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Abstract

Intent classification is crucial for conversa-
tional agents (chatbots), and deep learning
models perform well in this area. However,
little research has been done on the explain-
ability of intent classification due to the ab-
sence of suitable benchmark data. Human an-
notation of explanation signals in text sam-
ples is time-consuming and costly. However,
from inspection of data on intent classifica-
tion, we see that, more often than not, the
main verb denotes the action, and the direct
object indicates the domain of conversation,
serving as explanation signals for intent. This
observation enables us to hypothesize that the
main predicate in the text utterances along
with the arguments of the main predicate
can serve as explanation signals. Leverag-
ing this, we introduce a new technique to au-
tomatically augment text samples from intent
classification datasets with word-level expla-
nations. We mark main predicates (primarily
verbs) and their arguments (dependency rela-
tions) as explanation signals in benchmark in-
tent classification datasets ATIS and SNIPS,
creating a unique 21k-instance dataset for ex-
plainability. Further, we experiment with deep
learning and language models. We observe
that models that work well for classification
do not perform well in explainability metrics
like plausibility and faithfulness. We also ob-
serve that guiding models to focus on expla-
nation signals from our dataset during training
improves the plausibility Token F1 score by 3-
4%, improving the model’s reasoning.

1 Introduction

Intent classification is widely used in real-life
chatbots like Alexa, Siri, and other conversational
Al tools. It is used to grasp the nuanced as-
pects of user expressions. It involves (i) compre-
hending the intentions behind the expressions to
guide the agent’s actions and (ii) identifying slots
that indicate crucial entities necessary for execut-
ing the actions. Intent identification is studied as

a multiclass classification problem by Raymond
and Riccardi (2007). However, it is observed
that jointly solving it with slot filling improves
the performance (Qin et al., 2021; Chen et al.,
2019). While deep learning models perform well
in intent classification for specific datasets (Chen
etal., 2019; Gunaratna et al., 2022), they face chal-
lenges in generalizing across diverse domains and
fine-grained intents, particularly for classes with
scarce data (Elazar et al., 2021; Casanueva et al.,
2020). In scenarios with numerous conversation
domains and fine-grained intent classes, acquiring
significant data for every class becomes challeng-
ing. Additionally, the presence of shared words
among fine-grained classes with subtle variations
in meaning adds complexity to the task. In the
text Find me an airline with a meal facility, the
intent is atis-airline as the focus is on the air-
line, not the meal. While meal is a key entity,
it doesn’t define intent. Conversely, in What are
my meal options on airlines from Boston to Den-
ver, the intent is atis-meal as the user asks about
meals, not the airline. However, the deep learn-
ing model learns from correlations and frequently
used words. Hence, it misclassifies the later ut-
terance as atis-airline due to the abundance of that
class in the training data and the higher frequency
of the term airline. This leads to a low overall F1
score and low accuracy for classes with fewer sam-
ples (Table 4). These misclassifications severely
affect task-oriented dialogue systems. For in-
stance, the text At the Charlotte airport, how many
different types of aircraft are there for us? is often
misclassified by BERT as atis-airport instead of
atis-aircraft due to an imbalance in sample sizes.
This can mislead the conversation ahead. How-
ever, performance is improved if the model fo-
cuses on the right keywords, like aircraft. Due
to this, it is essential to analyze the models’ rea-
soning for intent classification and improve their
performance.
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Text  Where can I watch the television show The Private Affairs of Bel Ami ?
Label SearchCreativeWork

Text Book a table at the top-rated pub in Garner

Label BookRestaurant

Text What are my meal options on airlines from Boston 066 to Denver
Label atis-meal

Text what price is a limousine service to New York’s La Guardian
Label atis-ground-fare

Table 1: Examples of text utterances and ground truth Labels from SNIPS and ATIS datasets. The highlighted part
denotes the explanation signals marked using the Main predicate and its arguments.

