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Abstract

We propose a grounded approach to meaning in
language typology. We treat data from percep-
tual modalities, such as images, as a language-
agnostic representation of meaning. Hence,
we can quantify the function–form relation-
ship between images and captions across lan-
guages. Inspired by information theory, we de-
fine “groundedness”, an empirical measure of
contextual semantic contentfulness (formulated
as a difference in surprisal) which can be com-
puted with multilingual multimodal language
models. As a proof of concept, we apply this
measure to the typology of word classes. Our
measure captures the contentfulness asymmetry
between functional (grammatical) and lexical
(content) classes across languages, but contra-
dicts the view that functional classes do not
convey content. Moreover, we find universal
trends in the hierarchy of groundedness (e.g.,
nouns > adjectives > verbs), and show that our
measure partly correlates with psycholinguis-
tic concreteness norms in English. We release
a dataset of groundedness scores for 30 lan-
guages. Our results suggest that the grounded
typology approach can provide quantitative ev-
idence about semantic function in language.

1 Introduction

Within linguistics, typology is the subfield focused
on the study of patterns and variation across the
world’s languages (Croft, 2002, pp. 1–2). To iden-
tify such patterns, linguists must carefully identify
phenomena of interest within languages, and then
align them with one another. For example, vow-
els exist in a continuous acoustic and perceptual
space, without clear boundaries between them. To
define vowel categories and align systems across
languages, linguists rely largely on acoustic proper-
ties of the speech signal—reducing the problem to
a physically grounded, empirical one (Liljencrants
et al., 1972; Cotterell and Eisner, 2017).

Figure 1: Mean and standard deviation of per-language
mutual information estimates between word class and
image. Across 30 languages, we see clear and consis-
tent tendencies about which parts of speech are more
“grounded”, corresponding to a distinction between lexi-
cal and functional classes.

While empirically grounding language form (sur-
face structure like vowels) is typically straightfor-
ward, language is not just a formal system, but
also a functional one. Many questions within ty-
pology relate to the relationship between form and
meaning, especially in domains like morphology
and syntax. Typically, typologists manually iden-
tify semantic/functional roles such as “subject”,
and “causative” and study their expression across
languages (Haspelmath, 2010; Greenberg, 1966).
Unlike with many definitions based on form, defi-
nitions based on meaning are left up to subjective
discretion, leading to debates which reduce to the
definition of particular terms cross-linguistically
(Haspelmath, 2007, 2012; Plank, 1994).

Instead, we propose a “grounded” approach to
typology, which (under certain assumptions), al-
lows the quantification and cross-linguistic com-
parison of language function and semantics across
languages. By looking at sentences produced as
captions of the same image across languages, we
can use the image as an evidence-based, language-
agnostic representation of the shared semantics un-
derlying these utterances, similar to the evidence-
based acoustic signal in the study of vowel spaces.

In this work, we specifically focus on semantic
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contentfulness—how semantically informative a
given word token is. We introduce a way to empiri-
cally quantify contentfulness, groundedness, which
relies on vision-and-language models. Grounded-
ness measures how much less surprising a word is
when we know the perceptual stimuli (i.e., the im-
age) it describes. This surprisal difference between
the surprisal of the word token in an image caption-
ing model versus its surprisal in a language model
is an estimate of the pointwise mutual information:
the greater this difference (LM > captioning), the
more grounded the word is in that context.

As a case study, we apply this measure to the
study of the typology of word classes (“parts of
speech”). Literature from cognitive, pyscho- and
neurolinguistics all point to contentfulness being an
organizing factor in word class processing and even
formation and structure: low-content (functional)
word classes have many different properties from
high-content (lexical) classes (Dubé et al., 2014;
Bird et al., 2003; Chiarello et al., 1999). Yet, there
has been no cross-linguistic study of the relation-
ship between contentfulness and word class.

Using our groundedness measure to quantify se-
mantic contentfulness, we can estimate the mutual
information of a word class with a caption’s mean-
ing (image). We find our measure largely redis-
covers the distinction between lexical and func-
tional word classes across 30 languages. Further,
though it correlates only weakly with psycholin-
guistic norms for imageability and concreteness in
English, it provides an intuitive ranking (noun >
adjectives > verbs) across languages. On the other
hand, it contradicts the view of adpositions as a
“semi-lexical” class (Corver and Riemsdijk, 2001)
and suggests grammatical word classes do carry
some semantic content. These results thus partly
validate and partly falsify received wisdom about
word class contentfulness. They suggest the utility
of this measure as a general tool for studying con-
tentfulness in linguistics, and of taking a grounded
approach to typological problems. We release the
model used to estimate our measure and a dataset
of groundedness values in 30 languages.1

