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Abstract

Cross-lingual knowledge transfer, especially
between high- and low-resource languages, re-
mains challenging in natural language process-
ing (NLP). This study offers insights for im-
proving cross-lingual NLP applications through
the combination of parameter-efficient fine-
tuning methods. We systematically explore
strategies for enhancing cross-lingual transfer
through the incorporation of language-specific
and task-specific adapters and soft prompts.
We present a detailed investigation of various
combinations of these methods, exploring their
efficiency across 16 languages, focusing on
10 mid- and low-resource languages. We fur-
ther present to our knowledge the first use of
soft prompts for language transfer, a technique
we call soft language prompts. Our findings
demonstrate that in contrast to claims of pre-
vious work, a combination of language and
task adapters does not always work best; in-
stead, combining a soft language prompt with
a task adapter outperforms most configurations
in many cases.

1 Introduction

Many multilingual large language models (LLMs)
have been developed in recent years, demonstrat-
ing promising performance on various NLP tasks
across multiple languages (Xue et al., 2021; Work-
shop et al., 2023). These models are pre-trained
on extensive corpora of unlabelled data in numer-
ous languages, allowing an adaptation to linguistic
characteristics and nuances. In addition, LLMs
are often further trained on downstream tasks in a
selected subset of languages (Muennighoff et al.,
2023). However, only few LLMs focus on low-
resource languages (Tang et al., 2020; Xue et al.,
2021; Üstün et al., 2024; Gurgurov et al., 2024).

As the number of covered languages in the
model increases, the issue of the curse of multi-
linguality arises. This problem occurs when the
LLM’s capacity is limited, causing languages with
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Figure 1: The full pipeline consists of (1) training lan-
guage representation on 16 languages on the unlabelled
data from Wikipedia; (2) training task representations
on six high-resource languages on four NLP tasks; and
(3) evaluating of cross-lingual transfer capabilities on
10 mid- and low-resource languages.

less training data to perform poorly (Conneau et al.,
2020). Various approaches have been employed
to address this limitation, primarily involving ad-
ditional trainable parameters specific to individual
languages (Pfeiffer et al., 2020, 2023).

An alternative to language-specific tuning is
cross-lingual transfer, where researchers investi-
gate the knowledge transfer between high and low-
resource languages. In cross-lingual transfer meth-
ods, an LLM is trained on a downstream task in one
language, most often high-resource, and evaluated
in other languages (Pikuliak et al., 2021). However,
training only task-specific representations does not
always capture the nuances of languages on which
the LLM has not been trained or has been trained
only to a small extent. Therefore, incorporating
language-specific features can enhance knowledge
transfer across languages.

Previous work has primarily investigated lan-
guage and task representations by training language
and task-specific adapters (Pfeiffer et al., 2020;
Parović et al., 2022) or by employing language
arithmetics (Klimaszewski et al., 2024). Nonethe-
less, other approaches that involve incorporating
additional parameters to the model for language
representation have not been thoroughly explored.
This opens the opportunity to explore a combina-
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tion of language and task representations using
other methods and their impact on cross-lingual
knowledge transfer.

To explore the utilization of language and task
representations, we evaluate various configurations
by combining two parameter-efficient fine-tuning
(PEFT) methods that incorporate additional param-
eters into the LLM, namely adapters and prompt-
tuning. Leveraging these additional language- and
task-specific parameters increases the capacity of
an mT0-BASE model and improves performance
for cross-lingual transfer. We evaluate the perfor-
mance of each configuration by training on six high-
resource languages and evaluating its effectiveness
on 10 mid- and low-resource languages on four
selected tasks1.

Our main contributions are:

• We propose soft language prompts as an al-
ternative method for cross-lingual transfer.

• We comprehensively evaluate combinations
of adapters and soft prompts for cross-lingual
transfer and find that language prompts pro-
vide a viable alternative to language adapters,
especially for low-resource languages.

• In addition, we provide an exhaustive evalu-
ation of both prompts and adapters for task
transfer. We find that the best combination of
adapters and prompts for task and language
transfer depends highly on task and language,
resp., and that no solution clearly outperforms
the others.

2 Related Work

Adapters and Soft Prompts. PEFT methods are
designed to address the problem of the increasing
number of trainable parameters in LLMs (He et al.,
2022; Dettmers et al., 2023; Zhang et al., 2023;
Xu et al., 2023; Xie et al., 2024). These methods
reduce the number of trained parameters and in-
corporate new parameters commonly used to train
LLMs on other tasks. Adapters (Houlsby et al.,
2019a) and Prompt-Tuning (Lester et al., 2021)
represent two PEFT methods for adapting LLMs
to different NLP domains. Adapters incorporate
new parameters into the transformer architecture
by including down- and up-projection layers along

1Code is available at: https://github.com/kinit-sk/
adapter-prompt-evaluation

with residual connection, while prompt-tuning in-
troduced trainable soft-prompts prepended to input
embeddings to condition the LLM’s generation.

Limitations of Multilingual LLMs. One ma-
jor limitation of LLMs is catastrophic forgetting,
which occurs when training the LLM on a new task,
causing it to partially or entirely forget previously
learned knowledge for other tasks (McCloskey and
Cohen, 1989; Luo et al., 2024; Ren et al., 2024).
This forgetting extends beyond task-specific knowl-
edge to language-specific knowledge if the model is
fine-tuned on a subset of the original languages (Vu
et al., 2022a; Liu and Huang, 2023).

Another challenge with multilingual LLMs is
associated with the number of languages on which
these LLMs have been pre-trained (Conneau et al.,
2020; Pfeiffer et al., 2022). Previous research has
shown that as the number of languages covered
by LLMs increases, their performance on various
NLP tasks degrades (Hu et al., 2020; Ponti et al.,
2020). Additionally, low-resource languages are
often underrepresented during pre-training, result-
ing in poor performance in these languages (Wu
and Dredze, 2020).

Cross-Lingual Transfer. Given the many low-
resource and underrepresented languages, cross-
lingual transfer is crucial for training LLMs to
address NLP tasks in various languages (Piku-
liak et al., 2021). A common approach involves
training LLMs in one language and evaluating
them in another. Recent methods use additional
parameters to create language-specific represen-
tations, assisting LLMs in solving NLP tasks in
low-resource languages (Üstün et al., 2020; Ansell
et al., 2022). These include training task adapters
on top of language adapters (Pfeiffer et al., 2020;
Ansell et al., 2021; Pfeiffer et al., 2023; Kunz and
Holmström, 2024), training language adapters on
source and target languages (Parović et al., 2022),
and fusing multiple task (Lee et al., 2022) or lan-
guage adapters (Rathore et al., 2023). Other ap-
proaches leverage soft prompts (Huang et al., 2022;
Philippy et al., 2024) or grammar prompting (Wang
et al., 2024). While many works focus on spe-
cific tasks, our study explored different combina-
tions of adapters and soft prompts for cross-lingual
transfer on four tasks, minimizing the reliance on
machine translation, which is often unreliable for
low-resource languages.
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3 Methodology

We propose a comprehensive study on combina-
tions of language and task representations using
adapters and soft prompts. We evaluate for the first
time the capabilities of soft language prompts in a
systematic manner and evaluate the performance of
diverse combinations of soft prompts and adapters
for cross-lingual transfer. Our pipeline, illustrated
in Figure 1, consists of three steps. Firstly, we
train language adapters and soft prompts in 16 lan-
guages on unlabelled data. Secondly, along with
trained language representation, we incorporate
task representation into the LLM’s architecture and
train the task representation on four tasks in six
high-resource languages. Finally, we evaluate the
cross-lingual transfer on 10 mid- and low-resource
languages and four selected tasks.

In the following sections, we first give details
on methods that we investigate for representing
language (Section 3.1) and task information (Sec-
tion 3.2). We then explain the combinations of soft
prompts and adapters we evaluate (Section 3.3).

3.1 Language Representation
Language Adapters. Previous work has in-
vestigated the efficiency of training language-
specific transformation using the adapter architec-
ture (Houlsby et al., 2019b). Pfeiffer et al. (2020)
proposed a MAD-X framework, which includes
training language adapters using the masked lan-
guage modeling objective on unlabelled data. In-
spired by language adapters proposed by the au-
thors, we build upon their architecture and the ap-
proach used to train language adapters. In our set-
tings, language adapters are incorporated into each
transformer layer of the LLM and trained using
unlabelled data from Wikipedia.

