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Abstract

Uncovering hidden topics from short texts is
challenging for traditional and neural models
due to data sparsity, which limits word co-
occurrence patterns, and label sparsity, stem-
ming from incomplete reconstruction targets.
Although data aggregation offers a potential
solution, existing neural topic models often
overlook it due to time complexity, poor ag-
gregation quality, and difficulty in inferring
topic proportions for individual documents.
In this paper, we propose a novel model,
GloCOM (Global Clustering COntexts for
Topic Models), which addresses these chal-
lenges by constructing aggregated global clus-
tering contexts for short documents, leverag-
ing text embeddings from pre-trained language
models. GloCOM can infer both global topic
distributions for clustering contexts and local
distributions for individual short texts. Addi-
tionally, the model incorporates these global
contexts to augment the reconstruction loss, ef-
fectively handling the label sparsity issue. Ex-
tensive experiments on short text datasets show
that our approach outperforms other state-of-
the-art models in both topic quality and docu-
ment representations.1

1 Introduction

Topic models (Hofmann, 1999; Blei et al., 2003)
have proven effective in discovering topics within
a corpus and providing a high-level representation
of documents. Topic models are applied in various
domains, including text mining (Van Linh et al.,
2017; Valero et al., 2022), bioinformatics (Juan
et al., 2020), and recommender systems (Le et al.,
2018) and streaming learning (Nguyen et al., 2019;
Van Linh et al., 2022; Nguyen et al., 2021, 2022b,
2025). However, while they perform well with
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long texts, these models often struggle with short
data (Tuan et al., 2020; Bach et al., 2023; Ha et al.,
2019; Nguyen et al., 2022a,b). Datasets containing
short documents, such as headlines, comments, or
search snippets, offer limited information on word
co-occurrence (Qiang et al., 2022), essential for
identifying latent topics. This challenge, known
as data sparsity, significantly hinders the ability
of recent models to generate high-quality topics.
Moreover, the brevity of short texts introduces label
sparsity (Lin et al., 2024), where unobserved but
relevant words are ignored in the evidence lower
bound, causing biased reconstruction loss in Varia-
tional Autoencoder (VAE)-based neural topic mod-
els (Kingma and Welling, 2013).

Document aggregation has effectively addressed
short text topic modeling challenges (Hong and
Davison, 2010; Quan et al., 2015; Mai et al., 2016).
However, modern neural network-based topic mod-
els (Wu et al., 2020, 2022; Lin et al., 2024) have
not paid much attention to this approach due to
the limitations demonstrated in traditional research.
Particularly, aggregation approaches that rely on
auxiliary information (Hong and Davison, 2010;
Mehrotra et al., 2013) are often restricted to spe-
cific data types, while self-aggregation methods
face challenges such as high time complexity or
overfitting as data volume increases (Quan et al.,
2015; Zuo et al., 2016). Moreover, some methods
are unable to infer topic distributions for individual
documents (Weng et al., 2010; Tang et al., 2013).

The KNNTM (Lin et al., 2024) model is the first
short text neural topic model to address label spar-
sity using kNN-based document aggregation. By
enhancing the reconstruction target with semanti-
cally related documents, the model can leverage
word co-occurrence patterns and the relationships
between documents in the dataset. Although this
approach has proven effective, KNNTM still faces
significant time costs due to optimal transport mea-
sures between every pair of documents in the cor-
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Cluster 1:

#1: nokia lumia launch

#2: moto order start shipping december support

#3: microsoft officially launched xbox console gamers
Cluster 2:

#4: black friday sale cyber monday

#5: local shop start sale thanksgiving day

#6: shopper black friday

Table 1: Examples of short texts with their correspond-
ing clustering contexts from the GoogleNews (Yin
and Wang, 2016) dataset using a PLM embeddings
model, all-MinilM-L6-v2 (Reimers and Gurevych,
2019). The global topic distributions might have high
probabilities for topics like Technology and Sales for
Clusters 1 and 2, respectively.

pus. Another natural and cost-effective method for
aggregation is through clustering, but data sparsity
is also an unavoidable issue for clustering algo-
rithms based on traditional text representation with
term frequency (Quan et al., 2015; Jin et al., 2011).

To address these issues, we propose a novel topic
model called GloCOM, which constructs a Neural
Topic Model using Global Clustering Context. Our
model first clusters the document set and then cre-
ates global contexts (or global documents) by merg-
ing short documents (or local documents) within
each cluster. The topic model then incorporates
global and local texts, yielding global and local
topic distributions. Each local topic distribution
is derived from the global distribution of its cor-
responding context, supplemented by a learnable
noise parameter. This approach enables the model
to harness the benefits of document aggregation
to enhance word co-occurrences and handle the
data sparsity issue while inferring representations
for individual documents. Furthermore, advance-
ments in foundation models (Devlin et al., 2019;
Brown et al., 2020) have improved short text pro-
cessing effectiveness for downstream tasks. Con-
sequently, we employ pre-trained language model
(PLM) embeddings (Reimers and Gurevych, 2019;
BehnamGhader et al., 2024) to represent texts dur-
ing the clustering process. As shown in Table 1,
the effectiveness of PLM-based global clustering
can thus enhance the semantic quality of the topics.

Besides, we augment the model’s reconstruction
targets by combining the original short text with the
globally aggregated documents mentioned above.
This approach allows us to globally capture absent
yet relevant words related to the original input, such

as “shop” and “shopper” in documents #5 and #0,
which belong to the same cluster, as shown in Ta-
ble 1. This strategy effectively addresses the issue
of label sparsity, where the probabilities of related,
unobserved words are inappropriately reduced, re-
sulting in biased training signals and producing
high-quality topics and document-topic distribu-
tions. Moreover, compared to the considerable
time demands of KNNTM (Lin et al., 2024), our
method, using cluster context augmentation, is far
more time- and computation-efficient. We summa-
rize our contributions as follows:

* We propose a novel Neural Topic Model for
short texts, named GloCOM, which addresses
data sparsity by leveraging pre-trained language
model embeddings to construct global clustering
contexts for documents.

* We introduce a novel inference mechanism that
captures both global and local document-topic
distributions, which enhances the representation
of individual short documents.

* We enhance the VAE’s reconstruction loss by
integrating short texts with global clustering con-
texts, allowing the model to capture unobserved
yet relevant words and improve topic quality.

* We conduct extensive experiments on benchmark
datasets, demonstrating that GloCOM outper-
forms existing models in terms of topic coher-
ence and document-topic distribution.

2 Preliminaries

2.1 Notations

Denote X = {z?}?_, as a collection of Bag-of-
Words (BoW) representations of D documents with
the vocabulary of V' words. Topic models aim
to discover K hidden topics in this corpus. The
pre-trained language model embedding of docu-
ment d is x% .- The clustering algorithm applied
to x4 ,; produces G clusters. We have 3 € RV*K
= (B1,...,BK), where each £, € RV*!, as the
topic-word distributions of K desired topics.

With L as the word embedding dimension, we
setw, € Rl v e {1,2,..., V}andt, € RV k €
{1,2,..., K} to be the word embeddings of word
v and topic embeddings of topic k, respectively.
Each document 2% has the topic proportion 6, €
RX indicating what topic it includes. 1 v denotes
a vector of length IV, where each entry is set to 1.
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Figure 1: Our short text aggregation illustration. We
cluster short texts using PLM embeddings and form
global documents by concatenating texts from each clus-
ter. Each text is then augmented with its corresponding
global document, creating an augmented document used
in the reconstruction loss.

2.2 VAE-based Topic Model

Similar to many recent neural topic models (Di-
eng et al., 2020; Wu et al., 2023), our approach
is built on a VAE framework, which consists of
two primary components: (i) an inference encoder
that produces document-topic distributions; and
(ii) a generative decoder that reconstructs the orig-
inal text using the encoder’s output and the topic-
word proportions. For the encoder, the Bag-of-
Words (BoW) representation of a document % s
processed through neural networks to obtain the pa-
rameters of a normal distribution, where the mean
1 = h,(z?) and the diagonal covariance matrix
¥ = diag(hx(2?)) are computed. The reparame-
terization trick (Kingma and Welling, 2013) is then
employed to sample a latent variable o from the
posterior distribution ¢(«|z) = N (a|u, 3), while
the prior distribution of « is p(«) = N (| o, X0)-
Afterwards, the softmax function is applied to «,
producing the topic proportion 6 = softmax(c).

