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Abstract

Self-training approach for large language mod-
els (LLMs) improves reasoning abilities by
training the models on their self-generated ra-
tionales. Previous approaches have labeled
rationales that produce correct answers for a
given question as appropriate for training. How-
ever, a single measure risks misjudging ratio-
nale quality, leading the models to learn flawed
reasoning patterns. To address this issue, we
propose CREST (Consistency-driven Rationale
Evaluation for Self-Training), a self-training
framework that further evaluates each rationale
through follow-up questions and leverages this
evaluation to guide its training. Specifically, we
introduce two methods: (1) filtering out ratio-
nales that frequently result in incorrect answers
on follow-up questions and (2) preference learn-
ing based on mixed preferences from rationale
evaluation results of both original and follow-
up questions. Experiments on three question-
answering datasets using open LLMs show that
CREST not only improves the logical robust-
ness and correctness of rationales but also im-
proves reasoning abilities compared to previous
self-training approaches.1

1 Introduction

Large language models (LLMs) can enhance multi-
step reasoning abilities by generating intermediate
reasoning steps (i.e., rationale) before arriving at
an answer (Wei et al., 2022). Training LLMs on
high-quality rationales has been shown to improve
their reasoning capabilities (Chung et al., 2024;
Liu et al., 2023; Shridhar et al., 2023). There-
fore, collecting high-quality rationales is becoming
increasingly important for training the reasoning
abilities of LLMs. However, due to the high cost
associated with collecting high-quality rationales,
self-training approaches have emerged, focusing on

*Corresponding authors
1Code: https://github.com/JaehyeokLee-119/CREST

(Q) Which type of activity would most likely be included on a weather map? 

(𝑟1) Weather maps show weather 

phenomena. Hurricanes are weather 

phenomena, and the others are not.

(𝑟2) When studying the weather, 

it is important to pay attention to 

hurricanes, satellite, and volcanoes. 

Therefore, the answer is D.Therefore, the answer is D. 

LLM

A. satellite B. seismic C. volcanic D. hurricane

𝑟1Is A the answer to Q? No

𝑟1Is B the answer to Q? No

𝑟1Is C the answer to Q? No

𝑟1Is D the answer to Q? Yes

𝑟2 Yes

No𝑟2

𝑟2

𝑟2

Yes

Yes

Let LLM solve follow-up questions with each generated rationale (𝑟1 , 𝑟2) 

Is A the answer to Q?

Is B the answer to Q?

Is C the answer to Q?

Is D the answer to Q?

𝑟1 𝑟2> LLMTrain

# correct answers:  4 # correct answers: 2

Figure 1: An example of rationale generation and evalu-
ation in CREST: An LLM generates two rationales (r1,
r2) and answer predictions to solve question Q. Even
though r2 lacks focus and clear support for the answer,
previous approaches evaluate both r1 and r2 as equally
right. Through a more fine-grained evaluation using
follow-up questions, we can identify the better rationale,
r1, which leads to more consistent predictions across all
questions.

training LLMs using self-generated rationales (Ze-
likman et al., 2022).

In self-training approaches, accurately evaluat-
ing the quality of generated rationales is essential.
Previous studies have evaluated rationale quality
by examining whether the generated rationales lead
to the correct answer to a given question (Zelikman
et al., 2022; Hoffman et al., 2023; Feng et al., 2024;
Hosseini et al., 2024; Singh et al., 2024). How-
ever, using the correctness of a single prediction
is unstable, as LLMs can reach correct answers
through inappropriate reasoning steps (Bao et al.,
2024a). Figure 1 shows an example of two gen-
erated rationales, r1 and r2. Despite r2 shows
incomplete reasoning, previous approaches would
consider both rationales equally appropriate since
they both lead to the correct answer for Q. Training
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models on such inappropriate rationales can cause
them to learn flawed reasoning patterns.

To address this problem, we propose CREST
(Consistency-driven Rationale Evaluation for Self-
Training), a novel framework for LLM self-training.
The core idea of CREST is to further evaluate ratio-
nales using follow-up questions that ask whether
each answer option in the original question is cor-
rect or not. We first generate diverse rationales us-
ing temperature sampling and evaluate them with
an LLM as shown in Figure 1. Subsequently, we
train the LLM on these rationales, rewarding ratio-
nales that lead to more consistent predictions (i.e.,
r1) and penalizing those that lead to less consistent
predictions (i.e., r2). To achieve this, we propose
two methods: rationale filtering and preference
learning. In rationale filtering, we remove ratio-
nales that lead to incorrect answers in more than a
certain number of follow-up questions during the
supervised fine-tuning process. In preference learn-
ing, we train the model on mixed preferences from
results of both original and follow-up questions, to
favor rationales that result in correct answers in a
greater number of follow-up questions.

We conduct experiments on three natural lan-
guage reasoning question-answering datasets, in-
cluding ReClor (Yu et al., 2020), ARC (Clark et al.,
2018), and CSQA (Talmor et al., 2019). We com-
pare CREST to other self-training approaches us-
ing Llama 3 model (AI@Meta, 2024) and Gemma
model (Team et al., 2024). Our findings show that
CREST can train an LLM to generate more cor-
rect and robust rationales, improving its reasoning
performance. Our contributions are as follows:

• We introduce consistency-driven rationale
evaluation, which further evaluates generated
rationales using follow-up questions that ask
whether each answer option in the original
question is correct or not.

• We propose CREST, which evaluates gener-
ated rationales via consistency-driven ratio-
nale evaluation and uses the evaluation results
to train an LLM through two methods: ratio-
nale filtering and preference learning using
mixed preferences derived from original and
follow-up question evaluations.

• We conduct experiments and analyses with
open LLMs such as Llama 3 model and
Gemma model on three question-answering

datasets. The results show that CREST gen-
erates more robust and correct rationales and
improves reasoning ability compared to other
self-training approaches.