Soft Language Prompts. Soft Prompt Tuning of-
fers a promising, parameter-efficient method for
adapting LLMs. Previous work has predominantly
explored task-specific soft prompts to enhance task
transferability, typically focusing on a single lan-
guage (Vu et al., 2022b; Asai et al., 2022). In con-
trast, we extend this approach by training language-
specific soft prompts to guide multilingual LLMs
toward a target language. Given that multilingual
LLMs can generate responses in various languages,
we defined a soft language prompt as a set of token
embeddings prepended to the original input embed-
ding. These embeddings are then fed into the LLM
to condition its output in the desired language.

Existing studies have highlighted the importance
of soft prompt initialization in optimizing the per-
formance of LLMs. Lester et al. (2021) outlined
three possible strategies: (1) random initialization
using a Gaussian distribution; (2) initialization
from the model’s vocabulary; and (3) initialization
with the embeddings of output classes for classifica-
tion tasks. While each method has its strengths and
limitations, none directly apply to our experiments,
which focus on multilingual LLMs. To address this,
we introduce a language-specific text instruction
for soft prompt initialization (see Appendix C). In
this approach, the text instruction is first embedded,
and if its length is shorter than the required soft
prompt size, the embedding is repeated until the
desired length is achieved. This approach already
steers the model to the desired language and can
fasten the convergence during the training.

Language Modeling Objective. Training
language-specific representations requires unla-
belled data from the selected languages and careful
selection of an appropriate training objective.
Given our use of an encoder-decoder architecture,
we adopt span corruption as the training objective,
which has been shown to be efficient in prior
work (Raffel et al., 2020; Xue et al., 2021). Unlike
the casual language modeling objective, where the
LLM predicts the next token in a sequence, span
corruption randomly masks 15% of the tokens in
the input text using sentinel tokens. These tokens
serve solely to mark the masked parts, which the
LLM is tasked to reconstruct (Raffel et al., 2020).
Finally, the LLM is trained to predict the original
tokens for the masked portions, enabling it to learn
linguistic nuances and patterns that are crucial for
training task-specific adapters and soft prompts.

3.2 Task Representation

Task Adapters. Similarly to language adapters,
we use task-specific adapters, represented by the
same adapter architecture, which are incorporated
into each transformer layer of the LLM. How-
ever, when combining task representations with
language representations, the final architecture dif-
fers across configurations and depends on the type
of language representation used during the training
and inference. Detailed information on the archi-
tecture for all combinations is in Section 3.3.

Task adapters are updated only during training
on the desired downstream task, while the rest of
the model, along with the language representation,
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is kept frozen. In the case of task-specific repre-
sentations, LLMs learn knowledge that is charac-
teristic of the specified tasks, and that should be
language-independent.

Soft Task Prompts. In addition to task adapters,
we use soft task prompts with the same architec-
ture and parameters as soft language prompts. The
difference when using a soft task prompt occurs
in the configuration consisting of a soft language
prompt and a soft task prompt. With this config-
uration, both soft prompts are combined using a
concatenation operation and further fed into the
model to condition the final generation. This con-
catenation represents the stacking of two represen-
tations (language and task), similar to stacking two
adapters on top of each other used in the MAD-X
approach (Pfeiffer et al., 2020).

3.3 Evaluated Combinations of Adapters and
Soft Prompts

Since our experiments are focused on evaluating
language and task representations and their combi-
nations, we define six possible configurations: (1)
only task adapter; (2) only soft task prompt; (3)
MAD-X (Pfeiffer et al., 2020), i.e. the combination
of language and task adapter; (4) the combina-
tion of language adapter and soft task prompt; (5)
the combination of soft language prompt and task
adapter; and (6) the combination of soft language
prompt and soft task prompt. The position of task
representations within the LLM highly depends on
the type of language representation used in exper-
iments. The architecture, along with the form of
the input for all configurations, are illustrated in
Figure 2.

Single Task Adapters & Soft Task Prompts.
The configurations that employ only task adapters
or task soft prompts aim at training task representa-
tions without incorporating language-specific repre-
sentation. Adapters and soft prompts were trained
independently on each selected dataset from four
tasks, and the resulting task representations were
evaluated across all 10 mid- and low-resource lan-
guages. Only the adapters and soft prompts are
trained during this process, while the rest of the
LLM remains frozen.

Language Adapters & Task Adapters. Beyond
training task representations alone, we also trained
a task adapter on top of a pre-trained language
adapter, reproducing the approach outlined in

MAD-X (Pfeiffer et al., 2020). Our method lever-
ages the same architecture with distinct training
hyperparameters fitted to the tasks at hand. In
this setup, the task adapter takes the output of the
language adapter as input and further processes
it. Only the task adapter is trained during train-
ing, while the language adapter and LLM remain
frozen.

Adapters and Soft Prompts Combinations.
Our study introduces two combinations of lan-
guage and task representations using adapters and
soft prompts. The first configuration involves soft
task prompts along with a language adapter. This
combination incorporates trained language-specific
knowledge using a language adapter and a soft task
prompt trained on the desired downstream task.

The second combination includes training a task
adapter with the trained soft language prompt.
Soft language prompts condition LLMs to acti-
vate knowledge specific to the desired language,
while task adapters learn task-specific knowledge.
In both settings, language representations are kept
frozen and only task representations are trained on
the desired downstream tasks.

Soft Language Prompts & Soft Task Prompts.
The last configuration includes soft language and
soft task prompts. Inspired by stacking language
and task adapters on top of each other, we concate-
nated embeddings of language and task prompts to
a final soft prompt, with the LLM and soft language
prompt being frozen during training.

4 Experiments

In the following section, we describe the process
of selection of models (Section 4.1), languages
(Section 4.2) and tasks (Section 4.3).

4.1 Model Selection

We selected an encoder-decoder architecture, the
mT0-BASE model, to conduct a cross-lingual eval-
uation. The mT0 model is based on the pre-trained
multilingual mT5 model, which has been further
fine-tuned on a collection of 46 languages across
16 NLP tasks (Muennighoff et al., 2023). The
model selection played a crucial role in further
experiments, and we conducted several preliminary
experiments with the original mT5-BASE model.
However, we observed that in the case of using
pre-trained models, which have not been further
fine-tuned on downstream tasks, prompt-tuning is
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Figure 2: The architecture for all combinations of language and task representations in our experiments. These
configurations include: (1) Language and Task Adapters; (2) Language Adapter and Soft Task Prompt; (3) Soft
Language Prompt and Task Adapter; and (4) Soft Language and Soft Task Prompts. Language representations are
in red, while task representations are in green color.

not sufficient to guide the LLM to produce mean-
ingful outputs.

4.2 Languages

The original mT5 model was pre-trained on over
100 languages, while mT0 employed only 46 for
further fine-tuning. From the list of languages sup-
ported by mT5, we selected 16 languages and cate-
gorized them into two groups: high- and mid- along
with low-resource languages. On the one hand, we
consider Arabic, German, English, Spanish, Rus-
sian and Chinese to be high-resource languages.
On the other hand, we consider Czech, Greek, Ro-
manian and Slovenian as mid-resource and Bul-
garian, Malayalam, Slovak, Swahili, Telugu and
Urdu as low-resource languages. Our distinction
between these two groups is based on the number
of resources available for each language (in terms
of unlabelled and labelled data).

We included languages from various families
(e.g., Indo-European, Dravidian, Sino-Tibetan) and
script types in the low-resource category, such as
Latin, Arabic, Cyrillic and other non-Latin. The
purpose of including multiple scripts and language
families in our cross-lingual evaluation is to in-
vestigate the ability of the mT0 model to transfer

knowledge between more similar and more distant
languages with respect to both script and language
features.

To train language representations on unlabelled
data, we selected Wikipedia as a source that con-
tains many articles in various languages, including
low-resource ones. All Wikipedia data were taken
from the latest preprocessed dump from Hugging-
Face2, from November 2023.

