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Abstract

Multimodal Chain of Thought (MCoT) is a
popular prompting strategy for improving the
performance of multimodal large language
models (MLLMs) across a range of com-
plex reasoning tasks. Despite its popular-
ity, there is a notable absence of automated
methods for evaluating the quality of rea-
soning steps in MCoT. To address this gap,
we propose Multimodal Chain-of-Thought
Evaluation (MiCEval), a framework designed
to assess the correctness of reasoning chains by
evaluating the quality of both the description
and each reasoning step. The evaluation of de-
scription component focuses on the accuracy
of the image descriptions, while the reasoning
step evaluates the quality of each step as it is
conditionally generated based on the preced-
ing steps. MiCEval is built upon a fine-grained
dataset with annotations that rate each step ac-
cording to correctness, relevance, and informa-
tiveness. Extensive experiments on four state-
of-the-art MLLMs show that step-wise evalu-
ations using MiCEval align more closely with
human judgments compared to existing meth-
ods based on cosine similarity or fine-tuning
approaches. MiCEval datasets and code can be
found in https://github.com/alenai97/MiCEval.

1 Introduction

Multimodal chain-of-thought (MCoT) enhances
the performance of multimodal large language
models (MLLMs) on complex reasoning tasks by
generating explicit multi-step reasoning chains to
achieve the final goal (Zhang et al., 2024; Gao
et al., 2023; Chen et al., 2024d; Shao et al., 2024).
It not only improves the interpretability of MLLM
outputs but also offers a valuable framework for
assessing their reasoning capabilities. Most ex-
isting evaluations (Lu et al., 2022; Zhang et al.,
2024; Chen et al., 2024d) focus exclusively on the

* Equal Contribution.
" Corresponding author

Pair 1 Pair 2

1.9 cm —

=1.9 cm —
Question: Which pair's magnetic force is stronger?

| In Pair 1, both magnets' North poles I LABEL Incorrect
face each other directly. This |
configuration results in maximum I cLp 0.27

| attraction between them due to

| opposite polarity alignment. Pair 2 still | ReCEval 0.11

| exists as the magnets maintain -

| opposing polarities. I MiCEval 0.00

[ The distance between the magnets | | |ApgL Correct

| in both pairs is the same, 1.9 cm. The

| size of the magnets in Pair 2 is larger CLIP 0.26
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Figure 1: We exemplify how CLIP and ReCEval did not
choose the correct MCoT answer from the two model-
generated MCoT answers, but MiCEval succeeded.

correctness of the final prediction in MCoT, while
overlooking the quality of the reasoning process
within the chains, failing to capture errors and un-
reliable steps that may occur throughout the chain
(Lyu et al., 2023; Turpin et al., 2023). To establish
a principled framework to more accurately reflect
the quality of MCoT, it is essential to evaluate each
step in the reasoning chain individually.

A common approach for evaluating (unimodal)
CoT is to compare model-generated reasoning
chains with human-written reference chains (Clin-
ciu et al., 2021; Welleck et al., 2022; Saparov
and He, 2023). However, this method incurs sub-
stantial costs. As a result, recent research has
shifted towards reference-free evaluation methods,
fine-tuning models on human-annotated reason-
ing chain datasets (Golovneva et al., 2022; Prasad
et al., 2023). Yet, these methods often fall short
in delivering robust evaluation metrics due to the
inherent limitations of fine-tuning. The use of
large language models (LLMs) as evaluators has
emerged as a promising alternative (He et al., 2024;
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https://github.com/alenai97/MiCEval

Xia et al., 2024) but they cannot be directly applied
to MCoT, as they are unable to effectively evaluate
the image descriptions in MCoT; e.g., in Figure 1,
the statement “In Pair 1, both magnets’ North poles
face each other directly” is an image description.
Methods that focus solely on the textual modality
cannot properly evaluate the correctness of image
descriptions. In the multimodal domain, several
evaluation metrics have been proposed to assess
the alignment between images and descriptions by
calculating their cosine similarity (Hessel et al.,
2021; Li et al., 2023a). However, their effective-
ness in evaluating MCoT remains unexplored.

The answers generated by MCoT involve both
image descriptions (Chen et al., 2023b,c) and their
corresponding reasoning steps. Therefore, for an
MCoT to be correct, all steps related to both image
descriptions and reasoning must be accurate, rele-
vant, and contribute effectively to reaching the final
answer. This highlights the need for a method that
evaluates both the visual and textual components,
providing a comprehensive assessment of the over-
all quality of the MCoT output. As noted in the
context of CoT by Jacovi et al. (2024), the cre-
ation of a multi-step evaluation dataset is essential
for accurately assessing the abilities of MLLMs as
MCoT verifiers. Such a comprehensive dataset will
not only enable detailed evaluation of an MCoT
verifier’s effectiveness but will also offer insights
into the overall quality of MCoT outputs.

In this paper, we propose MiCEval, a frame-
work designed to evaluate MCoT by breaking down
MCoT chains into description and reasoning steps,
and assessing the quality of each. MiCEval de-
composes MCoT verification into five core tasks
across both visual and textual modalities: descrip-
tion correctness, image relevance, logical correct-
ness, logical relevance, and informativeness. Addi-
tionally, MiCEval introduces a dataset comprising
903 MLLM-generated MCoT answers and 2,889
human-annotated MCoT steps, which serve as the
foundation for our comprehensive step-wise evalu-
ations of both MCoT and its verifiers.

Each MCoT step in the MiCEval dataset is ini-
tially categorized as either a “Description Step”,
a “Reasoning Step”, or a “Both Step” (a combina-
tion of description and reasoning). For the descrip-
tion steps, we provide fine-grained annotations for
correctness and relevance, while for the reasoning
steps, we collect labels for (1) correctness: each
step is generated based on previously valid infor-
mation; (2) relevance: every step is related to either

the image or answering the question; and (3) in-
formativeness: steps should provide new, relevant
information. Furthermore, we annotate the specific
error types for steps identified as description in-
correct or logically incorrect. At the MCoT level,
we annotate whether the overall MCoT answer is
correct.

Leveraging the diverse annotation tasks in the
MiCEval dataset, the MiCEval framework provides
a comprehensive range of evaluation dimensions.
From the MCoT perspective, MiCEval not only
facilitates step-level reasoning evaluation but also
assesses the overall quality of MCoT. Additionally,
MiCEval enables a detailed, fine-grained evalua-
tion of the reasoning capabilities of MLLMs. In
this work, we focus primarily on evaluating: (1) the
effectiveness of MLLMs as verifiers, and (2) the
correlation between MiCEval correctness metrics
and human preferences.

Our main contributions are as follows:

1. We propose a comprehensive step-level an-
notation protocol to construct a high-quality,
fine-grained, human-annotated MCoT dataset.

2. We assess MLLM verifiers’ capabilities on
each fine-grained task, identifying specific
weaknesses, such as poor performance on
complex reasoning tasks.

3. We introduce the MiCEval multidimensional
correctness metrics for evaluating MCoT an-
swers. Moreover, we demonstrate that MiCE-
val enables MLLM evaluators to better align
with human judgment.

2 Problem Definition and Formalization

In this section, we define MCoT and formalize fine-
grained tasks for validating and evaluating MCoT
depending on the type of steps. An MCoT consists
of an image 7, a question Q, and a reasoning chain
RC =r1,...;Tn:

MCoT = Prompt(Z, Q, RC)

Prompt() represents the transformation of multi-
modal inputs into task-specific instruction formats.
The main difference between of CoT and MCoT
is the inclusion of a visual input in the latter. In
our study, we focus on MCoT answer, namely the
chain RC generated from Z and Q. Each step
i, © € [1,n], is a complete sentence, and r,, is the
final step that contains the prediction corresponding
to the question.
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Figure 2: Our work consists of two main parts: (a) sampling questions from the source datasets, generating MCoT
answers using four MLLMs, followed by high-quality human annotation and filtering to create the MiCEval dataset;

(b) a detailed illustration of our MiCEval framework.

2.1 Verification and Evaluation Tasks

In MiCEval we define two evaluation tasks: Verifi-
cation (Jacovi et al., 2024) and Evaluation (Chen
et al., 2024a). Figure 2 illustrates the MiCEval
framework.

Verification. In this task, we aim to assess the
ability of MLLMs as verifiers. Given an input
MCoT, the MLLM outputs either 0 (“Incorrect’)
or 1 (“Correct”).

Evaluation. The goal of this task is to evaluate the
correlation between MiCEval correctness metrics
and human performance, using MLLMs as evalu-
ators. Additionally, we aim to determine whether
MiCEval enables MLLMs to achieve closer align-
ment with human judgments. For a given input
MCoT, the MLLM generates a correctness score
within the range of [0, 1].

2.2 MCoT-level and Step-level Evaluation

There are two distinct evaluation settings in MiCE-
val : MCoT-level and step-level evaluation.

MCoT-level. Given the input Z, Q, RC, where
the RC comprising {r1,r2,..., ¥} is evaluated as
a whole. MLLM generates a score between [0, 1]
that reflects the correctness of the entire sequence

RC.

Step-level. For the given input Z, O, the current
step r;, and the previous steps RC;—1 = {r1,72,...,
r;—1}, only the current step r; is evaluated, the
MLLM outputs a score between [0, 1] that reflects
the correctness of r;.

2.3 Step Type

The definition of correctness varies depending on
the type of step. For a description step, the focus is
on description correctness and relevance. For a rea-
soning step, the emphasis is on logical correctness,
relevance, and informativeness.

In an MCoT sequence, the steps are generated
from information extracted from both visual and
textual modalities. We define steps derived solely
from visual information (i.e., describing visual con-
tent) as description steps. Steps that involve infor-
mation inferred beyond the visual content, incorpo-
rating the question and previous steps, are referred
to as reasoning steps.

2.3.1 Description Step

For description steps, we assess their correctness
and relevance.

Description Correctness. A step is labeled as
“Fully Correct” if it contains no incorrect informa-
tion about the image. If all the information in the
step is incorrect, it is marked as “Unsupported.” If
a step contains both correct and incorrect informa-
tion, it is labeled as “Partially Correct.” Addition-
ally, we further categorize error types for “Partially
Correct” or “Unsupported” steps based on Huang
et al. (2023)—Entity False: Incorrectly identifying
the presence or type of entities; Attribute False:
Incorrect description of entity attributes (e.g., color,
shape, texture, count, state, or text recognition);
Spatial Relationship False: Incorrect description
of spatial relationships between entities (e.g., left,
right); Non-Spatial Relationship False: Incorrect
description of non-spatial relationships (e.g., speak-
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ing to).