Unfortunately, even if we get the model’s ex-
planation for intent identification, there are no
ground truth datasets to evaluate it. Generally,
such datasets are created using human annotation,
but it is costly and time-consuming (Mathew et al.,
2021; DeYoung et al., 2019; Hayati et al., 2021).
Recent methods use large language models (LLM)
to generate synthetic explanations. This approach
might provide unreliable explanations and, hence,
is difficult to integrate into business (Li et al.,
2022; Ye and Durrett, 2022). Hence, we create
word-level explanation signals automatically us-
ing an interesting linguistic observation. We ob-
serve that the main verb denotes action, and its
direct object denotes the domain of conversation.
Hence, they can act as explanation signals for the
intent class. Inspired by these observations, we
introduce a novel silver standard annotation tech-
nique that uses dependency relations among words
as shown in figure 1 and augments text samples
from intent classification datasets with word-level
explanation signals. Using this technique, we de-
rive high-quality silver standard explanations for
two intent classification datasets ATIS (Hemphill
et al., 1990) and SNIPS (Coucke et al., 2018).
Hence, we augment 21k text samples with ex-
planation signals and create the first benchmark
dataset for explainability in intent classification.
We perform the human evaluation of silver anno-
tations to verify the quality of automatically gen-
erated explanation signals. For examples from our
dataset, refer to table 1.

Further, we investigate the reasoning of popular
deep learning and language models. Explanations
are derived from models in the form of saliency
maps using standard post-hoc explanation tech-
niques LIME (Ribeiro et al., 2016) and integrated
gradients (Sundararajan et al., 2017). We observe
that the models that work well for intent classifi-

cation often do not perform well on explainability
metrics plausability and faithfulness (refer to ta-
ble 2 and 3). To improve the reasoning, we guide
the model to focus more on silver annotated ex-
planation signals from our dataset during training.
It helps the model make more human-like deci-
sions and improves performance for explainability
metrics. Our system is ideal for chatbots in small
enterprises that can’t afford in-house and costly
models like GPT-4. Instead, improving reasoning
for smaller models like LSTM, BERT, and GPT2,
which give efficient responses, can benefit intent
classification in chatbots. One can quickly anno-
tate the explanation signals using the main pred-
icate and arguments in the ongoing conversation
and guide the deep learning models to focus on
those signals more.

Our contributions are:

1. A Novel technique to create silver annota-
tions of word-level explanation signals using
the main predicate and its arguments for the
text samples from standard intent classifica-
tion datasets (Figure 1 and section 4.2) with a
focus on explainability, which is highly rele-
vant for dialogue agents and chatbots used in
small-scale enterprises.

2. A First-of-its-kind dataset with high-quality
word-level explanations of the existing intent
classification datasets ATIS and SNIPS con-
sisting of 20k samples.

3. Detailed experiments to investigate the ex-
plainability performance in plausibility and
faithfulness of deep learning and language
models on our dataset (Table 2 and 3). We
create the first benchmark for explainability
in the domain of intent classification.
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Figure 1: Dependancy parse tree of text sample from SNIPS dataset having a label as BookRestaurants. High-
lighted tokens are marked as explanation signals according to the algorithm. This parse tree is fetched using

Stanford CoreNLP with OpenlE in the background

2 Related work

Intent classification is a well-studied problem in
natural language understanding (NLU). While in-
tent classification is a sentence-level classifica-
tion task, slot filling is a more challenging task
that deals with classifying the type of each word.
These problems can be solved independently Ray-
mond and Riccardi (2007), but they are generally
solved jointly to optimize performance Chen et al.
(2019); Qin et al. (2021). Our primary focus here
is to investigate and improve the model’s reason-
ing for intent classification.

In explainability, post-hoc explanation tech-
niques are popular and useful for feature attribu-
tion. This includes perturbation-based methods
(Ribeiro et al., 2016, 2018), Gradient-based meth-
ods like integrated gradient (Sundararajan et al.,
2017) and attention-based methods (Wu and Ong,
2021; Wang et al., 2016; Xu et al., 2015). For
natural language processing (NLP) applications,
feature importance is measured by the attribution
score assigned to every token. These methods ex-
plainform of saliency maps, which is a suitable
form for NLP due to well-defined features like
words and phrases.

Many methods go beyond evaluation and ingest
feature attribution priors during training. Some
methods use attribution scores derived from post-
hoc explanation techniques to train a hate-speech
classifier under a scarce data scenario like Liu and
Avci (2019). Zhong et al. (2019) and Mathew
et al. (2021) supervised the model’s attention us-
ing human-annotated rationale. Jayaram and All-
away (2021) incorporates feature attribution for
documents from the legal domain. However, these
methods primarily focus on tasks like hate speech
or sentiment classification. We instead explore the

area of intent classification.