Regarding the second component, VAE-based
neural topic models aim to construct an effec-
tive representation for the topic-word distributions
B € RV*K_ There are several approaches to mod-
eling 3, such as directly inferring it through an
optimization process (Srivastava and Sutton, 2017)
or decomposing [ into the product of word em-
beddings W and topic embeddings 7. Alterna-
tively, (Wu et al., 2023) propose another form of 3
that effectively addresses the issue of topic collapse
as follows:

~exp (—llwi — )17 /7)
Bij = =% VR
Zj/:l €xp (_Hwi - tj’” /T)

(1

where 7 is a temperature hyperparameter. The word
embeddings 7T are typically initialized using pre-
trained embeddings such as GloVe (Pennington
etal., 2014).

VAE-based models aim to reconstruct the BoW
representations of documents using the topic-word
distribution matrix S and document-topic propor-
tion A as 2 ~ Multinomial(softmax(£6y)).
The topic modeling loss consists of a reconstruction
term and a regularization term, as follows:

D
Loy = %Z {— (24 T log(softmax(36,))
d=1
+KL(q(alz?)|[p(e))

Furthermore, we leverage the Embedding Clus-
tering Regularization loss Lrcr (Wu et al., 2023)
to handle the topic repetition problem, which is
prevalent issues in short text topic models, as high-
lighted in previous studies (Wu et al., 2020, 2022).
We further provide details about Embedding Clus-
tering Regularization in Appendix B.

3 Methodology

We propose a novel topic model framework for
short texts, which introduces an effective cluster-
based text aggregation method and an innovative
inference for both the global enhanced context and
each individual document. Furthermore, we reuse
the global context to augment the VAE’s recon-
struction labels, addressing the label sparsity issue.

3.1 Short Text Aggregation via PLM-based
Clustering

Modern neural topic models for short texts do not
focus heavily on the text aggregation approach be-
cause traditional term frequency representations
fail to effectively capture word co-occurrence
within a group of short texts (Quan et al., 2015). To
overcome this limitation, we utilize pre-trained lan-
guage model embeddings (Reimers and Gurevych,
2019; BehnamGhader et al., 2024), which excel
at capturing linguistic patterns and contextual nu-
ances, to represent texts for clustering. These en-
riched embeddings facilitate document clustering
by grouping texts with similar semantic meanings.

Our short text aggregation process is described
in Figure 1. We concatenate short texts (local doc-
uments) within the same cluster, forming what we
refer to as a global document x9, with g being the
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cluster containing document . To address the la-
bel sparsity problem, we construct the augmented
documents as ¢ = 2 + na9, where 7 is the aug-
mentation coefficient.

While standard topic models are typically ap-
plied directly to the global documents to extract
topics, our study introduces a novel approach: we
estimate both global and local topic distributions
for the corresponding global and local documents,
with the reconstruction loss built using the aug-
mented documents.

3.2 Global Clustering Context Topic Model

Now, we provide formal descriptions of GloCOM.
Let 89 € RX denote the topic distribution of the
global document z9. We introduce a latent adaptive
variable, p; € R, which controls the extent to
which 09 influences the topic proportions of each
individual document within the cluster. Using both
09 and pg4, we construct the topic distribution for
each short text, denoted as ¢ € RX. Under the
GloCOM, the generative process for the documents
(as illustrated in Figure 2) is as follows:

1. Calculate the distribution over words S as de-
scribed in Eq. 1.

2. For each cluster g : Generate 89 ~ LN (0, 1),
with LN denotes logistic-normal distribution.

3. For each document d in cluster g:

(a) Draw adaptive variable pg ~ N(1,€l),
where € is a hyperparameter.
(b) Generate topic distribution
09 = softmax (67 © py) )
(¢) For each n'" word in document d:
i. Draw a topic index:
Zdn ~ Multinomial(69)
ii. Draw the word:
Wy, ~ Multinomial(f;,,, )

In Step 1, we define the topic-word distributions
B using Eq. 1. This formulation captures the clus-
tering relationships between topics and word em-
beddings (Wu et al., 2023), effectively addressing
the issue of topic repetition, which is particularly
problematic for short text topic models due to lim-
ited word co-occurrences (Wu et al., 2020, 2022).

Steps 2, 3a, and 3b introduce key innovations for
short text topic modeling in our approach. We treat
the global context within a cluster as a single long
document, generating its topic distribution. The
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Figure 2: The probabilistic graphical model illustrating
the generative process of documents in GloCOM.

global context serves as a semantic representation
for the entire cluster, which consists of multiple
sub-documents, and enhances word co-occurrence
in short text corpora. By leveraging the topic dis-
tribution from this global document, we generate
topic proportions for each sub-document through
an adaptive variable, pg4, specific to each short text.
Step 3c follows most topic modeling approaches
(Blei et al., 2003; Srivastava and Sutton, 2017; Di-
eng et al., 2020). In this step, a topic assignment
is first sampled for each word, and then the topic-
word distribution is used to generate the words for
the document. What sets this process apart is that
the topic assignments are drawn from 69, a newly
designed topic proportion for short texts that cap-
tures both the cluster’s global semantic context and
the individual document’s specific information.

3.3 Inference and Estimation

The marginal likelihood over dataset X is com-
posed of a sum over the marginal likelihoods of
individual documents z¢. Here, we also consider
the group of texts, the expansion of the marginal

likelihood can be expressed as:
D G

log p(X|w, t,€) :ZZ]I[:cd € gllog p(x?|w, t, €)
d g

Here, I[z? € g equals 1 if 27 € g and
equals to 0 otherwise. The challenge is that
the marginal likelihood of each document is in-
tractable to compute, due to the difficult inte-
gral of logp(z?|w,t,€) over the global topic
distribution #Y and the adaptive variable py:
I [ p(09, palz?, €)p(z169, pg, w, t) dG9dpy.

To solve this problem, we introduce the vari-
ational distribution gy~ (69, pg|x9, z), which is
the approximation to the intractable true poste-
rior p(09, pg|lz?,€). For greater simplification,
we use the fully factorized assumption in the

d
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Figure 3: The overall architecture of GloCOM. Our methods generate global and augmented documents from
clustering based on pre-trained language model embeddings. GloCOM proposes a novel approach to estimate both
global and local doc-topic distributions and incorporates the augmented documents into the reconstruction loss.

variational distribution: gy~ (09, pa|29, %) =
qs(09|129)q, (pa|x?). We then employ amortized in-
ference for both 69 and p4, where their variational
distribution depends on the data and the shared vari-
ational parameters ¢ and -, respectively. Specifi-
cally, both g, (09|29) and g (pa|z?) are modeled as
Gaussian distributions, with their means and vari-
ances generated from inference neural networks
parameterized by ¢ and 4. However, while the
network for p, processes z itself, the input to the
network for 69 is the global document z9, which
includes z%.

