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Abstract

Self-improvement methods enable large lan-
guage models (LLMs) to generate solutions
themselves and iteratively train on filtered,
high-quality rationales. This process proves
effective and reduces the reliance on human
supervision in LLMs’ reasoning, but the per-
formance soon plateaus. We delve into the pro-
cess and find that models tend to over-sample
on easy queries and under-sample on queries
they have yet to master. As iterations proceed,
this imbalance in sampling is exacerbated, lead-
ing to a long-tail distribution where solutions
to difficult queries almost diminish. This phe-
nomenon limits the performance gain of self-
improving models. A straightforward solution
is brute-force sampling to balance the distribu-
tion, which significantly raises computational
costs. In this paper, we introduce Guided Self-
Improvement (GSI), a strategy aimed at im-
proving the efficiency of sampling challenging
heavy-tailed data. It leverages Socratic-style
guidance signals to help LLM reasoning with
complex queries, reducing the exploration ef-
fort and minimizing computational overhead.
Experiments on four models across diverse
mathematical tasks show that GSI strikes a
balance between performance and efficiency,
while also being effective on held-out tasks1.

1 Introduction

Large language models (LLMs) have demonstrated
impressive ability in performing complex reasoning
tasks (Wei et al., 2022b; Kojima et al., 2022; Zhao
et al., 2023). While fine-tuning models on curated
data can further boost performance, it relies heav-
ily on human supervision, limiting scalability and
generalization (Cobbe et al., 2021). To address this,
the “self-improvement” paradigm emerges, where

∗ Equal contribution. ‡ Work done during internship at
Meituan. † Corresponding author.

1 Codes are publicly available at https://github.com/Yiwen-
Ding/Guided-Self-Improvement.
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Figure 1: Illustration of distribution during the self-
improvement sampling process. Top: The long-tail ef-
fect intensifies with iterative training on self-generated
data. The low-probability data begins to diminish, lead-
ing to tail narrowing. Bottem: Guided sampling bal-
ances the distribution by improving tail data sampling
efficiency.

models generate multiple reasoning paths, filter out
incorrect responses and fine-tune themselves on
their own outputs without human intervention (Ze-
likman et al., 2022; Gülçehre et al., 2023; Huang
et al., 2023; Singh et al., 2024; Yuan et al., 2024).

Despite the benefits of self-improvement, its per-
formance typically reaches a ceiling after a few it-
erations (Wu et al., 2024). We perform preliminary
experiments (§ 4) and find that in reasoning tasks,
the most significant gains from self-improvement
occur in the first iteration, while subsequent itera-
tions encounter performance bottlenecks or even
degradation (Figure 2). Similar performance bottle-
necks in synthetic data have also been observed in
text generation (Shumailov et al., 2023) and image
synthesis (Alemohammad et al., 2024).

Further, we delve into the self-improvement pro-
cess and conduct an in-depth analysis (Figure 3) to
investigate the underlying causes behind the per-

10627

https://github.com/Yiwen-Ding/Guided-Self-Improvement
https://github.com/Yiwen-Ding/Guided-Self-Improvement


formance bottlenecks. On the one hand, complex
problems with lengthy reasoning chains tend to
amplify hallucinations, making it difficult for mod-
els to explore the vast search space and sample
correct rationales (Lightman et al., 2024; Zhang
et al., 2023; Xie et al., 2023; Xi et al., 2024). Con-
sequently, the models tend to over-sample easy
queries and under-sample queries they have yet
to master (Tong et al., 2024). On the other hand,
as iterations proceed, this imbalance in sampling
is exacerbated, leading to a long-tail distribution
where solutions to difficult queries almost disap-
pear (Figure 1). This situation is also referred to
as tail narrowing or tail cutting in previous studies
(Dohmatob et al., 2024b; Shumailov et al., 2023).
As a result, the model’s self-improvement is lim-
ited, since difficult examples are also crucial for
further training (Liu et al., 2024).

To address this imbalance, a common approach
is to allocate more sampling trials to under-
sampled, challenging queries (Tong et al., 2024),
but this can be considerably more costly. In
this paper, we propose Guided Self-Improvement
(GSI), an efficient method that leverages interactive
guidance signals inspired by the Socratic method
(Chang, 2023; Dong et al., 2023b). Specifically,
our approach introduces an additional resampling
phase, termed distribution re-balancing for diffi-
cult queries, which is applied after the generation
step in the self-improvement process. During this
phase, we incorporate targeted guidance signals
derived from oracle answers, stepwise rationales,
and strong teacher supervision. These signals help
to narrow the sampling space, reduce sampling
difficulty, and minimize hallucinations during rea-
soning (Xie et al., 2023; Xi et al., 2024). As a
result, GSI enables more effective exploration, in-
creases solution coverage for challenging queries
(Bansal et al., 2024), and mitigates the issue of tail
narrowing during the sampling process.

We perform experiments across four models and
six mathematical reasoning tasks, including arith-
metic reasoning, abstract algebra, and formal logic.
The results demonstrate that GSI mitigates the per-
formance bottlenecks of self-improvement while
maintaining computational efficiency. Further anal-
ysis shows that this method leads to a more bal-
anced solution distribution and improved model
generalization across multiple reasoning tasks. In
addition to natural language reasoning, our method
has also been proven effective in program-based
reasoning (Chen et al., 2023).

Our contributions are summarized as follows:

• We conduct an in-depth study of the self-
improvement process, revealing the performance
bottlenecks driven by a long-tail distribution of
solutions, which results from increasingly imbal-
anced data sampling.

• To efficiently mitigate the problem of tail narrow-
ing, we introduce the Guided Self-Improvement
(GSI) method that employs Socratic-style guid-
ance signals to assist models in exploring solu-
tions for challenging queries.