4.3 Tasks

To evaluate the capabilities of mT0-BASE and our
proposed method for cross-lingual transfer, we
choose four distinct tasks involving various NLP ar-
eas to explore the model performance. These tasks
differ in the type of the provided output and include
question answering (QA), named-entity recogni-
tion (NER), natural language inference (NLI), and
check-worthy claim detection (CWCD). They were
selected based on the availability of datasets for se-
lected languages and to include various NLP tasks
related to reading comprehension, recognizing tex-
tual entailment, or fact-checking. Table 1 lists the
datasets used in our experiments. For Bulgarian,

2https://huggingface.co/datasets/wikimedia/
wikipedia
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Dataset Task Languages Citation

SQUAD QA en Rajpurkar et al. (2016)
MLQA QA ar, de, hi, zh, es, vi Lewis et al. (2019)
XQuAD QA el, ro Artetxe et al. (2020)
SK-QUAD QA sk Hládek et al. (2023)
CZECH SQUAD QA cs Macková and Straka (2020)
TeQuAD QA te Vemula et al. (2022)
KenSWQuAD QA sw Wanjawa et al. (2023)
UQA QA ur Arif et al. (2024)
Slovene SQuAD QA sl Borovič et al. (2022)
IndicQA QA ml Doddapaneni et al. (2023)

WikiANN NER ar, bg, cs, de, el,
en, es, ml, ro, ru,
sl, sk, sw, te, ur, zh

Rahimi et al. (2019)

XNLI NLI ar, bg, de, el, en,
es, ru, sw, ur, zh

Conneau et al. (2018)

IndicXNLI NLI ml, te Aggarwal et al. (2022)
CS ANLI NLI cs, sk* CS-ANLI
RoNLI NLI ro Poesina et al. (2024)
Sl-NLI NLI sl Klemen et al. (2024)

MultiClaim CWCD ar, bg, cs, de*, el*, en,
es, ml*, ro*, ru*, sl*,
sk, sw*, te*, ur*, zh*

Pikuliak et al. (2023)
Hyben et al. (2023)

Table 1: The list of datasets used in our experiments.
Languages marked with * represent language versions
of datasets that are not original but were obtained by
translating texts from Czech (CS ANLI) or English
(MultiClaim).

no question answering dataset is available.
Due to the absence of datasets for some lan-

guages, we employed Google Translate API to
translate data for several languages. This concerns,
in particular, the dataset for the Slovak NLI task
and the dataset for check-worthy claim detection.
In the case of the missing Slovak NLI dataset, we
utilized the CS ANLI dataset and translated it from
Czech to Slovak. For check-worthy claim detec-
tion, we translated the English dataset into multiple
languages to obtain results for comparison.3

4.4 Experimental Setup
Language Representations. Language adapters
and soft prompts were trained using a span corrup-
tion objective with different learning rates for train-
ing language adapters and soft language prompts,
which were identified based on experiments on En-
glish data. Detailed parameters are listed in Table 2
in Appendix D.

Task Representations. In training task represen-
tations, we divided the training set into training
and validation splits using 15% of the records for
validation, which was done only for datasets that
do not include a test set and the original validation
split was considered a test set. This is especially the

3To evaluate the accuracy of the translations, we manually
verified a subset of samples, with a particular focus on transla-
tions between Czech and Slovak, leveraging input from native
speakers. Our analysis found that the translations generated
by Google Translate were correct for this language pair.

case for the question answering and check-worthy
claim detection tasks. Secondly, we preprocessed
each dataset by transforming each record from the
particular dataset into the text-to-text format em-
ploying prompt templates listed in Appendix B.

Task representations in all configurations were
trained using the same training parameters across
all tasks, with differences only between learning
rates and weight decay.4 In addition, the instruc-
tion used for training soft prompts differs across
languages and tasks. These variations are based on
the language in which the answer is to be generated
and the task that the LLM is solving.

The best model was chosen based on the perfor-
mance on the validation split with respect to the
loss. For classification tasks, we set the maximum
number of tokens to generate based on the pre-
dicted classes. This minimizes the problem of the
LLM continuing to generate an answer and enables
us to evaluate the LLM’s performance correctly.
Table 2 in Appendix D shows the exact parameters
for training language and task representations.

Evaluation. For evaluation, we selected several
standard metrics employed for particular tasks.
Specifically, we use the F1-Score or Accuracy for
classification tasks and QA in the SQUAD format.
Besides the F1-Score for QA, we also calculated
Exact Match, assessing how many of the answers
exactly match the ground truth.5 For the evaluation,
we employed metrics implemented in the Hugging
Face evaluate library6.

We evaluated the results on cross-lingual trans-
fer from high-resource languages to mid- and low-
resource ones, where task representations were
trained on datasets in high-resource languages. We
aim to assess the combination of language repre-
sentations of low-resource languages with task rep-
resentations trained on datasets from high-resource
languages, i.e., high-resource language as source
language and low-resource as target ones. Ex-
tended results are shown in Appendix E.

4We employed only one seed due to computational and
time limitations. However, we performed a check of the gener-
alizability of the approach by training the task representation
on the German version of the WikiANN dataset for NER using
two additional seeds and evaluated cross-lingual transfer from
German to six languages. The results are in Appendix F.

5Exact Match tends to underestimate models’ performance
for low-resource languages, where LLMs are not often able to
produce the exact answer with the correct grammar.

6https://huggingface.co/docs/evaluate
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Baselines. To evaluate the proposed methods,
we employed several baseline approaches and
configurations. Baselines include task adapters,
soft task prompts (prompt-tuning approach), and
MAD-X – the combination of a language and task
adapter (Pfeiffer et al., 2020). These baselines pro-
vided a foundation for assessing the effectiveness
of cross-lingual transfer in our experiments.

5 Results and Analyis

This section summarizes our observations based
on the experiments that were conducted. We pro-
vide the overall findings in Section 5.1 and then
the results for particular tasks, especially ques-
tion answering (Section 5.2), named entity recogni-
tion (Section 5.3), natural language inference (Sec-
tion 5.4) and check-worthy claim detection tasks
(Section 5.5).

5.1 Overall Results

Our study on cross-lingual transfer performance
between high-resource and mid- and low-resource
languages is summarized in Table 3 in Appendix E,
which reports averaged metrics across four tasks
for mid- and low-resource languages. Additionally,
Figure 3 demonstrates the comparison of all combi-
nations across high-resource languages, where the
presented scores represent the average calculated
across all tasks and all low-resource languages.

The results demonstrate that the selection of
source languages plays an important role in the
overall results, with distinct languages demonstrat-
ing different performance gains. Using English as
a source language yielded the highest performance
for most mid- and low-resource languages when
employing task representations alone. A possible
explanation might be that multilingual models of-
ten remain biased toward the source language, even
after adaptation, as demonstrated in Alabi et al.
(2024). They show that language adaptation in
models primarily occurs in the final layers, while
the source language still influences earlier predic-
tions. However, for Bulgarian and Slovak, the
combination of soft language prompts with task
adapters proved to be more effective.

In contrast, when Arabic, German, Spanish, and
Russian were used as source languages, config-
urations that combined language and task repre-
sentations yielded superior scores. Specifically,
transferring knowledge from Spanish using a
combination of soft language prompts and task

adapters resulted in the highest overall perfor-
mance. This configuration proved to be the most
effective, making Spanish the most effective high-
resource language for cross-lingual transfer be-
tween languages across various scripts. The su-
perior performance of Spanish can be attributed
to its performance gain in both NER and CWCD
tasks compared to other high-resource languages.
For instance, in NER, the gap between the best and
second-best averaged performance was approxi-
mately 4%. The most significant improvement was
observed when transferring knowledge to Roma-
nian, likely due to the linguistic similarity between
Spanish and Romanian. Additionally, Spanish also
shares similarities with some Slavic languages, fur-
ther contributing to its effectiveness in cross-lingual
transfer.

5.2 Question Answering
Our experiments (see Table 4) revealed that the
configuration of a soft language prompt and
task adapter achieved the highest performance
in many cases in the QA task when transferring
to mid- and low-resource languages, with only
small differences across languages. This config-
uration was particularly effective for Greek, Ro-
manian and Slovak, while for Telugu and Urdu,
the task adapter without language representation
outperformed other configurations. This suggests
that the complexity of the target language can-
not be sufficiently modelled based on the small
number of Wikipedia articles in those languages.
Furthermore, English excelled across the board,
particularly with Latin and Greek scripts, showcas-
ing its adaptability in cross-lingual transfer.

In addition to investigating the effects of indi-
vidual configurations, we also evaluated the im-
provement of a soft language prompt combined
with a task adapter over the original mT0-BASE

model without any language or task representa-
tions (see Figure 4). Figure 4 contains relative F1-
Score improvements and demonstrates that train-
ing task representations in English and evaluat-
ing in other languages provide the most evident
improvement. We also observed that German,
English, and Spanish improved performance for
most low-resource languages except Telugu and
Malayalam. In contrast, Arabic, Russian and Chi-
nese, which have different scripts, exhibited nega-
tive transfer across all cases, with Arabic and Chi-
nese offering no improvement for any languages.
We conjecture that the cross-lingual transfer de-
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averaged over all low-resource languages. The graph compares different configurations with varying performance
for cross-lingual transfer from high-resource to low-resource languages. In most cases, combining soft language
prompts with task adapters (purple) proved best.
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Figure 4: Relative F1 improvement for the QA task in
transferring knowledge between languages using soft
language prompts and task adapters. The effectiveness
of the selected configuration is compared with the re-
sults obtained without using any language and task rep-
resentations (i.e., mT0-BASE inference).

pends on the script used for the language, where
we achieved the highest performance for languages
in the Latin script.