2 Related Work

2.1 Self-Training Approaches

Chain-of-Thought (CoT) approach demonstrates
that generating a step-by-step reasoning path be-
fore the final prediction enhances an LLM’s reason-
ing abilities (Wei et al., 2022). Training LLMs
on rationale data generated by humans (Chung
et al., 2024) or advanced models like GPT-4 fur-
ther enhances reasoning abilities (Liu et al., 2023).
However, since high-quality rationale data is ex-
pensive to obtain, a number of approaches focus
on training language models using self-generated
rationales. STaR (Zelikman et al., 2022), an early
type of self-training approach, trains the language
model by selecting the correct rationales based on
binary feedback regarding the correctness of the
answers generated by these rationales. RFT (Yuan
et al., 2023) enhances supervised data by gen-
erating and collecting diverse correct reasoning
paths, focusing on mathematical reasoning. Other
approaches, such as V-STaR, Iterative RPO, and
Self-motivated Learning, also utilize incorrect ra-
tionales (Feng et al., 2024; Hosseini et al., 2024;
Pang et al., 2024) and adopt preference learning
techniques, such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) and Direct
Preference Optimization (DPO) (Rafailov et al.,
2023). Self-Explore (Hwang et al., 2024) provides
fine-grained rewards by identifying incorrect steps
within the rationales. Wei Jie et al. (2024) proposes
a self-training framework that exposes a model
to each question multiple times using tempera-
ture sampling, thereby assessing the model’s confi-
dence in the given question. CREST provides fine-
grained rewards through evaluating a self-training
rationale multiple times using follow-up questions
augmented from the original dataset, emphasizing
the rationale’s ability to consistently lead to correct
answers.

2.2 Reasoning with Consistency

Consistency is the ability to make consistent deci-
sions in semantically equivalent contexts (Elazar
et al., 2021). It is a desirable property of logi-
cally valid machine learning systems (Chen et al.,
2024a) and an important characteristic for a model
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Figure 2: Overview of CREST. In Rationale Generation (1), given a question qi and an answer ai, an initial LLM M
generates N rationales and answer predictions (ri, pi) to solve qi, and then solves follow-up questions q̃i,f using
each rationale rni , resulting in p̃ni,f . Next, in Rationale Evaluation (2), we assign rewards z and z̃ to each rationale
based on the correctness of the predictions as shown in Eq. 1 and Eq. 2. In Supervised Fine-Tuning (3), we train M
on the rationales filtered by z and z̃ with a tolerance term t, resulting in MSFT. Finally, in Preference Learning (4),
we build preference pairs based on z and z̃, and train MSFT on them, resulting in MCREST.

to be considered trustworthy (Jang et al., 2022). As
larger language models emerge that exceed human
performance in many tasks, consistency is receiv-
ing increased attention due to its role in evaluating
inference validity, even in models that outperform
humans (Fluri et al., 2024). To evaluate a model’s
consistency, follow-up questions generated from
existing questions are commonly used (Ribeiro
et al., 2019; Elazar et al., 2021; Jang et al., 2022;
Chen et al., 2024a; Zheng et al., 2024; Chen et al.,
2024b). Several techniques have been developed
to create these follow-up questions, including gen-
erating semantically identical texts by paraphras-
ing the original input texts (Elazar et al., 2021),
crafting logically equivalent questions (Jang et al.,
2022), and developing questions that investigate
the implications of the model’s answers (Ribeiro
et al., 2019). Two main approaches have been pro-
posed to enhance both the consistency and task
performance of models: designing models specifi-
cally to reduce inconsistency (Kassner et al., 2021,
2023), and synthesizing consistent data to train
models (Alberti et al., 2019; Asai and Hajishirzi,
2020; Elazar et al., 2021). CREST evaluates ratio-
nales that correspond to the reasoning process with
augmented questions and trains an LLM to prefer
those that consistently lead to correct answers.

3 Consistency-driven Rationale
Evaluation for Self-Training

This section describes our approach, Consistency-
driven Rationale Evaluation for Self-Training
(CREST) which trains reasoning abilities through
consistency-driven rationale evaluation with
follow-up questions.

3.1 Notation
We have a pretrained large language model M and
an original dataset of questions q with answers a,
represented as D = {(qi, ai)}Di=1. Each question
has F answer choices. To solve q, M sequentially
generates a rationale r, corresponding to interme-
diate reasoning steps, and an answer prediction p,
where r leads to p.

3.2 CREST
The whole framework of CREST consists of four
stages. Figure 2 outlines the overview of CREST.

• Rationale Generation We generate N di-
verse rationales rni for each question qi and
the corresponding answer predictions pni us-
ing M, where n ∈ [1, N ].

• Rationale Evaluation We compare pni with
ai to assign a reward zni to rni based on the
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correctness of the prediction. Subsequently,
we generate multiple follow-up questions q̃i,f
from qi and further evaluate rni using these
follow-up questions. We assign an additional
reward z̃ni to rni based on how many q̃i,f are
answered correctly.

• Supervised Fine-Tuning We train M through
supervised fine-tuning to create MSFT using
the generated rationales filtered based on the
evaluation results.

• Preference Learning We train MSFT using
a preference learning algorithm according to
the preferences indicated by the evaluation
results, resulting in MCREST.

3.3 Rationale Generation
Initially, we generate diverse rationales and the cor-
responding answer predictions for a given original
question qi with M. Specifically, M generates N
rationales rni as follows: rni ← M(qi), where rni
represents the nth rationale generated for the ith

question. Subsequently, M derives answer predic-
tions pni for qi from generated rationales rni , as
follows: pni ← M(qi, r

n
i ).

3.4 Rationale Evaluation
We evaluate the rationale through a two-step pro-
cess. Firstly, similar to previous studies (Zelikman
et al., 2022; Yuan et al., 2023; Hosseini et al., 2024;
Feng et al., 2024; Pang et al., 2024), we compare
the ground truth answer ai for qi with the predicted
answer pni derived from rni . Secondly, we further
assess the rationales through F follow-up questions
which are generated from the original question qi.

In the first step, we assign a binary reward zni of
either 0 or 1 to each rationale based on whether pni
matches ai as follows:

zni = 1(pni = ai) (1)

Assuming that rationales leading to the correct an-
swer are of higher quality than those that do not, as
suggested by Zelikman et al. (2022), this evaluation
directly measures the quality of rationales.

In the second step, we evaluate the
rationales using F follow-up questions
{(q̃i,1, ãi,1), ..., (q̃i,F , ãi,F )} generated from
qi, where ãi,f is the ground truth answer for the
f th follow-up question corresponding to qi. We
then evaluate the rationales on all F follow-up
questions: p̃ni,f ← M(q̃i,f , r

n
i ), where q̃i,f is f th

follow-up question for qi.