• We validate our strategy through comprehensive
experiments on four backbone models across six
mathematical reasoning tasks, demonstrating the
effectiveness and efficiency of GSI.

2 Related Work

2.1 Self-improvement for LLMs
Self-improvement methods, where models refine
themselves using self-generated data, have proven
effective in enhancing problem-solving abilities
without human intervention (Huang et al., 2023;
Zelikman et al., 2022). To ensure the reliability
of this process, the generated data is typically fil-
tered using external supervision signals. These
signals can be binary rewards, such as correctness
checks based on reference answers (Yuan et al.,
2023; Zelikman et al., 2022; Tong et al., 2024)
or compiler execution feedback (Haluptzok et al.,
2023). Alternatively, more nuanced approaches
involve scoring (Gülçehre et al., 2023) or rank-
ing systems (Dong et al., 2023a), which may be
generated by the model itself (Yuan et al., 2024)
or external reward models (Hosseini et al., 2024;
Qi et al., 2024). Some methods adopt weaker su-
pervision signals, such as majority voting across
multiple outputs (Huang et al., 2023).

Once filtered, the high-quality data supports post-
training through methods like SFT (Zelikman et al.,
2022; Liang et al., 2024) or preference-based tech-
niques like Direct Preference Optimization (DPO,
Yuan et al., 2024). This process is often iterative,
allowing models to continually generate new data,
filter it, and use it to refine their performance fur-
ther (Zelikman et al., 2022; Gülçehre et al., 2023;
Yuan et al., 2024).

2.2 Distribution Shift in Synthetic Data
The scaling law reveals a predictable increase in
model performance as the volume of training data
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Figure 2: Iterative performance in the self-improvement. Experiments are conducted on GSM8K with varying
sampling numbers k. Solid markers show the performance of vanilla self-improve, with the solid line fitting
these points. The performance plateaus after a few iterations. Hollow markers represent the performance after
supplementing tail data, with a dashed line trend. It balances the distribution and alleviates performance bottlenecks.

grows (Kaplan et al., 2020). With the development
of LLMs, the demand for vast amounts of high-
quality data has surged, leading researchers to rely
increasingly on synthetic data. These methods have
proven effective across various tasks, from general-
purpose chatbots (Dubey et al., 2024; Adler et al.,
2024) to specialized fields such as mathematical
reasoning (Yue et al., 2024; Yu et al., 2024).

However, the synthetic data also introduces
the risk of model collapse, where their perfor-
mance degrades due to recursive training on model-
generated data (Shumailov et al., 2023; Alemoham-
mad et al., 2024). This phenomenon arises from
distribution shift: as models favor high-probability
outputs, their results become increasingly uniform,
leading to reduced variance. Over time, this shift
manifests in the declining diversity of model re-
sponses (Guo et al., 2024b), the disappearance of
tail behaviors (Dohmatob et al., 2024b), and the am-
plification of systematic bias (Yu et al., 2023). Wu
et al. (2024) have also observed similar degradation
in self-improvement loops, which aligns with the
core argument of this paper.

3 Preliminaries

3.1 Formulation of Self-improvement
Given a large language model M0 and the origi-
nal training dataset D = {(xi, ri, yi)}Ni=1, where
xi is the problem, ri is the chain-of-thought ra-
tionale (Wei et al., 2022b) and yi represents the
final answer. Each rationale ri consists of sev-
eral intermediate steps, i.e., ri = [ri,1, . . . , ri,L],
where L denotes the number of steps. The self-
improvement process enhances the model’s rea-
soning ability through iterative refinement over T
cycles. Each iteration t ∈ [1, T ] consists of two
main steps: Generate and Improve.

Generate step. At iteration t, the previous model
Mt−1 generates multiple reasoning paths for each
problem. Specifically, we allocate k sampling
times to each query xi ∈ D:

(r̂i, ŷi) = Mt−1(xi)

The newly generated data points form a set D′
=

{(xi, r̂ji , ŷ
j
i ) | xi ∈ D, j = [1, k]}. Each candidate

solution ŷji is evaluated by a binary reward func-
tion rf(yi, ŷi) ∈ {0, 1}, which verifies correctness
based on ground-truth answers yi. Only correct
solutions with rf(·) = 1 are filtered to form the
high-quality dataset Dt for the current iteration t.

Improve step. In the t-th iteration, the model
Mt is fine-tuned on the self-generated high-quality
dataset Dt. The fine-tuning objective is to minimize
the negative log-likelihood (NLL) loss:

LSFT = −E(x,r)∼Dt

L∑

l=1

logM(rl | r<l, x).

By minimizing LSFT, the model iteratively im-
proves its ability to generate correct rationales, and
this process is repeated for T iterations to achieve
self-improvement. Note that in the first iteration,
we directly fine-tune M0 on the original dataset D
to obtain M1.

3.2 Biased Sampling and Tail Effect

In the self-improvement sampling process, there is
a tendency to select higher-quality and more accu-
rate data, which introduces a phenomenon known
as sampling bias (Alemohammad et al., 2024; Shu-
mailov et al., 2023). This bias often results in the
truncation or narrowing of low-probability “tails”
in the data distribution.
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Figure 3: Comparison of data distributions between the self-generated and original (SFT) datasets. (a) Difficulty
distribution across five levels in MATH tasks, with level 1 representing the easiest and level 5 the most difficult.
The self-generated data has a lower proportion of difficult problems. (b) Length distribution indicates that the
self-generated data tends to be shorter compared to the original dataset. (c) Perplexity diagram of each training
sequence measured with the Llama3-8B, shows that the tails in the self-generated data are diminished.