Regarding explainability in intent classification,
Joshi et al. (2021) uses Layer wise relevance prop-
agation (LRP) (Montavon et al., 2019) to inves-
tigate the deep learning model’s reasoning over
the ATIS dataset. However, this study only eval-
uates qualitatively based on some examples due
to a lack of ground truth explanation signal data.
To solve this problem, we introduce a benchmark
dataset using the novel silver annotation technique
and evaluate the models’ reasoning quantitatively
based on multiple metrics. Gunaratna et al. (2022)
focuses on explaining slot classification, not in-
tent.

3 Dataset

We use two intent classification benchmark
datasets, ATIS (Hemphill et al., 1990), and SNIPS
(Coucke et al., 2018). ATIS consists of a set of
text utterances and their corresponding intent la-
bels. It has 4478, 500, and 893 text utterances
with gold intent in train, development, and test
set, respectively. It consists of 21 intents about the
airline travel domain. The second dataset, SNIPS
(Coucke et al., 2018), consists of 13,084 training
utterances; the validation and test sets consist of
700 utterances each, with 100 queries per intent.
It has seven different intent classes, each belong-
ing to a different domain. Text utterances are from
domains like restaurants, movies, music, etc.

We select these datasets with a specific purpose.
ATIS has fine-grained intents, and some classes
have a low training and test set size (refer to ta-
ble 4). This imbalance enables us to evaluate the
generalizability and reasoning of the deep learn-
ing models when dealing with data scarcity. On
the other hand, the SNIPS dataset is balanced but
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consists of utterances from multiple domains. We
can use the SNIPS dataset to evaluate the model’s
reasoning for intents from diverse domains. Eval-
uating the reasoning of deep-learning-based mod-
els on both aspects gives a good analysis.

We mark word-level explanation signals in both
the ATIS and SNIPS datasets. Hence, we con-
tribute around 21k samples with explanation sig-
nals. From ATIS, we filter out the utterances with
more than one intent, and we also filter classes
in the test set but not in the train set. The aver-
age length of silver annotated explanation for the
SNIPS dataset is 3.4 words, while it is 4.2 for the
ATIS dataset.

4 Silver annotated explanations

Human annotation of word-level explanations for
intent classification is difficult. Deciding whether
original slots in the dataset should be added as an
explanation signal is subjective and generally re-
quires multiple human annotators. For example,
text utterance, Show me the flights from Pittsburgh
to Los Angeles on Thursday has gold intent of atis-
flight. In this example, Pittsburgh and Los Ange-
les are slots with slot-types source city and des-
tination city. These entities are essential to exe-
cute appropriate further actions. However, it does
not explain the intent because changing the city
names to other cities does not affect the intent of
the utterance. Generally, multiple humans anno-
tate explanation signals, which is costly and time-
consuming. Hence, we propose a method to in-
troduce word-level explanation signals automati-
cally to existing intent classification datasets con-
sisting of text utterance and gold intent. We define
our dataset as follows. N is the number of sam-
ples in the dataset, and each text sample X; has
m; tokens denoted by (w1, w2, w3, ..... Wy, ). We
add word-level explanation signals e denoted by
(€1,€2,€3, ......em,) where each e; € {0,1}. y; is
a gold intent label for every X;, directly adopted
from the original intent classification datasets. We
add these word-level explanation signals for both
ATIS and SNIPS datasets.

4.1 Using slots in dataset

ATIS and SNIPS datasets consist of slots and their
type, which provide specific conversation-related
information. Example: Text utterance "which air-
lines fly from Boston to Washington DC via other
cities" has gold intent label as ATIS-AIRLINE and

slots marked in B-I-O format as "O O O O B-
fromloc. city-name O B-toloc. city-name B-toloc.
state-code O O O". Hence "Boston", "Washing-
ton" and "DC" are the words which are marked as
slots. Although these slots provide essential enti-
ties to execute the actions, they fail to deliver an
explanation for the gold intent atis-airline. Slots
do not cover words like "airlines." These words are
essential to provide an explanation as the dataset
has other intent classes like atis-aircraft and atis-
flight, which have very close meanings. Simi-
larly, in the SNIPS dataset, text utterance Add
artist to playlist Epic Gaming has slots marked as
"O B-music-item O O B-playlist I-playlist. The
slots in this text sample are artist epic gaming,
which does not form a sufficient explanation for
gold intent AddPlaylist. Moreover, intent does not
change, even if we replace "epic gaming" with
other playlist names. These examples depict that
slots in the dataset can’t be used as a sufficient and
comprehensive explanation.