2 Background

An excellent example of the relevance of the rela-
tionship between semantic function and linguistic
form to typology is word classes. Within a partic-
ular language, there are typically groups of words

1https://osf.io/bdhna/

unified by the (formal) contexts in which they can
appear. Further, this distribution of words is not
arbitrary, but unified by a particular semantic proto-
type. For example, in English, nouns are a class of
words which prototypically denote physical objects
or things and can follow words like “the”, “this”,
and “that”. However, not all languages have words
like “the”, and so an equivalent formal–structural
criterion cannot be given (Haspelmath, 2012). On
the other hand, semantic criteria are not sufficient
to describe these classes: most languages can ex-
press prototypical verb or adjective meanings with
the syntactic distribution of a noun.

The elusiveness of a cross-linguistic definition
for word classes leads to many debates about partic-
ular languages “having” or “not having” a distinc-
tion between (e.g.) nouns and verbs on the basis of
a mix of formal and semantic criteria (cf. Kaufman,
2009; Hsieh, 2019; Richards, 2009; Weber, 1983;
Floyd, 2011). Here, we investigate word classes
as operationalized in a framework where there is
a fixed set of universally applicable word classes,
as set out in the Universal Dependencies project
(de Marneffe et al., 2021).While this is problematic
in general, our aim is not to claim that the assign-
ment of word classes is precisely correct, but rather
to empirically and quantitatively investigate the
functional/semantic dimension of this common op-
erationalisation of word class. In future work, we
aim to investigate the relationship between these
measures and non-prototypical parts of speech.

2.1 Contentfulness and word class
In this work, we focus on the related distinction be-
tween lexical/contentful word classes (e.g. nouns,
verbs, and adjectives) and functional/grammatical
word classes. Functional word classes are typically
closed-class, meaning they do not admit new mem-
bers and typically do not exhibit rich productive
morphology; they tend to express highly grammat-
ical and abstract meanings. Lexical classes are
typically open class, productively admitting new
members, and their meanings tend to be more con-
crete and contentful (Corver and Riemsdijk, 2001).

Complications about these generalized cate-
gories and tendencies abound, however. For ex-
ample, in some languages like Jaminjung, prototyp-
ically lexical categories like verbs are closed class
(Schultze-Berndt, 2000; Pawley, 2006). Further,
both the abstraction and semantic contentfulness
of particular members of a given word class can be
quite variable. For example, a noun like “factor”
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has a highly abstract meaning, while the meaning
of the preposition “to” is intuitively more abstract
than the preposition “above”, despite belonging to
the same, “abstract” grammatical word class. Fur-
ther, over time words can change in both their con-
tentfulness and even word class through processes
like grammaticalization (Bisang, 2017).

Nevertheless, the complex relationship between
contentfulness and word class remains unexplored
through a cross-linguistic empirical lens—perhaps
due to the difficulties of measuring such properties.

2.2 Measuring contentfulness
The relationship between contentfulness and word
class has not been explored cross-linguistically;
however, a significant literature within the language
sciences has investigated related concepts.

While theoretical linguistics has focused on a
distinction between content and function words,
psycholinguistics has focused on semantic dimen-
sions like imageability, concreteness, and strength
of perceptual experience. Measures of these dimen-
sions have relied on subjective, decontextualized
human judgements, but nevertheless predict pro-
cessing differences between word classes, such as
asymmetries in the processing of nouns and verbs
in certain aphasias (Bird et al., 2003; Dubé et al.,
2014; Lin et al., 2022). Because we operationalize
meaning as images, notions such as imageability
seem especially related to our groundedness mea-
sure. However, as discussed in Section 5.4, these
concepts differ from our measure in that informativ-
ity is not a major factor in their definition. For ex-
ample, while both “zebra” and “woman” are highly
concrete nouns, the former has higher grounded-
ness on average, because although both are often
strongly associated with an image, “zebra” is more
informative/surprising, especially if the image is
unavailable—thus, the image adds more informa-
tion in that case.

As shown by the prior example, our measure is
also closely related to another concept widely stud-
ied in computational psycholinguistics: surprisal.
Like our groundedness measure, surprisal has an
intuitive link to contentfulness from an informa-
tion theoretic perspective, and has been extensively
studied in relation to processing difficulty (Hale,
2001; Levy, 2008; Smith and Levy, 2013; Wilcox
et al., 2023; Staub, Forthcoming). However, sur-
prisal entangles formal and functional information
in language. As such, cross-linguistic comparisons
based on surprisal are challenging, since form is

language specific (Park et al., 2021). We aim to
focus on information due to language function, sep-
arated from form. Surprisal must also encode gram-
matical uncertainty (alternative ways of expressing
the same meaning like “knight” and “cavalier”),
as opposed to surprisal due only to what mean-
ings are being expressed. Our image captioning
model quantifies how many bits of information re-
main after the meaning is known. Our measure
then quantifies how much of the LM surprisal is
explained by the meaning (image).