To illustrate the effects of sampling bias, con-
sider a one-dimensional Gaussian distribution
X0 ∼ N (µ, σ2). Let λ ∈ [0, 1] represent the sam-
pling bias parameter and biased sampling from
N (µ, λσ2). When λ = 1, the sampling is un-
biased, maintaining the original variance. Con-
versely, when λ = 0, the sampling is derived from
the modes of the generative distribution Mt with
zero variance.

Initially, the tails of the distribution, which repre-
sent low-probability data, begin to diminish due to
their low likelihood of being sampled. As the itera-
tion continues, the heavy-tailed data is increasingly
excluded, causing a shift in the overall distribution.
This phenomenon is referred to as tail narrowing or
tail cutting, leading to a more peaked distribution
(Dohmatob et al., 2024b).

4 Performance Bottleneck and Tail
Narrowing in Self-Improvement

Despite extensive research into self-improvement
methods (Gülçehre et al., 2023; Singh et al., 2024),
the performance dynamics across successive train-
ing iterations remain underexplored. To this end,
we conduct experiments across four backbone mod-
els to investigate the effects of sampling and tail
data during iterative training. Tail data refers to
samples for which the model rarely generates cor-
rect solutions during sampling. These samples lie
in the “long tail" of data distributions.

Performance trends. To uncover the relation-
ship between performance trends with sampling,
we vary the number of sampling k. Figure 2 re-
veals the following: (1) Lower sampling times (e.g.,
k = 1 or k = 2) degrade model performance, lead-
ing to negative gains. Llama2-7B, Mistral-7B, and

Llama3-8B underperform compared to SFT on the
original dataset (iteration 1). This decline stems
from the models’ weaker reasoning abilities, which
limit their coverage of challenging queries. Con-
sequently, the models tackle only basic problems,
resulting in a degradation or collapse of reasoning
ability (Shumailov et al., 2023; Dohmatob et al.,
2024a). (2) With larger sampling numbers k, per-
formance improves across multiple iterations. The
most notable gains occur during the first iteration,
as shown by the green and orange solid lines in Fig-
ure 2. However, after the third iteration, progress
halts, eventually reaching a performance plateau.

Impact of tail data. As previously discussed,
merely scaling the number of sampling eventu-
ally encounters performance bottlenecks. However,
challenging low-probability samples, often referred
to as tail data, are often considered more crucial
for improving model performance (Sorscher et al.,
2022; Liu et al., 2024; Tong et al., 2024).

To investigate the impact of tail data, we conduct
additional experiments targeting these difficult ex-
amples. For queries that do not yield a correct
response after k sampling attempts, we supplement
them with a golden rationale, ensuring that every
query has at least one practically correct response
and effectively rebalancing the long-tail distribu-
tion. We use hollow markers to represent the perfor-
mance with tail data. As shown in Figure 2, across
different numbers of sampling and model variants,
the performance represented by the dashed line
exceeds that of the solid line representing vanilla
self-improve. The results demonstrate that rebal-
anced data helps mitigate performance degradation
under a small number of sampling attempts (e.g.,
k = 1 or k = 2). Moreover, as k increases, a
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larger number of sampling alleviates performance
plateaus and boosts model efficacy to some extent.
This study highlights the value of solutions to chal-
lenging queries in overcoming the limits of finite
and progressively biased sampling.

Emergence of tail narrowing. To analyze the
distributional characteristics of tail data, we ana-
lyze three dimensions: difficulty, response length,
and perplexity, revealing the differences between
self-generated and original data. Figure 3a shows
that model-generated data tends to be at a low
level and simpler compared to the original MATH
dataset, which contains more challenging queries.
Consistently, DART-Math (Tong et al., 2024) also
identifies a synthesis bias towards easy queries.

Using response length as a complexity indicator,
as suggested by Fu et al. (2023), we find that self-
generated responses are generally shorter, peaking
around 200 tokens (Figure 3b). This indicates a
bias towards simplicity and a lower proportion of
complex data.

From a semantic perspective, we computed the
perplexity based on Llama3-8B. As shown in Fig-
ure 3c, the self-generated data has lower perplexity,
indicating a shift toward more probable and coher-
ent tokens. This reduces the occurrence of rare,
complex and diverse tokens in the tail.

These observations indicate a diminishing trend
of tail data, termed Tail Narrowing (Dohmatob
et al., 2024b). In each iteration, the distribution
progressively narrows, hindering performance to
challenging queries.

5 Guided Self-Improvement

To mitigate the observed tail-narrowing phe-
nomenon, a straightforward solution is to increase
the sampling trials for tail data. However, directly
tackling these difficult queries from scratch of-
ten results in low success rates and higher costs
due to repeated failed attempts. Drawing from
Socratic-style education (Chang, 2023; Dong et al.,
2023b), we introduce guidance-based exploration
techniques to improve sampling efficiency, such as
learning from demonstrations (Schaal, 1996; Sub-
ramanian et al., 2016). We provide the model with
tailored assistance in structured contexts, enabling
it to address difficult queries more effectively. The
following paragraphs outline four guiding strate-
gies we propose.

Answer-driven. This strategy incorporates the
ground-truth answer yi along with the input query
xi as context to guide the generation process. It
helps the model better align with the expected solu-
tion, particularly for challenging queries (Zelikman
et al., 2022). Formally, at each iteration t, instead
of inputting only xi into the model Mt−1, we ex-
tend the prompt by appending yi as a hint:

(r̂i, ŷi) = Mt−1(xi, hint(yi)).

This approach helps the model focus on the reason-
ing process behind the answer, reducing the overall
difficulty of the task.