4.2 Main Verbs and Arguments

Creating silver standard explanation signals for
intent classification comes from a simple yet
significant insight. In many cases, information
for classifying the intent of the text utterance is
encoded within the main verb and its direct object.
Example: Set up an alarm for 9 AM tomorrow
has the intent set alarm and delete all the alarms
has the intent delete-alarm. Here, the word alarm
informs that action has to be performed on the
alarm, and the words set and delete, which are
main verbs, inform about a specific action to be
performed. Now, if we change the domain from
setting an alarm to setting a calendar, it is the
direct object of the main verb that denotes this
change in the domain of conversation. Example:
Set up a meeting for 9 AM tomorrow has the
intent set calendar. However, due to the diverse
structures of human language, explanation signals
might play different syntactic roles, and relying
upon just the main verb and direct object may not
provide sufficient explanation. Hence, we design
a technique that considers multiple linguistic
features using the dependency parse tree, auto-
matically deriving high-quality explanations. The
algorithm used to derive word-level explanation
signals is as follows:

Algorithm
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1. Find the dependency tree of a given text ut-
terance using the OpenlE platform.

2. Find the main predicate.

3. Travel the dependency parse tree from the
root.

4. Find children of the main predicate with re-
lation direct object, noun- subject, xcomp
(open clausal complement), obl (oblique
nominal)

5. In case of multiple obl (oblique nominal) for
root word, include the obl with part of speech
as a common noun.

6. mark these nodes as explanation signals and
level 1 traversal ends here.

7. Travel the children of nodes collected in level
1. If the child node has a relation as "com-
pound" and its part of speech is not a proper
noun, mark it as an explanation signal.

8. Include all the visited nodes in the explana-
tion

9. Remove stopwords from the explanation seg-
ment.

The algorithm starts by default by selecting the
main predicate as the explanation signal. The
main verb is not mentioned in the text utterances
like Ground Transportation at Baltimore airport.
Hence, We use the Main Predicate instead of the
main verb. It is not always necessary that the main
verb or main predicate is enough to explain the ac-
tion. Hence, we also decided to add the xcomp
of the main predicate. xcomp acts as a secondary
predicate when the main predicate does not add
much value as an explanation signal. For example,
the text utterance from the ATIS dataset, "I need
to fly from Atlanta to Denver" has the main pred-
icate predicted by the OpenlE platform as "need".
But, it does not add much value as an explana-
tion of intent. Instead, including the word "fly"
which is xcomp of the main predicate, confirms
the domain of conversation. We choose to elimi-
nate all the adjective modifiers, nominal modifiers,
and oblique nominal with part of speech as proper
nouns. These words may provide some relevant
information about the conversation but might not
be appropriate as an explanation. For example,
the text utterance Please list all cheapest flights

on United from Denver to Baltimore has gold in-
tent atis-flight. The word cheapest is an adjective
that might be essential to provide specific informa-
tion. Still, even if we change the word "cheapest"
to "costliest,"” it does not change the intent.

Even though the direct object of the main pred-
icate plays an important role, it does not necessar-
ily provide all the information about the domain of
conversation. Instead, providing only that expla-
nation signal might be misleading when two in-
tents are from different domains with similar ac-
tions. For example, "Add this item to the gro-
cery" suggests the user is talking about a grocery
item, and another statement, "Add this item to a
playlist,” indicates the user is talking about mu-
sic. Both the words grocery and playlist have an
obl dependence on the main predicate here, which
must be included to provide a sufficient and com-
prehensive explanation. Finally, we consider cases
where the main predicate might come in between,
and the subject with part of speech nouns is essen-
tial. After including all the explanation signals,
we filter the stopwords to reduce noise further. We
use Python NLTK library as a source of stopwords
!, Table 1 shows some examples of added ex-
planation signals. Figure 1 shows an example of
producing explanation signals using a dependency
parse tree.