The marginal likelihood of each data point can
be written as:

log p(z®|w,t,€) = LY, 7, w,1)
+ D (s (09, palz?, ) ||p(69, pa|z?, €))

Since the Dy is non-negative, the term
L3¢, v, w,t) is called the variational lower bound
on the marginal likelihood of document d, and can
be expanded as:

logp(z¥|w, t,€) > L4, v,w,1)

- ]Eqd’*"/(eg’pd‘mg@d) [lng(xd’ 097 pd|w7 2 6):|
o E%,v(@gmdlaﬁg,xd) [log 4o~ (07, palz?, wd)}

= By 001a9)ar (pule) 108 P(10, pay 0,1 |
— Dir (qs(89]29)[|p(69))
— Dir(gy(palz®)|p(pale))

Optimizing the lower bound can lead to better ap-
proximations of the marginal likelihood and en-
sure that the approximate posterior gy - (69, pq|z?)

closely resembles the true posterior distribution.
The first component of the lower bound represents
the reconstruction loss, which aims to recreate the
input data. The remaining components serve as reg-
ularizers, promoting the alignment of global and lo-
cal topic distributions with their prior distributions.
To ensure that the lower bound remains tractable
and differentiable, we employ Monte Carlo approx-
imations and the reparameterization trick (Kingma
and Welling, 2013). We then use the augmented
reconstruction label 79, as discussed in Section 3.1.
Finally, the lower bound for document d can be
expressed as:

LY, v, w,t) = —(2%) " log (softmax(369))
— D1 (q9(07]27)|p(67))
— Dicr(gy(palz?)lIp(pale))  3)
We consider the marginal likelihood lower

bound of the full dataset as L7, which is ex-
pressed as follows:

D G
Lov =Y Y Iz’ € gL%¢,v,w,t) (4
d g

To mitigate the topic collapse problem, we apply
Embedding Clustering Regularization, as detailed
in Section 2. In summary, the overall objective
function of GloCOM is described below:

Laiocom = LM + AECRLECR, (5

where AgcpR is a weight hyperparameter. The over-
all architecture of GloCOM shown in Figure 3. We
also provide the training algorithm in Appendix A.

1113



Model
K =50

GoogleNews

SearchSnippets

StackOverflow

Biomedical

TC TD Purity NMI

TC TD Purity NMI

TC TD Purity NMI

TC TD Purity NMI

ProdLDA
ETM
ECRTM
FASTopic
NQTM
TSCTM
KNNTM

0.437 0.991
0.402 0.916
0.441 0.987
0.446 0.440
0.408 0.959
0.437 0.988
0.435 0.986

0.201
0.366
0.396
0.351
0.536
0.552
0.579

0.384
0.560
0.615
0.659
0.716
0.761
0.795

0.406 0.546 0.731 0.435
0.397 0.594 0.688 0.389
0.450 0.998 0.711 0.419
0.395 0.710 0.792 0.481
0.436 0.922 0.435 0.150
0.424 0.993 0.724 0.386
0.425 0.995 0.768 0.429

0.388 0.588 0.117 0.151
0.367 0.766 0.418 0.280
0.381 0.941 0.197 0.192
0.317 0.222 0.408 0.486
0.382 0.933 0.392 0.238
0.378 0.911 0.572 0.418
0.380 0.922 0.636 0.490

0.469 0.520
0.450 0.723
0.468 0.987
0.418 0.482
0.471 0.915
0.484 0.972
0.490 0.972

0.136
0.406
0.414
0.456
0.191
0.480
0.526

0.177
0.273
0.315
0.369
0.109
0.341
0.380

GloCOM

0.475 0.999

0.586

0.817

0.453 0.956 0.806 0.502

0.390 0.962 0.653 0.588

0.490 0.998

0.546

0.437

Model
K =100

GoogleNews

SearchSnippets

StackOverflow

Biomedical

TC TD Purity

NMI

TC TD Purity NMI

TC TD Purity NMI

TC TD Purity

NMI

ProdLDA
ETM
ECRTM
FASTopic
NQTM
TSCTM
KNNTM

0.435 0.611
0.398 0.677
0.418 0.991
0.438 0.369
0.397 0.898
0.448 0.941
0.441 0.959

0.611
0.554
0.342
0.458
0.706
0.754
0.797

0.600
0.713
0.491
0.722
0.788
0.835
0.870

0.424 0.679 0.766 0.415
0.389 0.448 0.692 0.365
0.432 0.966 0.789 0.443
0.386 0.634 0.807 0.458
0.438 0.638 0.334 0.077
0.430 0.894 0.757 0.384
0.421 0.948 0.800 0.421

0.382 0.466 0.098 0.090
0.369 0.444 0.475 0.331
0.375 0.993 0.172 0.179
0.309 0.186 0.495 0.514
0.379 0.818 0.417 0.255
0.380 0.620 0.563 0.386
0.381 0.663 0.611 0.436

0.463 0.465
0.452 0.476
0.444 0.974
0.440 0.457
0.460 0.572
0.485 0.806
0.483 0.848

0.079
0.404
0.124
0.495
0.142
0.487
0.530

0.050
0.268
0.113
0.375
0.056
0.330
0.362

GloCOM

0.450 0.944

0.761

0.900

0.443 0.920 0.822 0.501

0.382 0.804 0.658 0.585

0.462 0.997

0.536

0.422

Table 2: Topic quality, measured using TC and TD, and document-topic distribution quality, assessed with NMI and
Purity with K = 50 and K = 100. The bold values indicate the best performance. We report the standard deviation

in Appendix D.

4 Experiments

4.1 Experimental Setups

Datasets. We use four real-world short text
datasets for our experiment: (i) GoogleNews,
which covers 152 main news topics from over
11,000 Google articles; (ii) SearchSnippets con-
sisting of over 12,000 web search results divided
into 8 different domains; (iii) StackOverflow,
which contains 20,000 question titles from 20 dif-
ferent tags; (iv) Biomedical comprising nearly
20,000 medical articles spread across 20 groups.
Please refer to Appendix C.1 for the dataset statis-
tics and preprocessing details.

Baselines. We compare our method with the fol-
lowing baselines in two paradigms. For conven-
tional topic models, we consider (i) ProdLDA (Sri-
vastava and Sutton, 2017), a pioneering VAE-based
topic model; (ii) ETM (Dieng et al., 2020), which
incorporates word embeddings; (iii)) ECRTM (Wu
et al., 2023), based on ETM with regulariza-
tion between word and topic embeddings; (iv)
FASTopic (Wu et al., 2024b), a state-of-the-art
model for identifying topics via word, topic, and
document embeddings. For short text topic mod-
els, we include (vi) NQTM (Wu et al., 2020), a

neural topic model dedicated to short text prob-
lems with vector quantization for topic distribu-
tions; (vii) TSCTM (Wu et al., 2022), adapted from
NQTM with an additional contrastive loss on topic
distributions; (viii) KNNTM (Lin et al., 2024), a
recent state-of-the-art short text neural topic model
that augments a document with its neighbors via
the kNN algorithm. Except for KNNTM?, we use
the implementation of the other models provided
by TopMost (Wu et al., 2024c) and fine-tune these
baselines on various datasets and topic numbers.

Evaluation Metrics. We follow mainstream stud-
ies for short text topic modeling (Wu et al., 2020,
2022; Lin et al., 2024) and evaluate the topic qual-
ity and document-topic distribution quality. For
topic quality, we consider two metrics: Topic Co-
herence (TC) and Topic Diversity (TD). Topic
Coherence assesses how coherent the identified top-
ics are by examining the co-occurrences of the top
words with an external corpus. We adopt a widely-
used coherence metric Cy,, which has shown su-
perior performance compared to other coherence
metrics (Roder et al., 2015). Specifically, we com-
pute Cy with Wikipedia texts as a reference corpus

2We could not find the public codebase, so we implemented
it ourselves. Please see more details in Appendix C.3.
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Method TC TD Purity NMI
ECRTM 0.441 0.987 0.396 0.615

Google  GloCOM+NoC 0.465 0.989 0.548 0.768
News GloCOM+NoA 0.436 1.000 0.548 0.770
GloCOM 0.475 0.999 0.586 0.817

ECRTM 0.450 0.998 0.711 0.419

Search GloCOM+NoC  0.449 0.855 0.805 0.484
Snippets GloCOM+NoA 0.445 1.000 0.797 0.491
GloCOM 0.453 0.956 0.806 0.502

Table 3: Ablation study with K = 50 on GoogleNews
and SearchSnippets datasets. Due to space limitations,
we report the standard deviation in the Appendix D.

using Palmetto library (Rdder et al., 2015). Further-
more, Topic Diversity measures how distinct the
topics are by calculating the proportion of unique
top words across the topics. We take the top 15
words for each discovered topic for TC and TD.
For the quality of the document-topic distribution,
we assess document clustering using Purity and
NMLI, consistent with previous studies (Zhao et al.,
2021; Wu et al., 2022; Lin et al., 2024).