5.3 Named Entity Recognition

In the case of the NER task, Arabic, German,
Spanish and Russian, among high-resource lan-
guages, performed best in cross-lingual transfer
to mid- and low-resource languages, while English
and Chinese performed poorly. However, based on
Table 5, the best improvements were observed us-
ing a soft language prompt with a task adapter, out-
performing the other combinations for languages
such as Arabic, Spanish and German. This is es-
pecially the case for Telugu, where the difference
between these configurations is more than 37% in
favor of the combination of soft language prompt
and task adapter using Russian data.

5.4 Natural Language Inference

The cross-lingual evaluation of the NLI task from
Table 6 demonstrated the effectiveness of almost
all proposed configurations for knowledge transfer.
In particular, we mostly achieve superior results
using the combination of language adapters with
soft task prompts in Czech, Slovenian and Slo-
vak as target languages. Meanwhile, the best
performance was achieved for Swahili, Telugu, and
Urdu without employing language representations.
Furthermore, the high effect on the Romanian lan-
guage observed in the cross-lingual evaluation is
probably because Romanian has been involved dur-
ing the training of mT5, but not as part of fine-
tuning the mT0 model.

We observed improvement for most languages
across the six proposed configurations for transfer-
ring knowledge. However, for Czech, Slovenian
and Slovak, several configurations resulted in lower
performance compared to inference-only baselines.
Notably, for Slovenian, using Russian for the
soft task prompt was the only configuration that
outperformed the inference-only approach. Fur-
thermore, the combination of language and task
adapters for Slovenian resulted in the poorest per-
formance, with an average deterioration of 63%.

5.5 Check-Worthy Claim Detection

For check-worthy claim detection, the configura-
tion of soft language prompts and task adapters
performs comparably to methods without language
representations (see Table 7). When considering
both the best and second-best results, this combi-
nation proves effective across most language pairs,
demonstrating the model’s enhanced capabilities
for check-worthy claim detection. Notably, using

10301



Spanish for knowledge transfer within this setup
resulted in the highest performance gains.

6 Discussion

Based on our experiments, we summarize our ob-
servations below.

Prompt Tuning Performs Better with Fine-
Tuned Models. In our preliminary model selec-
tion experiments, we found that prompt tuning
does not improve the performance of pre-trained
LLMs (e.g., mT5) trained only on unlabelled data
for downstream tasks. However, prompt-tuning
can enhance the performance of already fine-tuned
LLMs on any labelled data, even if the specific
tasks were not part of the prior fine-tuning. This
was confirmed in our experiments with NER and
check-worthy claim detection, where fine-tuned
LLMs delivered superior results despite no previ-
ous task-specific training on these tasks.

Soft Language Prompts with Task Adapters Per-
form Best in Many Cases. Our approach of com-
bining soft language prompts with task adapters
demonstrated better performance in many cases,
compared to the approach of combined language
and task adapters, which has been shown to be very
effective in previous work. Specifically, the combi-
nation of soft language prompts and task adapters
is most effective on the classification tasks, achiev-
ing superior results most often. For languages with
a different script (e.g., Spanish and Telugu), these
differences were over 20%.

Language Representations are Unable to Cap-
ture Linguistic Characteristics Using Small
Number of Unlabelled Data. Language repre-
sentations have several limitations that led to con-
figurations without language representations per-
forming consistently better on cross-lingual trans-
fer to highly low-resource languages, such as Tel-
ugu, Urdu, and Malayalam. We postulate that the
reason is the small number of Wikipedia articles on
which the language representations were trained,
rendering them unable to adequately capture suffi-
cient linguistic characteristics.

7 Conclusion

Our study provides a comprehensive evaluation of
various configurations of adapters and soft prompts
for cross-lingual transfer in mid- and low-resource
languages. With the systematic evaluation of task
adapters, soft task prompts, and combinations of

language and task representations, we identified
configurations that positively affect LLM’s perfor-
mance across different tasks and languages. Our
findings demonstrated that the combination of soft
language prompts and task adapters emerged as
an effective alternative for transferring knowledge
between languages. Furthermore, our findings
provide valuable insights for the utilization of a
combination of PEFT methods for cross-lingual
transfer, while highlighting the need to incorporate
language-specific knowledge.

Limitations

Model Selection. Our analysis of the effective-
ness of the language and task representations fo-
cused on highly multilingual LLMs that include
a wider variety of low-resource languages. From
this perspective, there is not a vast number of open-
source multilingual LLMs with such extensive lan-
guage coverage as the mT5 or BLOOM model,
while having fewer than 1B parameters. We also
considered the AYA model (Üstün et al., 2024), but
due to limited computational resources, it was not
feasible to conduct our experiments. Another as-
pect of the selection was the involvement of only
generative models consisting of encoder-decoder
or decoder-only architecture.

Other Languages. In selecting appropriate lan-
guages, we were limited by the languages cov-
ered by the mT5 model. To select high-resource
languages, we considered languages that are the
most extensive in terms of available resources and
are in different scripts, e.g., not only Latin script.
On the other hand, when selecting mid- and low-
resource languages, we also considered the avail-
ability of datasets in multiple languages from differ-
ent language families as well as the availability of
datasets in those languages (both human-annotated
and machine-translated).

Other Tasks. The tasks in our experiments were
selected based on the availability of datasets for
each selected language and covered multiple areas
of the NLP domain, i.e., reading comprehension,
fact-checking, and recognizing textual entailment.
We mostly considered tasks involved in the instruc-
tion fine-tuning of the mT0-model, but we also
included tasks that were not originally used to train
mT0, e.g., NER and check-worthy claim detection.
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Mladen Borovič, Kristjan Žagar, Marko Ferme, Sandi
Majninger, Milan Ojsteršek, Uroš Šmajdek, Maj
Zirkelbach, Matjaž Zupanič, Meta Jazbinšek, Slavko
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A Computational Resources

For our experiments, we utilized a computational
infrastructure consisting of A10 and A40 NVIDIA
GPUs, while our experiments ran in parallel on
multiple GPUs. In total, our experiments required
around 3,200 GPU hours, ensuring model training
and validation for cross-lingual transfer.

B Prompts Used

For the purpose of the encoder-decoder model, the
record from each dataset needs to be transformed
into a text-to-text format. To choose an appropri-
ate prompt format, we experimented with all the
prompts used in the mT0 paper (Muennighoff et al.,
2023) and with prompts used in the T5 paper (Raf-
fel et al., 2020). Prompts, which achieved the best
performance during inference with the mT0-BASE

model, were selected for transforming the records
into a text-to-text format. In the following para-
graphs, there are the prompts for the individual
tasks that have been used to convert to text-to-text
format.

B.1 Question Answering

Template: question: {question} context:
{context}

B.2 Natural Language Inference

Template: {premise} \n\n Question: Does
this imply that "{hypothesis}"? Yes, no,
or maybe?

B.3 Named-Entity Recognition

Template: tag: {text}

B.4 Check-Worthy Claim Detection

Template: checkworthiness claim: {claim}

C Soft Prompt Initialization

This section includes templates for soft prompts
used for the initialization for each language and
each task. Templates are divided into language and
task templates.

C.1 Language Templates

To train language representation using a language
modeling objective, we employed a specific prompt
that varied only based on the language present in
the instruction, leaving the rest of the instruction
the same.

The template we used for initialization is as fol-
lows: "Generate the output in {Language}:",
where the Language is replaced by the desired lan-
guage.

C.2 Task Templates

The following are initialization prompt templates
for each task, where the instruction depends not
only on the task but also on the language.
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Question Answering. For the question answer-
ing task, we utilized "Answer the question
in {Language} language:", while replacing
Language with the desired language.

Natural Language Inference. Natural language
inference is the task of assessing whether a hypothe-
sis logically follows from the premise. It is defined
as a classification with three possible classes: en-
tailment, contradiction or neutral. However, based
on the previous work and instruction tuning of the
mT0 model, we replaced above mentioned classes
with Yes, No and Maybe, based on the used prompt
template.

According to the employed classes, we defined
an initialization prompt as follows: "Select Yes,
No or Maybe based on the implication
of the premise on the hypothesis in
{Language}:", while Language is replaced by the
desired language.

Named-Entity Recognition. The named-entity
recognition task aims to identify named entities
within the input text. While there are many possible
categories, the WikiANN dataset focuses only on
detecting three categories: location (LOC), person
(PER) and organization (ORG). Based on the de-
fined classes, we created the initialization prompt
as follows: "Identify NER tags (ORG, PER,
LOC) in the text in {Language}:", where
Language is substituted with the specific language.