4.3 Dataset Quality Evaluation

We evaluate the quality of silver explanation sig-
nals generated in the form of the main predicate
and its arguments. It is a time-consuming pro-
cess to evaluate all 21k samples. Hence, we se-
lect an equal number of samples for every class
and perform the human evaluation for this subset.
We provided human evaluators with only the sil-
ver annotated explanation segment instead of the
complete text. We asked them to select an ap-
propriate intent class, for example, instead of a
full-text sample Where can I watch the television
show The Private Affairs of Bel Ami ?. We pro-
vide evaluators only the silver annotated explana-
tion watch television show and ask them to select
the most appropriate intent label. Evaluators were
provided brief definitions of intent classes along
with some examples. Evaluation is done sepa-
rately for ATIS and SNIPS datasets. We randomly
selected 200 samples from both datasets. In the
selection process, we ensure no class imbalance in

"https://www.nltk.org/
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any datasets. Each sample is evaluated by three
evaluators. All the evaluators are experts in lin-
guistics and language. Two annotators are Ph.D.
candidates in linguistics; the third has completed
a master’s in English. We use three evaluators
per sample due to the numerous classes in both
datasets. Particularly, ATIS has 21 fine-grained
intent classes. Given subtle differences in mean-
ings among some classes from ATIS, relying on
one or two annotators may lead to biased or incon-
sistent evaluation scores. To mitigate subjectiv-
ity, three evaluators annotate each sample’s label.
Inter Annotator Agreement (IAA) was calculated
using Fleiss” Kappa score. IAA kappa score ob-
tained is 0.67 for the ATIS dataset and 0.74 for
the SNIPS dataset sample. Fleiss’ Kappa score
between 0.61 and 0.8 is considered to be substan-
tial agreement (Landis and Koch, 1977). We eval-
uate human evaluation accuracy against the gold
labels from original datasets. The average hu-
man accuracy obtained is 96.3% for the ATIS
dataset and 97.8% for the SNIPS dataset. All
the annotators were paid as per industry standards
and the suitability of the task.

Although most of the text samples are identi-
fied correctly by evaluators, we perform a detailed
analysis of the human evaluation. We observe
that text utterances marked incorrectly resemble
other classes in terms of their ground truth mean-
ing. For example, text utterance show me all the
Lufthansa flights between Philadelphia and Den-
ver has ground truth intent as atis-flight and de-
rived explanation using tree traversal algorithm is
show Lufthansa flights. Two out of three eval-
uators misclassified it as atis-airline. Because
Lufthansa is the name of the airline company, it
is difficult to identify the exact class among atis-
airline and atis-flight. Due to minimal distinction
in meanings, the most confused pairs of classes
in ATIS were (aits-airline, atis-flight) and (atis-
flight, atis-flight-time). For the SNIPS dataset,
SearchCreativeWork consists of text utterances re-
lated to movies and songs that resemble very
closely to classes SearchScreeningEvent and Play-
Music. For example, text utterance Find me the
song called The Budapest Beacon has ground truth
intent in SNIPS as SearchCreativeWork and the
derived explanation is Find song. All three eval-
uators marked intent as PlayMusic when provided
with an explanation part only. For SNIPS, evalua-
tors were most confused with SearchCreativeWork

and SearchScreeningEvent classes. For these text
samples, annotating correct intent may not be pos-
sible even with full-text utterances. Hence, this de-
picts that explanations derived from the main verb
and its arguments are indeed high quality.

S Experiments

5.1 Incorporating feature attribution

It is observed that ingesting feature attributions
during training helps to improve the model’s rea-
soning. We investigate if the model’s reasoning
improves by guiding it to focus on the silver anno-
tated explanation signals. Following the work of
Liu and Avci (2019), we use the attribution prior
loss, which calculates attribution values using in-
tegrated gradients (Sundararajan et al., 2017). We
define c as the total number of intent classes. Each
text utterance X; consists of m; tokens. Each to-
ken is marked with binary explanation signal ¢;.
We make slight variations in the original method-
ology. Liu and Avci (2019) uses the attribution
using the derivative of the output concerning only
one specific class, but following Jayaram and All-
away (2021), we sum over the attributions of all
the classes as specified in equation 1 for regular-
ization and use its average in equation 2. We com-
pute the average across output classes as the im-
pact of every neuron, whether positive or negative,
is integral to the model’s decision (Jayaram and
Allaway, 2021).

a; = Za{/c (h
j=1

n
LPrier(a,t) = (a; — i)’ 2)
i=1
This attribution loss is added to the regular
cross-entropy loss function used for simple clas-
sification.