3 Method

In this section, we define a token’s groundedness,
and show how we can use this to estimate the mu-
tual information between parts of speech and rep-
resentations of meaning. Let the set of word types
in a language be W . We assume a model of the
data generation process where given a meaning m,
a sentence is constructed by iteratively sampling
a word wt ∈ W conditioned on m and previous
words w<t. As mentioned previously, the ground-
edness of a token is given by its pointwise mutual
information (PMI) with the meaning.

PMI(wt;m | w<t) = log
p(wt | m,w<t)

p(wt | w<t)
(1)

As we cannot access the true meaning m, we must
approximate it with a proxy. A good proxy for m
should be language-neutral, and will make estimat-
ing the probabilities in Equation 1 straightforward
across languages. In this work, we focus on images
as a language-neutral representation of meaning.
Images capture rich, language-independent infor-
mation about the world state described by an image,
and have proved useful as a method for aligning
meanings across languages (Rajendran et al., 2016;
Gella et al., 2017; Mohammadshahi et al., 2019;
Wu et al., 2022). Further, a major strength of im-
ages as a meaning representation is that estimating
both quantities in Equation 1 becomes straightfor-
ward with neural models: pϕ(wt |m,w<t) corre-
sponds to the probability of the token under an
image captioning model, while pθ(wt|w<t) corre-
sponds to its probability under a language model.

Using images as a representation of meaning
does have some implications for our approach. For
instance, verbs, which usually denote events and
are more temporally unstable (Givon, 1984) than
other parts of speech, may be less grounded than
with a different meaning representation, such as
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videos. Further, the language of image captions is
somewhat restricted in terms of grammatical struc-
ture and lexical items, making the analysis of long-
tail phenomena or highly abstract language chal-
lenging (Ferraro et al., 2015; Alikhani and Stone,
2019). Future work could use our framework to
explore other meaning representations, such as
symbolic models or videos (though doing so in-
volves overcoming further dataset and modeling
challenges). Still, the language-neutral nature and
rich information content of images allows us to
study groundedness for a wide range of words, lan-
guages, and linguistic contexts.

Noting that a model’s surprisal is negative log
probability, we can view groundedness as a differ-
ence in surprisal, corresponding to how much more
expected the token is under the grounded model
than under the textual model. As such, the PMI
should rarely take on negative values—because the
captioning model has more information (both im-
age and text) than the language model (text only).
However, some tokens, such as those that are highly
grammatical or structural, should be close to 0.

In this work, we study the groundedness of word
classes. Drawing inspiration from functionalist ty-
pology, we treat a word class Ci as a label selected
by a linguist for a word in its context. We make
an assumption that this label is independent of our
meaning representation given a word’s context, al-
lowing us to define the following joint distribution:

p(Ci,m | w<t) =∑

wt∈W

[
p(Ci | wt,w<t)p(wt,m | w<t)

]
. (2)

We can then formulate the mutual information be-
tween a word class and meaning as the expected
value of the PMI between each token labeled with
that class, and the token’s associated image:

I[Ci;m|w<t] = E
p(Ci,m,w<t)

[
log

p(wt|w<t,m)

p(wt|w<t))

]
. (3)

Given our factorization of the joint, we can perform
a Monte Carlo estimation of the expectation by
simply averaging groundedness over all the tokens
tagged with Ci in the data D:

Î[Ci;m | w<t] =

∑

(m,w<t)∈D

1Cwt=Ci log
pϕ(wt|w<t,m)
pθ(wt|w<t)∑

wt∈D 1Cwt=Ci
(4)

Model Gemma PaliGemma COCO-35L
PT CT FT

Img. Cap. ~ Õ~ Õ~
LM ~ Õ~ ~

Table 1: We match the data points on which the language
model and image captioning model were trained. The
three datasets are the Gemma pre-training mixture (PT),
PaliGemma multimodal data for continued training
(CT), and COCO image–caption pairs for fine-tuning
(FT). Symbols indicate whether models are trained on
text data (~) or on multimodal data (Õ~).

where 1Cwt=Ci is 1 when a token’s class is Ci and 0
otherwise. We note that our groundedness measure
and our mutual information estimates are condi-
tional on linguistic context. As such, words which
are very grounded in one context could be hardly
grounded in another, due to disambiguating infor-
mation in the preceding context. Some informa-
tion about m will be generally conveyed by w<t;
however, our mutual information estimates are ag-
gregated over all contexts in which a word class
occurs, and on average this contribution is small.