Description Relevance. A step is labeled “Image
Relevant” if its description pertains to the content
of the image. If the description is relevant to an-
swering the question, it is labeled “Logic Relevant”.
If it is relevant to both the image and the question,
the step is marked as “Both”. If it is relevant to
neither, the step is labeled “None”.

2.3.2 Reasoning Step

For reasoning steps, we focus on Logical Correct-
ness, Logical Relevance, and Informativeness.
Logical Correctness. A reasoning step is consid-
ered “Correct” if it is logically deduced from the
facts and previous steps. A step is labeled “Incor-
rect” if it contains logical errors or contradicts the
facts. Additionally, following Prasad et al. (2023),
we further categorize error types for logically in-
correct steps—Inter-step Incorrect: When the step
cannot be logically inferred or contradicts previous
steps; Intra-step Incorrect: When there are internal
contradictions within the step; Both: When both
inter-step and intra-step errors are present.
Logical Relevance. A step is labeled as “Rele-
vant” if it contributes to answering the question;
otherwise, it is marked as “Irrelevant”.
Informativeness. A step is considered “Informa-
tive” if it introduces new information and does not
repeat or provide redundant details from previous
steps (Chen et al., 2023a; Prasad et al., 2023). Oth-
erwise, it is labeled as “Uninformative”.

2.3.3 Full MCoT Sequences

When evaluating an MCoT, we also assess its over-
all correctness. An MCoT is considered high-
quality (Good MCoT) if all description steps are
correct and relevant, and all reasoning steps are
correct, relevant, and informative (Li et al., 2023b;
Jacovi et al., 2024). If these conditions are not met,
it is classified as low-quality (Bad MCoT).

3 Dataset Annotation Process

In this section, we introduce the annotation pro-
cess for the MiCEval dataset, which encompasses:
type of step, correctness of step, and correctness
of MCoT. The complete data annotation process is
illustrated in Figure 3. Three annotation tasks are
performed sequentially, with each task building on
the results of the preceding one.

Stage 1: Type of Step. In this stage, annotators
will label the MCoT answers step-by-step accord-
ing to the definitions of step types provided in
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Figure 3: A complete flowchart of the MCoT annotation
process. We first determine the type of each step and
then annotate its correctness based on the type of step.
Once all steps in an MCoT answer are annotated, we
evaluate the correctness of the entire MCoT.

Sec. 2. Following this, the annotation proceeds
to the corresponding labeling tasks based on the
type of each step.

Stage 2: Correctness of Step. We annotate each
step from different perspectives based on the re-
sults of Stage 1. For description steps, we label
correctness and relevance. For reasoning steps, we
label logical correctness, relevance, and informa-
tiveness. For steps classified as both description
and reasoning, we annotate all aspects of each.

When the previous steps contain incorrect in-
formation, the annotators need to make additional
judgments about the current step. If the current
step logically follows or references the incorrect
information from the previous steps, it should also
be labeled as “Incorrect”. For more details, refer to
the annotation illustrated in Figure 9.

Stage 3: Correctness of MCoT. For MCoT, we
evaluate the correctness of the MCoT answer. An
MCoT answer is considered high-quality (Correct
MCoT answer) when every step in the reasoning
chain is a Correct Step. This means that each step,
according to its respective type, is annotated as
Correct, Relevant, or Informative, with no attribute
marked as erroneous based on the criteria defined
earlier. If any step contains an attribute that is
annotated with an error label, the MCoT answer is
deemed low-quality (Incorrect MCoT answer).
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4 Data Collection

In this section, we present a comprehensive expla-
nation of the construction process for the MiCEval
dataset. The full data collection process is pre-
sented in Figure 2, which consists of three stages:
question collection for the dataset, MCoT answer
collection, and human annotation.

4.1 Sampling and Generation

We randomly sampled 700 questions from 8 multi-
modal datasets. Two authors manually conducted
coarse-grained annotations based on the difficulty
of the questions and source datasets to get HARD
and NORMAL splits. We used four representative
MLLMs to generate MCoT answers. Ultimately,
we obtained 1,000 MCoT answers generated by the
MLLMs. Detailed descriptions are provided in the
Appendix A.2.

4.2 High-Quality Annotation Protocol

It is important to note that the requirement for fine-
grained and multi-task annotations necessitates
that annotators have relevant expertise. Therefore,
all annotators possess the necessary background
knowledge related to the annotation tasks.
Preliminary Training. To ensure high-quality
data, four of the authors annotated the entire
MCoTs (each CoT has three annotations). Previous
to the generation of the official annotation of the
MCoT answers in the dataset, all annotators under-
went preliminary training. We randomly selected
30 questions from the remaining 800 questions
not included in the dataset in Sec. A.2 and used
GPT-40 and InstructBLIP to generate a total of 60
MCoT answers. The annotators then completed
the annotation tasks on these 60 MCoT answers,
and based on the annotation results, the annotators
engaged in discussions with two additional authors,
to reach an internal consensus on some of the more
challenging cases.

Human Annotation. Each MCoT answer under-
went annotation based on the tasks outlined in
Sec. 3. We established a rigorous process to fil-
ter for valid data. If any annotation for a task on a
given step could not be determined through major-
ity voting (i.e., a 1:1:1 or 1:1 tie), the CoT was con-
sidered invalid. In the end, we obtained 903 valid
MCoTs. More details can be found in the App. B.2.
We computed Bennett, Alpert, and Goldstein’s
S inter-rater agreement for the MiCEval-HARD
and MiCEval-NORMAL, with scores of 0.888 and

Dataset(Eval) | Hard | Normal
Question 323 320
MCoT Answer 457 446
MCoT Step 1,745 1,144
Avg. step per MCoT 3.8 2.6
Description Step 899 852
Reasoning Step 769 288
Description Fully Correct Step 679 745
Logic Fully Correct Step 515 201
Fully Correct MCoT 185 307

Table 1: Statistics on MiCEval-NORMAL and HARD.

0.795, respectively. The S agreement for the de-
scription step and reasoning step annotations was
0.877 and 0.859, respectively.

4.3 Data Statistics

We provide the statistics of MiCEval-NORMAL and
MiCEval-HARD in Table 1. MiCEval-NORMAL
contains 1,144 MCoT steps and MiCEval-HARD
contains 1,745 MCoT steps for evaluation. We
observe significant differences between the two
splits in the total number of reasoning steps, the
average of MCoT steps per MCoT answer, and
the number of fully correct MCoT answer. These
differences reflect that our splits based on question
difficulty are meaningful. Further analysis of the
dataset can be found in the Appendix A.3.

5 THE MICEVAL FRAMEWORK

The MiCEval framework also introduces two eval-
uation metrics: one at the step-level and the other
at the MCoT-level. The dataset and metrics are
designed based on the correctness of the various
MCoT step types.

5.1 Evaluation of Step Correctness

We propose two methods for measuring step cor-
rectness in MCoT answers.

Description Step Correctness. Our goal is to in-
struct the MLLM to generate a correctness score
for a description step 7; using a prompt-based input
(Z,Q,RC;), where RC; = {r1,r2,..., 7;}. Based on
the definitions provided in Sec. 3, the following
metric is derived:

Sd_correch Sd_relevant = Mpmmpt (I, Q7 Rcz)

i
Correctness (D) = Sdﬁcorrect © Sdfrelevant
where  M,;omp: represents the prompt-based
MLLM, Sq_correct refers to the description correct-
ness score, and Sq_rejevans represents the description
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relevance score. ® indicates the geometric mean
operation.

Reasoning Step Correctness. Similarly, using
a prompt-based input (Z, Q, RC;), we guide the
MLLM for generating the correctness score for
the reasoning step r;. The corresponding metric is
defined as:

Sl_correct; Sl_relevanty Sinfo = Mprompt (I7 Q, Rcz)

i
CO”WCUWSSS%) = Sl_correct O] Sl_relevant O] Sinfo
where  Mpomp: represents the prompt-based
MLLM, S; correct denotes the logical correctness
score, 87 _relevan: Tefers to the logical relevance score,
and S;,1, captures the informativeness score.

5.2 Evaluation of MCoT Correctness

MCoT Correctness. We compute the overall score
for an MCoT answer by generating a score for each
step using the prompt-based MLLM. First, we need
to obtain the type of each step based on MLLMs:

Type(i) = Mprompt(I, Q7 Rcz)

Then, based on the type of each step, we calcu-
late its correctness score and the score of the entire
MCoT as follows:

(3)

Correctness

Correctness%) ,

Correctness®) — description step
reasoning step

n
Correctnessype = I I Correctness™
i=1

where Correcmess%) represents the correctness

score for the description step r; and Correctnessg)
represents the correctness score for the reasoning
step ;. The overall MCoT score is computed as
the geometric mean of all step correctness scores.

Given the limitations of current research on
MCoT step type classification, we also propose an-
other method for calculating correctness that is not
based on step type. This method involves calculat-
ing the description step correctness and reasoning
step correctness for each step, and then deriving
the overall score for the entire MCoT:

Correctness'V = Correcmess%) ®© Correcmess%)

n
Correctnessqy = H Correctness™

=1

LLaVA-1.6-Mistral-7B (HARD)
MiniCPM-V-2.6 (HARD)
GPT-40 (HARD)

1.00

LLaVA-1.6-Mistral-7B (NORMAL)
MiniCPM-V-2.6 (NORMAL)
GPT-40 (NORMAL)

1 2 3
Number of Shots

Figure 4: The relationship between the average accuracy
of three MLLMS across all Pairwise Comparison tasks
and the number of shots on two splits.

where Correctness%) represents the correctness

score for the step r; and Correctnessg) represents
the correctness score for the step r;, © denotes
the geometric mean operation. The overall MCoT
score is computed as the geometric mean of all step

correctness scores.

6 Experiments

In the proposed MiCEval framework, we con-
ducted MCoT verification and MCoT evaluation
experiments on existing MLLMs at both the step-
level and MCoT-level.

6.1 MLLM-as-a-Verifier

Pairwise comparison. In this experiment, we inte-
grate MLLM-as-a-verifier into the MiCEval frame-
work to validate fine-grained tasks. The labels gen-
erated by the MLLMs serve as predictions, which
are subsequently compared to human annotations
to assess accuracy. Our evaluation focuses on two
key aspects: the correlation between MLLM out-
puts and human annotations, and the effectiveness
of MLLMs as MCoT verifiers.

6.1.1 Experimental Setting

We assess the performance of seven mainstream
MLLMs as MCoT verifiers in both zero-shot and
few-shot settings. Details of the experimental set-
ting and metrics can be found in Appendix C.1.