Check-Worthy Claim Detection. The latter task
includes check-worthy claim detection, which is
a binary classification of assessing whether the
given claim is worthy of fact-checking or not. As
text labels, we used Not checkworthy and Check-
worthy. This is the initialization prompt for the
check-worthy claim detection task: Determine
whether a given claim in {Language} is
checkworthy:", where Language is replaced by
the desired language.

D Hyperparameters

Table 2 shows hyperparameters used for training
language and task representations using adapters
and soft prompts.

E Cross-Lingual Evaluation

Tables 4 to 7 present the results for transferring
knowledge from all high-resource languages to all
mid- and low-resource languages. The first row

in each table represents the scores obtained by in-
ference of the original mT0-BASE model without
additional training of language or task representa-
tions.

F Evaluation with Multiple Training
Seeds

In Table 8, we report the evaluation results of all
configurations that were trained on the German ver-
sion of the WikiANN dataset using three different
seeds. Along with the mean values, we also report
the standard deviation

The obtained results demonstrate that the best
results for knowledge transfer from German to
other languages are obtained by using task adapters
for Bulgarian, Greek, Malayalam, Romanian and
Swahili. In contrast, the best combination for
Czech, Slovenian, Slovak, Telugu and Urdu was a
soft language prompt with a task adapter. This
observation supports our previous findings that
both configurations achieved superior results on
the NER task when transferring knowledge from
German.
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Hyperparameters Language Modeling Task Modeling

Language Adapter Soft Language Prompt Task Adapter Soft Task Prompt

Learning rate 5e-5 5e-1 5e-5 5e-1
Weight decay 0 1e-5 0 1e-5
Batch size 32 32 32 32
No. Training steps 100,000 100,000 50,000 50,000
Optimizer AdamW Adafactor AdamW Adafactor
Evaluation steps 500 500 1000 1000
Max input length 256 256 256 256
Token size of soft prompt NaN 50 NaN 50

Table 2: Final parameters employed to train language and task representation using adapters and soft prompts.

Task
Language

Language
Representation

Task
Representation bg cs el ml ro sl sk sw te ur Average

ar

None Adapter 68.03 48.98 65.25 46.74 63.44 48.74 48.26 50.86 53.80 48.15 54.23
Soft Prompt 64.67 43.16 62.66 47.55 64.43 44.60 40.33 47.22 51.44 43.81 50.99

Adapter Adapter 64.82 42.56 64.59 49.82 61.73 30.44 39.92 48.99 40.36 41.03 48.43
Soft Prompt 69.90 39.84 63.36 48.49 55.78 55.53 41.28 49.52 41.45 43.75 50.89

Soft Prompt Adapter 71.23 48.06 67.22 48.22 65.66 51.68 48.26 51.21 53.54 49.63 55.47
Soft Prompt 66.73 41.59 62.82 47.66 58.81 44.69 40.02 44.10 50.11 44.72 50.13

de

None Adapter 67.76 51.72 71.12 51.52 71.55 54.88 51.27 56.78 57.50 51.82 58.59
Soft Prompt 65.31 47.61 69.55 51.77 70.02 50.97 46.53 53.16 52.91 46.66 55.45

Adapter Adapter 79.98 53.81 73.48 50.39 66.34 49.69 54.57 54.29 45.65 45.88 57.41
Soft Prompt 72.61 47.19 68.12 48.81 60.14 56.41 46.63 51.20 44.41 44.76 54.03

Soft Prompt Adapter 70.71 51.91 70.83 50.86 69.86 57.76 53.98 55.90 55.90 52.34 59.01
Soft Prompt 68.98 49.02 69.83 50.98 69.18 52.18 48.36 54.50 54.50 45.04 56.26

en

None Adapter 68.77 49.64 70.37 46.34 67.29 52.54 47.98 49.70 52.13 48.29 55.31
Soft Prompt 64.81 41.26 68.02 46.60 70.58 52.32 40.19 51.43 52.43 50.48 53.81

Adapter Adapter 60.90 46.51 65.03 41.80 72.02 37.96 43.30 46.98 38.47 40.09 49.31
Soft Prompt 64.68 38.29 65.04 42.93 74.50 54.80 37.41 48.36 37.48 52.54 51.60

Soft Prompt Adapter 68.95 48.37 69.39 43.44 64.20 51.34 50.88 51.05 49.16 45.78 54.26
Soft Prompt 56.33 47.75 65.98 43.22 58.94 52.64 46.48 48.96 47.12 38.62 50.60

es

None Adapter 68.65 53.61 70.06 49.75 73.83 56.23 51.82 57.47 57.12 54.01 59.26
Soft Prompt 62.16 50.28 66.95 47.26 71.84 50.34 49.05 54.09 53.94 49.71 55.56

Adapter Adapter 73.89 50.03 73.33 51.15 70.92 45.79 53.04 54.24 45.45 44.63 56.25
Soft Prompt 72.63 50.19 64.62 44.62 72.70 47.07 51.71 51.95 39.95 43.94 53.94

Soft Prompt Adapter 75.37 55.23 73.50 51.39 72.03 58.88 54.84 57.41 56.90 54.00 60.96
Soft Prompt 69.07 52.16 64.43 48.19 72.98 53.21 50.93 53.87 50.89 50.26 56.60

ru

None Adapter 82.44 45.29 65.74 46.79 69.68 49.24 45.24 54.40 56.48 52.27 56.76
Soft Prompt 79.26 41.51 60.83 48.64 68.09 45.29 40.70 50.73 55.13 50.94 54.11

Adapter Adapter 80.74 52.52 73.86 45.76 73.75 40.19 51.99 52.08 39.55 42.11 55.26
Soft Prompt 77.96 34.33 66.75 44.48 71.76 49.84 36.41 50.61 40.14 45.31 51.76

Soft Prompt Adapter 83.96 44.69 70.25 49.87 72.15 51.06 47.34 55.21 56.89 53.62 58.50
Soft Prompt 79.68 44.50 71.02 50.63 70.94 52.60 40.99 52.37 54.91 52.04 56.97

zh

None Adapter 61.19 43.74 57.03 40.50 64.60 44.42 42.70 50.23 45.65 44.33 49.44
Soft Prompt 58.20 45.17 59.24 42.23 66.36 44.72 43.38 46.27 50.10 43.72 49.94

Adapter Adapter 62.73 46.45 61.14 37.45 66.19 35.30 42.70 43.73 35.98 36.28 46.80
Soft Prompt 49.40 43.50 47.04 42.18 45.70 56.09 36.34 42.75 37.22 39.00 43.92

Soft Prompt Adapter 65.97 45.20 60.49 41.62 65.64 48.49 45.52 52.19 50.20 42.72 51.80
Soft Prompt 62.44 48.74 61.62 43.09 67.48 49.20 44.85 48.53 51.09 44.69 52.17

Table 3: Average scores for each configuration across all tasks for low-resource languages. The languages in rows
represent the language in which the task representation was trained, and the languages in columns represent the
language representation that was used, if any (except for configurations with None in the language representation).
For each language pair, the best results are boldfaced and the second best are underlined.
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Task
Language

Language
Representation

Task
Representation cs el ml ro sl sk sw te ur Average

None None 31.34 (24.78) 57.00 (47.56) 1.37 (1.07) 57.00 (47.56) 31.50 (22.58) 26.39 (9.78) 3.24 (0.36) 18.64 (12.10) 13.37 (7.02)

Adapter 29.14 (21.80) 55.90 (46.30) 0.22 (18.94) 55.90 (46.30) 27.83 (19.74) 23.15 (8.44) 2.39 (0.36) 15.70 (11.00) 13.00 (10.38) 24.80 (20.36)
None

Soft Prompt 22.93 (18.02) 56.08 (46.89) 0.10 (0.82) 56.08 (46.89) 23.91 (17.33) 19.89 (7.85) 0.56 (0.18) 11.53 (8.60) 12.05 (8.29) 22.57 (17.21)

Adapter 25.60 (14.45) 45.96 (35.71) 1.12 (4.15) 43.17 (31.85) 23.55 (11.82) 22.84 (6.03) 1.77 (0.18) 9.54 (4.90) 9.04 (4.08) 20.29 (12.57)
Adapter

Soft Prompt 24.70 (1.67) 52.76 (42.94) 0.95 (0.63) 46.35 (35.38) 27.65 (16.04) 25.10 (1.28) 2.57 (1.09) 10.50 (5.10) 10.43 (5.84) 22.33 (12.22)