Implementation Details. We use the same hy-
perparameter settings as those in previous state-
of-the-art text models (Bianchi et al., 2021; Lin
et al., 2024), including epoch numbers, batch size,
learning rate, number of hidden layers, etc. We
set all-MiniLM-L6-v2 (Reimers and Gurevych,
2019) as the default pre-trained language model
for clustering, and the effectiveness of different
recent embedding models is also discussed in Sec-
tion 4.4. Regarding the hyperparameters unique to
our method, such as €, 1, Agcr, we perform a grid
search to identify the optimal values. The remain-
ing detailed settings are described in Appendix C.2.

4.2 Topic Quality and Document-Topic
Distribution Quality Evaluations

We conducted experiments to assess the efficacy
of our approach compared to other baselines. We
chose the topic number, K, as 50 and 100, fol-
lowing common practices in short-text and stan-
dard topic modeling literature (Wu et al., 2022,
2023; Lin et al., 2024). Table 2 presents the over-
all topic quality and document-topic distribution
quality across four datasets: GoogleNews, Search-
Snippets, StackOverflow, and Biomedical. From
the results, our approach demonstrates its superi-
ority over other state-of-the-art models in terms of
text clustering, especially in the case of K = 50,
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Figure 4: Clustering effectiveness of the GloCOM
model with different representations for short text clus-
tering (K = 50) on the SearchSnippets dataset.

which validates the effectiveness of our method.
By deriving a local text document from its aggre-
gated global clustering document, GloCOM can
greatly enhance the quality of the document-topic
distribution thus improving the semantic richness
of the document representation.

Furthermore, the competitive TC results of Glo-
COM compared to KNNTM demonstrate the bene-
fits of our global short text aggregation in providing
unbiased training for handling the label sparsity is-
sue. This suggests that documents within a cluster
have more semantically similar words compared to
those using kNN optimal transport-based distance.
It is worth noting that, while the ECRTM model
has a high TD in some settings, its TC score and
text clustering results are notably lower than those
of other short text methods. Appendix E displays
examples of the discovered topics from our model.
We further discuss the time and resources required
for training these models, as well as hyperparame-
ter sensitivity, in Appendix D.

4.3 Ablation Study

We analyze the effects of different variants of Glo-
COM, including (i) ECRTM, the base model of
GloCOM,; (i1) GloCOM+NoA, a GloCOM without
global augmentation for input document; and (iii)
GloCOM+NoC, a GloCOM without global cluster-
ing context, on both GoogleNews and SearchSnip-
pets under 50 topics. As shown in Table 3, the im-
provements from the ECRTM model to other Glo-
COM variants demonstrate the two modules’ effec-
tiveness. Moreover, the model incorporating both
modules achieves the highest performance in terms
of document-topic distribution quality. Regarding
topic quality, the GloCOM model obtains the best
TC score while compromising the TD score when
not using global augmentation.
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(a) TSCTM

(b) KNNTM

(c) GloCOM

Figure 5: The t-SNE visualization shows the topic distributions learned by three short text models.

4.4 Clustering Effectiveness

To demonstrate the necessity of pre-trained lan-
guage model (PLM) embeddings for clustering
in our approach, we conducted experiments on
different representations including (i) TF-IDF, a
common representation used in traditional self-
aggregation topic model (Quan et al., 2015); (ii)
SBERT, a PLM-based embedding representation
adopted from BERT (Reimers and Gurevych,
2019); (iii) LLM2Vec, a PLM-based representa-
tion harnessing the power of large language mod-
els (BehnamGhader et al., 2024). As shown in Fig-
ure 4, incorporating PLM-based embedding models
notably improves the effectiveness of our method
compared to the TF-IDF model. These results
prove the efficacy and necessity of using PLM-
based representation, as discussed in Section 3.1.
Furthermore, GloCOM using LL.M2Vec embed-
ding representations achieves better results across
all evaluation metrics compared to GloCOM using
all-MinilLM-L6-v2. This demonstrates that the
performance of GloCOM can be further enhanced
with the adoption of more advanced PLMs.

4.5 Topic Distribution Analysis

Figure 5 displays the t-SNE (Van der Maaten and
Hinton, 2008) visualization for learned document-
topic distributions with K = 50 on the SearchSnip-
pets short text dataset. It is evident that compared
to TSCTM and kNNTM, the samples in GloCOM
are more aggregated and more distinctly spread
across the space. These clear separations and divi-
sions demonstrate the effectiveness of our method
by generating local topic distributions from their
clustered global distribution. This also explains
GloCOM’s competitive topic quality performance.

5 Related Work

Standard Topic Modeling. Traditional topic
models like LDA (Blei et al., 2003) and prob-
abilistic LSI (Hofmann, 1999) rely on genera-
tive probabilistic frameworks. Despite improve-
ments (Blei and Lafferty, 2006; Li et al., 2015;
Nguyen et al., 2022b), they remain inefficient and
underperform compared to modern neural network-
based approaches, especially those using VAE ar-
chitectures (Kingma and Welling, 2013). Current
advancements include integrating pre-trained lan-
guage models (Bianchi et al., 2021; Han et al.,
2023; Pham et al., 2024b), leveraging optimal trans-
port distances (Zhao et al., 2021), and applying
contrastive loss (Nguyen and Luu, 2021). Other
methods refine the generative process by using pre-
trained embeddings (Dieng et al., 2020; Xu et al.,
2022), or optimal transport distances (Wang et al.,
2022; Wu et al., 2023, 2024b). However, these
models still struggle with short texts due to data
and label sparsity problems, as shown in Section 4.
While some studies use large language models to
describe topics as descriptions (Pham et al., 2024a),
this differs from the original LDA framework used
in this paper, which infers topic-word distributions.

Short Text Topic Modeling. Conventional short
text topic models (Li et al.,, 2016, 2017; Yin
and Wang, 2014) assume each text is gener-
ated by a few topics, while Biterm Topic Mod-
els (Yan et al., 2013; Cheng et al., 2014) incor-
porate co-occurrence patterns. Aggregation tech-
niques (Hong and Davison, 2010; Tang et al., 2013;
Quan et al., 2015) have also been used to mitigate
data sparsity. However, these methods have draw-
backs, such as the difficulty of inferring individual
document topics (Weng et al., 2010) and high com-
putational costs (Zuo et al., 2016). Clustering is
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also ineffective, as term frequency representations
fail to capture short text semantics (Jin et al., 2011).

Neural short text topic models have recently
outperformed traditional models in both perfor-
mance and generalization (Wu et al., 2024a).
Some use pre-trained embeddings (Dieng et al.,
2020; Bianchi et al., 2021) or word co-occurrence
graphs (Zhu et al., 2018; Wang et al., 2021), while
others focus on variable-length corpora (Zhang and
Lauw, 2022). Topic distribution quantization (Wu
et al., 2020, 2022) has shown to effectively han-
dle data sparsity, with KNNTM (Lin et al., 2024)
pioneering label sparsity solutions. Although kN-
NTM is state-of-the-art for short documents, its
use of optimal transport distances increases compu-
tational costs compared to our global aggregation
clustering approach.

6 Conclusion

In this paper, we propose a novel neural model for
short text topic modeling, called GloCOM, which
leverages aggregated global clustering context and
integrates this context into the reconstruction tar-
get. Our experiments demonstrate that our method
effectively addresses both data and label sparsity
challenges, outperforming state-of-the-art models
and producing high-quality topics and document
representations for short texts.