6.1.2 Results

The results are presented in Tables 2 and 9. The
results of the few-shot preliminary experiments are
shown in Figure 4, while the results of the explo-
ration experiments for few-shot types and more
results can be found in Appendix C.3.

> Few-shot does not always outperform zero-shot.
On MiCEval-NORMAL, only LLaVA-1.6-Mistral-
7B demonstrated improvement, with a few-shot
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Model Description

Evaluation Setting ‘ Step Type

Relevance Correctness Error Types

Logic

. MCoT
Relevance Correctness Informativeness Error Types °

Avg.

LLaVA-1.6-Mistral-7B
MiniCPM-V-2.6
Llama-3.2-11B-Vision-Instruct
LLaVA-1.6-Yi-34B

GPT-40

Qwen-VL-Max
Gemini-1.5-Pro

0.653
0.121
0.137
0.348
0.672
0.433
0.868

0.456
0.693
0.806
0.575
0.768
0.853
0.838

0.203
0.702
0.028
0.704
0.631
0.630
0.674

Zero-Shot

0.175
0.248
0.309
0.443
0.545
0.455
0.398 0.926

0.901 0.922
0.918 0.837

0.379
0.564
0.703
0.508
0.726
0.580
0.670

LLaVA-1.6-Mistral-7B
MiniCPM-V-2.6
Llama-3.2-11B-Vision-Instruct
LLaVA-1.6-Yi-34B

GPT-40

Qwen-VL-Max
Gemini-1.5-Pro

0.452
0.104
0.044
0.703
0.871
0.359

0.310
0.413
0.257
0.206
0.455
0.262

0.255
0.719
0.601

Few-Shot 0.638

0.371
0.401
0.004
0.488
0.687
0.370

0.584
0.547
0.376
0.716
0.742
0.689

Table 2: The overall performance on Pairwise Comparison of different MLLMs in MiCEval-HARD. Due to limited
funding, Gemini-1.5-Pro was not evaluated in the few-shot setting.

average accuracy of 0.657 compared to 0.575 in
the zero-shot setting. The other MLLMs, how-
ever, showed performance declines, with Llama-
3.2-11B-Vision-Instruct experiencing the most sig-
nificant drop. A detailed analysis of Llama-3.2’s
performance is provided in Appendix C.4. On
MiCEval-HARD, few-shot performance improved
for LLaVA-1.6-7B, LLaVA-1.6-Yi1-34B, and GPT-
40, while MiniCPM-V-2.6 and Gemini-1.5-Pro ex-
perienced declines.

> MLLMs still exhibit shortcomings in handling
complex reasoning tasks. In comparison to the
logical relevance and informativeness tasks on
MiCEval-HARD, the average accuracy of most
MLLMs across other tasks, in both zero-shot and
few-shot settings, remains below 0.7, with a few no-
table exceptions: MiniCPM achieved 0.702 (zero-
shot) and 0.719 (few-shot) in description correct-
ness, while GPT-40 scored 0.726 (zero-shot) and
0.742 (few-shot) on the MCoT task. Most MLLMs
demonstrated a low correlation with human judg-
ments in description correctness and error type,
indicating substantial room for improvement in the
visual modality of current MLLMs.

> The number of shots in few-shot settings does not
always correlate with better model performance.
As the number of shots increased, the performance
of LLaVA-1.6-7B declined from 0.500 to 0.393
on MiCEval-HARD and from 0.394 to 0.303 on
MiCEval-NORMAL. The other two MLLMs ex-
hibited minimal changes in performance. Con-
sequently, we selected 1-shot for all subsequent
multimodal few-shot experiments.

6.2 MLLM-as-a-Evaluator

In this experiment, we have two distinct evalua-
tion tasks: scoring evaluation and choice ranking
(Zheng et al., 2023; Chen et al., 2024a).

Scoring Evaluation. In this experiment, we utilize

MLLMs as MiCEval evaluators to score the steps
of MCoT answers on a scale from 0 to 10. Human
annotations are mapped to 0 (“Incorrect”), 1 (“Cor-
rect”), or 0.5 (only for the “Partially Correct” label
in the description correctness task). We then com-
pute the correlation between human annotations
and the scores generated by the MiCEval evalua-
tors to assess the effectiveness of MiCEval metrics
in detecting the quality of MCoT responses. The
prompt templates used in this experiment can be
found in App. D.2.

Choice Ranking. Using the common split adopted
by four MLLMs in Sec. A.2, we constructed a high-
quality MCoT selection dataset consisting of 70
questions and 257 MCoT answers. Details about
Choice Ranking are presented in the Appendix.

6.2.1 Experimental Setting

We conduct correlation evaluations based on two
splits of MiCEval: MiCEval-HARD, MiCEval-
NORMAL. Details of the experimental setting and
metrics can be found in Appendix D.1.

6.2.2 Results

Table 3 presents the performance of various meth-
ods on the scoring evaluation. Results for choice
ranking across different methods are shown in Ta-
ble 4. For additional analysis, please refer to Ap-
pendix D.3.

> Existing metrics are not well-suited for evaluat-
ing MCoT answers. MLLM-based methods show
a stronger correlation with human judgment in
MCoT answers compared to existing approaches.
Among current metrics, LLM-Score achieves the
highest performance on the entire MiCEval dataset,
with a Somer’s-D score of 0.162. In general, the
MLLM-based methods outperform LLM-Score,
with the exception of LLaVA-1.6-Mistral-7B.

> MiCEval brings the MLLM evaluator closer
to human preferences. The evaluation metric
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Metric | Normal Hard  MiCEval
CLIP 0.079 0.019 0.060
BLIP2-ITM 0.088 -0.065 0.031
BLIP2-ITC 0.072 -0.006 0.075
ReCEval -0.006 0.015 0.040
LLM-Score 0.078 0.210 0.162
MiniCPM-V-2.6 (1) 0.154 0.123 0.130
LLaVA-1.6-Mistral-7B (1) 0.109 -0.024 0.080
Llama-3.2-11B-Vision-Instruct (1) 0.090 0.218 0.176
GPT-40 (1) 0.154 0.256 0.208
MiniCPM-V-2.6 (2) 0.112 0.123 0.169
LLaVA-1.6-Mistral-7B (2) 0.083 0.178 0.140
Llama-3.2-11B-Vision-Instruct (2) 0.031 0.090 0.075
GPT-40 (2) 0.178 0.282 0.257
MiniCPM-V-2.6 (3) 0.264 0.188 0.273
LLaVA-1.6-Mistral-7B (3) 0.081 0.133 0.121
Llama-3.2-11B-Vision-Instruct (3) 0.157 0.159 0.186
GPT-40 (3) 0.229 0.255 0.265
MiniCPM-V-2.6 (4) 0.270 0.191 0.277
LLaVA-1.6-Mistral-7B (4) 0.083 0.141 0.129
Llama-3.2-11B-Vision-Instruct (4) 0.156 0.172 0.194
GPT-40 (4) 0.245 0.272 0.284

Table 3: Somer’s-D scores of different evaluation met-
rics on two splits of MiCEval. (1) A holistic evalu-
ation of the entire MCoT without the MiCEval; (2)
“Step-by-Step” evaluation without MiCEval; (3) “Step-
by-Step” evaluation with Correctnesssyp.-based MiCE-
val; (4) “Step-by-Step” evaluation with Correctnessq;-
based MiCEval.

based on the description and reasoning correct-
ness of MiCEval shows better performance and
more closely aligns with human judgments com-
pared to evaluations without MiCEval . We
observe that MiCEval-based methods, specifi-
cally Correctnessyy,. and Correctnesssl)l using
MiniCPM-V-2.6, Llama-3.2-11B-Vision-Instruct,
and GPT-40, exhibit a stronger correlation in
MCoT answer evaluation than the other two
MLLM-based approaches. Notably, GPT-40 with
Correctnessgl)l achieved the highest Somer’s-D
score of 0.284 across the entire MiCEval dataset.

> MiCEval helps filtering out high-quality MCoTs.
In the choice ranking task, CLIP achieved the
best result with an accuracy of 0.700. The perfor-
mance of the three MLLM-based methods varied:
MiniCPM (CoT, w/o MiCEval) reached an accu-
racy of only 0.686 and all LLaVA-based evaluation
metrics were below 0.700. However, the remaining
MLLM-based methods outperformed CLIP. Com-
pared to the other two approaches (without MiCE-
val), MiniCPM, Llama-3.2, and GPT-40 performed
better using the MiCEval metrics evaluation, with
GPT-40 and MiniCPM achieving the highest result.

6.3 Analysis

Instruction-following ability of MLLLMs. Despite
our efforts to guide the model’s predictions within
the defined label categories by experimenting with

Model | Ace

CLIP 0.700
BLIP2-ITM 0.657
BLIP2-ITC 0.657
ReCEval 0.600
LLM-Score 0.614
MiniCPM-V-2.6 (1) 0.686
LLaVA-1.6-Mistral-7B (1) 0.686

Llama-3.2-11B-Vision-Instruct (1) 0.729

GPT-4o (1) 0.757
MiniCPM-V-2.6 (2) 0.700
LLaVA-1.6-Mistral-7B (2) 0.571
Llama-3.2-11B-Vision-Instruct (2) 0.757
GPT-40 (2) 0.771
MiniCPM-V-2.6 (3) 0.800
LLaVA-1.6-Mistral-7B (3) 0.600

Llama-3.2-11B-Vision-Instruct (3) 0.743

GPT-40 (3) 0.786
MiniCPM-V-2.6 (4) 0.814
LLaVA-1.6-Mistral-7B (4) 0.600

Llama-3.2-11B-Vision-Instruct (4) 0.757
GPT-40 (4)

Table 4: Accuracy of different evaluation metrics on
Choice Ranking. Settings are provided in Table 3.

Zero Shot Few Shot

Model

NORMAL HARD NORMAL HARD
LLaVA-1.6-Mistral-7B 1.29% 3.94% 2.46% 8.59%
MiniCPM-V-2.6 0.00% 1.08% 0.53% 3.49%
LLaVA-1.6-Yi-34B 0.18% 0.32% 0.00% 0.87%
GPT-40 0.74% 1.40% 0.64% 0.91%
Qwen-VL-Max 14.27% 18.61% 0.96% 5.40%
Llama-3.2-11B-Vision-Instruct 7.48% 7.12% 3.08% 2.87%
Gemini-1.5-Pro 0.25% 0.19% -

Table 5: Invalid outputs proportions of each MLLMs
in zero shot and few shot evaluations under all tasks of
NORMAL and HARD splits.

various instructions, prompt templates, and multi-
ple iterations, a small percentage of invalid outputs
persisted due to the current limitations of MLLMs
in following instructions. We conducted a sta-
tistical analysis of the invalid predictions across
all models in the Pairwise Comparison experi-
ments. The overall proportion of invalid outputs
was 2.93%, with the zero-shot evaluation yielding
3.48% invalid outputs, compared to 2.34% in the
few-shot evaluation. This suggests that few-shot
evaluation improves the model’s ability to follow
instructions. The distribution of invalid output pro-
portions for each model across different settings
and datasets is shown in Table 5. For additional
analysis, please refer to Appendix C.4 and D.4.