L7 = L(y,p) + A) (e —t:)> ()
=1

C
L(y,p) = > —ye x log(yc) “)

Unlike Liu and Avci (2019), we do not penalize
the model based on a universal token list. Instead,
we use local explanation signals as each sample’s
target values. Hence, the value of t; € {0,1}
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within each sample X; serves as its respective set
of target values. This is done because a word that
is an explanation signal for one sample may not be
an explanation signal to another.

5.2 Experiment details

We fine tune CNN (Kim, 2014), LSTM (Hochre-
iter and Schmidhuber, 1997), bert-base-uncased
(BERT) (Devlin et al., 2019), RoBERTa-base
(RoBERTa) (Liu et al., 2019), GPT-2 (Radford
et al., 2019) models on both ATIS and SNIPS
datasets. All the models are evaluated on both
classification and explainability metrics. We cal-
culate attribution scores using integrated gradi-
ents and LIME as it performs better for explain-
ability properties than other post-hoc techniques
(Atanasova et al., 2020). For CNN, LSTM, BERT,
and RoBERTa, we evaluate performance on ex-
plainability metrics with simple model training
and models trained with joint attribution loss as
stated in equation 3. For training with joint loss,
we guide the model to focus on silver annotated
explanation signals. Attribution scores are cal-
culated using integrated gradients for joint train-
ing. We maintain a constant number of 50 steps to
calculate attribution scores using integrated gradi-
ents. Other hyperparameter details and model ar-
chitecture details are provided in appendix A

6 Evaluation

6.1 Evaluation metrics

An accuracy metric is used to evaluate the model’s
predictability. We evaluate the explainability of all
the models using plausibility and faithfulness met-
rics (DeYoung et al., 2019). Plausibility compares
the model’s reasoning with the ground truth expla-
nation. Here, we use a silver annotated explana-
tion as ground truth. Faithfulness serves as a met-
ric for evaluating the degree to which the model’s
provided explanation aligns with its actual reason-
ing.

We report the Token F1 score and IOU Fl
scores for plausibility. Token F1 score measures
the mean F1 score of a direct match between ra-
tionale derived from the model and ground truth
explanation signals. IOU F1 score allows credit
for partial matches. Intersection over Union (I0U)
metric at the token level is defined as the mea-
sure of token overlap between two spans divided
by the size of their combined token sets. It con-
siders a prediction a match if it intersects with any

ground truth rationales by more than 0.5. These
partial matches are later used to compute the F1
score (DeYoung et al., 2019). We evaluate using
the top 5 words with the highest attribution scores,
as ground truth explanations typically consist of
4-5 words. For faithfulness we evaluate models on
Comprehensiveness and Sufficiency metrics (DeY-
oung et al., 2019)

Sufficiency evaluates the extent to which the ex-
tracted rationales provide the necessary informa-
tion for a model to make decisions. If model m
predicts class j for text sample x;, then the prob-
ability of that prediction is denoted by m(z;);.
r; denotes the predicted rationale. Sufficiency is
measured as Sufficiency = m(x;); — m(r;);.
Comprehensiveness measures the importance of
the predicted rationale by evaluating the change in
prediction when the rationale is removed from the
text utterance. It is defined as:

Comprehensiveness = m(z;); —m(z; \r;); (5)

where m(z;\r;); represents the probability of pre-
dicting class j when the rationale r; is removed
from the text sample x;..