Limitations

Although our approach demonstrates promising re-
sults in addressing sparsity issues in short text topic
modeling, there are a few limitations to acknowl-
edge. Firstly, the method needs to determine the
number of groups for creating global documents.
Future research can focus on automatically select-
ing the optimal number of clusters, such as with
HDBSCAN (Campello et al., 2013). Secondly, the
method’s reliance on clustering with pre-trained
language models makes it challenging to apply in
dynamic or real-time settings. Addressing this lim-
itation will require further research into adapting
both clustering and topic modeling for dynamic
environments.

Ethical Considerations

We adhere to the ACL Code of Ethics and the terms
of each codebase license. Our method aims to
advance the field of topic modeling, and we are
confident that, when used properly and with care,
it poses no significant social risks.

Acknowledgments

This research is funded by Hanoi University of Sci-
ence and Technology (HUST) under project num-
ber T2024-TN-002

References

Tran Xuan Bach, Nguyen Duc Anh, Ngo Van Linh, and
Khoat Than. 2023. Dynamic transformation of prior
knowledge into bayesian models for data streams.
IEEE Transactions on Knowledge and Data Engi-
neering, 35(4):3742-3750.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. LLM2Vec: Large language mod-
els are secretly powerful text encoders. In First Con-
ference on Language Modeling.

Federico Bianchi, Silvia Terragni, and Dirk Hovy. 2021.
Pre-training is a hot topic: Contextualized document
embeddings improve topic coherence. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 759-766.

David M. Blei and John D. Lafferty. 2006. Dynamic
topic models. In Proceedings of the 23rd Inter-
national Conference on Machine Learning, page

113-120.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Machine
Learning Research, pages 993—-1022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems, pages 1877-1901.

Ricardo JGB Campello, Davoud Moulavi, and Jorg
Sander. 2013. Density-based clustering based on
hierarchical density estimates. In Pacific-Asia confer-
ence on knowledge discovery and data mining, pages

160-172. Springer.

Xueqi Cheng, Xiaohui Yan, Yanyan Lan, and Jiafeng
Guo. 2014. Btm: Topic modeling over short texts.
IEEE Transactions on Knowledge and Data Engi-
neering, pages 2928-2941.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in

Neural Information Processing Systems, pages 2292—
2300.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the

1117



North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2019, pages 4171-4186.

Adji B Dieng, Francisco JR Ruiz, and David M Blei.
2020. Topic modeling in embedding spaces. Trans-
actions of the Association for Computational Linguis-
tics, pages 439—-453.

Cuong Ha, Van-Dang Tran, Linh Ngo Van, and Khoat
Than. 2019. Eliminating overfitting of probabilis-
tic topic models on short and noisy text: The role

of dropout. International Journal of Approximate
Reasoning, 112:85-104.

Sungwon Han, Mingi Shin, Sungkyu Park, Changwook
Jung, and Meeyoung Cha. 2023. Unified neural topic
model via contrastive learning and term weighting.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 1802—1817.

Thomas Hofmann. 1999. Probabilistic latent semantic
indexing. In Proceedings of the 22nd annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 50-57.

Liangjie Hong and Brian D. Davison. 2010. Empirical
study of topic modeling in twitter. In Proceedings of
the First Workshop on Social Media Analytics, page
80-88.

Ou Jin, Nathan N. Liu, Kai Zhao, Yong Yu, and Qiang
Yang. 2011. Transferring topical knowledge from
auxiliary long texts for short text clustering. In Pro-
ceedings of the 20th ACM International Conference
on Information and Knowledge Management, page
775-784.

Liran Juan, Yongtian Wang, Jingyi Jiang, Qi Yang, Guo-
hua Wang, and Yadong Wang. 2020. Evaluating indi-
vidual genome similarity with a topic model. Bioin-
formatics, pages 4757-4764.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations.

Hoa M Le, Son Ta Cong, Quyen Pham The, Ngo
Van Linh, and Khoat Than. 2018. Collaborative topic
model for poisson distributed ratings. International
Journal of Approximate Reasoning, pages 62-76.

Chenliang Li, Yu Duan, Haoran Wang, Zhigian Zhang,
Aixin Sun, and Zongyang Ma. 2017. Enhancing topic
modeling for short texts with auxiliary word embed-
dings. ACM Transactions on Information Systems,
36(2):1-30.

Chenliang Li, Haoran Wang, Zhigian Zhang, Aixin Sun,
and Zongyang Ma. 2016. Topic modeling for short

texts with auxiliary word embeddings. In Proceed-
ings of the 39th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, page 165-174.

Ximing Li, Jihong Ouyang, You Lu, Xiaotang Zhou,
and Tian Tian. 2015. Group topic model: organizing
topics into groups. Information Retrieval Journal,

pages 1-25.

Yang Lin, Xinyu Ma, Xin Gao, Ruiqing Li, Yasha Wang,
and Xu Chu. 2024. Combating label sparsity in short
text topic modeling via nearest neighbor augmenta-
tion. In Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 13762-13774.

Stuart Lloyd. 1982. Least squares quantization in pcm.
IEEE Transactions on Information Theory, pages
129-137.

Khai Mai, Sang Mai, Anh Nguyen, Ngo Van Linh, and
Khoat Than. 2016. Enabling hierarchical dirichlet
processes to work better for short texts at large scale.
In Advances in Knowledge Discovery and Data Min-
ing, pages 431-442. Springer.

Rishabh Mehrotra, Scott Sanner, Wray Buntine, and
Lexing Xie. 2013. Improving lda topic models for
microblogs via tweet pooling and automatic label-
ing. In Proceedings of the 36th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 889-892.

Duc Anh Nguyen, Kim Anh Nguyen, Canh Hao
Nguyen, Khoat Than, et al. 2021. Boosting prior
knowledge in streaming variational bayes. Neuro-
computing, 424:143-159.

Ha Nguyen, Hoang Pham, Son Nguyen, Ngo Van Linh,
and Khoat Than. 2022a. Adaptive infinite dropout
for noisy and sparse data streams. Machine Learning,
111(8):3025-3060.

Thong Nguyen and Anh Tuan Luu. 2021. Contrastive
learning for neural topic model. In Advances in Neu-
ral Information Processing Systems, pages 11974—
11986.

Tung Nguyen, Trung Mai, Nam Nguyen, Linh Ngo
Van, and Khoat Than. 2022b. Balancing stability and
plasticity when learning topic models from short and
noisy text streams. Neurocomputing, pages 30—43.

Tung Nguyen, Tung Pham, Linh Ngo Van, Ha-Bang
Ban, and Khoat Than. 2025. Out-of-vocabulary han-
dling and topic quality control strategies in streaming
topic models. Neurocomputing, 614:128757.

Van-Son Nguyen, Duc-Tung Nguyen, Linh Ngo Van,
and Khoat Than. 2019. Infinite dropout for training
bayesian models from data streams. In 2019 IEEE
International Conference on Big Data (Big Data),
pages 125-134.

1118



Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532—1543.

Gabriel Peyré and Marco Cuturi. 2018. Computational
optimal transport. Foundations and Trends in Ma-
chine Learning, pages 355-607.

Chau Minh Pham, Alexander Hoyle, Simeng Sun, and
Mohit Iyyer. 2024a. Topicgpt: A prompt-based topic
modeling framework. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 2956-2984.

Duy-Tung Pham, Thien Trang Nguyen Vu, Tung
Nguyen, Linh Ngo Van, Duc Anh Nguyen, and
Thien Huu Nguyen. 2024b. Neuromax: Enhanc-
ing neural topic modeling via maximizing mutual
information and group topic regularization. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024.

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In Proceedings of the 17th
International Conference on World Wide Web, pages
91-100.

Jipeng Qiang, Qian Zhenyu, Yun Li, Yunhao Yuan, and
Xindong Wu. 2022. Short text topic modeling tech-
niques, applications, and performance: A survey.
IEEE Transactions on Knowledge and Data Engi-
neering, pages 1427-1445.

Xiaojun Quan, Chunyu Kit, Yong Ge, and Sinno Jialin
Pan. 2015. Short and sparse text topic modeling via
self-aggregation. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, page
2270-2276.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982-3992.