Rationale-driven. In this strategy, we further ex-
tend the input by introducing a rationale ri, which
helps the model derive the correct reasoning pro-
cess. Unlike the answer-driven method, providing
a rationale offers a more detailed reference for the
model to follow, narrowing the exploration space
of reasoning paths (Yang et al., 2024). Formally,
at iteration t, the input to the model Mt−1 is aug-
mented as follows:

(r̂i, ŷi) = Mt−1(xi, hint(ri)).

This approach enables the model to handle queries
it has yet to master and ensures a higher coverage of
solved problems. Importantly, it alleviates the hal-
lucinations when the model tries to provide reason-
ing paths for problems it doesn’t fully understand
(Lanham et al., 2023), improving the reliability of
generated data.

Interactive sampling. Inspired by previous work
in the area of Interactive RL (Subramanian et al.,
2016; Suay and Chernova, 2011), we introduce
feedback from a stronger model Ms after the model
Mt−1 fails. Instead of providing hints along with
the query, this dynamic process ensures that the
model can explore its own solution before receiving
external guidance. Formally, after the model Mt−1

generates an incorrect answer, we re-sample by
giving it both its prior incorrect output and the
feedback fi from Ms as additional context:

(r̂errori , ŷerrori ) = Mt−1(xi),

fi = Ms(xi, ri, yi, r̂
error
i ),

(r̂i, ŷi) = Mt−1(xi, r̂
error
i , fi).

This feedback includes an analysis and correction
of the model’s errors, reducing its reliance on the
correct answer. Through this interactive process,
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we balance exploration and correction, enabling
the model to learn from its mistakes without overly
restricting its reasoning path.

State reset. Drawing inspiration from the con-
cept of state reset, i.e., going back to intermedi-
ate states during problem-solving to refine the ap-
proach (Chang et al., 2024; Xi et al., 2024), we
adopt a strategy where the model is guided step by
step with partial rationales. Instead of supplying
the full rationale ri immediately, after l incorrect
attempts, the model is provided with the preced-
ing reasoning steps r<l from ri = [ri,1, . . . , ri,L],
gradually narrowing down the exploration space:

(r̂i, ŷi) = Mt−1(xi, hint(ri,<l)).

This method reduces the difficulty of queries at a
fine-grained level, relieving the model of cogni-
tive overload while still allowing flexibility in the
model’s solution. Although it increases the num-
ber of attempts, the incremental hint helps identify
the threshold where the model can solve problems
independently with minimal guidance.

6 Experiments

6.1 Experimental Setups

Models. We conduct experiments using four
widely adopted foundation models, including
Llama2-7B-Base (Touvron et al., 2023), Llama3-
8B-Base (Dubey et al., 2024), Deepseek-Math-
7B-Base (Shao et al., 2024), and Mistral-7B-v0.3
(Jiang et al., 2023). For the stronger model in the
interactive sampling process, we employ Llama3-
70B-Instruct (Dubey et al., 2024).

Datasets. We utilize six math reasoning datasets.
These include arithmetic reasoning datasets such
as GSM8K (Cobbe et al., 2021), AQuA (Ling
et al., 2017), MathQA (Amini et al., 2019) and
SVAMP (Patel et al., 2021), as well as a more chal-
lenging dataset MATH (Hendrycks et al., 2021).
We also include TheoremQA for abstract algebra
and formal logic. To evaluate generalization, we
choose AQuA, GSM8K, MATH as held-in datasets
and MathQA, SVAMP, TheoremQA as held-out
datasets. To ensure consistency in answer format
across different datasets, we utilize the unified data
provided by the MathInstruct dataset (Yue et al.,
2024) and follow its train-test splits. More dataset
statistics can be found in Appendix A.

Implementation details. Following Huang et al.
(2023) and Singh et al. (2024), we fine-tune the
pre-trained model M0 during the Improve Step of
each iteration to prevent overfitting. We set the
iteration number T = 4 and sampling number k =
8. To mitigate the tail-narrowing effect, we identify
queries with less than a 50% probability of yielding
correct completions as heavy-tailed data. For the
tail data, we apply the GSI strategy, resampling up
to k times until the query no longer falls into the
tail data. All experiments are performed on 8 A100-
80GB GPUs. We run the SFT and Improve Step for
1 epoch. The learning rate is set to 1× 10−5. For
sampling and evaluation, we leverage the vLLM
(Kwon et al., 2023) framework, setting a maximum
of 1024 output tokens. The temperature is set to
0.7 during sampling and 0 during evaluation. The
prompt templates are detailed in Appendix D.

Baselines. To evaluate the impact of GSI on dis-
tributional adjustments, we compare it against SFT
and Self-improve variants. We also include base-
lines with significantly higher sampling trials than
GSI.

• SFT: Fine-tuning on the original dataset for 1
epoch, which corresponds to the first iteration of
self-improvement.

• Self-Improve (k = 8): In each iteration, we
sample k = 8 completions per query from the
original dataset, filter out correct reasoning paths,
and then improve on the self-generated data.

• Brute-Force Self-Improve (k = 64 or k = 128):
Based on Vanilla Self-Improve (k = 8), we add a
distribution re-balancing stage for tail data in
each iteration. It performs non-guided brute-
force sampling of tail-end data up to k times
without additional guidance.