4 Experimental setup

Captioning model pϕ(wt |w<t,m) As our im-
age captioning model, we use the recently re-
leased PaliGemma model (Beyer et al., 2024). This
model is by far the state-of-the-art among publicly
available multilingual image captioning models.
PaliGemma consists of an image encoder, initial-
ized from the SigLIP-So400m model (Zhai et al.,
2023), and a transformer decoder language model,
initialized from the Gemma-2B language model
(Gemma, 2024). A linear projection maps from the
image encoder space to a sequence of 256 tokens
in the language model’s embedding space. The
whole system is then trained on a mix of vision-and-
language datasets, including the unreleased WebLI
dataset with 10 billion image-caption pairs in 109
languages (Chen et al., 2023), and the CC3M-35L
dataset consisting of 3 million image-caption pairs
in each of 35 languages (Thapliyal et al., 2022).

While PaliGemma is a general-purpose vision-
and-language model, it is designed to be fine-tuned
on and applied to individual tasks. As such, we use
the open-source paligemma-3b-ft-coco35-224
checkpoint for multilingual captioning, which has
been fine-tuned on COCO-35L.

Language model pθ(wt | w<t) Our aim is to
use a language model as similar to our captioning
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model pϕ(wt|w<t,m) as possible. This is critical
to getting good (P)MI estimates, which relies on
estimating a difference in surprisal between the two
models. If the language model is not adapted to the
image captioning domain, it may under-estimate
the probability of particular words, leading to an
over-estimation of mutual information. We there-
fore aim to match the training data between the
language model and image captioning model, such
that they see the same set of captions.

To do so, we initialize our language model with
the weights from the pretrained PaliGemma model
paligemma-3b-pt-224. However, out of the box,
the decoder behaves degenerately when no image
is provided, so we need to adapt the model to not
expect image information and to match the training
data of the captioning model. To do so, we fine-
tune the language model on the captions only from
the COCO-35L dataset. In this way, we ensure the
models have observed the same data during training
and are adapted to the same domain, and are thus
maximally comparable. Table 1 summarizes the
data matching between the two models. Further
implementational and POS tagging details are in
Appendix A.

Evaluation Datasets We also need multilingual
image captioning datasets for evaluation which are
not observed during training. For this, we measure
groundedness on three separate datasets, each with
its own strengths and weaknesses. First, we use
Crossmodal-3600. This dataset includes captions
for 3,600 images across a range of cultures, man-
ually captioned by fluent speakers of 36 typolog-
ically diverse languages. However, it is relatively
small per language compared to other datasets. Fur-
ther, the independence of the captions means that
there is greater diversity in what aspects of an im-
age are being described across languages (Liu et al.,
2021; Ye et al., 2024; Berger and Ponti, 2024).

Our second dataset, the validation set of COCO-
35L, addresses several of these issues. It is larger,
with 5 captions each for 5000 images and 35 lan-
guages,2 yielding 25,000 captions per language.
Further, the captions are machine translations of
each other, ensuring more comparable semantic
content across languages (Beekhuizen et al., 2017)
at the expense of centering the perspective of En-
glish speakers and machine translation issues.

Finally, we consider Multi30K. This dataset

2Crossmodal-3600 and COCO-35L cover the same lan-
guages with the exception of Quechua.

Figure 2: Heatmap of mutual information estimates
across parts of speech in thirty languages. Cells show
the statistical significance of a word class’s grounded-
ness (MI > 0). Unattested classes are white. Some func-
tional classes display non-significant levels of ground-
edness in several languages, while lexical classes domi-
nantly show highly significant grounding.

comprises 30,000 images captioned 5 times each in
English, with a single caption per image manually
translated into French, German, Czech, and Arabic.
This dataset is therefore large on the individual lan-
guage level, but with limited language coverage. It
has the comparability of being translated and the
trustworthiness of human translation, but may still
be vulnerable to translationese. By looking at all
three of these datasets for similar generalizations
about the relationship between groundedness and
part of speech, we obtain a picture that is robust to
the weaknesses of the individual datasets.