We assign an additional reward z̃ to each ra-
tionale based on the number of correctly solved
follow-up questions as follows:

z̃ni =
F∑

f=1

1(p̃ni,f = ãi,f ) (2)

To generate follow-up questions that are closely
related to the problem-solving process of each ques-
tion in D, we utilize the characteristics of multiple-
choice questions: the solving process involves
not only identifying the correct answer but also
eliminating the incorrect options. We design each
follow-up question to ask whether each of the an-
swer options in the original question is correct or
not. This type of follow-up question is used to eval-
uate the robustness of reasoning ability in multiple-
choice question-answering datasets (Wang et al.,
2024). Figure 1 shows an example of the follow-up
questions and the evaluation.

3.5 Supervised Fine-Tuning
After evaluating the rationales, we use z and z̃ as
filters to select the rationales for training M and pro-
duce MSFT through supervised fine-tuning (SFT).
Intuitively, the best rationales for qi from the previ-
ous stage are those that lead to the correct answers
to qi and all F follow-up questions, indicated by
zni = 1 and z̃ni = F . However, simply removing ra-
tionales that lead to incorrect answers for any of the
follow-up questions might drastically reduce the
number of rationales available for training. There-
fore, we also include some sub-optimal rationales
with a tolerance term t that satisfies t ∈ [0, F ].
Consequently, the dataset DSFT used to train M in
the SFT stage is represented as follows:

DSFT ={qi, rni , ai| (3)

(n, i) ∈ {(n, i)|zni = 1, z̃ni ≥ F − t}}
The training objective for this stage aligns with
that used during pretraining, specifically employing
an auto-regressive language modeling objective or
next-token prediction (Radford et al., 2018). We
calculate the loss exclusively for the output section
(i.e., r and a).

3.6 Preference Learning
We further train MSFT by exploiting preferences
between rationales to enhance its reasoning ability.
To achieve this, we construct preference pairs and
fine-tune MSFT using offline preference learning
methods, such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023).
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3.6.1 Preference Pair Dataset Construction
We construct the preference pair dataset Ptotal for
preference learning by first creating two sets of
preference pairs Pz and Pz̃ , which represent ra-
tionale preferences based on the rewards z and z̃,
respectively. Ptotal is then formed by randomly
sampling pairs from these two sets.

To construct Pz and Pz̃ , we generate preference
pairs in which rationales with higher rewards rw

are preferred over those with lower rewards rl,
based on z and z̃, respectively. Each preference
pair consists of a question q, two generated ratio-
nales, and their corresponding predictions pw and
pl: (q, rw, pw, rl, pl). Algorithm 1 outlines the de-
tailed procedure for generating Pz and Pz̃ .

Then, we construct Ptotal by sampling pairs from
Pz and Pz̃ with a weighting factor λ, which con-
trols the relative contribution of rationale prefer-
ences derived from z and z̃ during preference learn-
ing. The parameter λ satisfies λ ∈ [0, 1], ensuring
that the proportion of Pz̃ in Ptotal is λ. For instance,
if a total of 10,000 pairs are used for preference
learning and λ = 0.4, Ptotal would consist of 4,000
randomly selected pairs from Pz̃ and 6,000 ran-
domly selected pairs from Pz . The total number of
pairs used for preference learning is determined by
the maximum number of training steps multiplied
by the batch size.

3.6.2 Training
We train MSFT on the preference pairs Ptotal using
DPO, resulting in MCREST. Given the preference
pairs Ptotal, the objective of this stage is to increase
the log-likelihood of preferred outputs over dispre-
ferred ones:

LDPO = −E(rwi ,pwi ,rli,p
l
i,qi)∼Ptotal

(4)
[
log σ

(
r̂θ(qi, r

w
i , p

w
i )− r̂θ(qi, r

l
i, p

l
i)
)]

r̂θ(q, r, p) = β log
πθ(r, p|q)
πref(r, p|q)

(5)

where πθ(r, p|q) and πref(r, p|q) represent the prob-
ability of outputs r and p given input q under the
current policy parameterized by θ and a reference
policy πref, respectively. Initially, both πθ and πref

are initialized as MSFT, and they are updated each
epoch. πref is used to minimize distribution shift
from the true reference distribution and is typically
initialized through supervised fine-tuning on pre-
ferred outputs. β controls the deviation from the
reference policy.

4 Experiments

This section describes the experiments and re-
sults of CREST compared to other self-training
approaches. First, we introduce the three datasets
used for model training and testing. Next, we
present the experimental setup, including the base
LLM, key hyperparameters, and performance met-
rics. We also introduce the baseline approaches
used for comparison, and finally, we present the
results of the experiments.

4.1 Experimental Settings

Datasets We evaluate CREST on three English
natural language reasoning multiple-choice QA
datasets: ReClor (Yu et al., 2020), ARC (Clark
et al., 2018), CSQA (Talmor et al., 2019). Re-
Clor comprises logical reasoning problems derived
from American graduate school entrance exams
and their preparatory materials. The ReClor test
set is divided into an Easy set, which consists of
biased data points, and a Hard set, which includes
the remaining data points. ARC is sourced from
grade-school science assessments for students of
various grades. The questions are categorized into
two sets: an Easy set and a Challenge set. In our
experiments, we only test on the Challenge set,
as in previous studies (Huang et al., 2023; Pang
et al., 2024). CSQA consists of short questions
that require common sense reasoning, built upon
ConceptNet (Speer et al., 2017).

Models We conduct our experiments using the
Llama 3 8B model2 (AI@Meta, 2024) and the
Gemma 7B model3 (Team et al., 2024) from Hug-
gingFace (Wolf et al., 2020), training them with
Low-Rank Adaptation (LoRA) (Hu et al., 2022).