Michael Roder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining,
page 399-408.

Akash Srivastava and Charles Sutton. 2017. Autoen-
coding variational inference for topic models. In
International Conference on Learning Representa-
tions.

Jian Tang, Ming Zhang, and Qiaozhu Mei. 2013. One
theme in all views: modeling consensus topics in
multiple contexts. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge
Discovery and Data Mining, page 5—13.

Anh Phan Tuan, Bach Tran, Thien Huu Nguyen,
Linh Ngo Van, and Khoat Than. 2020. Bag of
biterms modeling for short texts. Knowledge and
Information Systems, 62(10):4055-4090.

Francisco B Valero, Marion Baranes, and Elena V Epure.
2022. Topic modeling on podcast short-text metadata.
In European Conference on Information Retrieval,

pages 472—-486.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, pages 2579-2605.

Ngo Van Linh, Nguyen Kim Anh, Khoat Than, and
Chien Nguyen Dang. 2017. An effective and inter-
pretable method for document classification. Knowl-
edge and Information Systems, pages 763—793.

Ngo Van Linh, Tran Xuan Bach, and Khoat Than. 2022.
A graph convolutional topic model for short and noisy
text streams. Neurocomputing, 468:345-359.

Dongsheng Wang, Dandan Guo, He Zhao, Huangjie
Zheng, Korawat Tanwisuth, Bo Chen, and Mingyuan
Zhou. 2022. Representing mixtures of word embed-
dings with mixtures of topic embeddings. In The
Tenth International Conference on Learning Repre-
sentations.

Yiming Wang, Ximing Li, Xiaotang Zhou, and Jihong
Ouyang. 2021. Extracting topics with simultane-
ous word co-occurrence and semantic correlation
graphs: Neural topic modeling for short texts. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 18-27.

Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He.
2010. Twitterrank: finding topic-sensitive influential
twitterers. In Proceedings of the Third ACM Interna-
tional Conference on Web Search and Data Mining,
WSDM 10, page 261-270.

Xiaobao Wu, Xinshuai Dong, Thong Thanh Nguyen,
and Anh Tuan Luu. 2023. Effective neural topic
modeling with embedding clustering regularization.
In International Conference on Machine Learning,
pages 37335-37357.

Xiaobao Wu, Chunping Li, Yan Zhu, and Yishu Miao.
2020. Short text topic modeling with topic distribu-
tion quantization and negative sampling decoder. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1772-1782.

Xiaobao Wu, Anh Tuan Luu, and Xinshuai Dong. 2022.
Mitigating data sparsity for short text topic modeling
by topic-semantic contrastive learning. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2748-2760.

1119



Xiaobao Wu, Thong Nguyen, and Anh Tuan Luu. 2024a.
A survey on neural topic models: Methods, applica-
tions, and challenges. Artificial Intelligence Review,
pages 1-30.

Xiaobao Wu, Thong Nguyen, Delvin Ce Zhang,
William Yang Wang, and Anh Tuan Luu. 2024b.
Fastopic: A fast, adaptive, stable, and transferable
topic modeling paradigm. In Advances in Neural
Information Processing Systems.

Xiaobao Wu, Fengjun Pan, and Anh Tuan Luu. 2024c.
Towards the topmost: A topic modeling system
toolkit. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 31-41.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng, Guan-
hua Tian, and Jun Zhao. 2017. Self-taught convolu-
tional neural networks for short text clustering. Neu-
ral Networks, pages 22-31.

Yi Xu, Dongsheng Wang, Bo Chen, Ruiying Lu, Zhibin
Duan, Mingyuan Zhou, et al. 2022. Hyperminer:
Topic taxonomy mining with hyperbolic embedding.

In Advances in Neural Information Processing Sys-
tems, pages 31557-31570.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In Proceedings of the 22nd International Conference
on World Wide Web, page 1445-1456.

Jianhua Yin and Jianyong Wang. 2014. A dirichlet
multinomial mixture model-based approach for short
text clustering. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, page 233-242.

Jianhua Yin and Jianyong Wang. 2016. A model-based
approach for text clustering with outlier detection. In
2016 IEEE 32nd International Conference on Data
Engineering (ICDE), pages 625-636.

Delvin Ce Zhang and Hady Lauw. 2022. Meta-
complementing the semantics of short texts in neural
topic models. In Advances in Neural Information
Processing Systems, pages 29498-29511.

He Zhao, Dinh Phung, Viet Huynh, Trung Le, and Wray
Buntine. 2021. Neural topic model via optimal trans-
port. In 9th International Conference on Learning
Representations.

Qile Zhu, Zheng Feng, and Xiaolin Li. 2018.
GraphBTM: Graph enhanced autoencoded varia-
tional inference for biterm topic model. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4663—4672.

Yuan Zuo, Junjie Wu, Hui Zhang, Hao Lin, Fei Wang,
Ke Xu, and Hui Xiong. 2016. Topic modeling of
short texts: A pseudo-document view. Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
2105-2114.

A GloCOM Algorithm

Algorithm 1 GloCOM training procedure.

Input: Input corpus X, Topic number K, epoch
number NV, and clusters G.

Output: K topic-word distributions G, N doc-
topic distributions 69

1: for epoch from 1 to IV do

2:  For a random batch of B documents do

3 Lbpatch < 0;

4:  for each local doc z¢ and its respective

global doc 29 in the batch do

5: Compute the adaptive variable pg;

6: Compute the global topic distribution 67

7: Compute the local topic distribution 03
by Eq. 2;

8: Lpatch < Lpatch + LGlocom by Eq. 5;

9: end for
10:  Update model parameters with V Ly,ech;
11: end for

B Embedding Clustering Regularization

Proposed by (Wu et al., 2023), Embedding Clus-
tering Regularization (ECR) ensures that each
topic embedding serves as the center of its dis-
tinct word embedding cluster in the semantic space.
Specifically, it leverages optimal transport (OT)
distance (Peyré and Cuturi, 2018) as follows:

vV K
Lror = Y Y [lwi — t]%¢5;,

i=1 j=1
with ¢* is the solution to the following OT opti-
mization problem:

minimize (Cywr, ) — vH (v)

s.t.p € RV*E
1 1
g = =1y, 1y = =1
Yl v v, 1y 7 1K

where Cywr € RV*¥ represents the distance ma-

trix between word embeddings and topic embed-
dings. The optimal transport matrix ¢* is derived
using the Sinkhorn algorithm. For two matrices
X, Y with the same size, (X,Y) = >, . X;;Y;;.
H(P)=—(PlogP—1) = —3_; ; P;j(log P;j —
1) is the Shannon entropy of P (Cuturi, 2013).

C Experiment Details

C.1 Dataset Statistics

We evaluate the performance of our GloCOM
model and other baselines using four benchmark
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D #of average #of vocab # of
ataset .

texts text length labels size groups
GoogleNews 11,019 5.753 152 3,473 200
SearchSnippets 12,294 14.426 8 4,618 40
StackOverflow 16,378  4.988 20 2,226 40
Biomedical 19,433  7.430 20 3,867 40

Table 4: Dataset statistics after preprocessing.

datasets for short text topic modeling. The specifics
of each dataset are as follows:

* GoogleNews includes 11,109 article titles re-
lated to 152 events, originally published and
processed by (Yin and Wang, 2016).

* SearchSnippets consists of 12,340 snippets
extracted from web searches, categorized into
8 groups by (Phan et al., 2008).

* StackOverflow is the dataset used in a Kag-
gle challenge?. For this work, 20,000 ques-
tion titles from 20 categories were randomly
selected by (Xu et al., 2017).

* Biomedical is a subset of PubMed data pro-
vided by BioASQ*, with 20,000 paper titles
randomly selected from 20 categories by (Xu
etal., 2017).