6.2 Results

We find that models perform well on intent classi-
fication but do not perform well on explainability
metrics plausibility and faithfulness. We observe
that improving the reasoning of models using reg-
ularization helps improve the model’s predictions
for the classes with scarce data. Training with at-
tribution loss results in a 3-4% improvement in
classification accuracy for both CNN and LSTM
models and a slight improvement for the BERT
and RoBERTa models on the ATIS dataset. (re-
fer to table 2). In particular, we observe that the
model’s prediction improves for classes with few
training samples. For example, atis-meal, atis-
ground-fare, and atis-flight-no etc. We believe
there is less improvement in BERT and RoBERTa
because of the strong priors obtained during pre-
training. Besides prediction, training models on
silver annotated explanations improve the mod-
els’ performance in explainability metrics. It in-
creases the token F1 score by 3-4% (Table 2 and
Table 3) for both datasets. In both datasets, BERT
and RoBERTa are observed to make more human-
like decisions. As a result, they have significantly
higher token F1 scores than CNN and LSTM.
For the ATIS dataset, performance in all explain-
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Dataset Model Accuracy Token F1 IOUF1 Comprehensiveness Sufficiency
CNN 82.32% 0.232 0.06 0.38 -0.068
CNN Joint 86.24% 0.261 0.06 0.34 -0.34
LSTM 93.23% 0.234 0.07 0.42 0.001
ATIS LSTM Joint 95.27% 0.266 0.08 0.45 -0.03
BERT 97.2% 0.315 0.11 0.49 0.11
BERT Joint 97.6% 0.346 0.12 0.45 0.06
RoBERTa 97.6% 0.323 0.11 0.49 0.15
RoBERTa Joint  97.8% 0.354 0.12 0.44 0.09
GPT-2 88.51% 0.234 0.06 0.43 0.003
GPT-2 Joint 91.63% 0.267 0.09 0.46 -0.06
CNN 97.14% 0.342 0.14 0.58 -0.075
CNN Joint 97.17% 0.366 0.14 0.52 -0.022
LSTM 97.83% 0.347 0.14 0.54 0.004
SNIPS LSTM Joint 97.86% 0.349 0.14 0.52 0.001
BERT 98.31% 0.412 0.17 0.68 0.008
BERT Joint 98.38% 0.432 0.17 0.63 0.004
RoBERTa 98.51% 0.413 0.17 0.67 0.01
RoBERTa Joint  98.57% 0.426 0.18 0.63 0.008
GPT-2 98.44% 0.402 0.17 0.69 0.007
GPT-2 Joint 98.47% 0.433 0.18 0.68 0.001

Table 2: Model performance results across different metrics. We use the integrated gradient to obtain the model’s
explanation. Model names with Joint keyword are trained with joint feature attribution loss. While, Token F1 and
IOU F1 score denotes plausibility, Comprehensiveness and Sufficiency denotes faithfulness.

ability metrics drops significantly. A large num-
ber of fine-grained classes with subtle differences
in meaning might be the reason for that. Even
though CNN and LSTM struggle with the plausi-
bility metric, they perform well in the sufficiency
metric (table 2 and 3). We also observe that joint
training the performance of models on the faith-
fulness metric. The LIME explanation has better
faithfulness than gradient-based explanations (Ta-
ble 3). This suggests the independence of all the
explainability metrics as depicted by (DeYoung
et al., 2019) and (Atanasova et al., 2020).

7 Analysis

We analyze the reasoning of models listed in table
2 using both LIME and integrated gradient expla-
nations. It is observed that most of the classifica-
tion is based on highly frequent words. Hence,
models do not give good F1 scores for skewed
datasets like ATIS (Table 4). For example, in the
ATIS dataset, text utterance At the Charlotte air-
port, how many different types of aircraft are there
for us. has gold intent atis-aircraft. To explain
gold intent, the aircraft word must be present as
an explanation. But BERT fine-tuned on ATIS

dataset relies on word airport as class atis-airport
has more training samples. Training it on silver
annotations from our dataset improves the model’s
reasoning and helps to predict the correct class.
Although the model focuses on the most frequent
terms a lot, it understands the role of the main
predicate well. As a result, the explanation of 70-
80% text utterances consists of the main predicate
in words with top 5 attribution scores in all ex-
periments. In the SNIPS dataset, all the models
perform very well but struggle with explainabil-
ity. For example, the class SearchScreeningEvent
model should focus on the words "movies," "Play"
and "theater." However, it focuses on terms like
names of the movies or actors. Due to abundant
samples, deep learning models perform well on
the SNIPS dataset but might not generalize well
across multiple domains in scarce data scenarios.

8 Conclusion, and Future work

We introduce a novel silver annotation technique
using the main predicate and arguments to anno-
tate word-level explanation signals automatically
for intent classification. Using this technique, we
augment standard intent classification datasets
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ATIS and SNIPS. Hence, we contribute a first-of-
its-kind benchmark dataset for explainability in
intent classification consisting of 21k samples. We
validate the quality of silver standard annotated
explanations by detailed human evaluation. This
approach can be adopted across diverse domains
and intents. We evaluated several models on
this dataset and found that models performing
well on intent classification do not perform well
in plausibility and faithfulness in explainability
metrics. However, ingesting feature attribution
priors improves the model’s reasoning and overall
performance.

In future work, one can attempt to improve
the model’s performance under scarce data
scenarios by training it on explanation signals.
It will be interesting to apply the concept of
main predicate and arguments to other languages
and build a multilingual benchmark dataset for
explainability in intent classification.