Implementation Details We generate rationales
with temperature sampling with the following
parameters: T=0.8, TopP=0.95, N=16, and
max_new_tokens=512, then use greedy decoding
for answer prediction. For supervised fine-tuning,
we use epoch=6, batch size=32 and conduct learn-
ing rate search between {5e − 6, 5e − 3}. For
preference learning, we use β=0.1, epoch=4, batch
size=8, and search max number of steps among
{3000, 5000} and conduct learning rate search be-
tween {5e− 7, 5e− 5} for all models. The input
and output prompt templates for model evaluation

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B

3https://huggingface.co/google/gemma-7b
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Base model Llama 3 8B Gemma 7B

Approach Model ReClor ARC-C CSQA ReClor ARC-C CSQA

Zero-shot 52.10 69.28 53.89 53.60 77.47 65.68
Few-shot 55.30 77.21 70.76 58.70 83.11 75.02

Self-training

STaR 58.60 77.99 76.17 58.40 82.34 77.56
RFT 64.40 80.72 78.54 66.90 83.36 80.02
Self-motivated Learning 67.80 80.03 80.34 68.20 83.53 80.59
MSFT 66.10 81.40 79.36 67.90 84.22 80.51
MCREST 69.50 81.91 81.41 70.00 84.47 80.67

Direct
fine-tuning

Fine-tune (Label) 77.40 80.80 80.18 81.90 85.58 84.44
Fine-tune (Label)CREST 79.30 81.23 81.24 83.70 87.20 84.85

Table 1: Accuracy of various models across three reasoning datasets with Llama 3 8B and Gemma 7B model.
ARC-C denotes the challenge set in the ARC test set. CREST consistently improves accuracy across all three
datasets.

are illustrated in Figures 7 and 10. For more details
about the prompts used in this study, please refer
to Appendix F.

4.2 Baselines
• Fine-tune (Label) involves directly fine-

tuning the base model on ground truth labels
using a negative log-likelihood loss term, with-
out relying on any generated rationales.

• STaR (Zelikman et al., 2022) is an early
approach for generating, filtering, and learn-
ing rationales using a generative language
model. It generates a rationale for each ques-
tion and trains the language model on ratio-
nales that lead to correct predictions. Addi-
tionally, STaR introduces a rationalization pro-
cess that provides hints when the initial ratio-
nale fails to produce a correct prediction.

• RFT (Yuan et al., 2023) stands for Rejec-
tion Sampling Fine-Tuning. RFT generates
diverse rationales with a non-zero temperature
and selects rationales to train based on binary
feedback on the correctness of the final pre-
diction. Unlike STaR, RFT does not have a
rationalization process. In our experiments,
MSFT with maximum tolerance corresponds
to RFT.

• Self-motivated Learning (Feng et al., 2024)
exploits the inherent preference between cor-
rect rationales and incorrect rationales. It first
trains a base model on generated and filtered
rationales through supervised fine-tuning. It

trains a reward model that assigns higher re-
wards to correct rationales than to incorrect
ones. This reward model is then used to im-
prove the reasoning performance of a super-
vised fine-tuned model through reinforcement
learning using Proximal Policy Optimization
(PPO) (Schulman et al., 2017).

4.3 CREST
• MSFT is supervised fine-tuned on filtered ra-

tionales from the base model. The perfor-
mance difference between this model and RFT
demonstrates the effect of the rationale filter-
ing process.

• MCREST & Fine-tune (Label)CREST are
models trained using preference learn-
ing in CREST, based on MSFT and
Fine-tune (Label), respectively. To eval-
uate the effectiveness of preference learning
with Ptotal, we apply it to two models:
MSFT, a model fine-tuned on filtered ra-
tionales, and Fine-tune (Label), a model
fine-tuned directly on ground truth labels.
For details on the prompt templates used
to train Fine-tune (Label)CREST, please refer
to Appendix F.3. The resulting models,
named MCREST and Fine-tune (Label)CREST,
demonstrate how CREST enhances reasoning
performance through preference learning.

4.4 Results
As shown in Table 1, MCREST outperforms other
self-training baselines across the three datasets.
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tolerance t. The results suggest that while moderate tolerance t improves performance, while overly high t values
can degrade it, indicating the importance of excluding less robust rationales from training.

Both RFT and MSFT are models trained through
supervised fine-tuning on the base model, with
the key difference being whether rationale filter-
ing based on z̃ was applied. The result that
MSFT outperforms RFT across all three datasets
demonstrates that rationale filtering based on z̃
consistently improves performance while reduc-
ing the amount of training data. Comparing
MSFT with MCREST, and Fine-tune (Label) with
Fine-tune (Label)CREST, we can see that preference
learning with pairwise preference datasets con-
structed using follow-up questions consistently en-
hances performance across all three datasets.

5 Analysis

In this section, we explore the effectiveness of
consistency-driven evaluation and the impacts of ra-
tionale filtering and preference learning in CREST
on model performance, through analyses using the
Llama 3 8B model as the base model. Our analysis
includes examining the correlation between z and
z̃ and conducting ablation studies on parameters
such as t and λ to assess how the proposed methods
in CREST contribute to performance improvement.
To investigate the impact of preference learning
with Pz̃ , we create a model that trains MSFT using
preference learning with only Pz , which we refer
to as MSFT /w Pz , and compare it to MCREST.

5.1 Incorrect Rationales on Follow-up
Questions

To understand how evaluation through follow-up
questions reflects the quality of rationales, we eval-
uate incorrect rationales (z = 0) generated from
train datasets on the follow-up questions, as shown
in Figure 3. The incorrect rationales are less robust
on follow-up questions compared to correct ratio-
nales (z = 1), especially incorrect rationales have
a significantly lower rate of getting all follow-up
questions correct. This correlation between z and z̃
indicates that z̃ can reflect the quality of a rationale.

5.2 Effect of Tolerance t on Supervised
Fine-Tuning

We investigate the impact of the tolerance value
t during the supervised fine-tuning stage on task
performance and the number of rationales used for
training across the three datasets. Figure 4 shows
the relationship between performance and the train-
ing data proportion based on the tolerance t. In
the ARC-Challenge and CSQA datasets, perfor-
mance improves as t increases, peaking at t = 2,
and then tends to decrease as t continues to rise.
This pattern shows that training on rationales that
lead to incorrect predictions for most follow-up
questions negatively affects task performance. At
the maximum t value, accuracy is lower than at
t = 0, where only 42% and 74% of the total gen-
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Figure 5: Task performance based on λ between Pz and
Pz̃ in preference learning on ReClor. As λ increases,
the model learns more from Pz̃ than from Pz , which
leads to improved performance on the Hard set, while
performance on the Easy set tends to decrease. Overall
performance peaks at λ = 0.6, where the trade-off
between the two datasets is balanced. These results
suggest that preference learning on Pz̃ helps reduce the
model’s reliance on biases in the Easy set, enhancing
the robustness of its reasoning ability.

erated rationales are used for training in CSQA
and ARC, respectively. In ReClor, which requires
more complex and broader logical reasoning, peak
performance occurs at t = 3, differing from the
other two datasets. However, including rationales
with z̃ = 0 in training leads to a decrease in perfor-
mance. These results demonstrate that filtering out
less robust rationales improves reasoning ability,
even though it reduces the amount of training data.