We then aim to replicate the experimental set-
tings established by (Lin et al., 2024). We first
obtain preprocessed versions of four datasets pro-
vided by the STTM library’ (Qiang et al., 2022).
For each dataset, we then remove words with a fre-
quency below 3 from the corpus and the vocabulary.
After that, we filter out all documents with a term
length of less than 2. These preprocessing steps are
implemented using TopMost®.

For global clustering, these texts are embed-
ded into a semantic representation by the common
pre-trained language model, al1-MinilLM-L6-v2’.
Then, these embeddings are clustered into a cho-
sen number of groups based on the dataset char-
acteristics using K-Means (Lloyd, 1982). Table 4
provides an overview of the dataset statistics after
preprocessing.

3https://www.kaggle.com/c/
predict-closed-questions-on-stack-overflow

4http://participants—area.bioasq.org/

5https://github.com/qiang2100/STTM

Shttps://github.com/bobxwu/topmost

7https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

C.2 Model Implementation

All experiments are conducted on two GeForce
RTX 3090 24GB GPUs with CUDA version 12.5,
using PyTorch 2.4.1 in a Python 3.10.14 environ-
ment. For our GloCOM model, it takes less than
10 minutes to complete the training process per
setting. We utilize the same encoder network set-
tings for both global document distribution (¢) and
local adapter (y) inference networks. Following
the architecture in (Wu et al., 2023), both networks
comprise a two-layer softplus-activated MLP and
an additional layer for the mean and covariance of
the latent variable for a fair comparison. We set
7 = 0.2 in Eq. 1 as default by (Wu et al., 2023).
We train our model for N = 200 epochs with a
batch size of 200, applying the common Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 0.002. The other hyperparameters,  — the
augmentation coefficient, e — the prior variance
factor of the adaptive variable, and Agcr — the
ECR weight hyperparameter, are selected from a
range as follows:

« 1 €[0.01,0.05,0.1,0.5, 1.0]
« € €[0.001,0.01,0.1]
* Ancr € [10, 20, 30,60, 90]

We conduct sensitivity analysis on these hyperpa-
rameters, as well as the number of clusters, G, of
our GloCOM, in Appendix D.

C.3 KNNTM Implementation

The KNNTM (Lin et al., 2024) model is the state-
of-the-art short text topic modeling baseline. How-
ever, the codebase is not publicly available, so we
replicate the implementation of KNNTM with ex-
act settings for the model and for each dataset as
described in (Lin et al., 2024). For the additional
Biomedical dataset, we use the same settings as the
SearchSnippets dataset.

It is worth noting that calculating the optimal
transport distance required for pairwise document
comparisons is costly and time-consuming. It takes
about two weeks on four NVIDIA A100 80GB
GPUs to measure the distances for four datasets,
even though we use the Sinkhorn algorithm (Cu-
turi, 2013) with a batch implementation. We will
publish the code for the KNNTM models alongside
our codebase.
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Method TC TD Purity NMI
ECRTM 0.441+0.003 0.987+0.023 0.396+0.007 0.615+0.011
Google GloCOM+NoC 0.465+0.010 0.989+0.010 0.548+0.013 0.768+0.011
News GloCOM+NoA 0.436+0.001 1.000£0.000 0.548+0.013 0.770+0.004
GloCOM 0.47520.009 0.999+0.001 0.586+0.012 0.817+0.002
ECRTM 0.450+0.006 0.998+0.002 0.711£0.020 0.419+0.022
Search  GloCOM+NoC 0.449+0.003 0.855+0.028 0.805+0.008 0.484+0.001
Snippets GloCOM+NoA 0.445+0.008 1.000£0.000 0.797+0.011 0.491+0.004
GloCOM 0.453+0.007 0.956+0.008 0.806+0.008 0.502+0.001

Table 5: Full ablation study results with K = 50 on GoogleNews and SearchSnippets datasets. We report the mean

and the standard deviation of three different runs.

Training Memory
Model  7iime (s) Required (MB)
ProdLDA 48 818
ETM 38 838
ECRTM 350 846
FASTopic 24 2506
NQTM 385 6126
TSCTM 76 818
KNNTM* 53 2120
GloCOM 540 1298

Table 6: Comparison of different topic modeling meth-
ods in terms of time and memory consumption for train-
ing. (*) KNNTM requires 50 hours on four A100 GPUs
to calculate OT distances before training.

D Additional Results

Due to space constraints, the standard deviations
of the results in the Section 4 are not included in
the main paper. Here, we present the means and
standard deviations of the results in Tables 11, 12,
and 5, which correspond to Tables 2 and 3 in the
main paper. Tables 7-10 display the hyperparam-
eters’ sensitivity analysis results of our GloCOM
model conducted on SearchSnippets with K = 50.

Table 6 shows the training time and memory
for short texts models on SearchSnippets with 50
topics. Compared to other state-of-the-art models,
such as KNNTM, our GloCOM has lower memory
requirements. This is because KNNTM requires
storing all the OT distances between each pair of
training documents in every training loop. Despite
having one more neural network + to infer the adap-
tive variable. The training time is still less than 10
minutes on a single RTX 3090, which is reasonable
for real-world applications.

n TC TD Purity NMI
0.01 [0.443 1.000 0.783 0.488
0.05 |0.452 0.980 0.812 0.499
0.1 ]0.453 0.956 0.806 0.502
0.5 ]0.452 0.895 0.805 0.503
1.0 |0.445 0.878 0.790 0.502

Table 7: Sensitivity analysis on the augmentation coeffi-
cient, 17, on SearchSnippets dataset with K = 50.

€ TC TD Purity NMI
0.001 |0.443 0.994 0.830 0.514
0.01 ]0.450 0.978 0.813 0.470
0.1 10.453 0.956 0.806 0.502

Table 8: Sensitivity analysis on the prior variance factor,
€, on SearchSnippets dataset with K = 50.

Aecr | TC  TD Purity NMI
30 |0.453 0.956 0.806 0.502
60 |0.442 1.000 0.802 0.499
90 |0.438 1.000 0.798 0.494

Table 9: Sensitivity analysis on the ECR weight hyperpa-
rameter, Agcg, on SearchSnippets dataset with K = 50.

G TC TD Purity NMI
30 |0.443 0.988 0.818 0.529
40 10.453 0.956 0.806 0.502
50 [0.438 0.980 0.813 0.505

Table 10: Sensitivity analysis on the number of clusters
(groups), G, on SearchSnippets dataset with K = 50.
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GoogleNews SearchSnippets

Model

TC TD Purity NMI TC TD Purity NMI
ProdLDA 0.437£0.001 0.991+0.003 0.201£0.011 0.384+0.031 0.406+0.007 0.546+0.039 0.731+0.017 0.435+0.009
ETM 0.402+0.004 0.91620.006 0.366+0.032 0.560+0.030 0.397+£0.003 0.594+0.012 0.688+0.002 0.389+0.013

ECRTM  0.441+0.003 0.987+0.023 0.396+0.007 0.615+0.011 0.450+0.006 0.998+0.002 0.711+0.020 0.419+0.022
FASTopic 0.446+0.010 0.440+0.020 0.351+0.006 0.659+0.006 0.395+0.001 0.710£0.019 0.792+0.008 0.481+0.008
NQTM 0.408+0.003 0.959+0.002 0.536+0.005 0.716+0.010 0.436+0.001 0.922+0.003 0.435+0.007 0.150+0.007
TSCTM  0.437+0.005 0.988+0.003 0.552+0.009 0.761+0.010 0.424+0.003 0.993+0.007 0.724+0.005 0.386+0.006
KNNTM  0.435+0.006 0.986+0.006 0.579+0.010 0.795+0.007 0.425+0.004 0.995+0.003 0.768+0.001 0.429+0.001
GloCOM  0.475+0.009 0.999+0.001 0.586+0.012 0.817+0.002 0.453+0.007 0.956+0.008 0.806+0.008 0.502+0.001

Model StackOverflow Biomedical

TC TD Purity NMI TC TD Purity NMI
ProdLDA  0.388+0.006 0.588+0.011 0.117+0.023 0.151+0.025 0.469+0.009 0.520+0.054 0.136+0.014 0.177+0.014
ETM 0.367+0.006 0.766+0.015 0.418+0.012 0.280+0.005 0.450+0.008 0.723+0.023 0.406+0.003 0.273+0.005