6.2 Main Results
The main results are shown in Table 1. We have
the following key findings:

Re-balancing tail data improves coverage and
performance of self-improvement. Compared
to SFT, vanilla self-improve with k = 8 boosts
reasoning on held-out datasets but shows only
marginal gains, with performance bottlenecks and
degradation on held-in datasets. This aligns with
our observation (§ 4), where we identify tail nar-
rowing as the primary cause. To mitigate this,
Brute-Force Self-Improve (k = 64 or k = 128)
performs additional sampling on tail data, which
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Models Methods Sample
Budget

Coverage
Held-in Datasets Held-out Datasets

Avg. AQuA GSM8K MATH Avg. MathQA SVAMP Thm.QA

Llama2-7B

SFT - - 21.00 27.17 31.31 4.52 21.08 22.08 36.80 4.38
SI (k = 8) 0.24M 52.6% 21.53 25.59 33.13 5.86 24.46 27.37 39.50 6.50
Brute-Force SI (k = 64) 1.11M 77.1% 23.73 29.53 35.86 5.80 23.42 25.76 39.50 5.00
Brute-Force SI (k = 128) 1.67M 80.7% 23.84 27.17 37.98 6.36 24.22 26.57 40.60 5.50
Guided Self-Improve (k = 8)
+ Answer-driven 0.37M 99.0% 23.44 28.34 35.94 6.04 25.27 25.83 43.60 6.38
+ Rationale-driven 0.34M 99.9% 24.32 30.32 36.16 6.48 25.68 28.11 41.30 7.63
+ Interactive Sampling 0.36M 96.3% 25.00 30.71 37.83 6.46 26.25 27.84 43.40 7.50
+ State Reset 0.38M 82.0% 25.91 31.10 40.18 6.44 26.79 29.45 43.30 7.63

Llama3-8B

SFT - - 37.27 39.37 57.47 14.96 38.68 44.29 63.00 8.75
SI (k = 8) 0.24M 68.6% 36.87 39.76 59.14 11.70 39.09 45.63 62.40 9.25
Brute-Force SI (k = 64) 0.85M 86.4% 38.16 38.98 61.11 14.40 38.30 45.86 60.90 8.13
Brute-Force SI (k = 128) 1.26M 88.7% 37.55 41.34 61.64 9.68 39.32 45.90 62.80 9.25
Guided Self-Improve (k = 8)
+ Answer-driven 0.31M 98.5% 38.71 42.52 59.82 13.80 40.15 46.85 63.60 10.00
+ Rationale-driven 0.29M 99.8% 39.14 42.91 60.27 14.24 41.08 47.94 65.30 10.00
+ Interactive Sampling 0.31M 97.3% 39.34 42.52 60.05 15.46 41.12 47.24 64.50 11.63
+ State Reset 0.32M 90.2% 41.64 46.46 62.62 15.54 41.33 49.25 65.00 9.75

DeepSeek-
Math-7B

SFT - - 50.01 60.63 60.73 28.66 21.15 21.61 37.10 4.75
SI (k = 8) 0.24M 79.8% 52.22 56.69 68.92 31.06 49.63 64.26 67.50 17.13
Brute-Force SI (k = 64) 0.64M 91.5% 53.95 57.87 70.89 33.08 50.92 65.36 70.40 17.00
Brute-Force SI (k = 128) 0.93M 92.2% 52.43 59.45 72.02 25.82 48.76 64.69 68.20 13.38
Guided Self-Improve (k = 8)
+ Answer-driven 0.30M 99.5% 53.83 61.02 70.05 30.42 51.80 64.32 72.70 18.38
+ Rationale-driven 0.29M 99.7% 53.71 58.66 71.65 30.82 51.20 64.02 72.20 17.38
+ Interactive Sampling 0.30M 96.9% 55.67 61.81 72.63 32.56 51.69 66.83 71.10 17.13
+ State Reset 0.31M 93.6% 55.04 59.45 72.78 32.90 51.85 64.59 72.70 18.25

Mistral-7B

SFT - - 28.27 31.10 44.96 8.74 21.08 22.08 36.80 4.38
SI (k = 8) 0.24M 61.9% 25.22 27.95 40.56 7.14 26.96 33.84 43.30 3.75
Brute-Force SI (k = 64) 0.87M 82.5% 28.23 28.74 47.16 8.80 30.16 34.94 49.90 5.36
Brute-Force SI (k = 128) 1.27M 85.1% 28.32 30.32 45.79 8.84 28.81 33.03 49.40 4.00
Guided Self-Improve (k = 8)
+ Answer-driven 0.33M 98.3% 28.09 34.65 42.00 7.62 29.70 34.34 49.90 4.88
+ Rationale-driven 0.31M 99.7% 29.13 32.68 46.17 8.54 32.14 35.24 53.80 7.38
+ Interactive Sampling 0.31M 96.4% 29.04 32.28 45.87 8.98 30.22 35.04 50.00 5.63
+ State Reset 0.34M 86.7% 31.23 33.07 50.95 9.68 30.21 34.94 50.20 5.50

Table 1: Main results on six math reasoning tasks. The best result for each dataset is highlighted in bold, while the
second-best result is marked with underline. Results marked in blue indicate average scores. Thm.QA denotes the
TheoremQA task. Coverage refers to the number of unique problems solved in the Generate Step, while Sample
Budget indicates the total number of sampling times during this step. “SI” refers to Self-Improve. The baselines
include SFT, the vanilla Self-Improve, and Brute-Force Self-Improve.

re-balances the distribution. This adjustment signif-
icantly enhances both coverage and overall perfor-
mance, with further improvements as the number
of samples increases. For example, in Llama2-
7B, coverage increases from 52.6% to 80.7%, with
performance improving from 21.53 to 23.84. In
Mistral-7B, the rebalancing also reverses the ob-
served performance decline. Thus, incorporating a
resampling stage for challenging, heavy-tailed data
proves essential.

GSI outperforms brute-force sampling with bet-
ter efficiency. To optimize the amount of sam-
pling computation required for self-improvement,
we analyze the sampling efficiency during the Gen-
erate step phase. For each query xi ∈ D at it-

eration t, we perform ki,t sampling operations.
The cumulative sample budget across all queries
and T iterations is defined as: Sample Budget =∑

xi∈D
∑T

t=1 ki,t.