7 Related Work

Reasoning Chain Construction and Evaluations.
Chain of Thought (CoT) is an innovative method
for solving reasoning tasks using large language
models (LLMs) (Wei et al., 2022). Kojima et al.
(2022) showed that adding a simple prompt, such
as “Let’s think step by step”, significantly improves
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LLMs performance in zero-shot settings. Jung
et al. (2022) demonstrated that even erroneous rea-
soning chains can lead to correct final predictions,
which has increasingly shifted the focus towards
verifying the correctness of the entire reasoning
chain (Welleck et al., 2022; Chen et al., 2024b). To
address the challenge of automatically generating
good quality COTs, one idea is to connect explicit
knowledge, such as knowledge graphs (KG) (Pan
et al., 2017b,a), and parametric knowledge from
LLMs (Pan et al., 2023). Wu et al. (2024) pro-
posed to generate COTs from relevant knowledge
graphs (Huang et al., 2024). Wang et al. (2024c)
proposed to use knowledge graph patterns, such as
thouse widely used for query answering over KGs,
to generate effective COT, without having to rely
on the content of KGs. Golovneva et al. (2022)
introduced a comprehensive set of CoT evaluation
metrics, validating CoT’s logical correctness, gram-
mar, and informativeness. Prasad et al. (2023) eval-
uates the informativeness and logical correctness
of CoTs, while Jacovi et al. (2024) focuses on ver-
ifying both attribution and logical correctness of
CoT answers.

Broadly speaking, reasoning is also related to
text entailments (Pekar, 2006; Saadat-Yazdi et al.,
2023), entailment graphs (Hosseini et al., 2018;
Li et al., 2024; Zhou et al., 2024), NL2SQL (Vou-
giouklis et al., 2023; Shen et al., 2024; Zheng et al.,
2024), as well as planning (Wang et al., 2024b;
Vyas et al., 2025) and API (Wang et al., 2024a).
Evaluation based on MLLMs. Recent works
leverage LLM’s instruction-following capabilities
as an evaluator (Fu et al., 2024; Zheng et al.,
2023; Liu et al., 2023b). Huang et al. (2023)
used MLLMs as evaluators to assess the degree
of alignment between images and text. Chen et al.
(2024a) explored the correlation between MLLM
judgments as evaluators and human assessments.

8 Conclusion

In this paper, we introduce MiCEval, a novel au-
tomated evaluation framework designed to assess
the correctness of MCoT and evaluate the capabili-
ties of MLLMs in judging the quality of different
reasoning steps. We create a multilevel human-
annotated MCoT dataset and conduct three distinct
experiments to evaluate the alignment between
MLLMs’ judgments and human agreement: Pair-
wise Comparison, Scoring Evaluation, and Choice
Ranking. The experimental results demonstrate

that MiCEval metrics align more closely with hu-
man preferences. Additionally, current MLLMs
show notable weaknesses in both visual and lan-
guage modalities, especially in handling complex
reasoning tasks, highlighting an area in need of
further improvement.
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Limitation

Gemini-1.5-Pro under few-shot evaluation.
Compared to zero-shot evaluation, the token con-
sumption in few-shot evaluation is approximately
four times higher. In the zero-shot evaluation, the
cost of using Gemini-1.5-Pro is twenty times that of
GPT-40. Due to budget constraints, we were unable
to conduct a few-shot evaluation for Gemini-1.5-
Pro.

Baseline in Pairwise Comparison. Due to the
limitations of the Pairwise Comparison outputs, it
is challenging to map the existing method’s outputs
to 0 and 1 without setting a threshold. However,
introducing a threshold could significantly affect
the accuracy of the evaluation. Additionally, given
the wide range of tasks in Pairwise Comparison,
the current method is unable to effectively handle
all tasks. Therefore, we did not test other baselines
on Pairwise Comparison.

Step type classification. In the current zero-shot
evaluation, the two best performing MLLMs in
the step type task are GPT-40 and Gemini-1.5-Pro.
Therefore, in our experiments, we used Gemini-
1.5-Pro as the classifier for step type. From the
experimental results, it is evident that the MLLM’s
classification of step type affects the MiCEval per-
formance based on the Correctnessyyy.. This is an
issue we need to address in future work.

The Instruction-following abilities of current
MLLMs. The instruction-following abilities of cur-
rent MLLMs still have limitations and are not yet
able to handle complex instruction tasks effectively.
Despite our best efforts to improve the performance
of each model in the evaluation, Qwen-VL-Max
and Llama-3.2-11B-Vision-Instruct produced more
invalid outputs compared to other models.
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A MiCEval Dataset

A.1 Source Datasets

Detailed information of the all source datasets for
MiCEval are provided in Table 13. The distribution
of source datasets are shown in Figure 6, and the
distribution of MCoT-generators is also provided
in Figure 5. Table 14 and Table 15 shows randomly
sampled questions from both MiCEval-HARD and
MiCEval-NORMAL.

Distribution in NORMAL Distribution in HARD

/ 22.9%

/ 25.4% A\,

p /\\ 23.0% /

24.2%
26.0% 27.4%
25.6% \\ /  25.6%
LN \
GPT-40 LLaVa-1.6-Mistral-7B
Qwen-VL-Max InstructBLIP-Vicuna-7B

Figure 5: The MCoT generators distribution of each
splits.

A.2 Supplement to Data Collection

Split Based on Question Difficulty. 1,500 open-
ended questions were randomly sampled from 8
datasets: Visual7W dataset (Zhu et al., 2016), VSR
dataset (Liu et al., 2023a), ScienceQA dataset (Lu
et al., 2022), VQAv2 dataset (Goyal et al., 2017),
Vizwiz dataset (Gurari et al., 2018), MM VP dataset
(Tong et al., 2024), MM-Vet dataset (Yu et al.,
2024), and MMstar dataset (Chen et al., 2024c).
Two authors manually filtered out duplicated ques-
tions and conducted coarse-grained annotations
based on the difficulty of the questions and source
datasets. As a result, the dataset was divided into
two splits, HARD and NORMAL, with 350 ques-
tions in each split.

MLLMs as MCoT Answer Generators. We used
four representative MLLMs to generate MCoT an-
swers: Qwen-VL-Max (Bai et al., 2023), GPT-40
(OpenAl et al., 2023), LLaVA-1.6-Mistral-7B (Liu
et al., 2024), and InstructBLIP-Vicuna-7B (Dai
et al., 2023). By selecting models with varying
performance levels, we aimed to capture a diverse
range of CoTs. Following Zhang et al. (2024), we
manually crafted several MCoT answer generation
prompts tailored to each dataset. Inspired by Jacovi
et al. (2024), we also randomly divided each split
into five parts, with four MLLMs answering one

Description Step Reasoning Step  Both Step

Complexity Error Types (N=1,751) (N=1,057) (N=81)

Entity False 7.2% - 2.5%
Attribute False 10.5% - 9.9%
Spatial Relationship False 1.7% - 0.0%
Non-spatial Relationship False 0.9% - 0.0%
Inter-step Incorrect 29.6% 4.9%
Intra-step Incorrect 2.5% 13.6%

Image Irrelevant

Logic Irrelevant 4.9% 4.4% 12.3%

8.7% 4.9%

‘ 1.6% 0.0%
Uninformative ‘

Table 6: The percentage of complexity error types on
different MCoT steps.

part independently, and one part being answered
by each MLLMs. Our aim was to enhance the
dataset’s flexibility and its potential for analysis
and evaluation across a wide range of MLLMs.
Ultimately, we obtained 1,000 MCoT answers gen-
erated by the MLLMs.

A.3 Dataset Analysis

Visual and Language Modalities of MLLMs. In
Table 6, we summarize the proportions of fine-
grained error categories at the step level. For de-
scription steps, 7.2% are classified as entity false,
while 10.5% are labeled as attribute false. This
suggests that current MLLMs still have room for
improvement in accurately extracting information
from the visual modality, particularly when detect-
ing entities and their attributes. For reasoning steps,
29.6% contain inter-step incorrect errors, indicating
that MLLMs continue to struggle with reasoning,
especially in maintaining logical consistency be-
tween steps. Although the number of both steps is
relatively small compared to description and rea-
soning steps, the proportion of intra-step incorrect
steps reaches 13.6%, suggesting that MLLMs are
more prone to internal logical errors when generat-
ing mixed steps that combine both visual informa-
tion and logical reasoning, compared to the other
two types of steps.

Single-step MCoT Answers. In Figure 7a, we
present the relationship between MCoT correct-
ness and the number of steps in an MCoT. It is
observed that MLLM achieves the highest quality
when generating single-step MCoTs, with 81.2%
being classified as High-Quality MCoTs. However,
as the number of steps increases, the proportion of
High-Quality MCoTs gradually declines, eventu-
ally to 44.8%.

High-quality MCoT Answers & Final Predic-
tions. Inspired by Jung et al. (2022), we aim to an-
alyze the relationship between MCoT correctness
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Figure 7: (a) The Relationship between MCoT answers
Correctness and the number of steps. (b) The Relation-
ship between Prediction Correctness and the number of
steps.

‘ Correct Prediction ‘ Incorrect Prediction

90.4% 9.6%
42.8% 57.2%

High-quality MCoT answer
Low-quality MCoT answer

Table 7: The correlation between the correctness of
MCoT answer and Prediction. High-quality MCoT an-
swer presents fully correct.

and the final prediction of the MCoT, specifically
its answer to the question. To this end, we con-
ducted additional annotations for the MCoT final
predictions. For detailed information about this
annotation task and inter-rater agreement, please
refer to the App. B.3. Based on our annotations of
MCoT answer correctness and final prediction cor-
rectness, we analyzed their relationship. As shown
in Table 7, our results align with the findings of
Jung et al. (2022), where high-quality MCoT an-
swers lead to a final prediction accuracy of 90.4%,
while 42.8% of MCoTs with errors still produce
correct final predictions.