5.3 Effect of λ on Preference Pair Dataset
To analyze how the two preference pair datasets,
Pz and Pz̃ , affect reasoning abilities through prefer-
ence learning, we conduct experiments on ReClor
using various λ values. As shown in Figure 5, we
observe a trade-off where increasing λ improves
performance on the Hard set but decreases perfor-
mance on the Easy set. The overall performance
peaks at λ = 0.6, where the trade-off is most bal-
anced. Given that the ReClor Easy set consists
of biased data points, preference learning on Pz̃

makes the model less dependent on these biases,

Model Robustness Correctness Efficiency

RFT 2.66 3.17 2.88
MSFT 2.92 3.28 3.29
MSFT /w Pz 2.81 3.41 3.23
MCREST 2.95 3.51 3.33

Table 2: Comparison of FLASK logical metrics for
Llama 3 8B models trained using different methods on
ReClor, evaluated with GPT-4o. The results show that
CREST outperforms the baselines in all three metrics,
especially in terms of rationale robustness.

thereby improving the robustness of its reasoning
ability.

5.4 Evaluating Quality of Rationales

To qualitatively evaluate how the CREST impacts
the model’s rationale generation, we randomly sam-
ple 100 questions from the ReClor validation set
and evaluate the rationales from each model with
GPT-4o. Following the methodology of Hwang
et al. (2024), we employ FLASK (Ye et al., 2024),
a fine-grained evaluation protocol for model-based
evaluation, which exhibits a high correlation with
human-based evaluation. Specifically, we focus on
the ‘logical thinking’ category in FLASK, which
encompasses three aspects: logical correctness, log-
ical robustness, and logical efficiency. Logical cor-
rectness evaluates the model’s ability to produce
logically correct final answers. Logical robustness
evaluates the generalizability of the step-by-step
reasoning process without contradictions. Logical
efficiency examines whether the reasoning process
is concise and free of unnecessary steps. For the
exact prompt templates used in the FLASK evalua-
tion, please refer to Figures 11 and 12.

As shown in Table 2, CREST enhances rationale
generation across all three aspects. Especially, ra-
tionale filtering in supervised fine-tuning improves
the logical robustness and efficiency of the ratio-
nales. While preference learning on Pz makes
MSFT generate more logically correct rationales,
it decreases the robustness of the rationales. How-
ever, preference learning on Ptotal yields higher
performance across all three metrics compared to
using only Pz . These evaluation results show that
MCREST generates more logically robust and cor-
rect rationales than the baselines.
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Figure 6: Comparison of follow-up questions accuracy
across different training methods. The numbers above
each bar indicate the absolute accuracy improvement
over Zero-shot-CoT. The performance gain shows that
CREST trains the LLM to generate rationales that are
more robust at follow-up questions.

5.5 Evaluating CREST Models on Follow-up
Questions

We evaluate the rationales generated by each
trained model for the original questions in the
ReClor validation set using follow-up questions,
which is shown in Figure 6. As in the Rationale
Generation and Evaluation stage, we input the gen-
erated rationales and follow-up questions into the
base model (Llama 3 8B), then measure accuracy
over all follow-up questions. To assess how differ-
ent training methods affect the rationale generation,
we employ Zero-shot-CoT (Kojima et al., 2022) as
a baseline model. The improvement between RFT
and MSFT shows the effect of rationale filtering in
generating rationales that are more robust to follow-
up questions. As shown in Figure 6, CREST trains
the LLM to generate rationales that are more robust
to follow-up questions.

6 Conclusion

In this paper, we propose CREST, a novel self-
training framework that evaluates generated ratio-
nales in a fine-grained manner by letting the LLM
solve follow-up questions derived from the original
question. We propose two methods for utilizing
the evaluation results in training: filtering out less
consistent rationales for supervised fine-tuning and
employing preference learning to favor more con-
sistent rationales over less consistent ones. Experi-
mental results on three question-answering datasets
show that CREST enables an LLM to generate
more correct and robust rationales and achieves bet-
ter performance compared to previous approaches.

7 Limitations

The main idea of our proposed framework CREST
is to evaluate rationales with multiple follow-up
questions, which is conceptually task-agnostic. In
this paper, we assume a multiple-choice question-
answering task as the primary setting. However,
there are other types of tasks that differ signifi-
cantly in structure and may require adaptations of
our framework to maintain its effectiveness. For
future work, we plan to extend the CREST beyond
multiple-choice question-answering, applying it to
scenarios such as math questions (Cobbe et al.,
2021) or open-ended questions (Ling et al., 2023)
where choices are not provided.

We treat all follow-up questions equally and fo-
cus solely on the number of follow-up questions
answered correctly to calculate the additional re-
ward z̃. However, since each follow-up question
asks whether a given option is correct, the inter-
pretation of follow-up questions for correct and
incorrect answers can differ. For instance, consider
two rationales that receive the same reward, z̃ = 2,
for a question with the correct answer being A.
The first rationale accurately answers the follow-
up questions about the correct option (A) and an
incorrect option (B), while the second rationale
accurately answers the follow-up questions about
two incorrect options (B and C). Although both
rationales receive the same reward, their interpreta-
tions differ: the first rationale provides information
about the correct answer, whereas the second does
not. This difference in interpretation may affect
rationale evaluation and training. Kawabata and
Sugawara (2023) show the differences in LLMs’
ability to handle each option, revealing that LLMs
struggle with questions related to incorrect answers,
whereas questions related to correct answers are
easier for them. Future research could exploit this
difference to further extend CREST.

Additionally, while our study primarily focuses
on self-training of language models, the methods
we propose for evaluating rationales and leverag-
ing these evaluations during training can be applied
to broader scenarios such as distilling reasoning
abilities from larger teacher models to smaller stu-
dent models (Liu et al., 2023; Shridhar et al., 2023;
Hsieh et al., 2023).
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A Phi-2 Experiment Results

To demonstrate the robustness of CREST, we also
test CREST with Phi-2 model4 (Javaheripi et al.,
2023). Phi-2 has 2.7B parameters, which is much
smaller compared to Llama 3 8B and Gemma 7B
which have 8.0B and 8.5B parameters, respectively.
As shown in Table 3, CREST outperforms other
self-training baselines across the three datasets, and
preference learning to Fine-tune (Label) model con-
sistently improves performance. This result shows
that CREST can function effectively with this rela-
tively small model.