When scaling resampling operations from 64 to
128, we observe that the improvement in sampling
coverage becomes slower, and the performance
gains diminish despite the additional computational
costs. This suggests that the model may get trapped
in vast search space, particularly when dealing with
more challenging queries. In contrast, our strat-
egy GSI, which leverages Socratic-style guidance,
achieves more compute-efficient sampling. It out-
performs brute-force sampling while using only
one-third of the sampling budget. Specifically, on
Llama3-8B, the state reset strategy performs 0.32M
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Figure 4: Comparison of average performance on six
math tasks using PoT. The percentage of improvement
is significant in the held-in datasets.

sampling, which is only one-third of the budget re-
quired for brute-force sampling. Moreover, the
model shows improved held-in performance from
37.55 to 41.64 and generalizes well to held-out
datasets.

The effectiveness of different strategies.
Among the four strategies, the state reset strategy,
which samples from different initial states and
generates diverse reasoning paths, performs
relatively better. However, the effectiveness of
different strategies depends on the model’s inherent
capabilities. For example, the answer-driven
strategy, which provides only the correct value and
requires the model to reason backward to generate
a rationale, demands advanced reasoning abilities
(Zelikman et al., 2022). Therefore, this approach
yields modest performance gains on weaker
models such as Llama2-7B. Further investigation
is needed to explore how different models can be
optimally paired with various strategies.

7 Discussion

7.1 Effectiveness on PoT Reasoning
To fully exploit the potential of diverse reasoning
processes, we extend our investigation to Program-
of-Thought (PoT, Chen et al., 2023) prompting.
In the self-improvement process, we utilize PoT
rationales for training, then filter data and evalu-
ate performance based on compiler-executed re-
sults. As shown in Figure 4, four strategies consis-
tently outperform the self-improvement baseline in
program-based reasoning. The state reset strategy
on the DeepSeek-Math-7B model shows notable

Models Methods Held-in Held-out

DeepSeek-
Coder-1.3B

SFT 10.66 14.75
Vanilla Self-Improve 12.61 13.98
GSI (Answer-driven) 13.20 15.62
GSI (Rationale-driven) 14.99 16.37
GSI (Interactive) 14.13 15.94
GSI (State Reset) 16.04 17.38

CodeLlama
-13B

SFT 23.43 28.15
Vanilla Self-Improve 27.85 29.99
GSI (Answer-driven) 31.11 31.57
GSI (Rationale-driven) 31.38 30.13
GSI (Interactive) 32.27 33.77
GSI (State Reset) 33.04 31.68

Table 2: Effectiveness of GSI on different sizes of mod-
els. The improvement becomes more pronounced as the
model size increases.

relative gains, with an improvement of up to 8.7%.
Similarly, the reference-driven strategy leads to a
performance boost of 8.5%.

7.2 Performance of Different Model Sizes

To further explore, we investigate the effectiveness
of the proposed strategy across different model
sizes. We choose a smaller model, DeepSeek-
Coder-1.3B (Guo et al., 2024a), and a larger model,
CodeLlama-13B (Rozière et al., 2023), in our ex-
periments. As shown in Table 2, DeepSeek-Coder-
1.3B exhibits only marginal improvements when
applying the answer-driven strategy compared to
the others. The limited improvement may be at-
tributed to the nature of the strategy, which requires
the model to reverse-engineer a solution from a
given true answer (Zelikman et al., 2022). While
the final result is provided, deriving a good justifi-
cation can be challenging for smaller models (Wei
et al., 2022a). However, when scaling up to the
13B model, we observe a pronounced performance
boost. The results suggest that GSI is more effec-
tive with larger models, which are equipped with
advanced reasoning abilities.

7.3 Short-cutting in Generated Rationales

This experiment explores how different guiding
strategies influence the quality of rationales. In-
spired by Zelikman et al. (2022), we focus on the
number of rationale steps. Figure 5 shows that, in
most cases, the model’s reasoning steps align with
the original annotated steps. However, under the
rationale-driven strategy, the model is more likely
to generate fewer steps than others. Further analy-
sis reveals that providing rationales can cause the
model to skip reasoning steps, a phenomenon we
refer to as “Hint Short-cutting” (Zelikman et al.,
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Figure 5: Comparison of the number of rationale steps
generated by the model relative to the number of steps
used in the ground truth. The red box highlights the
occurrence of skip steps in the rationale-driven strategy.

2022). This tendency may weaken the model’s
ability to think step-by-step, potentially hindering
iterative training (Dohmatob et al., 2024a). We
show an example in Appendix B, where the model
skips critical steps.

7.4 Impact of the Sampling Hyperparameter

We investigate the impact of the hyperparameter k,
which determines the number of sampling times al-
located to each query. As shown in Table 3, increas-
ing k yields substantial performance improvements.
Notably, the most significant improvements occur
up to k = 8, after which the gains begin to plateau.
Therefore, we choose k = 8 as a practical con-
figuration, achieving a balanced trade-off between
computational cost and performance gains.

8 Conclusion

In this work, we delve into the performance bottle-
necks in the self-improvement process of LLMs,
identifying the issue of tail narrowing caused by
progressively imbalanced data sampling. To mit-
igate this, we propose Guided Self-Improvement
(GSI), a new method that incorporates a distribution
re-balancing phase and Socratic-style guidance to
enhance solution coverage for challenging queries.
Experimental results across multiple models and
mathematical reasoning tasks demonstrate the ef-
fectiveness of this method in improving reasoning
performance while maintaining computational effi-
ciency. We believe GSI offers a promising direction
for enhancing the scalability and generalization of
self-improving models in the future.