5 Results

The following sections quantitatively investigate
the trends in our groundedness measure across lan-
guages and word classes. We begin by examining
which word classes exhibit significant grounded-
ness (Section 5.1), followed by an analysis of cross-
linguistic trends and their consistency (5.2 and 5.3).
Finally, we relate our findings to contentfulness-
related psycholinguistic norms (5.4).

5.1 Which word classes are grounded?

We first investigate the evidence for groundedness
in each word classs—that is, for each part of speech,
we ask whether its estimated mutual information
with the image is significantly greater than zero.

To compute significance levels, we use a one-
sample permutation test. Taking the set of PMIs for
a part of speech (POS) in a language, we sample
up to 500 PMIs at a time from all datasets and
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Figure 3: Word token level distributions of the groundedness measure (PMI) across all languages and datasets,
grouped by part of speech (word class). We also report the estimated marginal mean and ranking of each word class.
Colors are based on the ranking of classes, rather than their average PMIs. Overall, the distribution and estimated
ranking of word classes strongly suggest our groundedness measure quantitatively captures the distinction between
lexical and functional classes.

randomly permute their signs (assign + or - with
equal probability to each PMI value), then average
these values to produce a new estimate of mutual
information (MI). We repeat this process to produce
105 permuted estimates. By measuring how often
our estimate based on the observed data is greater
than the permuted estimate, we obtain the p-value,3

i.e., the probability that our observations would
have occurred under the null hypothesis of MI = 0.

Results are shown in Figure 2. Overall, the re-
sults suggest most or all word classes contribute
some information about the image they describe—
in line with theories in linguistics that emphasize
the lexical aspects of categories which are tradition-
ally considered functional (Corver and Riemsdijk,
2001; Bisang, 2017). Interestingly, subordinating
and coordinating conjunctions do not consistently
reject the null hypothesis, suggesting there is little
evidence the image is informative for how many
clauses a speaker uses to describe an image.

5.2 Which word classes are more grounded?

We hypothesize that the cross-linguistically consis-
tent trends in word class groundedness correspond
to a cline which is a continuous analogue of the
lexical–functional word class distinction. To isolate
the contribution of word class identity to mutual
information cross-linguistically, we compute es-
timated marginal means (EMMs) for each word
class’s groundedness,4 and perform a post-hoc pair-
wise comparison test of the means.5 The results
of this analysis are displayed in Figure 3. All pair-

3We use the Benjamini and Yekutieli (2001) corrections.
4Averaged over values of language and dataset.
5Using Šidák corrections; significance threshold = 0.01.

wise comparisons except between pronouns and
particles are statistically significant, leading to a
near total ranking of word classes. We find that
lexical word classes (Proper nouns, nouns, adjec-
tives, verbs, numbers, and adverbs) have higher
groundedness than functional word classes (par-
ticles, auxiliaries, conjunctions, determiners, and
adpositions), with pronouns ranking together with
particles at the upper end of the functional cate-
gories. The ranking corroborates ideas from cogni-
tive linguistics which place nouns, adjectives, and
verbs along a lexical–functional continuum, with
nouns > adjectives > verbs (Rauhut, 2023). On
the other hand, it does not neatly align with ideas
in linguistic theory about adpositions as a semi-
lexical class (Corver and Riemsdijk, 2001), which
suggest they should behave more like other lexical
classes compared to functional classes. Instead we
see similar or greater mutual information for other
functional classes, suggesting they could be more
meaning-bearing than traditionally viewed.

5.3 How consistent is word class
groundedness across languages?

We quantify the strength of the association be-
tween groundedness and word class on two levels:
language-level MI estimates (Figure 1), and token-
level PMI ( Figure 3). The first level quantifies
how consistent languages are in the groundedness
of word classes, while the second level quantifies
how much word class drives the groundedness of
individual tokens. In both cases, we use ANOVA
to estimate the amount of the variance in ground-
edness explained by word class.
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Figure 4: Correlation between human concreteness ratings and type-level groundedness (PMI; left, ρ=0.368) or
uncertainty coefficent (right, ρ=0.609): i.e., the average ratio between LM surprisal and captioning model surprisal.

MI estimates For the language-level MI esti-
mates in Figure 1, we consider the separate effects
of language, dataset, and POS on groundedness.
Because the meanings (images) are matched across
languages, this allows us to estimate and control
for some languages having consistently larger or
smaller MI estimates (due to language-specific vari-
ation in our neural estimators). We find significant
effects of all 3 factors, but they differ dramatically
in how much variation they explain. The effect of
dataset is extremely small, explaining 0.5% of the
observed variance (F3,816=5.71, p< 0.01). Lan-
guage identity has a larger effect, explaining 8.2%
of the variance (F29,789=6.42, p< 0.001). How-
ever, word class dominates, explaining most of the
total variance (57.3%, F12,806=775, p< 0.001),
and 62.8% of the remaining variance after control-
ling for variance due to dataset and language. Alto-
gether, these factors explain 65.6% of the variance,
leaving the remaining variance to cross-linguistic
differences in the MI of specific parts of speech.