Errors & Final Prediction. We calculated the
proportions of fine-grained error categories when
the final prediction is incorrect. Table 8 shows
that Inter-step Incorrect, Attribute False, and En-

Complexity Category Correct Prediction Incorrect Prediction

Entity False 3.86% 26.60%
Attribute False 8.70% 36.50%
Spatial Relationship False 0.97% 7.45%
Non-spatial Relationship False 0.81% 2.48%
Inter-step Incorrect 7.89% 60.30%
Intra-step Incorrect 1.13% 9.57%
Image Irrelevant 0.64% 6.74%
Logic Irrelevant 4.51% 11.70%
Uninformative | 10.60% 9.57%

Table 8: The percentage of complexity error types on
correct and incorrect predictions.

tity False are more likely to lead to incorrect final
predictions in MCoT answer. In particular, the pro-
portion of wrong predictions for MCoT answers
with Inter-step Incorrect reaches as high as 60.3%.

Number of Steps & Final Prediction. Figure 7b
illustrates the relationship between the number of
MCoT steps and the accuracy of the final predic-
tions. We observe that MLLMs achieve their high-
est accuracy, 84.1%, when generating single-step
MCoT answers. As the number of steps increases,
the accuracy declines gradually. However, when
the number of steps reaches four or more, the ac-
curacy of the final predictions begins to improve.
We attribute this improvement to the positive im-
pact of more detailed and comprehensive reasoning,
which eventually outweighs the negative effects of
accumulating errors from additional steps.

MLLM generators. Figure 8 illustrates the accu-
racy of MCoT answers and Prediction generated
by each MLLM. From these statistics, GPT-40 out-
perform the other three MLLMs in generating the
correct MCoT answers.
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Figure 8: MCoT answer Correctness and Prediction
Correctness across different MCoT generators.

B Annotation

B.1 Detailed Definitions on Annotation Tasks

We provide the labels for each annotation task
along with their detailed reference definitions as

follows:

1. Step Type:

* Description: A step is entailed from the
image.

* Reasoning: A step is entailed from pre-
vious steps.

* Both: A step is entailed from both the
image and previous steps.

2. Description Correctness:

 Fully correct: A step without any incor-
rect information.

« Partially correct: A step contains some
incorrect information, but there is still
some correct information as well.

* Unsupported: All information is incor-
rect.

3. Description Relevance:

* Image relevant: A step is relevant to the
image.

* Logic relevant: A step is relevant to an-
swering the question.

* Both: A step is relevant to both the im-
age and answering the question.

* None: A step is irrelevant to both the
image and answering the question.

4. Logic Correctness:

* Correct: A step can be logically inferred
from the previous steps and without any
logical errors or conflicts between its in-
ternal clauses.
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* Incorrect: A step cannot be logically
inferred from the previous steps or con-
tains logical errors or conflicts between
its internal clauses.

5. Logic Relevance:

* Relevant: A step is relevant to answer-
ing the question.

* Irrelevant: A step is not relevant to an-
swering the question.

6. Informativeness:

* Uninformative: A step is repetitive or
redundant.

* Informative: A step without repetition
or redundancy.

7. Description Error Types:

 Entity false: Some entities mentioned in
this step do not exist in the image.

* Attribute false: The attributes of an en-
tity are incorrectly described, including
color, shape, texture, count, state, text
recognition.

 Spatial Relationship false: The spatial
relationship between two objects is incor-
rectly described.

* Non-Spatial Relationship false: The
active, passive, or action relationship
between two objects is incorrectly de-
scribed.

8. Logic Error Type:

* Inter-step Incorrect: A step can not
be logically inferred from the previous
steps.

* Intra-step Incorrect: A step contains
logical errors or conflicts between its in-
ternal clauses.

* Both: A step can not be logically in-
ferred from the previous steps and con-
tains logical errors or conflicts between
its internal clauses.

9. MCoT Answer:

* Correct: The MCoT answer is fully cor-
rect, free of any descriptive or logical
errors, fully relevant to both the image
and the answer, and contains no repeti-
tion or redundancy.



* Incorrect: The MCoT answer is either
irrelevant to the image or the answer, con-
tains descriptive or logically incorrect, or
includes repetition or redundancy.

B.2 Valid Data Filtering Process

In our valid data filtering process, we filter based
on the results of all annotation tasks in Section C.1,
defining invalid steps and invalid MCoTs at both
the step-level and MCoT-level, respectively.

Invalid Step

* If the annotation result of a step’s step type is
3:0, we further assess the annotation results
of other tasks. If there is one task with an
annotation result of 1:1:1, this step is deemed
an invalid step; otherwise, it is considered a
valid step.

 Ifastep’s step type is 2:1, meaning each anno-
tation task for step correctness has only two
valid annotation results, and if one task has a
result of 1:1, then this step is classified as an
invalid step.

Invalid MCoT

* If an MCoT answer contains one invalid step,
the MCoT is considered invalid data.

* If half or more of the steps in an MCoT answer
have a step type annotation result of 2:1, this
MCoT is also deemed invalid data.

After filtering, our MiCEval dataset contains 903
valid MCoT answers and 2,889 valid MCoT steps.
Figure 9 provides a detailed label of the MiCEval
annotated data and Figures 12 to 14 show screen-
shots of our annotation tool.

B.3 Additional Task: Correctness of
Prediction

During the analysis process, we observed that
despite providing a complete reasoning chain in
the prompt, some MCoT answers generated by
MLLMs were incomplete, with the final predic-
tion missing. Additionally, since the questions are
open-ended and do not have a single correct answer,
we introduced an extra annotation step: We anno-
tate the final prediction of the MCoT answer (the
last step of the reasoning chain) based on whether
it correctly answered the question. If the prediction
is correct, it will be labeled as Correct; otherwise,
it will be labeled as Incorrect. The Bennett, Alpert,
and Goldstein’s S inter-rater agreement of this ad-
ditional task is 0.827.

C Verifier Experiment

C.1 Detail Experimental Setting and Metric

The MLLMs evaluated include open-source
MLLMs such as LLaVA-1.6-Mistral-7B, LLaVA-
1.6-Yi-34B (Liu et al., 2024), MiniCPM-V-2.6 (Yao
et al., 2024), and Llama-3.2-11B-Vision-Instruct
(Dubey et al., 2024), as well as API-accessible
models like Qwen-VL-Max, GPT-40, and Gemini-
1.5-Pro (Team et al., 2024). For each task, we
conducted three trials and reported the average per-
formance across the runs. In the few-shot evalu-
ation, we designed nine different 4-shot prompts
for all tasks, ensuring each set was label-balanced.
These demonstrations were randomly drawn from
the source datasets.

For the few-shot evaluation, we conducted pre-
liminary experiments using a subset of models,
specifically LLaVA-1.6-Mistral-7B, MiniCPM- V-
2.6, and GPT-40, representing both open-source
and API-accessible MLLMs. We tested these mod-
els with varying shot numbers (1-4) and selected
the best-performing configuration for the full few-
shot evaluation. Inspired by Chen et al. (2024d),
we further investigated the performance of these
MLLMs across five tasks involving image inputs,
examining both multimodal and textual few-shot
types.

Given the limitations in MLLMs’ instruction-
following capabilities, a small percentage of their
predictions fell outside the predefined label set. As
a result, we use accuracy as the evaluation met-
ric, treating any predictions that do not match the
defined labels as incorrect.

C.2 Prompt Template

In addition to following the prompt templates used
in Jacovi et al. (2024)’s work, we also experi-
mented with various prompt templates to identify
one that optimally enhances the performance of
each MLLM. The specific prompt templates are as
follows:
Step Type Task

Image: [image]

Question: [question]

Rationale: [rationale]

Step: [current step]

Step Type: {Description, Reasoning, Both}

Description Correctness Task
Image: [image]
Step: [description step]
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Question: What will happen next? Step Type Annotation

Step 1: The person in the image appears to E_— Both Relevant, Fully Correct

be slipping on a wet surface. Relevant, Correct, Informative

Step 2: They are in mid-air, indicating a loss Both Both Relevant, Partially Correct (Attribute False)
of balance. Relevant, Correct, Informative

Step 3: Given the trajectory and the wet

conditions, it is likely that the person will Reasoning Relevant, Correct, Informative

fall to the ground next.

Step 4: So, the person will fall next. Reasoning Relevant, Correct, Informative

Figure 9: An detailed example of annotation: The Description Correctness of Step 2 is labeled as Partially Correct.
However, the subsequent Step 3 and Step 4 do not rely on the incorrect information from Step 2 for their reasoning.
Since the logic in these two steps is correct, their Logic Correctness is labeled as Correct.

Output:
Unsupported}

{Fully Correct, Partially Correct,

Description Relevance Task

Image: [image]

Question: [question]

Rationale: [rationale]

Step: [description step]

Output: {Both, Image Relevant, Logic
Relevant, None}

Description Error Types Task

Image: [image]

Step: [incorrect description step]

Output: {Entity False, Attribute False, Spatial
Relationship False, Non-spatial Relationship
False}

Logic Correctness
Question: [question]
Premise: [previous steps]
Hypothesis: [reasoning step]
Output: {Correct, Incorrect}

Logic Relevance Task
Question: [question]
Rationale: [rationale]
Step: [reasoning step]
Output: {Relevant, Irrelevant}

Logic Error Types Task
Premise: [previous steps]
Hypothesis: [incorrect reasoning step]
Output:  {Inter-step Incorrect, Intra-step
Incorrect, Both}

Informativeness Task

Previous: [previous steps]
Step: [incorrect reasoning step]
Output: {Informative, Uninformative }

MCoT Correctness Task

Image: [image]

Question: [question]

Rationale: [rationale]

Is this a good rationale or not? Output: {Yes,
No}

C.3 Detailed Results

Table 9 presents the results in MiCEval-NORMAL.
The results of the exploration experiments for few-
shot types are illustrated in Figure 10. The F1
metrics for each class on some important tasks
under two different evaluation settings, as shown
in Table 10 and Table 11.

> The reasoning capabilities of the MCoT veri-
fier still need improvement. The MCoT responses
in MiCEval-HARD involve more reasoning steps
and are generally more complex compared to those
in MiCEval-NORMAL. MLLM performance on
MiCEval-NORMAL consistently exceeds that on
MiCEval-HARD, suggesting that current MLLMs
align more closely with human judgments on sim-
pler reasoning tasks. This highlights their limita-
tions in effectively validating MCoTs that require
complex reasoning.