Adapter 27.95 (20.78) 56.45 (46.97) 0.10 (21.27) 55.81 (46.47) 28.17 (19.88) 23.60 (8.72) 2.43 (0.45) 14.21 (10.10) 12.74 (10.07) 24.61 (20.52)

ar

Soft Prompt
Soft Prompt 27.14 (20.55) 55.51 (46.72) 0.03 (0.31) 56.11 (47.23) 26.00 (18.62) 20.96 (8.04) 0.77 (0.27) 11.04 (8.30) 12.37 (8.63) 23.33 (17.63)

Adapter 35.37 (27.29) 58.88 (49.08) 0.99 (2.27) 58.88 (49.08) 36.15 (24.66) 27.51 (10.16) 3.84 (0.82) 18.81 (12.80) 14.02 (10.27) 28.27 (20.71)
None

Soft Prompt 28.56 (21.31) 57.12 (47.65) 0.57 (2.20) 57.12 (47.65) 30.34 (20.52) 24.54 (8.92) 1.93 (0.73) 12.46 (9.70) 10.54 (8.21) 24.80 (18.54)

Adapter 36.78 (27.82) 57.46 (47.31) 1.05 (1.38) 57.69 (47.90) 38.03 (25.07) 31.43 (11.35) 3.01 (0.54) 11.32 (6.00) 9.62 (4.72) 27.37 (19.12)
Adapter

Soft Prompt 38.13 (31.20) 54.70 (45.29) 1.88 (0.94) 55.11 (46.55) 38.88 (27.69) 30.70 (11.98) 3.13 (1.00) 16.05 (8.70) 12.63 (8.01) 27.91 (20.15)

Adapter 31.81 (24.29) 59.67 (48.91) 0.80 (2.08) 59.85 (49.08) 35.74 (23.84) 27.42 (10.16) 3.45 (0.36) 17.13 (11.20) 13.41 (10.25) 27.70 (20.02)

de

Soft Prompt
Soft Prompt 32.68 (24.65) 57.86 (48.15) 0.58 (8.68) 58.38 (49.08) 30.67 (20.78) 27.95 (10.30) 2.25 (1.09) 12.34 (9.50) 9.35 (9.58) 25.78 (20.20)

Adapter 36.95 (28.57) 60.24 (50.34) 1.18 (0.94) 60.24 (50.34) 37.04 (26.07) 30.11 (11.46) 3.21 (0.36) 19.65 (12.70) 13.93 (9.37) 29.17 (21.13)
None

Soft Prompt 33.59 (25.55) 60.35 (50.76) 0.82 (0.94) 60.35 (50.76) 34.77 (24.36) 27.76 (10.07) 2.81 (0.45) 19.38 (12.80) 13.81 (9.25) 28.18 (20.55)

Adapter 33.75 (24.33) 57.44 (48.24) 1.25 (1.70) 58.11 (49.33) 31.65 (19.76) 28.98 (10.58) 3.25 (0.63) 9.85 (5.00) 9.06 (4.20) 25.93 (18.20)
Adapter

Soft Prompt 33.94 (26.22) 58.49 (49.58) 0.97 (0.25) 57.72 (48.74) 35.89 (24.36) 29.82 (11.54) 3.06 (0.45) 12.67 (6.60) 9.67 (4.94) 26.91 (19.19)

Adapter 35.52 (27.27) 61.17 (51.68) 1.39 (2.71) 61.99 (52.10) 37.28 (25.96) 30.84 (11.73) 3.57 (0.27) 20.19 (13.50) 14.06 (10.54) 29.56 (21.75)

en

Soft Prompt
Soft Prompt 35.35 (27.02) 59.80 (50.34) 0.68 (2.20) 60.02 (50.34) 36.49 (26.02) 29.89 (11.39) 3.46 (0.54) 11.71 (7.30) 9.83 (5.68) 27.47 (20.09)

Adapter 33.72 (25.43) 59.61 (50.34) 1.29 (1.20) 59.61 (50.34) 34.97 (32.80) 27.24 (9.71) 3.42 (0.82) 19.10 (12.50) 13.03 (9.48) 28.00 (20.40)
None

Soft Prompt 25.98 (19.06) 54.72 (45.29) 0.12 (0.31) 54.72 (45.29) 27.38 (18.50) 22.43 (7.62) 1.10 (0.36) 11.94 (9.00) 9.13 (6.84) 23.06 (16.92)

Adapter 33.98 (23.88) 55.44 (45.13) 1.06 (1.26) 56.58 (46.22) 34.52 (21.06) 28.66 (10.01) 2.34 (0.45) 10.76 (5.00) 9.12 (4.81) 25.83 (17.54)
Adapter

Soft Prompt 32.86 (24.45) 53.57 (43.78) 0.98 (0.57) 52.82 (43.45) 34.73 (23.35) 27.82 (10.35) 2.49 (0.54) 10.89 (5.40) 9.27 (4.17) 25.05 (17.34)

Adapter 32.43 (24.92) 59.41 (49.75) 0.74 (1.07) 59.05 (49.24) 36.02 (24.92) 27.95 (10.27) 3.22 (0.45) 17.64 (11.40) 12.41 (8.42) 27.65 (20.05)

es

Soft Prompt
Soft Prompt 27.21 (19.82) 54.39 (44.45) 0.27 (0.82) 54.93 (45.21) 28.25 (19.39) 21.49 (7.49) 1.11 (0.18) 9.28 (7.20) 8.36 (6.11) 22.81 (16.74)

Adapter 27.45 (15.86) 55.56 (42.52) 0.73 (5.73) 55.56 (42.52) 24.81 (14.05) 23.69 (7.96) 2.93 (0.45) 16.80 (10.50) 12.45 (10.12) 24.44 (16.63)
None

Soft Prompt 17.94 (8.27) 51.61 (37.73) 0.25 (0.13) 51.61 (37.73) 17.58 (8.13) 16.98 (4.10) 0.78 (0.27) 12.40 (8.00) 8.71 (5.49) 19.76 (12.21)

Adapter 31.24 (14.98) 54.17 (40.25) 1.27 (0.76) 54.72 (40.50) 32.90 (17.04) 32.13 (9.71) 2.72 (0.18) 10.66 (5.30) 8.98 (3.85) 25.42 (14.73)
Adapter

Soft Prompt 32.53 (19.94) 51.63 (38.91) 0.89 (0.25) 51.78 (37.31) 33.57 (18.08) 34.00 (13.34) 1.96 (0.09) 10.37 (4.80) 8.78 (3.91) 25.06 (15.18)

Adapter 22.06 (12.33) 55.24 (42.44) 0.91 (1.32) 54.38 (41.60) 24.61 (14.26) 22.75 (7.53) 2.63 (0.27) 15.54 (9.50) 12.22 (7.80) 23.37 (15.23)

ru

Soft Prompt
Soft Prompt 32.13 (18.00) 53.90 (40.00) 0.99 (0.25) 53.37 (39.83) 29.68 (14.91) 31.42 (10.26) 2.06 (0.18) 16.86 (9.20) 11.63 (6.04) 25.78 (15.41)

Adapter 22.06 (16.33) 50.83 (40.08) 0.65 (0.50) 50.83 (40.08) 21.96 (14.96) 18.38 (6.74) 1.42 (0.27) 13.29 (9.20) 9.66 (6.31) 21.01 (14.94)
None

Soft Prompt 26.25 (20.33) 56.57 (47.39) 0.65 (0.44) 56.57 (47.39) 25.64 (18.29) 22.32 (8.53) 0.91 (0.45) 16.00 (11.80) 12.49 (9.17) 24.16 (18.20)

Adapter 26.10 (16.29) 43.57 (30.34) 1.30 (0.57) 41.48 (28.57) 26.16 (14.21) 22.50 (6.17) 1.94 (0.36) 11.77 (6.50) 9.04 (5.01) 20.43 (12.00)
Adapter

Soft Prompt 24.83 (14.06) 47.06 (35.80) 1.08 (0.06) 39.35 (25.55) 25.58 (12.45) 24.19 (5.44) 2.64 (0.82) 10.34 (4.90) 8.90 (4.24) 20.44 (11.48)

Adapter 22.21 (16.90) 52.01 (41.01) 0.53 (0.44) 51.45 (40.25) 23.85 (16.20) 18.82 (6.95) 2.11 (0.45) 13.91 (9.10) 9.59 (6.26) 21.61 (15.28)

zh

Soft Prompt
Soft Prompt 31.34 (24.20) 56.51 (47.90) 1.23 (0.82) 56.39 (47.98) 29.25 (21.17) 25.06 (9.42) 1.85 (0.45) 17.52 (12.20) 12.80 (9.48) 25.77 (19.29)

Table 4: Results for the question answering task for cross-lingual transfer from high-resource to mid- and low-
resource languages. The results are reported as F1-Score (Exact Match). For each source-target language pair,
the best-performing result is highlighted in bold, while the second-best scores are underlined. Additionally,
language pairs with improved performance compared to inference-only (without incorporating any language or task
representation) are marked in green, and those with decreased performance are marked in red.
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Task
Language