Models Setting AQuA GSM8K MATH

Llama3-8B

k = 2 40.95 56.94 13.20
k = 4 42.91 61.49 15.28
k = 8 46.46 62.62 15.84
k = 16 47.24 62.32 15.64

Mistral-7B

k = 2 29.92 40.10 6.82
k = 4 31.49 47.46 8.76
k = 8 33.07 50.95 9.68
k = 16 33.46 50.19 9.82

Table 3: Performance of GSI (State Reset) with varying
values of k.

Limitations

While our work introduces a new approach to mit-
igating the tail narrowing through GSI, there are
still several limitations. First, for computational
efficiency, we do not scale the sampling in each
iteration. However, we conduct a series of exper-
iments (§ 4) to provide insights into how scaling
the number of sampling can boost performance.
Second, following prior self-improvement works,
we use binary signals for supervision based on fi-
nal answer checks. However, poor and spurious
rationales while yielding correct answers may be
utilized, which could hinder the improvement of
reasoning ability. Filtering low-quality reasoning
paths and ensuring the quality of self-generated
data remains an area for further investigation.
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Appendix

A Dataset Details

AQuA GSM8K MATH MathQA SVAMP Thm.QA
# CoT Train 3000 3000 4000 - - -
# PoT Train 1961 3000 4000 - - -
# Test 254 1319 5000 2985 1000 800

Table 4: Dataset statistics of the train and test set.

For the training set, we randomly select a subset
from the extensive datasets provided by MathIn-
struct (Yue et al., 2024), including AQuA, GSM8K,
and MATH. The test set is consistent with Math-
Instruct. The specific data quantities are shown in
Table 4. We comply with the license for the use of
these datasets in our work.

B Error Patterns

Here, we analyze two classic types of errors in
model-generated rationales.

Hint Short-cutting. This occurs when the model
is provided with the final answer or rationales as
a hint during generation, causing it to skip steps
(Zelikman et al., 2022). This leads to responses
like those shown in Figure 6 and Figure 7.

Spurious Correctness. This refers to cases
where, when given the final answer as a hint, the
model fails to generate the correct intermediate
reasoning due to its limited capabilities but still
copies the correct final answer and misleads the
reward function. Responses classified as positive
may contain incorrect or irrelevant rationales, and
training on such data often incentivizes the model
to overfit to spurious correlations, resulting in flat
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or even inverse scaling with more data during fine-
tuning (Setlur et al., 2024). Figure 8 shows a case
of spurious correct response.

C Case Study
Here, we present two successful cases: GSI (inter-
active sampling) in Figure 9 and GSI (state reset)
in Figure 10, demonstrating the effectiveness of our
proposed method.

D Prompt Details
The prompt template of the vanilla self-improve
method is presented in Figure 11. The prompt
templates of proposed Guided Self-Improvement
(GSI) are detailed in Figure 12, 13, 14, 15, and 16.
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Question: Kathryn moved to a new city for the new job she had landed two weeks ago. 

Her rent was $1200, 1/2 of what she spent on food and travel expenses in a month. Luckily, 

she found a new friend Shelby, who moved in with her to share the rent. If her salary was 

$5000 per month, how much money remained after her expenses?

Original Rationales Generated Rationales

Kathryn's monthly expenses is $3000 and 
her salary is $5000, so she has $5000 -
$3000 = $2000 remaining.

The answer is 2000.

If the rent is half what she spends on 
food and travel expenses, she spends 
1200 * 2 = $2400 on food and travel 
costs. When her friend moved in and 
shared the rent costs with her, she 
started paying 1/2 * 1200 = $600 in 
rent costs. Her total monthly expenses 
is now 600 + 2400 = $3000. 

When she deducts her monthly expenses 
from her salary, she has $5000 - $3000 
= $2000 remaining.

The answer is 2000.

Figure 6: An example of skipped steps on the GSM8K dataset. The key steps within the original rationales are
highlighted in purple, while the corresponding steps generated by Llama2 are indicated in blue. In this case, the
model, guided by rationale-driven hints, skips critical steps and directly arrives at a premature conclusion.

Question: Two white socks cost 25 cents more than a single brown sock. If two white 

socks cost 45 cents, how much would you pay for 15 brown socks?

Original Rationales Generated Rationales

The answer is 3.Two white socks cost 25 cents more 
than a single brown sock, meaning a 
brown sock is sold at $0.45 - $0.25 = 
$0.20.

The cost of buying 15 brown socks is 
15 * $0.20 = $3.

The answer is 3.

Figure 7: An example of skipped steps on the GSM8K dataset. The key steps within the original rationales are
highlighted in purple. In this case, the model ignores all the steps and copies the final answer. Such cases arise
mainly with answer-driven or rationale-driven hints.
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Question: Andy started out the year weighing 156 pounds. He then grew 3 inches and 

gained 36 pounds. Andy wasn't happy with his weight and decided to exercise. Over the 

next 3 months, he lost an eighth of his weight every month. How much less does Andy 

weigh now than at the beginning of the year?

Original Rationales Generated Rationales

Andy grew 3 inches and gained 36 pounds, 
so he weighed 156+36 = 192 pounds. He 
lost 36/12 = 3 pounds each month. So in 
3 months, he lost 3*3 = 9 pounds. So he 
weighs 192-9 = 183 pounds now.

The answer is 36.

Andy weighed 156 + 36 = 192 pounds 
after growing taller. An eighth of his 
weight is 1/8 x 192 = 24 pounds. Over 
the next 3 months, Andy lost 24 x 3 = 
72 pounds. He now weighs 192 - 72 = 
120 pounds. 