B Evaluating CoT Performance in Zero-
and Few-Shot Settings

To measure the accuracy of M itself using Chain-of-
Thoughts (CoT) without fine-tuning, we conduct
experiments with M. Specifically, we examine the
performance of M instructed to generate the ratio-
nale and prediction, represented as (r, p) = M(q).
We refer to these approaches as Zero-shot-CoT (in-
structed to generate a rationale and prediction with-
out examples) and Few-shot-CoT (given few-shot
examples and then instructed to generate a rationale
and prediction). The input-output format used for
those CoT models is the same as the input-output
format of M,MSFT,MCREST.

As shown in Table 4, these CoT approaches un-
derperformed compared to their non-CoT counter-
parts in many cases. Some previous studies support
this performance degradation. Wei et al. (2022)
show that models with size not big enough would
not benefit from chain-of-thought reasoning. Some
studies (Bao et al., 2024b; Xu et al., 2023) have
reported common performance degradation with
CoT approaches in complex reasoning tasks.

C Data and Rationale Statistics

Table 5 describes the number of examples in train,
validation, and test splits for the data we use. Ad-
ditionally, Table 6 shows the number of rationales
generated in the rationale generation stage in our
experiments according to the z and z̃ values. Since
the official test set of CSQA is evaluated every two

4https://huggingface.co/microsoft/phi-2

Algorithm 1 Formation of Preference Pairs

1: Pz ← [] {initialize z-based preference pairs}
2: Pz̃ ← [] {initialize z̃-based preference pairs}
3: for all question qi ∈ D do
4: for all (w, l) ∈ {(w, l)|1 ≤ w ≤ N, 1 ≤

l ≤ N} do
5: if zwi = 1 and zli = 0 then
6: Pz+={qi, [rwi , pwi ], [rli, pli]}
7: end if
8: if zwi = zli = 1 and z̃wi > z̃li then
9: Pz̃+={qi, [rwi , pwi ], [rli, pli]}

10: end if
11: end for
12: end for

weeks, we use the official Dev set as the test set
in our experiment and extract a new validation set
with the same number of samples from the train
set.

D Rationale Generation and Evaluation
Case Study

Table 7 shows an example of generated rationales
from a CSQA question and their evaluation. We
can see the rationale which leads to an incorrect
answer to the question (z = 0) represents incor-
rect reasoning steps and conclusion. The rationale
with z̃ = 2 leads to the correct answer D but does
not show a convincing reasoning process, causing
readers to be confused between C and D. In con-
trast, the rationales with higher rewards of z̃ = 4
and z̃ = 5 provide more convincing reasoning pro-
cesses. They offer a comprehensive explanation
for arriving at the correct answer D and include
judgments about why other choices are incorrect,
respectively.

E Preference Pair Datasets Construction
Algorithm

This section presents a more detailed algorithm
for constructing the preference pair dataset used
in preference learning. As shown in Algorithm 1,
we construct two preference pair sets, Pz and Pz̃ ,
based on z and z̃, respectively.

F Prompts

In this section, we introduce the prompt templates
used for rationale generation, inference, and evalu-
ation with FLASK. We construct input text for the
language model based on these templates. All the
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Approach Model ReClor ARC-C CSQA

Zero-shot 42.00 68.51 57.74
Few-shot 43.10 71.84 62.41

STaR 56.00 79.52 72.89
RFT 55.90 78.67 74.37

Self-training Self-motivated Learning 55.50 79.01 75.43
MSFT 57.50 79.61 75.02
MCREST 59.20 79.86 75.51

Direct Fine-tune (Label) 66.20 78.33 76.25
fine-tuning Fine-tune (Label)CREST 67.20 79.78 76.90

Table 3: Accuracy of various models across three reasoning datasets with phi-2 model. Test-E and Test-H denote
Easy and Hard sets in ReClor Test dataset, respectively.

Base model Model ReClor ARC-C CSQA

Llama 3 8B

Zero-shot 52.10 69.28 53.89
Zero-shot-CoT 45.70 63.74 48.57
Few-shot 55.30 77.21 70.76
Few-shot-CoT 40.60 74.23 71.25

Gemma 7B

Zero-shot 53.60 77.47 65.68
Zero-shot-CoT 43.50 65.96 48.24
Few-shot 58.70 83.11 75.02
Few-shot-CoT 51.90 80.29 72.89

Phi-2

Zero-shot 42.00 68.51 57.74
Zero-shot-CoT 38.40 66.01 52.17
Few-shot 43.10 71.84 62.41
Few-shot-CoT 43.00 75.68 70.02

Table 4: Accuracy of base models in zero-shot and few-
shot settings, with and without CoT prompting, on the
three reasoning datasets. In many cases, CoT prompting
results in performance degradation.

prompt templates we present are designed for the
ReClor dataset (Yu et al., 2020). Unlike ReClor,
the ARC (Clark et al., 2018) and CSQA (Talmor
et al., 2019) datasets do not include a passage, so
we use different prompt templates for them. As a
result, the [Question] part in the prompt templates
for ARC and CSQA consists only of the question
and the answer choices.

F.1 Rationale Generation and Evaluation
We use the prompt template shown in Figure 7 as
input to the language model to generate rationales.
For generating answer predictions from a given
rationale, we use the prompt template in Figure 8.

F.2 Follow-up Questions
Figure 9 shows the prompt template for follow-up
questions. The language model is instructed to
judge whether the given ‘(target option)’ is correct

Dataset Train Valid Test

ReClor 4,638 500 1,000
ARC 3,370 869 1,172

CSQA 8,520 1,221 1,221

Table 5: Data statistics of the datasets we use in this pa-
per. Train, Valid, and Test mean the number of samples
in each split.

or not with the given generated rationale.

F.3 Training Fine-tune (Label)CREST

Fine-tune (Label)CREST is obtained by train-
ing Fine-tune (Label) on rationale preferences.
Since Fine-tune (Label) is trained through su-
pervised fine-tuning to directly predict answers,
Fine-tune (Label)CREST undergoes training with
two different prompt templates. In the super-
vised fine-tuning stage, Fine-tune (Label)CREST is
trained using the prompt template in Figure 10,
while in the preference learning stage, it is trained
using the prompt template in Figure 7.