Language
Representation

Task
Representation bg cs el ml ro sl sk sw te ur Average

None None 0 0 0 0 0 0 0 0 0 0 0

ar

None Adapter 44.54 60.54 44.29 31.32 45.73 55.63 60.30 49.92 48.53 32.10 47.29
Soft Prompt 38.11 50.72 39.73 38.32 36.44 48.28 48.69 46.90 45.53 20.61 41.33

Adapter Adapter 63.91 63.98 63.89 49.19 53.44 24.02 62.98 49.38 18.05 27.71 47.66
Soft Prompt 64.09 40.09 52.23 48.21 55.95 44.67 54.13 51.37 26.65 25.77 46.32

Soft Prompt Adapter 53.66 62.72 52.68 41.95 54.82 60.70 64.62 55.43 51.43 43.36 54.14
Soft Prompt 48.84 40.30 46.02 42.93 33.25 37.20 44.48 30.41 46.01 25.18 39.46

de

None Adapter 30.63 66.61 53.35 40.49 62.39 56.11 67.96 60.19 48.56 34.37 52.07
Soft Prompt 31.61 61.04 54.21 44.55 51.52 54.04 62.28 57.26 43.20 24.21 48.39

Adapter Adapter 68.49 64.70 68.83 46.45 60.64 49.32 68.42 60.92 24.52 28.41 54.07
Soft Prompt 62.16 54.79 60.52 42.90 54.74 44.46 51.17 57.28 27.96 47.28 50.33

Soft Prompt Adapter 39.84 67.12 55.29 40.43 61.59 63.28 71.04 56.53 49.70 45.00 54.98
Soft Prompt 43.30 62.84 61.20 44.44 52.13 57.21 70.80 54.24 48.67 34.37 52.92

en

None Adapter 35.49 41.53 49.44 24.71 44.91 55.13 44.15 36.52 32.02 25.96 38.99
Soft Prompt 29.04 42.31 46.31 27.92 53.48 53.06 45.40 48.41 33.41 39.54 41.89

Adapter Adapter 21.42 33.99 39.86 17.16 42.90 23.39 23.18 32.18 13.91 21.95 26.99
Soft Prompt 50.16 40.62 56.07 37.99 63.94 56.46 35.97 45.38 19.98 61.68 46.83

Soft Prompt Adapter 44.12 40.65 47.99 24.97 52.36 51.04 51.62 48.55 31.23 23.32 41.59
Soft Prompt 22.90 44.33 41.92 25.22 49.67 55.77 48.64 48.77 33.85 9.87 38.09

es

None Adapter 35.41 68.66 49.50 35.38 66.54 66.07 70.46 64.65 46.24 46.35 54.93
Soft Prompt 24.70 63.95 48.38 31.45 62.20 60.00 63.25 62.21 47.81 45.11 50.91

Adapter Adapter 63.38 58.05 67.33 42.61 59.17 44.54 66.00 56.36 17.84 30.86 50.61
Soft Prompt 69.95 52.71 64.27 42.75 59.96 52.05 60.82 58.11 31.27 48.71 54.06

Soft Prompt Adapter 54.37 67.45 64.81 40.37 64.62 70.83 68.78 66.53 50.91 53.78 60.25
Soft Prompt 44.72 65.55 39.99 39.17 63.38 63.52 66.04 61.86 40.59 47.45 53.23

ru

None Adapter 72.90 46.64 34.14 25.54 49.66 45.84 48.16 50.02 49.73 37.42 46.01
Soft Prompt 69.54 53.60 25.83 34.23 51.11 51.04 51.10 48.37 49.36 40.56 47.47

Adapter Adapter 71.70 54.14 72.40 38.30 59.91 30.15 50.78 48.08 18.41 25.92 46.98
Soft Prompt 73.07 53.33 65.15 37.04 53.23 58.78 52.96 50.20 21.37 27.01 49.21

Soft Prompt Adapter 77.27 54.48 54.56 42.01 60.01 53.82 56.33 56.61 55.41 46.92 55.74
Soft Prompt 71.73 59.97 65.74 44.44 58.04 60.23 56.40 54.53 47.95 46.62 56.57

zh

None Adapter 14.91 43.07 8.42 1.21 39.80 41.54 42.05 40.50 11.46 11.33 25.43
Soft Prompt 12.35 51.86 17.37 7.50 45.41 53.70 49.48 46.97 28.33 17.65 33.06

Adapter Adapter 29.40 41.60 39.63 7.39 37.02 19.26 28.99 21.72 5.56 6.54 23.71
Soft Prompt 37.86 46.02 19.56 43.69 30.45 34.32 18.60 55.69 38.07 33.44 35.77

Soft Prompt Adapter 28.41 46.21 24.62 8.49 50.18 44.69 47.55 51.13 28.76 15.06 34.51
Soft Prompt 23.34 55.43 32.02 12.41 43.96 53.55 55.26 48.51 32.11 18.78 37.54

Table 5: Results for the named-entity recognition task using F1-Score. The best scores are boldfaced, and the
second best are underlined.
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Task
Language

Language
Representation

Task
Representation bg cs el ml ro sl sk sw te ur Average

None None 43.35 35.50 40.88 40.62 4.98 68.74 36.42 38.90 39.58 37.64 38.66

Adapter 74.77 35.50 74.05 68.98 66.06 28.76 37.08 64.55 66.67 66.01 58.24None Soft Prompt 69.42 35.92 69.94 65.47 77.59 25.45 35.83 59.94 64.23 60.68 56.45

Adapter 72.16 35.67 74.17 65.59 77.15 2.91 37.17 62.18 55.93 47.17 53.01Adapter Soft Prompt 56.39 38.08 62.69 57.98 42.24 67.54 37.17 58.16 46.19 57.19 52.36

Adapter 74.21 34.42 72.46 68.70 63.62 32.77 36.17 62.61 66.05 64.05 57.51

ar

Soft Prompt Soft Prompt 65.45 37.50 67.84 62.53 59.03 30.96 37.25 61.02 61.44 59.60 54.26

Adapter 75.03 35.17 74.51 69.92 64.61 30.16 35.92 65.83 68.90 65.73 58.58None Soft Prompt 69.84 35.50 70.44 65.67 79.10 31.36 37.00 62.75 64.45 62.79 57.89

Adapter 74.41 34.92 72.34 68.74 49.85 16.13 35.50 62.85 66.81 60.18 54.17Adapter Soft Prompt 62.51 37.17 62.81 55.29 35.16 46.19 36.67 56.67 46.45 53.13 49.21

Adapter 75.23 33.75 71.50 70.06 60.25 35.17 34.50 65.81 67.13 64.25 57.77

de

Soft Prompt Soft Prompt 69.12 36.67 69.06 64.61 70.75 26.35 37.67 61.18 64.37 60.00 55.98

Adapter 75.03 35.00 74.33 70.30 69.48 28.66 34.58 67.07 69.38 64.63 58.85None Soft Prompt 70.42 33.83 70.32 64.53 77.00 29.96 34.58 63.31 63.43 60.22 56.76

Adapter 64.07 35.33 64.79 56.51 90.09 1.00 35.08 61.30 44.11 39.78 49.21Adapter Soft Prompt 55.19 38.00 51.30 46.53 81.35 33.77 38.75 56.97 33.33 52.81 48.80

Adapter 75.11 33.83 72.50 69.50 54.05 35.07 35.58 64.67 67.88 64.07 57.23

en

Soft Prompt Soft Prompt 65.37 35.58 69.50 64.51 35.64 34.07 37.08 60.94 63.35 59.62 52.57

Adapter 74.87 35.08 75.29 70.40 72.12 28.06 35.17 66.17 70.00 66.09 59.33None Soft Prompt 68.98 34.83 70.12 65.55 79.83 31.76 35.75 60.66 64.11 61.36 57.30

Adapter 73.95 34.92 74.61 68.26 71.78 10.02 35.83 64.77 59.40 50.42 54.40Adapter Soft Prompt 54.97 38.75 44.47 41.48 81.98 8.42 36.42 55.11 33.49 46.13 44.12

Adapter 74.27 33.92 72.38 69.68 67.58 32.67 36.25 64.35 67.33 62.95 58.14

es

Soft Prompt Soft Prompt 66.15 35.92 67.54 62.77 78.52 28.76 36.33 59.66 63.19 57.66 55.65

Adapter 75.55 34.92 74.81 70.56 75.24 29.96 34.67 67.54 69.54 66.29 59.91None Soft Prompt 69.90 36.25 69.78 64.85 82.62 28.16 35.67 61.60 63.73 62.36 57.49