Andy weighs 156 - 120 = 36 pounds less 
than at the beginning of the year.

The answer is 36.

Figure 8: An example of a hallucinated reasoning process on the GSM8K dataset. The key steps within the
original rationales are highlighted in purple, while the corresponding steps generated by Llama2 are indicated in
blue. In this case, the model fails to generate the correct intermediate reasoning but still copies the correct final
answer. This behavior can mislead the reward function and introduce noise into the training data in subsequent
iterations. Such cases arise mainly with answer-driven hints.
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Question: Average monthly income of a family of 3 earning members was Rs. 735. One of 

the earning members died and therefore, the average income came down to Rs 650. The 

income of the deceased was?

Choices: (A) Rs. 692.80 (B) Rs. 905 (C) Rs. 990 (D) Rs. 1385 (E) None

Original Rationales Generated Rationales

Let’s solve the multi-choice question 
step by step.

Income of deceased
= 735 x 3 - 650 x 3
= 2205 – 1950
= Rs. 255

None of the answer choices match our 
calculation, so the correct answer is 
indeed (E) None.

The answer is E.

Let’s think about the multi-choice 
question. 

Income of the deceased 
= Total income of 3 members - total 
income of remaining 2 members.
= 735 x 3 - 650 x 2 Rs.
= 905 Rs.

The answer is B.

Feedback from Stronger Model

Feedback: The incorrect step in your original solution is: “Income of deceased = 735 x 3 -

650 x 3”. The mistake lies in the fact that you subtracted the total income of 3 members 

(after the death) from the total income of 3 members (before the death). 

You should have subtracted the total income of 2 members (after the death) from the total 

income of 3 members (before the death). In other words, you incorrectly used 650 x 3 

instead of 650 x 2 in your calculation.

Corrected Rationales

Let’s solve the multi-choice question step by step.

Income of deceased = Total income of 3 members - total income of remaining 2 
member = 735 x 3 - 650 x 2 = 2205 – 1300 = Rs. 905

The answer is B.

Figure 9: An example of interactive sampling on the AQuA dataset. The key steps within the original rationales
are highlighted in purple, while the corresponding steps generated by Llama2 are indicated in blue. In the feedback
from the stronger model, errors pointed out are marked in red, and corrections are indicated in green. In this case,
the model successfully corrected its mistake after receiving feedback and arrived at the correct final answer.
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Question: A married couple opened a savings account. The wife committed to saving $100 

every week while the husband committed to saving $225 every month. After 4 months of 

savings, they decided to invest half of their money in buying stocks. Each share of stocks 

costs $50. How many shares of stocks can they buy?

Original Rationales Generated Rationales

The wife saves $100/week x 4
weeks/month = $400 a month. (Given)

So, the total monthly savings of the 
wife is $400/month x 4 months = $1600. 
Therefore, the total monthly savings of 
the husband is $225/month x 4 months = 
$900. Therefore, the total monthly 
savings of the couple is $1600 + $900 = 
$2500. 

Therefore, the total money they can 
invest is $2500/2 = $1250. Therefore, 
they can buy $1250/$50 = 25 shares of 
stocks.

The answer is 25.

The wife saves $100/week x 4 
weeks/month = $400 a month. 

Together, the wife and husband save 
$400/month + $225/month = $625/month. 
In 4 months, their total savings is 
$625/month x 4 months = $2500.

They are going to invest $2500 / 2 = 
$1250. So, they can buy $1250 / 
$50/share = 25 shares of stocks.

The answer is 25.

Figure 10: An example of state reset on the GSM8K dataset. The key steps within the original rationales are
highlighted in purple, while the corresponding steps generated by Llama2 are indicated in blue. The (Given)
highlights the partial rationale provided to the model as a hint. In this case, the model starts from the intermediate
steps and gives a different solution, enriching the rationales in the training data.

Input:

Below is a math problem, please give a step-by-step answer.

### Question:
{question}

### Your step-by-step answer:

Figure 11: Prompt template for vanilla self-improve method. It is also used in the first step of GSI (Interactive
Sampling), with the process transitioning into the subsequent interactive steps when incorrect results are sampled.
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Input:

Below is a math problem, please give a step-by-step answer.

### Question:
{question}
{answer}

### Your step-by-step answer:

Figure 12: Prompt template for GSI (Answer-driven) method.

Input:

Below is a math problem with a reference answer. Using the reference answer as a
guide, write your own answer.

### Question:
{question}

### Reference Answer:
{rationale}

### Your detailed, complete and step-by-step answer:

Figure 13: Prompt template for GSI (Rationale-driven) method.

Strong Model Input:

You’re a patient teacher who corrects mistakes and guides students, helping them find
the correct answers on their own. For the following math problem, the original solution is incorrect.
Please identify the incorrect step and explain why it is incorrect.

### Question:
{question}

### Student’s original wrong answer:
{wrong_answer}

### Correct reference answer:
{rationale}

### Your correction:

Figure 14: Prompt template for the strong model in GSI (Interactive Sampling) method.
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Input:

Below is a correction to your previous solution. Review this carefully and use it to re-
vise your solution. Ensure that it includes all necessary steps clearly and thoroughly.

### Question:
{question}

### Your original wrong answer:
{wrong_answer}

### Correction and guidance:
{correct_message}

### Your revised, complete step-by-step solution:

Figure 15: Prompt template for the self-improved model in GSI (Interactive Sampling) method.

Input:

Below is a math problem, please give a step-by-step answer.

### Question:
{question}

### Your step-by-step answer:
{partial_rationale}

Figure 16: Prompt template for GSI (State Reset) method. The partial rationale is truncated from the complete one
and placed at the end to guide the model in completing it.

10646