F.4 Evaluating Models

Figure 7 shows the prompt template used for evalu-
ating models in self-training approaches (Table 1)
as well as Zero-shot-CoT and Few-shot-CoT mod-
els (Table 4). Figure 10 shows the prompt template
for direct answering, where models are provided
with a question and tasked with predicting the an-
swer directly, without generating rationales. This
template is used to evaluate Zero-shot, Few-shot,
and direct fine-tuning methods, as detailed in Table
1.
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z=0
z=1

Base model Dataset z̃=0 z̃=1 z̃=2 z̃=3 z̃=4 z̃=5

Llama 3 8B
ReClor 39,679 224 6,621 7,917 11,021 8,737 -
ARC 10,884 63 770 2,170 8,309 31,541 56
CSQA 51,868 38 1,426 5,571 14,192 27,484 35,530

Gemma 7B
ReClor 38,635 169 16,611 7,384 6,625 4,623 -
ARC 8,931 121 5,265 7,251 12,262 19,785 29
CSQA 47,336 71 7,136 12,825 18,193 23,389 27,301

Phi-2
ReClor 42,496 221 21,936 6,079 2,682 794 -
ARC 7,398 36 1,822 4,371 11,325 28,916 52
CSQA 52,790 100 4,934 10,919 19,297 26,135 22,145

Table 6: The number of rationales generated from the train sets of each dataset during the rationale generation and
evaluation stages in the experiments of this paper, presented according to the z and z̃ values. In the case of the ARC
dataset, most of the questions in the train split have 4 answer choices, resulting in a very low number of rationales
for z̃=5.

F.5 Prompt and Example of Qualitative
Analysis with FLASK

We use the prompt template shown in Figure 11
and Figure 12 for the qualitative analysis with GPT-
4o, as suggested by Ye et al. (2024). Figure 13
shows an example of a response from GPT-4o. To
measure the scores, we automatically extract the
Python dictionary portion from the output.

G Implementation Details

We use lora rank=16, alpha=16 and target modules
= {gate_proj, down_proj, up_proj, q_proj, k_proj,
v_proj, o_proj}. We use cosine scheduler and
adamW optimizer (Loshchilov and Hutter, 2017).
For saving memory, we use half-precision (fp16)
in training MSFT. During inference, if the model
fails to fully generate the answer label within the
designated generation length, we clarify the pre-
diction by appending ‘[Answer] Therefore, the an-
swer is’ to the end of the initial output and conduct
an additional query. We select models that show
the highest performance on the validation set with-
out early-stopping. For Llama 3 8B experiments
on ReClor, the best-found hyperparameter values
for the supervised fine-tuning stage were: learn-
ing rate=8e-4, batch size=8, tolerance=3. For the
preference learning stage, the best-found hyper-
parameter values were λ=0.6, learning rate=6e-6,
and max number of steps=5000. Our hardware
setting is Intel(R) Xeon(R) Gold 5218R CPU @
2.10GHz (CPU), and NVIDIA RTX A6000 (GPU).
We use vllm (Kwon et al., 2023) library for effi-
cient rationale generation and evaluation. We use

trl (von Werra et al., 2020) library for supervised
fine-tuning and preference learning stages. For the
datasets we use in this paper, CSQA is under the
MIT license, and ARC is under the CC BY-SA 4.0
license. You can see terms for use of ReClor in
here. We use these datasets and the models solely
for research purposes.

H Computational Costs

In this section, we present the overall computa-
tional costs of our experiments, measured in GPU
hours. Using the Llama 3 8B model and the ReClor
dataset, the computational costs are as follows:

• Rationale Generation: 12 GPU hours.

• Rationale Evaluation: 3.2 GPU hours.

• Supervised Fine-Tuning: 7.4 GPU hours.

• Preference Learning: 19.2 GPU hours.

In the rationale evaluation stage, inference for
the original questions (q) took approximately 1
hour, while inference for follow-up questions (q̃)
required about 2.2 hours.

I Adjustments in Implementation of
Baseline Models

Some of the baseline approaches target domains
and environments that differ from our setting; there-
fore we adjust them to fit our task setup while pre-
serving their core ideas. First, although STaR (Ze-
likman et al., 2022) is an iterative process, we
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Question
You can share files with someone if you have a connection to a what?
A. freeway B. radio C. wires D. computer network E. electrical circuit

z̃ = 5
z = 1

A freeway is a long stretch of road. Radio is for broadcasting. Wires are for electric
power transmission, distribution and telecommunications. Computer network is a
telecommunications network which allows computers to exchange data. So, the
answer is computer network.

z̃ = 4
z = 1

We know that a computer network is a group of computers that are connected with
each other. You can share files with someone if you have a connection to a computer
network. This means that a computer network is a group of computers that are
connected with each other.

z̃ = 3
z = 1

To share files, you need to connect to a computer network. A computer network is a
network of computers that allows the users to share resources such as files, printers,
and applications.

z̃ = 2
z = 1

To share files with someone, you need to have a connection to a computer network.
You can share files by using a computer. You can connect to a computer network with
wires. With wires, you can connect to a computer network and share files.

z = 0

To share files with someone, we need to have a computer network. We can share files
by using a computer network and transferring the files from one computer to another.
So, we need to have a computer network to share files. A computer network is made
up of computers connected by wires. So, we need wires to share files. So, our answer
is wires.

Table 7: Examples of generated rationales and corresponding rewards z and z̃ from consistency-driven rationale
evaluation for a CSQA question. The colored texts represent the incorrect parts of the rationales.

do not perform iterations in order to ensure a fair
comparison with other models. RFT (Yuan et al.,
2023) is an approach that generates diverse rea-
soning paths, and only the reasoning paths that
produce correct answers are selected to train lan-
guage models. RFT requires an initial generator
to generate reasoning paths. Since it was designed
for GSM8K (Cobbe et al., 2021), a mathematical
reasoning dataset that includes reasoning paths in
its training set, the generator in the original RFT is
obtained by training a base model on these reason-
ing paths. However, since our dataset does not in-
clude reasoning paths, we generate rationales using
few-shot prompting with the base model instead.
They also verify the selected reasoning paths by
executing the equations included in them using a
Python interpreter, a step that is not feasible in our
experiments.
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Input

[Instruction]
(instruction here)

[Question]
<Passage> (passage here)
<Question> (question here)
Answer Choices:
A. (option A here)
B. (option B here)
C. (option C here)
D. (option D here)

[Rationale]
Let’s think step by step.