> Good performance in textual few-shot evaluation
can be achieved. GPT-40 and MiniCPM showed
similar performance when handling multimodal
demonstrations and textual demonstrations. In con-
trast, LLaVA-1.6-Mistral-7B exhibited nearly 20%
improvement of accuracy in the textual few-shot
evaluation compared to the multimodal few-shot
evaluation.
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PP < Description Logic

Evaluation Setting Model ‘ Step Type Relevance Correctness Error Types | Relevance Correctness Informativeness Error Types MCoT ‘ Ave.
LLaVA-1.6-Mistral-7B 0.719 0.484 0.144 0.260 0.866 0.541 0.860 0.729 0.574 | 0.575
MiniCPM-V-2.6 0.184 0.731 0.782 0.480 0.950 0.774 0.789 0.931 0.756 | 0.709
Llama-3.2-11B-Vision-Instruct 0.380 0.757 0.137 0.453 0.842 0.580 0.345 0.861 0.632 | 0.554
Zero-Shot LLaVA-1.6-Yi-34B 0.580 0.512 0.804 0.560 0.962 0.808 0.849 0.812 0.729 | 0.735
GPT-40 0.767 0.763 0.748 0.650 0.938 0.753 0.568 0.812 0.765 | 0.752
Qwen-VL-Max 0.420 0.910 0.714 0.580 0.952 0.815 0.805 0.271 0.740 | 0.690
Gemini-1.5-Pro 0.838 0.921 0.778 0.490 0.935 0.671 0.291 0.979 0.646 | 0.728
LLaVA-1.6-Mistral-7B 0.705 0.313 0.374 0.423 0914 0.801 0.712 0.979 0.686 | 0.656
MiniCPM-V-2.6 0.277 0.428 0.795 0.607 0.879 0.807 0.717 0.930 0.724 | 0.685
Llama-3.2-11B-Vision-Instruct 0.005 0.223 0.716 0.010 0.805 0.760 0.130 0.271 0.251 | 0.352
Few-Shot LLaVA-1.6-Yi-34B 0.744 0.164 0.752 0.590 0.955 0.805 0.866 0.938 0.735 | 0.728
GPT-40 0.856 0.530 0.739 0.730 0.908 0.726 0.623 0.773 0.785 | 0.741
Qwen-VL-Max 0.679 0.437 0.725 0.530 0.921 0.808 0.654 0.521 0.704 | 0.664

Gemini-1.5-Pro - - - - - - - - - -

Table 9: The overall performance on Pairwise Comparison of different MLLMs in MiCEval-Normal.

Model Step Type Description Relevance | Description Correct Logic Relevance Logic Correct Informativeness
Description Reasoning Both | Both Others Correct Incorrect | Relevant Irrelevant | Correct Incorrect | Infor... Uninfo...
Zero-shot
LLaVA-1.6-Mistral-7B 0.727 0.661 0.028 | 0.649 0.010 0.211 0.170 0.946 0.354 0.462 0.510 0.959 0.000
MiniCPM-V-2.6 0.075 0.200 0.077 | 0.826 0.110 0.839 0.340 0.959 0.289 0.775 0.353 0.912 0.028
LLaVA-1.6-Yi-34B 0.641 0.181 0.086 | 0.716 0.110 0.884 0.180 0.974 0.358 0.791 0.417 0.956 0.167
GPT-40 0.849 0.574 0.048 | 0.879 0.100 0.851 0.140 0.947 0.388 0.741 0.455 0.834 0.297
Qwen-VL-Max 0.589 0.540 0.075 | 0.938 0.050 0.814 0.240 0.964 0.396 0.809 0.226 0.952 0.255
Gemini-1.5-Pro 0.895 0.914 0.165 | 0.912 0.240 0.860 0.220 0.960 0.427 0.665 0.451 0.442 0.160
Llama-3.2-11B-Vision-Instruct 0.163 0.216 0.095 | 0.899 0.020 0.347 0.040 0918 0.213 0.567 0.504 0.495 0.174
Few-shot
LLaVA-1.6-Mistral-7B 0.349 0.625 0.035 | 0.483 0.060 0.435 0.090 0.965 0.364 0.790 0.389 0.894 0.168
MiniCPM-V-2.6 0.133 0.124 0.075 | 0.592 0.130 0.848 0.370 0.926 0.300 0.790 0.297 0.865 0.162
LLaVA-1.6-Yi-34B 0.792 0.769 0.128 | 0.297 0.080 0.851 0.100 0.968 0.422 0.788 0.260 0.962 0.031
GPT-40 0.908 0.897 0.188 | 0.625 0.080 0.843 0.190 0.940 0.410 0.757 0.493 0.871 0.325
Qwen-VL-Max 0.571 0.257 0.064 | 0.403 0.050 0.843 0.060 0.959 0.429 0.869 0.224 0.848 0.293
Llama-3.2-11B-Vision-Instruct 0.000 0.000 0.085 | 0.420 0.010 0.772 0.070 0.769 0.167 0.757 0.486 0.000 0.128

Table 10: Per-label F1 metrics of each task under zero-shot and few-shot evaluations on MiCEval-HARD.

C.4 Additional Analysis

Llama under Few-shot Evaluation. We observed
that Llama-3.2-11B-Vision-Instruct performed sig-
nificantly worse in few-shot evaluation compared
to zero-shot evaluation. Therefore, we conducted a
statistical analysis of the outputs from Llama-3.2
on several tasks where its performance was partic-
ularly poor in the few-shot evaluation. We found
that the proportion of outputs labeled as “Both” for
the step type was 99.9%. Additionally, in terms
of informativeness, all outputs of Llama-3.2 were
“Uninformative”. In the Description Error Types
task, 74.0% of its outputs were invalid, meaning
they fell outside the defined label range. Over-
all, Llama-3.2 exhibited a decline in performance
across every task in the few-shot evaluation, which
may be related to its training process, suggesting
that Llama-3.2 might lack multi-round and multi-
image training.

Description Relevance in Pairwise Comparison.
We observed that on both MiCEval-HARD and
MiCEval-NORMAL, all MLLMs performed worse
in description relevance during few-shot evalua-
tion compared to zero-shot evaluation. We ana-
lyzed each model’s accuracy across the labels in

the description relevance task, with results shown
in Tables 10 and 11. Our analysis revealed that the
prediction distribution of each model shifted in dif-
ferent ways during few-shot evaluation. We believe
this performance drop may be due to the larger
number of label classes in description relevance
compared to other tasks, as well as the generally
weaker in-context learning abilities of MLLMs for
this task.

D Evaluator Experiment

D.1 Detail Experimental Setting and Metrics

We selected image-text matching metrics such as
CLIP (Hessel et al., 2021), BLIP2-ITM, BLIP2-
ITC (Li et al., 2023a), and LLM-Score (Chen et al.,
2024e), along with the reasoning chain evaluation
metric ReCEval (Prasad et al., 2023), as baselines.
For each metric, we compute the scores correspond-
ing to each step in the MCoT answer.

For the MiCEval evaluators, we selected LLaVA-
1.6-Mistral-7B, MiniCPM-V-2.6, Llama-3.2-11B-
Vision-Instruct, and GPT-40 as foundational
MLLMs. These MLLMs assess all steps in the
MCoT answers based on both the MiCEval de-
scription and reasoning step correctness. For
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Model Step Type Description Relevance Description Correct Logic Relevance Logic Correct Informativeness
Description  Reasoning Both Both Others Correct  Incorrect | Relevant  Irrelevant | Correct  Incorrect | Infor..  Uninfo...
Zero-Shot
LLaVA-1.6-Mistral-7B 0.824 0.367 0.000 | 0.660 0.010 0.200 0.080 0.928 0.133 0.656 0.309 0.924 0.047
MiniCPM-V-2.6 0.371 0.053 0.007 0.854 0.050 0.890 0.260 0.974 0.000 0.870 0.000 0.879 0.114
LLaVA-1.6-Yi-34B 0.774 0.111 0.025 0.676 0.110 0.922 0.100 0.981 0.154 0.893 0.097 0913 0.450
GPT-40 0.919 0.489 0.040 | 0.868 0.070 0.888 0.140 0.968 0.400 0.854 0.200 0.674 0.364
Qwen-VL-Max 0.637 0.242 0.000 | 0.960 0.000 0.861 0.160 0.975 0.133 0.898 0.036 0.878 0.513
Gemini-1.5-Pro 0915 0.689 0.051 | 0.963 0.150 0.900 0.170 0.966 0.250 0.791 0.226 0312 0.269
Llama-3.2-11B-Vision-Instruct 0.605 0.020 0.011 | 0.856 0.000 0.244 0.030 0.914 0.000 0.720 0.176 0411 0.281
Few-Shot
LLaVA-1.6-Mistral-7B 0.821 0.332 0.000 0.476 0.020 0.560 0.070 0.955 0.194 0.888 0.094 0.818 0311
MiniCPM-V-2.6 0.499 0.065 0.011 0.582 0.020 0.892 0.290 0.938 0.138 0.888 0.094 0.834 0.147
LLaVA-1.6-Yi-34B 0.858 0.529 0.043 | 0.268 0.140 0.893 0.110 0.977 0.235 0.891 0.066 0.927 0.170
GPT-40 0.926 0.718 0.036 | 0.697 0.030 0.875 0.180 0.950 0.372 0.833 0.231 0.726 0.396
Qwen-VL-Max 0.813 0.216 0.032 | 0.610 0.010 0.876 0.060 0.959 0.207 0.893 0.067 0.754 0.416
Llama-3.2-11B-Vision-Instruct 0.005 0.000 0.007 | 0.368 0.000 0.841 0.060 0.890 0.123 0.859 0.186 0.000 0.230

Table 11: Per-label F1 metrics of each task under zero-shot and few-shot evaluations on MiCEval-NORMAL.

LLaVA-1.6-Mistral-7B (Multimodal)
LLaVA-1.6-Mistral-7B (Textual)

MiniCPM-V-2.6 (Multimodal)
MiniCPM-V-2.6 (Textual)

GPT-40 (Multimodal)
GPT-40 (Textual)
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Figure 10: The relationship between the average accuracy of three MLLMs across five image-input Pairwise
Comparison tasks and the number of shots. HARD: The performance on MiCEval-HARD; NORMAL: The

performance on MiCEval-NORMAL.

Correctnessiyye, we use the results of Gemini-1.5-
Pro on the step type task to determine the type label
for each step (best zero-shot step type performance
on Sec. 6.1.2). We then calculate two kinds of over-
all MCoT correctness (Step, MiCEval , Type or
All). Finally, we compare the correlation between
the MCoT correctness and human scores. Addition-
ally, we evaluate the correctness scores generated
by the MLLMs for each step (Step, w/o MiCEval
) and for the overall MCoT (CoT, w/o MiCEval )
without utilizing the MiCEval metrics. This is done
to validate the effectiveness of MiCEval while min-
imizing the influence of the “Step-by-Step” evalua-
tion method.

Scoring Evaluation. We use Somer’s D (Somers,

1962) as the metric for human correlation.

