.61 73.15 76.88 68.27 54.43 62.67 54.53
NF 4.25 7.395 41.98 73.86 76.71 68.75 54.35 63.13 54.51
HQQ 4.25 7.351 42.75 72.77 76.93 68.82 53.89 63.03 53.33
HIGGS (p=1) 4.26 7.459 40.19 72.31 76.12 67.96 53.97 62.11 53.43
HIGGS (p=2) 4.26 7.339 38.23 69.82 76.22 68.59 54.23 61.42 54.44
HIGGS (p=3) 4.25 7.306 40.53 73.65 76.39 69.06 53.95 62.72 54.54

HIGGS (ddf) 4.25 7.266 40.02 73.44 76.01 69.53 54.01 62.60 54.66
HIGGS (dyn) 4.25 7.216 41.21 73.40 76.17 69.06 54.22 62.81 54.63

Table 9: Quantization evaluations for Llama3.2 3b

10883

Method wbits Wiki2 ArcC ArcE PiQA Wino HellaS Avg MMLU

FP16 16.00 6.497 51.71 81.78 79.92 73.80 59.12 69.26 68.20

AF 3.25 8.848 43.69 74.92 77.75 69.61 53.52 63.90 57.51
NF 3.25 8.663 43.00 75.51 77.48 71.11 54.73 64.37 58.42
HQQ 3.25 8.273 46.59 77.23 77.97 71.19 55.70 65.73 59.41
HIGGS (p=2) 3.25 7.765 44.80 75.97 77.53 72.69 56.58 65.51 61.32
HIGGS (p=3) 3.25 7.659 49.74 80.35 77.64 71.67 56.59 67.20 62.26
HIGGS (p=4) 3.25 7.469 48.72 78.66 79.65 72.77 56.31 67.22 63.83

HIGGS (ddf) 3.25 7.351 48.63 78.49 78.51 70.48 56.76 66.58 63.79
HIGGS (dyn) 3.25 7.204 47.78 79.12 78.89 72.53 57.27 67.12 64.36

AF 4.02 7.107 50.51 79.84 79.43 73.64 57.69 68.22 65.28
NF 4.02 7.084 49.74 80.35 79.43 73.95 58.14 68.32 65.59
HQQ 4.02 9.393 48.29 77.48 77.04 71.59 55.50 65.98 60.21
HIGGS (p=1) 4.02 7.013 49.15 80.18 79.65 72.53 57.70 67.84 65.64
HIGGS (p=2) 4.02 6.901 49.15 81.27 79.87 73.24 58.20 68.35 65.98
HIGGS (p=3) 4.02 6.833 50.17 81.82 79.98 72.77 58.59 68.67 65.77

HIGGS (ddf) 4.00 6.835 50.68 80.60 79.60 73.40 58.17 68.49 66.05
HIGGS (dyn) 4.00 6.720 50.68 81.48 79.87 73.40 58.55 68.80 66.41

AF 4.25 6.758 51.96 80.68 79.16 72.85 58.57 68.65 66.41
NF 4.25 6.882 51.62 80.98 79.27 73.72 58.41 68.80 67.21
HQQ 4.25 6.777 50.51 81.02 79.33 73.80 58.37 68.61 66.44
HIGGS (p=1) 4.26 6.838 50.51 80.35 79.71 72.85 58.47 68.38 66.40
HIGGS (p=2) 4.26 6.736 53.75 81.82 80.09 74.03 58.24 69.59 67.14
HIGGS (p=3) 4.25 6.741 51.37 81.10 79.71 73.32 58.79 68.86 66.97

HIGGS (ddf) 4.25 6.783 50.94 81.31 80.09 74.03 58.33 68.94 66.86
HIGGS (dyn) 4.25 6.664 51.28 81.61 79.92 74.59 58.81 69.24 66.32

Table 10: Quantization evaluations for Llama3.1 8b Instruct

10884

Method wbits Wiki2 ArcC ArcE PiQA Wino HellaS Avg MMLU

FP16 16.00 2.541 60.67 87.25 83.13 79.64 66.48 75.43 78.51

AF 3.25 102350 51.54 81.52 80.85 75.14 62.54 70.32 60.53
NF 3.25 41.76 54.78 81.57 80.85 76.40 63.22 71.36 63.42
HQQ 3.25 4.057 57.17 84.30 81.23 77.82 64.21 72.95 75.32
HIGGS (p=2) 3.25 4.297 54.44 84.09 81.34 70.88 63.76 70.90 73.44
HIGGS (p=3) 3.25 4.023 57.08 84.55 81.56 67.48 64.14 70.96 75.10
HIGGS (p=4) 3.25 3.792 55.72 83.96 82.15 72.06 65.34 71.85 75.77

HIGGS (ddf) 3.25 3.675 58.45 85.48 81.61 79.40 64.39 73.87 76.36
HIGGS (dyn) 3.25 3.466 57.68 85.52 82.15 78.93 65.23 73.90 76.98