ECRTM  0.381+0.006 0.941+0.035 0.197+0.024 0.192+0.026 0.468+0.005 0.987+0.013 0.414+0.005 0.315+0.005
FASTopic 0.317+0.010 0.222+0.021 0.408+0.007 0.486+0.011 0.418+0.007 0.482+0.017 0.456+0.003 0.369+0.004
NQTM 0.382+0.002 0.933+0.008 0.392+0.016 0.238+0.007 0.471+0.007 0.915+0.022 0.191+0.011 0.109+0.006
TSCTM  0.378+0.005 0.911+0.011 0.572+0.009 0.418+0.002 0.484+0.006 0.972+0.009 0.480+0.008 0.341+0.004
KNNTM  0.380£0.005 0.922+0.009 0.636+0.005 0.490+0.005 0.490+0.008 0.972+0.008 0.526+0.011 0.380+0.007
GloCOM  0.390+0.012 0.962+0.006 0.653+0.002 0.588+0.002 0.490+0.005 0.998+0.003 0.546+0.005 0.437+0.004

Table 11: Full topic quality results, measured using TC and TD, and document-topic distribution quality, assessed
with NMI and Purity with K = 50. The bold values indicate the best performance. We report the mean and the
standard deviation of three different runs.

Model GoogleNews SearchSnippets

TC TD Purity NMI TC TD Purity NMI
ProdLDA  0.435+0.007 0.611+0.015 0.611+£0.015 0.600+0.046 0.424+0.005 0.679+0.018 0.766+0.004 0.415+0.004
ETM 0.398+0.001 0.677+£0.018 0.554+0.014 0.713+£0.012 0.389+0.001 0.448+0.012 0.692+0.012 0.365+0.013

ECRTM  0.418+0.004 0.991+0.006 0.342+0.012 0.491+0.013  0.432+0.003 0.966+0.006 0.789+0.006 0.443+0.002
FASTopic 0.438+0.011 0.369+0.025 0.458+0.010 0.722+0.010 0.386+0.008 0.634+0.017 0.807+0.015 0.458+0.010
NQTM 0.397+0.001 0.898+0.010 0.706+0.003 0.788+0.001 0.438+0.004 0.638+0.006 0.334+0.011 0.077+0.005
TSCTM  0.448+0.002 0.941+0.008 0.754+0.001 0.835+0.002 0.430£0.005 0.894+0.020 0.757+0.008 0.384+0.004
KNNTM  0.441£0.003 0.959+0.004 0.797+£0.010 0.870+0.001 0.421+0.001 0.948+0.006 0.800+0.006 0.421+0.002
GloCOM  0.450+0.006 0.944+0.007 0.761+0.012 0.900+0.003 0.443+0.001 0.920+0.002 0.822+0.001 0.501+0.003

Model StackOverflow Biomedical

TC TD Purity NMI TC TD Purity NMI
ProdLDA  0.382+0.001 0.466+0.019 0.098+0.001 0.090+0.015 0.463+0.005 0.465+0.040 0.079+0.005 0.050+0.006
ETM 0.369+0.001 0.444+0.006 0.475+0.020 0.331+0.017 0.452+0.004 0.476+0.009 0.404+0.007 0.268+0.006

ECRTM  0.375+0.003 0.993+0.004 0.172+0.013 0.179+0.016 0.444+0.001 0.974+0.007 0.124+0.007 0.113+0.008
FASTopic 0.309+0.005 0.186+0.012 0.495+0.013 0.514+0.016 0.440+0.002 0.457+0.040 0.495+0.013 0.375+0.011
NQTM 0.379+0.001 0.818+0.006 0.417+0.003 0.255+0.002 0.460+0.007 0.572+0.046 0.142+0.002 0.056+0.002
TSCTM  0.380+0.004 0.620+0.010 0.563+0.007 0.386+0.006 0.485+0.005 0.806+0.009 0.487+0.004 0.330+0.003
KNNTM  0.381+0.003 0.663+0.016 0.611+0.013 0.436+0.003 0.483+0.001 0.848+0.006 0.530+0.003 0.362+0.001
GloCOM  0.38240.007 0.804+0.004 0.658+0.002 0.585+0.002 0.462+0.008 0.997+0.002 0.536+0.007 0.422+0.005

Table 12: Full topic quality results, measured using TC and TD, and document-topic distribution quality, assessed
with NMI and Purity with K = 100. The bold values indicate the best performance. We report the mean and the
standard deviation of three different runs.
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Discovered Topic Examples

#1: espn ncaasports mlb standings lacrosse devils playoff hockey suns tna wwe afl rumors

scores basketball

#2: ideology labour capitalism marxists party socialism electoral kazakhstan radical worker

taiwan democratic gates peaceful marxist

#3: navy nuclear dod army mil weapons treaty nationalsecurity rand alamos corps bomb

atlantic naval invasion

#4: messaging mcafee wi isps paypal voip lan measuring microprocessors supercomputing

connections pakistan websearch wideless scandal

#5: medicare parliament bills legislation leg legislative enacted appropriations fiscal

representatives senate legislature opsi noaa ngdc

#6: lyrics blues orchestra symphony rock pianos thurston piano bluegrass concerts midi

orchestras bands nasoalmo solo

#7: oprah entourage mainetoday comedy vhs comedies myspace askmen roberts ellen

metacafe wwe julia rank lycos

#8: messenger dom isp python kdd xmldocument verizon webbrowser markup speedtest

linksys fi symantec verisign safari

#9: exchanges import currencies trading futures leads inflation forex commodity commodities

export traders exporters dollar boats

#10: presenter bodybuilding resorts circuit thoroughbred ski antique forensics routines moments

resort aspen guild democracies simpsons

#11: hepatitis smoking epidemiology infections infectious prevention liver cdc cigarettes lung aids

unaids diseases cancers cancer

#12: snowboarding skiing snowboard miniclip softball miyazato sania forehand mirza candystand
addictinggames funbrain tennis tournaments volleyball

#13: aging genome biotech biomedical plants molecules majors evolutionary molecular genetics
physiology informatics plant neuroscience biotechnology

#14: astronomy physicsweb astrophysics sciam geophysics nida missions iop inventions nasa

warming weisstein gsfc popsci physics

#15: shareholder realestate nasdaq timeshare investments debt hotjobs consolidation shareholders
bankruptcy moneycentral financials mortgage venture securities
#16: geographies ivillage ucf iop athletes mens garros psychoanalysis econ professors

pyramids arl advisors globalisation lecturers

#17: identities mathematician axioms newton mathematica proofs mizar neil mathforum

gravitation maa axiom solids equations isaac

#18: cert speakeasy ppl maths civilizations evansville mls chakvetadze amherst portraits buenos

sporting athens arch balls

#19: merit techweb sorensen podtech cancertopics pcguide screensavers foodborne parascope
aidsinfo coupons popsci cores optimization unveils
#20: admissions doctorate gslis scholarships degree hunter grad majors graduate colleges

degrees simmons doctoral finaid graduation

Table 13: Top 15 related words of 20 discovered topics from SearchSnippets.

and underlined.

E Examples of Discovered Topics

We provide the first 20 discovered topics of our
GloCOM models from the SearchSnippets dataset
under K = 50. As shown in Table 13, the model
can identify meaningful topics, such as Topic #2,
which is about ideology, with relevant words like

EEINT3

“capitalism”, “marxists”, and “socialism”. Note that

Repeated words are bold

although the word “wee” appears in both Topic #1,
about sports, and Topic #7, about entertainment,
this is correct as WEE refers to World Wrestling
Entertainment. This further validates our model’s
effectiveness in identifying high-quality topics in
short-text datasets despite having a slightly lower
topic diversity metric compared to the ECRTM and
KNNTM models, as shown in Table 2.
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