PMI distributions We also investigate how
much variation in the full distribution of contex-
tual groundedness estimates (PMIs) is explained
by word class (shown in Figure 3). Within a POS,
groundedness is expected to vary substantially: for
example, some (concrete, visually distinct) nouns
have much higher PMI with the image than oth-
ers, and tokens of the same word type also have
different groundedness (e.g. “lot” referring to a
location vs. “lot” as a quantity expression) There-
fore, we expect word class to explain much less
variance than in the overall MI estimates. Lan-
guage, dataset, and their interaction account for
2.4% of the total variation in PMIs across the
three datasets (F64,107 =4727, p< 0.001). Word
class accounts for 12.0% of the total variation

(F12,107 =123583, p< 0.001). Additionally, the
interaction between word class and language (cross-
linguistic variation in the means of word classes) ac-
counts for only an additional 1.6% of the total vari-
ation (F330,107 =602.5, p< 0.001), despite having
many degrees of freedom. So cross-linguistically
consistent tendencies comprise the bulk of the ex-
plainable variance in the overall PMI distribution
across these three datasets—5 times as much as
language and dataset, and 7.5 times as much as
language differences in POS groundedness.6

5.4 Semantic dimension of the measure
In this section we explore the semantic properties
of the groundedness measure introduced here, com-
paring it to semantic norms related to contentful-
ness that are widely used in psycholinguistics. One
potential advantage of our method is the ease with
which it allows the rating of individual word tokens
in context; however, existing ratings tend to be for
words in isolation (word types). We focus our anal-
ysis here on English and on word types which occur
at least 30 times in the COCO(-35L)7 validation set,
averaging across occurrences to obtain an estimate
of the average type-level groundedness.

We compare to three different psycholinguistic
norms: imageability, concreteness, and strength of
visual experience. Such norms are measured by
providing a definition and examples of low- and
high-value words to raters, who then rate words on
a Likert Scale. For imagability, we use the Glasgow
Psycholinguistic Norms (Scott et al., 2019). For
concreteness, we use the Brysbaert et al. (2014)
norms. For strength of visual experience, we use

6The token-level interaction models and their ANOVA
statistics are computationally intensive (512GB RAM; 6hrs).

7While COCO-35L is mostly machine translated data, the
English data is fully human generated.
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the Lancaster Sensorimotor Norms (Lynott et al.,
2020). Results for concreteness are shown in Fig-
ure 4 (left). We observe fairly weak (though signif-
icant, p< 0.001) correlations with groundedness
using Spearman’s ρ (Imageability: ρ=0.288, Con-
creteness: ρ=0.368, Visual strength: ρ=0.212).

We find these weak correlations are partly due to
to the informativity aspect of our measures, which
seems not to play as large of a role in human ratings
(e.g. woman is just as concrete as skateboard, but
less informative and also less grounded by our mea-
sure). To account for differences in baseline (LM)
word informativity, we can normalize the PMI
scores by the LM surprisal, yielding the uncertainty
coefficient (Theil, 1970): the proportion of the LM
surprisal explained by the PMI. Regressing this
value against the psycholinguistic norms, stronger
correlations emerge (Imagability: ρ=0.548, Con-
creteness: ρ=0.609 as shown in Figure 4 (right),
Visual strength: ρ=0.320). This suggests that the
differences between groundedness and surprisal are
associated with concreteness. However, this mea-
sure collapses differences between word classes in
overall informativity/surprisal.

In some cases, outliers are due to contextual
effects. For example, in our data the word “po-
lar” (high groundedness, moderate concreteness)
occurs exclusively as the first word in the multi-
word expression “polar bear” which is highly con-
crete, imageable, and visual; while ratings based on
the word type are for the more abstract geograph-
ical concept. Other words with divergent scores
between human-based and model-based methods
tend to be those which frequently occur in contexts
where they are highly expected (e.g. “shore” which
tends to occur in limited syntactic contexts and
after the appearance of words like “boat,” “lake,”
or “surfers”), or words which are often used non-
specifically in the image captioning context (e.g.
“photo” exhibits very low PMIs, because captions
frequently begin with “A photo of . . . ”).