Limitations

We do not leverage ground truth intent to generate
explanations. Although slots in original cases are
not explanation signals in most cases, they provide
some hint of gold intent in some samples. Identifi-
cation of such cases can help to improve explana-
tions. Since our technique uses knowledge and lin-
guistic information like Parts of speech and depen-
dency relations, it may not work best with multi-
lingual settings because language structure differs
for different languages.

Ethics Statement

We use all the open-source datasets, and their use
does not harm people’s privacy using chatbots or
any conversational Al platforms. All the models
are trained on the same datasets; hence, it main-
tains people’s privacy.
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A Appendix

A.1 Model details

A.l11 CNN

We build a simple text classifier CNN model. The
architecture consists of 256 filters, 2,3 and 4-gram.
The network takes into input sequence length of
80. Following convolution layers, architecture
consists of max-pooling and softmax function lay-
ers. The network performs well with the SNIPS
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dataset and has decent performance for the ATIS
dataset. In addition to the basic network, we in-
gest feature attribution during training to provide
supervision over rationale. These feature attribu-
tions are calculated using an integrated gradient
technique.

A.1.2 LSTM

For the LSTM model, a sequence of length 80 is
passed as embeddings. The network consists of 2
fully connected layers of neurons with 32 and 32
neurons each. We also added a dropout layer to
avoid overfitting. Like the CNN model, LSTM is
also trained on joint attribution loss.

A.2 Hyperparameters details

All the training has been conducted on NVIDIA
A100-SXM4-80GB GPU. We use a batch size of
32 for all the experiments. We use the cross-
entropy loss function and the Adam optimizer for
training. For the simple fine-tuning, the value of
A is kept at 0. To fix the value of hyperparameter
)\, we extensively search the range values (1, 1010)
and select the values for which the best results are
obtained. For joint attribution training of CNN
and LSTM, X is set to 10° and 10 for the SNIPS
dataset. For the ATIS dataset, A values are set as
108 for both CNN and LSTM models. The ini-
tial learning rate for BERT is 4e-5, and 0.001 for
both CNN and LSTM. BERT was trained for 2,
CNN for 10, and LSTM for five epochs for both
datasets. All the training details for the Roberta
and GPT-2 model are the same as those for BERT.
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Dataset Model Token F1 IOUF1 Comprehensiveness Sufficiency

CNN 0.196 0.03 0.42 -0.072
CNN Joint 0.228 0.03 0.38 -0.37
LSTM 0.182 0.05 0.44 -0.06
ATIS LSTM Joint 0.203 0.05 0.47 -0.09
BERT 0.26 0.09 0.53 0.09
BERT Joint 0.298 0.1 0.49 0.05
RoBERTa 0.253 0.09 0.51 0.1
RoBERTa Joint 0.302 0.11 0.49 0.06
CNN 0.33 0.14 0.62 -0.081
CNN Joint 0.36 0.14 0.55 -0.085
LSTM 0.33 0.14 0.55 0.001
LSTM Joint 0.34 0.14 0.57 -0.42
SNIPS BERT 0.37 0.16 0.72 0.005
BERT Joint 0.4 0.17 0.69 0.002
RoBERTa 0.36 0.16 0.7 0.2
RoBERTa Joint 0.39 0.17 0.63 0.03

Table 3: Model performance results across different metrics. Here, LIME is used to obtain the model’s explanation.
Model names with Joint keyword are trained with joint feature attribution loss

Class names precision recall F1 score samples
atis-abbreviation 0.94 1.0 0.97 33
atis-aircraft 0.8 0.89 0.84 9
atis-airfare 0.77 1.00 0.87 48
atis-airline 0.9 1.0 0.95 38
atis-airport 0.95 1.0 0.97 18
atis-capacity 1.00 0.52 0.69 21
atis-city 1.00 0.67 0.8 6
atis-distance 0.77 1.00 0.87 10
atis-flight 0.99 0.99 0.99 632
atis-flight-no 1.00 0.38 0.55 8
atis-flight-time 0.5 1.00 0.67 1
atis-ground-fare 1.00 0.57 0.73 7
atis-ground-service 0.92 1.00 0.96 36
atis-meal 1.00 0.33 0.5 6
atis-quantity 0.25 1.00 0.4 3

Table 4: BERT model class-wise performance when fine-tuned on ATIS dataset. Column samples denote the
number of samples for that class.
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