Adapter 72.63 35.75 74.19 61.14 83.50 4.91 36.25 65.77 51.16 46.19 53.15Adapter Soft Prompt 63.45 37.58 53.43 44.51 87.01 11.32 38.08 54.67 37.60 53.13 48.08

Adapter 76.03 34.92 73.75 68.18 75.68 28.06 35.83 65.77 68.24 63.99 59.05

ru

Soft Prompt Soft Prompt 68.42 37.25 67.72 63.53 75.05 23.65 37.25 57.72 62.55 60.08 55.32

Adapter 74.95 35.75 73.79 69.16 74.32 28.66 36.33 68.00 69.38 66.11 59.65None Soft Prompt 70.80 35.75 70.44 66.59 78.52 21.84 35.17 62.36 65.75 62.85 57.01

Adapter 61.72 34.08 64.27 50.90 89.01 0.20 35.17 60.66 35.71 38.98 47.07Adapter Soft Prompt 43.47 33.33 56.09 56.29 45.90 98.20 35.00 47.07 34.57 47.76 49.77

Adapter 73.43 35.42 72.16 68.06 65.77 31.06 35.50 64.37 66.91 63.67 57.64

zh

Soft Prompt Soft Prompt 68.68 34.67 68.86 64.69 76.95 23.55 36.50 60.42 63.39 61.78 55.95

Table 6: For NLI, we report accuracy as a metric. The best results for each language pair are highlighted in bold and
the second best are underlined. Additionally, language pairs with improved performance compared to inference-only
are marked in green, and those with decreased performance are marked in red.
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Task
Language

Language
Representation

Task
Representation bg cs el ml ro sl sk sw te ur Average

None None 0 0 0 0 0 0 0 0 0 0 0

ar

None Adapter 84.78 70.74 86.77 86.45 86.06 82.74 72.52 86.59 84.32 81.50 82.25
Soft Prompt 86.48 63.08 84.90 86.32 87.61 80.77 56.91 81.47 84.47 81.92 79.39

Adapter Adapter 58.38 45.01 74.35 83.39 73.17 71.29 36.69 82.63 77.91 80.18 68.30
Soft Prompt 89.22 56.49 85.76 86.82 78.56 82.24 48.71 85.96 82.44 81.62 77.78

Soft Prompt Adapter 85.83 67.14 87.29 82.13 88.41 85.08 68.66 84.36 82.47 78.36 80.97
Soft Prompt 85.89 61.41 81.91 85.13 86.84 84.60 57.40 84.20 81.95 81.71 79.10

de

None Adapter 97.63 69.72 97.74 94.66 98.11 97.11 73.70 97.25 93.73 93.17 91.28
Soft Prompt 94.49 65.32 96.42 96.28 92.33 88.16 62.31 90.69 91.54 89.10 86.66

Adapter Adapter 97.03 78.84 95.30 85.30 97.19 95.28 82.91 90.39 79.96 85.29 88.75
Soft Prompt 93.15 58.68 94.46 95.17 95.57 96.11 67.99 87.70 93.06 65.98 84.79

Soft Prompt Adapter 97.06 74.94 96.84 92.17 97.76 96.85 82.96 95.40 89.64 86.71 91.03
Soft Prompt 94.51 63.87 91.18 94.29 95.44 94.49 57.84 86.67 93.02 76.01 84.73

en

None Adapter 95.79 85.10 97.46 89.15 94.52 89.31 83.09 91.98 87.46 88.65 90.25
Soft Prompt 94.98 55.29 95.09 93.12 91.50 91.47 53.03 91.17 93.50 88.35 84.75

Adapter Adapter 97.22 82.95 98.04 92.28 96.98 95.80 85.98 91.20 85.99 89.57 91.60
Soft Prompt 88.69 40.60 94.31 86.24 94.97 93.09 46.60 88.02 81.91 86.00 80.04

Soft Prompt Adapter 87.61 83.47 95.89 77.89 88.38 81.98 85.49 87.42 77.34 81.67 84.71
Soft Prompt 80.71 75.72 92.71 82.49 90.44 84.21 70.08 82.65 79.55 75.16 81.37

es

None Adapter 95.66 76.98 95.85 91.93 97.06 95.81 74.40 95.62 93.15 90.57 90.70
Soft Prompt 92.80 76.38 94.59 91.93 90.62 82.23 74.78 92.40 91.90 83.25 87.09

Adapter Adapter 84.35 73.15 95.94 92.67 96.16 94.07 81.65 93.48 93.80 88.13 89.34
Soft Prompt 92.98 77.88 96.15 93.27 96.03 93.07 81.02 92.09 83.19 71.66 87.73

Soft Prompt Adapter 97.47 87.14 97.41 94.78 96.89 96.01 86.36 95.55 91.72 86.85 93.02
Soft Prompt 96.35 79.97 95.79 90.56 95.08 92.59 78.85 92.85 89.11 87.56 89.87

ru

None Adapter 98.87 72.15 98.46 90.34 98.26 96.35 74.45 97.10 89.87 92.93 90.88
Soft Prompt 98.33 58.26 96.09 95.24 87.02 84.39 59.06 92.15 95.03 92.11 85.77

Adapter Adapter 97.90 88.93 94.70 82.33 96.89 92.79 88.80 91.75 77.95 87.34 89.94
Soft Prompt 97.36 13.87 96.77 95.50 95.03 95.70 20.58 95.59 91.23 92.34 79.40

Soft Prompt Adapter 98.59 67.29 97.46 88.39 98.53 97.73 74.44 95.83 88.39 91.36 89.80
Soft Prompt 98.89 48.65 96.71 93.57 97.32 96.85 38.89 95.17 92.26 89.83 84.81

zh

None Adapter 93.70 74.08 95.07 90.97 93.44 85.53 74.05 90.99 88.47 90.22 87.65
Soft Prompt 91.44 66.83 92.58 94.18 84.92 77.69 66.55 74.85 90.33 81.90 82.13

Adapter Adapter 97.08 84.02 97.09 90.20 97.27 95.58 84.14 90.62 90.89 90.58 91.75
Soft Prompt 66.88 69.81 65.43 67.65 67.11 66.28 67.57 65.58 65.92 65.92 66.82

Soft Prompt Adapter 96.07 76.96 93.18 89.41 95.15 94.37 80.19 91.13 91.22 82.55 89.02
Soft Prompt 95.30 73.52 89.10 94.01 92.61 90.44 62.60 83.33 91.33 85.38 85.76

Table 7: Results for the check-worthy claim detection task for cross-lingual transfer. Results are reported using
F1-Score, with the best scores in bold and the second best underlined.

Language
Representation

Task
Representation bg cs el ml ro sl sk sw te ur

None Adapter 38.46 ± 9.60 66.00 ± 0.77 55.88 ± 5.33 40.99 ± 0.67 60.97 ± 1.74 56.29 ± 0.62 67.55 ± 1.22 58.60 ± 1.97 47.69 ± 2.35 29.15 ± 8.78

Soft Prompt 28.98 ± 3.24 61.48 ± 0.69 50.64 ± 6.63 43.08 ± 1.81 52.65 ± 1.58 54.03 ± 0.98 62.42 ± 0.75 56.49 ± 2.86 43.94 ± 1.64 26.67 ± 3.05

Adapter Adapter 66.85 ± 2.03 64.78 ± 0.15 69.13 ± 1.48 47.34 ± 1.86 64.07 ± 4.97 49.29 ± 2.42 68.15 ± 1.19 59.45 ± 2.28 25.96 ± 2.86 20.20 ± 11.17

Soft Prompt 63.93 ± 3.01 50.76 ± 14.17 62.05 ± 3.25 43.61 ± 2.42 56.11 ± 3.25 50.30 ± 7.88 53.63 ± 4.44 55.27 ± 3.95 26.83 ± 4.04 46.63 ± 1.51

Soft Prompt Adapter 42.19 ± 2.93 67.25 ± 0.23 60.19 ± 6.02 43.67 ± 4.32 61.89 ± 1.73 61.75 ± 1.90 72.95 ± 2.35 56.29 ± 0.65 52.58 ± 5.43 47.86 ± 3.77

Soft Prompt 50.66 ± 12.65 64.00 ± 2.18 63.38 ± 3.85 46.37 ± 2.46 55.90 ± 4.95 57.77 ± 0.71 69.87 ± 2.21 54.26 ± 1.31 48.35 ± 2.19 37.46 ± 3.93

Table 8: Results of cross-lingual transfer from German to six languages for the NER task. We report the mean of
three runs along with the standard deviation. The best results are bolded and the second best results are underlined.
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