Choice Ranking. Each question in the dataset
contains at least one fully correct MCoT option and
one that is not. We calculated correctness scores for
each MCoT answer and selected the option with the
highest score. Accuracy was then computed based
on whether the selected choice was fully correct.
The MCoT evaluation metrics that achieved the
highest accuracy demonstrate a stronger ability to
filter high-quality MCoTs. we use accuracy as the
evaluation metric. An example of Choice Ranking
data as shown as Table 12.

D.2 Prompt Template

In this section, the system prompt we used in each
setting are illustrated in the Figure 11, and we pro-
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Image Question MCoT Answer Generator  Ground Truth

(1) The clock is positioned promi-
nently in a busy street area. It is el-
evated on a pole, making it visible to
pedestrians and drivers. The area ap-  GPT- Correct
pears to be a commercial district with 40
shops and businesses. So the clock is
there to help people keep track of time
while they are out and about.
(2) This is an outdoor scene during the
day. A large black clock tower stands

Why is the clock  prominently against the sky. It has 2 Qwen-

there? clocks facing different directions. 1 VL- Incorrect

can assume that its purpose might be Max
to inform or remind passersby about
the time.
(3) The clock is on a pole in the middle
of a city street. Peqple are walking by Instructbl
the clock and looking at it. The clock .
. . . Vicuna- Correct
is showing the time. Therefore, the 7B
clock is there for people to check the
time.
(4) The clock is located on a pole on
the sidewalk. Itis a public clock, likely
placed there for pedestrians to easily LLaVA-
see the time. The clock is situated in 1.6- Correct
a busy city street with many people  Mistral-
walking by. The clock serves as a con- 7B

venient time reference for pedestrians
in the area.

Table 12: An Example of Choice Ranking Data.

vide prompt templates used in the experiments as
following:
MCoT Task

Image: [image]

Question: [question]

CoT: [MCoT answer]

Output: [Score of MCoT]

Step Task
Image: [image]
Question: [question]
Previous: [previous steps]
Current Step: [current step]
Output: [Score of the Current Step]

D.3 Additional Results

> Step-by-step evaluation does not always
help MLLMs. Step-by-step evaluation benefits
MiniCPM-V-2.6 and LLaVA-1.6-Mistral but harms
Llama-3.2-11B-Vision-Instruct’s performance. We
observe that, compared to directly evaluating the
entire MCoT without MiCEval, step-by-step eval-

uation without MiCEval improves the Somer’s D
score of MiniCPM-V-2.6 from 0.130 to 0.169 and
LLaVA-1.6-Mistral-7B from 0.080 to 0.140 on the
whole MiCEval. In contrast, Llama’s performance
drops from 0.176 to 0.075. Additionally, these
scores remain lower than those achieved by the
MiCEval-based step-by-step evaluation method, in-
dicating that step-by-step evaluation alone is not
the primary factor driving improvements in MiCE-
val MLLM-based methods.

D.4 Analysis based on Human Annotation

We use the step type results from human an-
notation to evaluate the correlation between the
Correctnessyyp.-based MiCEval metrics and hu-
man judgments, focusing on the Description step,
Reasoning step, and the overall MiCEval dataset.
We also present the Spearman’s Rank Correlation
Coefficient (Spearman, 1904) results.

The Table 16 and Table 17 show the results on
human annotated step type labels. The Spearman’s
Rank Correlation Coefficient (Spearman, 1904) re-
sults for different datasets, as illustrated in Table 18
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System Prompt for CoT without MiCEval

Based on the image and question, provide a overall score of CoT:

X1: Rate the overall score(scale: 0-10).

X1 should be integers. Please do not include title such as "X1" in the output.

Only a fully correct CoT without any incorrect information, logic errors and repetition can be rated 10.
Only output the scores of cot without any explaination. The output format should be: [X1].

System Prompt for Step without MiCEval

Based on the image and question, provide a overall score of current step:

X1: Rate the overall score(scale: 0-10).

X1 should be integers. Please do not include title such as "X1" in the output.

Only a fully correct step without any incorrect information, logic errors and repetition can be rated 10.
Only output the scores of each step without any explaination. The output format should be: [X1].

System Prompt for Step with MiCEval

Based on the image, question and previouds steps, provide the following 5 scores of current step. For current step, assign
scores in the following five categories:

X1: Rate the image relevance score (scale: 0-10).

X2: Rate the logic relevance score (scale: 0-10).

X3: Rate the description correctness score (scale: 0-10).

X4: Rate the logic correctness score (scale: 0-10).

X5: Rate the informativeness score (scale: 0-10).

X1, X2, X3, X4 and X5 should be integers. Please do not include title such as "X1" in the output.

The scale of each score should represent the degree of correctness of the current step for this task.

Only output the scores of each step, answer the question is prohibited. The output format should be: [X1,X2,X3,X4,X5].

Figure 11: Different system prompts of Scoring Evaluation. System Prompt for Step with MiCEval is the system
prompt for MLLM-based MiCEval evaluation metrics.

and Table 19. The Choice Ranking results based
on human annotation is shown in Table 20.

E Case Study

In this chapter, we present examples based on
two different MiCEval metrics: the high-scoring
and low-scoring cases. Figures 15 to 18 show
the best cases based on the Correctnessyyp.-based
MiCEval metric, while Figures 19 to 22 illustrate
the worst cases. The high-scoring cases for the
Correctness,y-based MiCEval metric are shown in
Figures 23 to 26, and the low-scoring cases are
depicted in Figures 27 to 30.
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Dataset

Description

‘ Question

Visual7W

A dataset designed for grounded VQA.

Where could this be?
What is in front of the building?

VSR

Visual spatial reasoning VQA.

Is the following statement true or false?
Statement: The laptop is at the left side of
the chair.

Is the following statement true or false?
Statement: The train is behind the
motorcycle.

ScienceQA

VQA centers around science topics.

Which of the following fossils is oldest?
Which property do these three objects
have in common?

MMVP

A dataset aims to detect obvious visual dif-
ferences in images.

Is the school bus driving towards or away
from the camera?

In the picture, are the elderly people
moving to the left or to the right?

MMstar

A dataset designed with challenging VQA.

What might the woman in the image be
doing?

How many types of fruits are there in the
image?

MM-Vet

A dataset featuring diverse question types
and corresponding answers.

What might the woman in the image be
doing?

How many types of fruits are there in the
image?

VQAV2

A dataset with questions covering various
aspects of the image.

What type of bird is on the car?

What is this form of transportation?

Vizwiz

A dataset with photos lacking clarity and
exhibiting suboptimal quality collected
from users.

What is this color please?

What is this box?
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Source
Dataset

Question

MCoT Answer

Error

Visual7w

When is this room
used?

In the bedroom, there is a bed covered by a
striped quilt. On both sides of the headboard
hang two pictures. A wooden cabinet stands
next to the door. Near the window, there is an
armchair placed against the wall.

Entity False
(step 4)

VSR

Is the following state-
ment true or false?
Statement: The dog is
at the right side of the
laptop.

A small brown chihuahua sits behind an open
black laptop computer. The laptop screen dis-
plays text that reads “The responsibilities in-
clude...”. To the left of the laptop, there’s a
telephone receiver. On the desk where these
objects rest, there appears to be food from take-
out containers.

Image Rele-
vant (step2,
step3, step4)

‘ ScienceQA

bowling ball

wooden ruler

Which property do
these two objects have
in common?

Both the wooden ruler and the bowling ball
are objects. They are both made of wood. The
wooden ruler is a tool used for measuring. The
bowling ball is a sports equipment used for
playing bowling. Both the wooden ruler and
the bowling ball are made of wood and have
different functions.

Inter-step
Incorrect
(step2, step
5)

Is the wind blowing the

The flag in the image is not hanging straight
down. It appears to be extended outward and

Inter-step In-

MMVP fAlag? has a wavy appearance. This suggests that correct (step
& there is some force acting on it. Therefore, the 4)
wind is blowing the flag.
Ate the irees taller tham The giraffes are taller t_han the trees. The trees Uninformative
MM- Vet the giraffes? are shorter than the giraffes. Therefore, the o
& ’ giraffes are taller than the trees. P
Attribute
. . . . . False (step
What will happen The man in the image is frowning and pouting. 1), Inter-step
MMstar He appears to be upset and unhappy. There-
next? . Incorrect
fore, he might cry next.
(step2,
step3)

Table 14: Randomly sampled questions from MiCEval-HARD.
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Source
Dataset

Question

MCoT Answer

Error

Visual7w

What color are the mid-
dle suitcases?

In the image, there are several suitcases in the
trunk of a car. The middle suitcases are red.

Attribute
False (step
2)

Visual7W

What is growing on the
right?

There are buildings on the right side of the
image. There are trees growing next to the
buildings.

Entity False
(step 2)

Does the cat belong

The image shows a cat relaxing comfortably

Inter-step In-

and noodle soup.

V7 there? in a home setting. The cat belongs there. (zx))rrect CEE
What type of fruit There’s a plate containing fqoq. On that plate,
. . . several banana slices are visible. These ba-
is sliced and laying . . Image Rele-
VQAvV2 nanas have been cut into chunks or slices.
around the cheese- . . s . vant (step 4)
Therefore, it appears as if they’re being used
cake? .
to garnish or accompany the dessert.
The image shows a wooden structure with  Inter-step In-
Vizwiz Isis abox? Isita box? three visible sides. The structure resembles  correct (step
the inside of a box. This is a box. 2, step 3)
The image shows a can of Progresso chicken
Vizwiz What is this? and noodle soup. The can has a blue label with ~ Uninformative
) white text. This is a can of Progresso chicken  (step 3)

Table 15: Randomly sampled questions from MiCEval-NORMAL.
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Annotation Tool

Picture:

Question:

Is this dog ready to take a nap?

Ground Truth:

Yes.

Stepl:

The dog is laying on a bed.

Step2:

The dog appears to be resting its head on a pillow.
Step3:

The dog's eyes are closed, suggesting it may be tired or ready
to take a nap.

. Current Annotated Step:

| i
: |
: The dog is laying on a bed. |
i |
| ® Description !
: |
! |
! |
: |
- |

O Reasoning

Figure 12: The annotation tool screenshot for step type task.

Annotation Tool

Picture:

Question:

Is this dog ready to take a nap?

Ground Truth:

Yes.