6 Discussion and Conclusion

We have proposed a grounded approach to typol-
ogy, using images as a proxy for sentence meaning.
Using information theory and neural models, we
define groundedness, a measure of a token’s asso-
ciation with the meaning expressed in a sentence
Our results demonstrate that word classes display
consistent patterns in terms of their groundedness
across a typologically diverse sample of languages.

We find these patterns can be described as a con-
tinuous cline which generalizes the traditionally
dichotomous distinction between lexical and func-
tional word classes into a gradient one. However,
our results suggest grammatical word classes still
carry semantic content. We find that nouns > adjec-
tives > verbs, in line with a view of these classes as
a continuum; yet, our results contradict claims that
adpositions are more lexical than other functional
classes. Our measure is related to surprisal, but
diverges from it, particularly for concrete words.

While this work has focused on word classes,
groundedness enables the exploration of other as-
pects of how languages express function through
form. Future work could investigate in detail un-
der what conditions “functional” items have higher
groundedness. For example, do more spatial adpo-
sitions and determiners have higher groundedness
than less spatial ones? Humans tend to have diffi-
culty scoring highly abstract and grammaticalized
words, and getting contextual scores is difficult
with existing psycholinguistic approaches: ground-
edness opens new ways to address these questions.

Our approach is also suitable for studying non-
prototypical word class organizations, such as lan-
guages which do not clearly distinguish between ad-
jectives and verbs (Korean; Maling and Kim, 1998),
or languages that split individual word classes into
distinct sub-classes (Japanese adjectives; Back-
house, 1984). Future work should look at both for-
mal and semantic sub-classes of parts of speech—
such as gerunds, participles, and different semantic
classes of verbs (as in VerbNet; Kipper Schuler
et al., 2009)—investigating their groundedness and
how it aligns with or varies from existing metrics.
In particular, we conjecture that boundary classes
(e.g. gerunds) may display intermediate ground-
edness (between nouns and verbs) compared to
prototypical members of those classes. Grounded-
ness makes it possible to test this conjecture with
reference to the contexts in which words appear,
which is needed for distinguishing syncretic forms.

Our approach can also cover any classes which
can be defined over linguistic units, such as mor-
phemes, phrases, or semantic classes. For instance,
future work could explore the claim that inflections
are more “grammatical” than derivations (Booij,
2007; Haley et al., 2024). Similarly, our measure
could be used to study the lexicalization or gram-
maticalization of constructions (as a decrease in
groundedness over time). To support such work,
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we release our groundedness scores online.8

Going beyond the details of the approach here,
our work generally suggests a role for multimodal
models in computational typology similar to the
one played by language models in the past decade
(e.g. Pimentel et al., 2023; Cotterell et al., 2018;
Ackerman and Malouf, 2013). While language
coverage remains more limited than text models,
the latest multimodal models and datasets cover
enough typologically and culturally diverse lan-
guages to make them worth studying—and we an-
ticipate coverage will only improve. Further, the
ability of multimodal models to provide an em-
pirically grounded (if imperfect) representation of
meaning makes them uniquely valuable for quan-
titatively addressing questions about the relation
between form and function in language. Our work
provides the first study of this kind, and we hope
that by demonstrating the utility of this approach
and releasing our groundedness scores we will in-
spire other researchers to follow suit.

Limitations

Our approach has a number of important limita-
tions. These limitations should inform the interpre-
tation of results here, as well as any future studies
considering using these techniques.

First, our operationalisation of meaning as an
image is necessarily a simplification and has nu-
merous implications for our results. Notably, the
choice of images rather than videos (motivated by
model quality and availability) as the representa-
tion of meaning has major implications for verbs,
which tend to have meanings which are more tem-
porally extended. This choice also has substantial
implications about the variety of language which
can be analyzed–many types of language use, such
as metaphoric extension, are likely to be much less
frequent in image captions than in other domains
of language use: such phenomena are perhaps best
studied using a different technique. This problem is
compounded by the fact that existing multilingual
corpora for these datasets remain fairly small–thus
the analysis of long-tail phenomena in language
using these methods is likely not yet possible.

Compared to existing methods in typology, this
method trades human effort for computational re-
sources. While we make both our models and data
available, significantly lessening the burden on fu-
ture studies, the models here contain between two

8https://osf.io/bdhna/

and three billion parameters, and the image models
have very long sequence lengths due to the image
tokens. Inference on new data is therefore fairly
expensive with current technologies.

Further, there remain significant limitations on
the languages which can be studied with these ap-
proaches. Currently available models cover just 16
languages outside of the Indo-European language
family, and entire areal typological regions like the
Americas are not covered. We hope that the qual-
ity and coverage of these models can continue to
improve, and that findings based on current models
can be revisited and replicated with newer models.