Output

(generated rationale here)

[Answer]
Therefore, the answer is (answer label here).

Figure 7: Prompt template for rationale generation and
inference. This template is used for generating ratio-
nales and evaluating models in self-training approaches
(Table 1), as well as Zero-shot-CoT and Few-shot-CoT
models (Table 4).

Input

[Instruction]
(instruction here)

[Question]
<Passage> (passage here)
<Question> (question here)
Answer Choices:
A. (option A here)
B. (option B here)
C. (option C here)
D. (option D here)

[Rationale]
Let’s think step by step.
(generated rationale here)

[Answer]
Therefore, the answer is

Output

(answer label here).

Figure 8: Prompt template for deriving an answer pre-
diction from a given rationale. The answer prediction is
compared to the ground truth to evaluate each generated
rationale and calculate the reward z for it.
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Input

[Instruction]
(instruction here)

[Question]
<Passage> (passage here)
<Question> (question here)
Answer Choices:
A. (option A here)
B. (option B here)
C. (option C here)
D. (option D here)

Is a given choice (target option) the correct answer?

[Rationale]
Let’s think step by step.
(generated rationale here)

[Answer]
Therefore, (target option) is

Output

(the/not the) correct answer.

Figure 9: Prompt template for evaluation using follow-
up questions. This template evaluates a given ratio-
nale by prompting models to solve a follow-up question
based on the rationale. As shown in the input part, the
follow-up question asks whether the target option is
the correct answer to the original question. Results for
all target answer choices are aggregated to validate the
given rationale and compute the reward z̃.

Input

[Instruction]
(instruction here)

[Question]
<Passage> (passage here)
<Question> (question here)
Answer Choices:
A. (option A here)
B. (option B here)
C. (option C here)
D. (option D here)

[Answer]
The correct answer is

Output

(answer label here).

Figure 10: Prompt template for direct answer prediction.
This template is used to evaluate Zero-shot, Few-shot,
and Direct fine-tuning approaches (Table 1). Unlike
other templates, it does not require models to generate
or utilize rationales.
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We would like to request your feedback on the performance of the response of the assistant to the
user instruction displayed below. In the feedback, I want you to rate the quality of the response in
these 3 categories according to each score rubric:

[Skill 1. Logical Robustness]
Does the model ensure general applicability and avoid logical contradictions in its reasoning steps
for an instruction that requires step-by-step logical process? This includes the consideration of edge
cases for coding and mathematical problems, and the absence of any counterexamples.
Score 1: The logic of the model’s response is completely incoherent.
Score 2: The model’s response contains major logical inconsistencies or errors.
Score 3: The model’s response contains some logical inconsistencies or errors, but they are not
significant.
Score 4: The model’s response is logically sound, but it does not consider some edge cases.
Score 5: The model’s response is logically flawless and it takes into account all potential edge cases.

[Skill 2. Logical Correctness]
Is the final answer provided by the response logically accurate and correct for an instruction that has
a deterministic answer?
Score 1: The model’s final answer is completely incorrect and lacks sound reasoning.
Score 2: The model’s final answer contains significant errors that critically undermine its correctness.
Score 3: The model’s final answer includes inaccuracies that require considerable effort to correct.
Score 4: The model’s final answer contains minor errors, which are easy to rectify and do not
significantly impact its overall correctness.
Score 5: The model’s final answer is completely accurate and sound.

Figure 11: Prompt template for the FLASK evaluation. (1/2)
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[Skill 3. Logical Efficiency]
Is the response logically efficient? The logic behind the response should have no redundant step,
remaining simple and efficient. For tasks involving coding, the proposed solution should also
consider time complexity.
Score 1: The logic behind the response is significantly inefficient and redundant, necessitating a
complete reorganization of logic for clarity and efficiency.
Score 2: The logic of the response lacks efficiency and conciseness, requiring a substantial
reorganization for better optimization.
Score 3: The logic of the response is not efficient enough, necessitating major edits for improved
optimization.
Score 4: The logic of the response is largely efficient, but it still has some redundant steps. It could
be handled from minor edits for better optimization.
Score 5: The logic of the response is optimally efficient, requiring no further optimization.

[Instruction]
{question}

[Ground truth Answer]
{ground truth answer}

[Assistant’s Response]
{rationale and prediction}

[The End of Assistant’s Response]
Please give feedback on the assistant’s responses. Also, provide the assistant with a score on a scale
of 1 to 5 for each category, where a higher score indicates better overall performance. Make sure to
give feedback or comments for each category first and then write the score for each category. Only
write the feedback corresponding to the score rubric for each category. The scores of each category
should be orthogonal, indicating that ‘Efficiency of User Alignment’ should not be considered for
‘Readability of User Alignment’ category, for example. Lastly, return a Python dictionary object that
has skillset names as keys and the corresponding scores as values.

Figure 12: Prompt template for the FLASK evaluation. (2/2)
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### Feedback:

#### Skill 1. Logical Robustness:
The assistant’s response does capture the fundamental logical connection between the apparent
discrepancy and the selected answer choice by identifying the potential cause for the paradox.
However, it does not explicitly address alternative possibilities or examine each of the provided
choices. Therefore, the response does not explore all potential edge cases or fully determine why B
is the most fitting choice among the others.

Score: 4

#### Skill 2. Logical Correctness:
The assistant’s final answer is logically correct. It accurately concludes that government success in
removing counterfeit bills from circulation has made merchants and bank tellers lax in checking for
counterfeit bills—this fits well with the provided ground truth answer and the context of the question.

Score: 5

#### Skill 3. Logical Efficiency:
The response is rather succinct, but it lacks depth in contemplating why alternative choices are not
the best fit or how the logic follows without redundancy. However, the response does directly lead to
the right conclusion without unnecessary steps.

Score: 4

### Scores:
```python
{

“Logical Robustness”: 4,
“Logical Correctness”: 5,
“Logical Efficiency”: 4

}
```

Figure 13: A result of GPT-4o FLASK evaluation for a generated rationale. The input prompt is shown in Figure 11
and Figure 12.
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