AF 4.02 513.5 21.16 25.46 53.16 59.83 52.34 42.39 25.71
NF 4.02 2084 20.73 25.51 52.67 52.17 27.34 35.68 23.47
HQQ 4.02 4.023 55.63 83.21 80.85 74.51 62.21 71.28 74.67
HIGGS (p=1) 4.02 3.115 58.70 85.35 82.54 77.82 65.83 74.05 77.27
HIGGS (p=2) 4.02 2.986 60.15 86.28 82.64 78.85 66.20 74.83 77.59
HIGGS (p=3) 4.02 2.956 59.64 86.07 82.97 77.90 65.98 74.51 77.80

HIGGS (ddf) 4.00 3.133 60.15 86.15 82.75 78.61 66.04 74.74 77.68
HIGGS (dyn) 4.00 2.827 60.24 86.74 82.70 79.64 66.17 75.10 78.24

AF 4.25 2.982 58.96 86.32 83.03 80.27 65.89 74.89 77.11
NF 4.25 3.065 57.25 86.28 82.70 78.14 66.04 74.08 78.12
HQQ 4.25 2.873 60.67 87.04 82.75 77.98 65.75 74.84 78.47
HIGGS (p=1) 4.26 2.935 58.53 86.07 82.32 77.27 65.83 74.00 77.62
HIGGS (p=2) 4.26 2.852 59.30 86.62 82.21 78.85 66.12 74.62 78.00
HIGGS (p=3) 4.25 2.834 60.49 86.36 82.59 78.53 66.02 74.80 77.70

HIGGS (ddf) 4.25 2.956 60.67 86.74 82.81 78.77 66.05 75.01 78.14
HIGGS (dyn) 4.25 2.787 60.92 86.32 83.03 79.87 66.35 75.30 78.09

Table 11: Quantization evaluations for Llama3.1 70b. We don’t quantize attention’s value layer for the first
transformer block of the model in non-dynamic setups.

10885

Method wbits Wiki2 ArcC ArcE PiQA Wino HellaS Avg MMLU

FP16 16.00 6.128 47.70 80.51 78.67 72.93 60.02 67.97 74.13

AF 3.25 7.542 46.59 79.38 77.37 68.19 55.27 65.36 67.16
NF 3.25 7.588 44.28 76.94 77.42 67.72 55.34 64.34 68.27
HQQ 3.25 7.247 46.84 76.01 78.13 67.25 56.68 64.98 69.58
HIGGS (p=2) 3.25 6.808 46.59 77.78 78.78 71.19 57.97 66.46 70.90
HIGGS (p=3) 3.25 6.732 46.25 77.78 78.73 70.72 57.97 66.29 71.41
HIGGS (p=4) 3.25 6.669 48.04 79.55 78.07 71.59 58.08 67.06 71.73

HIGGS (ddf) 3.25 6.604 47.61 79.17 78.40 72.30 57.56 67.01 71.26
HIGGS (dyn) 3.25 6.566 48.21 79.34 78.62 71.27 57.64 67.01 71.41

AF 4.02 6.538 45.31 77.86 77.91 71.82 58.28 66.24 72.23
NF 4.02 6.538 47.61 79.59 78.35 69.85 58.98 66.88 72.35
HQQ 4.02 7.767 44.88 76.22 77.26 68.98 55.33 64.53 70.72
HIGGS (p=1) 4.02 6.407 47.35 79.71 78.51 70.40 58.60 66.92 72.78
HIGGS (p=2) 4.02 6.359 48.81 80.30 79.00 72.22 58.68 67.80 72.97
HIGGS (p=3) 4.02 6.325 47.27 79.97 78.67 72.14 59.10 67.43 73.39

HIGGS (ddf) 4.00 6.334 48.89 79.67 78.78 70.72 58.87 67.39 72.58
HIGGS (dyn) 4.00 6.291 47.70 78.75 78.84 71.67 59.04 67.20 73.10

AF 4.25 6.352 48.29 79.46 78.18 71.27 58.83 67.21 73.29
NF 4.25 6.340 46.67 79.63 78.35 71.19 59.00 66.97 73.44
HQQ 4.25 6.358 46.93 79.97 78.89 71.11 59.38 67.26 73.32
HIGGS (p=1) 4.26 6.343 48.81 79.08 78.56 73.01 58.64 67.62 73.67
HIGGS (p=2) 4.26 6.298 46.76 79.17 78.84 73.16 59.05 67.40 73.30
HIGGS (p=3) 4.25 6.278 47.70 79.92 78.13 73.16 59.20 67.62 73.86

HIGGS (ddf) 4.25 6.282 48.21 79.71 78.78 70.56 58.85 67.22 73.32
HIGGS (dyn) 4.25 6.255 48.72 80.22 78.84 70.88 59.01 67.53 73.28

Table 12: Quantization evaluations for Qwen2.5 7B

10886