Finally, we rely on automatic part of speech
tagging based on Universal Dependencies for the
analyses here (see Appendix A for further infor-
mation and Appendix B for per-language perfor-
mance). Overall, the accuracy of the Stanza tagger
is high for the Universal Dependencies corpora
of the languages studied here (96% on average);
however, it is not uniformly accurate across lan-
guages. Vietnamese has the lowest average accu-
racy, with 81.5% on their test set; however, our
data is different in domain from many of the uni-
versal dependencies corpora, so the accuracy might
be somewhat lower or higher. Universal Depen-
dencies part of speech tags are not entirely without
controversy as well—for instance, some linguists
would argue that Korean does not have an adjective
class, but UD uses one. It is possible that choices
or inconsitencies in the assignment of POS tags
according to UD could impact some MI estimates.
In summary, noise due to POS tagging may have
some influence on the results here, but is unlikely
to affect our main conclusions.
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A Implementation details

A.1 Part of Speech annotations
Note that none of the datasets used here come annotated with word class information. We adopt the
Universal Dependencies tagset, using Stanza (Qi et al., 2020, v.1.8.2) to tag words with their Universal
Dependencies parts of speech. We remove single orthographic words that Stanza assigns multiple parts
of speech, like English “don’t” or German “zum” from our analysis, since it is unclear to which part of
speech they should be assigned. Stanza does not cover Thai, Maori, Tagalog, Swahili, or Bengali for part
of speech tagging, so they are excluded.

A.2 Word-level PMI Estimates
Because the tokenizer of the present model does not cross orthographic word boundaries, we are able to
sum the log probabilities of their constituent subword tokens to obtain word-level rather than token-level
log probability estimates. Ordinarily, some languages do not indicate word boundaries in their orthography,
such as Japanese; however, the pretraining data and evaluation datasets (Crossmodal-3600 and COCO-
35L) are word-tokenized, so this information is readily available. Further, because our language model
uses sub-word tokenization with trailing whitespaces, we adopt the correction proposed by Oh and Schuler
(2024); Pimentel and Meister (2024). Specifically, let swt be the decomposition of word wt into a sequence
of subwords, and sw<t be the decomposition of context w<t into a sequence of subwords. Given Sbow,
the subset of the tokenizer vocabulary that contains subwords that are beginning-of-word (e.g., with a
trailing whitespace):

p(wt | w<t) = p(swt | sw<t) ·
∑

s∈Sbow
p(s | sw<t ⊙ swt)∑

s∈Sbow
p(s | sw<t)

(5)

where ⊙ stands for concatenation.

A.3 Training details
For training our language model, we did a grid search over learning rates and whether or not to use weight
decay. We use a learning rate of 2× 10−5 and weight decay of 1× 10−6 with the Adam optimizer. To
train the final model, we train on a single A100 with a batch size of 4 for 430,000 steps on COCO-35L
(≈ 50 hours of training, approximately 3 epochs). Our model achieves much lower perplexity on our
evaluation datasets than Gemma-2B, suggesting successful domain adaptation.

B Model performance by language

See Table 2 for per-language captioning performance, POS tagging accuracy, and perplexity of the base
Gemma-2B model, the PaliGemma captioning model, and our fine-tuned LM.

C Correlation plots for other psycholinguistic norms

Figure 5 shows the relationship between our measure and concreteness, as well as the uncertainty
coefficient, which normalizes our measure by the language model surprisal. While concreteness is most
strongly associated with our measure/its normalized variant, for completeness we show the relationships
between our measure and the other psycholinguistic norms (imageability and strength of visual experience)
we investigate here.
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Figure 5: Correlation between English psycholinguistic norms and type-level groundedness (left) or uncertainty
coefficent (right): i.e., the average ratio between LM surprisal and captioning model surprisal. Type-level measures
were computed by averaging scores across the COCO-dev dataset for types which occur at least 30 times.
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D Groundedness distribution for
Crossmodal-3600

Results are ordered by descending mutual informa-
tion estimate within the dataset (average ground-
edness/PMI). Hue indicates the average cross-
linguistic ranking of a part of speech.
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E Groundedness distribution for
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Results are ordered by descending mutual in-
formation estimate within the dataset (average
groundedness/PMI). Hue indicates the aver-
age cross-linguistic ranking of a part of speech.
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F Groundness distribution for
COCO-35L Development Set

Results are ordered by descending mutual informa-
tion estimate within the dataset (average ground-
edness/PMI). Hue indicates the average cross-
linguistic ranking of a part of speech.
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