I Current Annotated Step: |
M The dog is laying on a bed. i

Taskl: Description Relevance Task
° Image Relevant
° Logic Relevant

Task2: Description Correctness Task

o Partially correct
o Unsupported

| |
| |
| |
| |
| |
| |
| |
| |
| |
| ®  Fully correct i
i i
| |
| |
i Task3: Description Error Types Task i
| © Entity False I
| © Attribute False |
I o Spatial Relationship False !
| |
o

| |

Nonspatial Relationship False

Figure 13: The annotation tasks related to the Description step.
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Annotation Tool

Picture:

Current Annotated Step:

The dog's eyes are closed, suggesting it may be tired or

ready to take a nap.

i
|
!
: Taskl: Logic Relevance Task
| ®  Relevant
I o6 lIrrelevant
: Task2: Logic Correctness Task
| o Correct
i ° Incorrect
I Task3: Logic Error Types Task
Question: : o Inter-step Incorrect
Is this dog ready to take a nap? i ® Intra-step Incorrect
g ready P | Task3: Informativeness Task
Ground Truth: | o Informative
Yes. : o Uninformative
Figure 14: The annotation logic tasks related to the Both step.
Metrics Description Step Reasoning Step
CLIP 0.051 0.031
BLIP2-ITM 0.035 -0.003
BLIP2-ITC 0.071 0.056
ReCEval -0.012 -0.040
LLM-Score 0.130 0.141
MiniCPM-V-2.6 (CoT, w/o MiCEval) - -
LLaVA-1.6-Mistral-7B (CoT, w/o MiCEval) - -
Llama-3.2-11B-Vision-Instruct (CoT, w/o MiCEval) - -
GPT-40 (CoT, w/o MiCEval) - -
MiniCPM-V-2.6 (Step, w/o MiCEval) 0.110 0.103
LLaVA-1.6-Mistral-7B (Step, w/o MiCEval) 0.109 -0.025
Llama-3.2-11B-Vision-Instruct (Step, w/o MiCEval) 0.005 0.126
GPT-40 (Step, w/o MiCEval) 0.168 0.298
MiniCPM-V-2.6 (Step, MiCEval) 0.240 0.183
LLaVA-1.6-Mistral-7B (Step, MiCEval) 0.098 -0.044
Llama-3.2-11B-Vision-Instruct (Step, MiCEval) 0.115 0.098
GPT-40 (Step, MiCEval) 0.240 0.319

Table 16: Human-annotation-based Somer’s D results on Description Step, Reasoning Step.
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Metric | NORMAL HARD MICEVAL
CLIP 0.079 0.019 0.060
BLIP2-ITM 0.088 -0.065 0.031
BLIP2-ITC 0.072 -0.006 0.075
ReCEval -0.006 0.015 0.040
LLM-Score 0.078 0.210 0.162
MiniCPM-V-2.6 (CoT, w/o MiCEval) 0.154 0.123 0.130
LLaVA-1.6-Mistral-7B (CoT, w/o MiCEval) 0.109 -0.024 0.080
Llama-3.2-11B-Vision-Instruct (CoT, w/o MiCEval) 0.090 0.218 0.176
GPT-40 (CoT, w/o MiCEval) 0.154 0.256 0.208
MiniCPM-V-2.6 (Step, w/o MiCEval) 0.112 0.123 0.169
LLaVA-1.6-Mistral-7B (Step, w/o MiCEval) 0.083 0.178 0.140
Llama-3.2-11B-Vision-Instruct (Step, w/o MiCEval) 0.031 0.090 0.075
GPT-40 (Step, w/o MiCEval) 0.178 0.282 0.257
MiniCPM-V-2.6 (Step, MiCEval) 0.260 0.198 0.279
LLaVA-1.6-Mistral-7B (Step, MiCEval) 0.080 0.142 0.126
Llama-3.2-11B-Vision-Instruct (Step, MiCEval) 0.158 0.170 0.192
GPT-40 (Step, MiCEval) 0.256 0.264 0.281

Table 17: Human-annotation-based Somer’s D results on MiCEval dataset.

Model Description Step Reasoning Step
CLIP 0.105 0.055
BLIP2-itm 0.073 -0.005
BLIP2-itc 0.148 0.100
ReCEval -0.025 -0.072
LLM-Score 0.245 0.232
MiniCPM-V-2.6 (CoT, w/o MiCEval) - -
LLaVA-1.6-Mistral-7B (CoT, w/o MiCEval) - -
Llama-3.2-11B-Vision-Instruct (CoT, w/o MiCEval) - -
GPT-40 (CoT, w/o MiCEval) - -
MiniCPM-V-2.6 (Step, w/o MiCEval) 0.197 0.158
LLaVA-1.6-Mistral-7B (Step, w/o MiCEval) 0.178 -0.035
Llama-3.2-11B-Vision-Instruct (Step, w/o MiCEval) 0.006 0.124
GPT-40 (Step, w/o MiCEval) 0.276 0.408
MiniCPM-V-2.6 (Step, MiCEval) 0.249 0.153
LLaVA-1.6-Mistral-7B (Step, MiCEval) 0.162 -0.051
Llama-3.2-11B-Vision-Instruct (Step, MiCEval) 0.194 0.135
GPT-40 (Step, MiCEval) 0.365 0.367

Table 18: Spearman’s Rank Correlation Coefficient on Description Step, Reasoning Step.
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Metrix NORMAL HARD MiCEval

CLIP 0.148 0.033 0.105
BLIP2-itm 0.165 -0.114 0.054
BLIP2-itc 0.134 -0.011 0.131
ReCEval -0.011 0.026 0.069
LLM-Score 0.144 0.369 0.279
MiniCPM-V-2.6 (CoT, w/o MiCEval) 0.227 0.182 0.186
LLaVA-1.6-Mistral-7B (CoT, w/o MiCEval) 0.117 -0.028 0.086
Llama-3.2-11B-Vision-Instruct (CoT, w/o MiCEval) 0.130 0.281 0.234
GPT-40 (CoT, w/o MiCEval) 0.238 0.384 0.305
MiniCPM-V-2.6 (Step, w/o MiCEval) 0.204 0.211 0.289
LLaVA-1.6-Mistral-7B (Step, w/o MiCEval) 0.146 0.303 0.232
Llama-3.2-11B-Vision-Instruct (Step, w/o MiCEval) 0.045 0.141 0.110
GPT-40 (Step, w/o MiCEval) 0.287 0.409 0.381
MiniCPM-V-2.6 (Step, MiCEval) 0.263 0.259 0.320
LLaVA-1.6-Mistral-7B (Step, MiCEval) 0.130 0.221 0.192
Llama-3.2-11B-Vision-Instruct (Step, MiCEval) 0.266 0.263 0.300
GPT-40 (Step, MiCEval) 0.408 0.383 0.413

Table 19: Spearman’s Rank Correlation Coefficient on MiCEval dataset.

Model Acc.
CLIP 0.700
BLIP2-ITM 0.657
BLIP2-ITC 0.657
ReCEval 0.600
LLM-Score 0.614
MiniCPM-V-2.6 (CoT, w/o MiCEval) 0.686
LLaVA-1.6-Mistral-7B (CoT, w/o MiCEval) 0.686
Llama-3.2-11B-Vision-Instruct (CoT, w/o MiCEval) | 0.729
GPT-40 (CoT, w/o MiCEval) 0.757
MiniCPM-V-2.6 (Step, w/o MiCEval) 0.700
LLaVA-1.6-Mistral-7B (Step, w/o MiCEval) 0.571
Llama-3.2-11B-Vision-Instruct (Step, w/o MiCEval) | 0.757
GPT-40 (Step, w/o MiCEval) 0.771
MiniCPM-V-2.6 (Step, MiCEval) 0.800
LLaVA-1.6-Mistral-7B (Step, MiCEval) 0.586
Llama-3.2-11B-Vision-Instruct (Step, MiCEval) 0.786
GPT-40 (Step, MiCEval) 0.800

Table 20: Accuracy based on human-annotation labels of different evaluation metrics on Choice Ranking.
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Do the persons live in this house? Answer it and give the
\rationale.

N \

p
MCoT Answer Description Correct

The persons in the image are .
dressed in historical clothing, || Reasoning Correct
which suggests they are part of a
historical reenactment or tour. MCoT Correct
The interior of the house is very
ornate and appears to be a
historical mansion or museum. The
people are walking in a manner
that suggests they are observing
the surroundings rather than
moving about their home. Therefore,
it is wunlikely that the persons
klive in this house.

J

Figure 15: A Correctnessyyp.-based MiCEval metric high-scoring case of MiCEval-HARD.

10031




When was this picture taken, seasonally?

this picture may have been taken
\in winter.

J

\\§

e N (

MCoT Answer Description Correct
The ground in the picture is .

covered with snow. Snow typically || Reasoning Correct
falls during the colder months of

the year. The presence of snow MCoT Correct
suggests that the picture was S

taken during a cold season. So

Figure 16: A Correctnessyyy.-based MiCEval metric high-scoring case of MiCEval-HARD.

What is this?
\

MCoT Answer Description Correct
The image shows two plastic )
bottles on a desk. Both bottles || Reasoning Correct
have labels that read "Nestle Pure
|Life." These are water bottles. | MCoT Correct
.

Figure 17: A Correctnessyyp,.-based MiCEval metric high-scoring case of MiCEval-NORMAL.
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e A
( . )

Question

Is the room illuminated by natural lighting?

- J

( N\ ( )

MCoT Answer Description |  Correct

The image shows a room with large .

windows  and  sunlight coming || Reasoning Correct

through. The room is illuminated

by natural lighting. MCoT Correct
kL J \_ JJ

Figure 18: A Correctnessypo-based MiCEval metric high-scoring case of MiCEval-NORMAL.
4 ™

e - A

Question

What will happen next?

\. J
: N ( )

MCoT Answer Description Correct

The image shows a playground with .

children playing. One child in a || Reasoning Incorrect

Batman shirt is running down a

ramp. The child appears to be || MCoT Incorrect

moving quickly and is 1looking

ahead. Given the momentum and

direction, the child will 1likely

continue running down the ramp. So,

the child will continue running

\down the ramp next. )
N J

Figure 19: A Correctnessyy,.-based MiCEval metric low-scoring case of MiCEval-HARD.
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4 N
s . p
Question
Where is the truck going?
( N A
MCoT Answer Description | Incorrect
The truck has yellow body color. .
It's a Mack brand model. The || Reasoning \
license plate number can be seen.
There is a man sitting inside the || MCoT Incorrect
cabin.
|\ J/
N Y,
Figure 20: A Correctnessyy,.-based MiCEval metric low-scoring case of MiCEval-HARD.
4 ™\
( . ™\
Question
What flavor is this?
.
' N ~
MCoT Answer Description | Incorrect
The image shows a box of cereal on )
a wooden surface. The cereal || Reasoning Incorrect
appears to have a green and purple
design. The flavor of the cereal || MCoT Incorrect
is not specified in the image.
Therefore, it cannot be determined
\what flavor the cereal is. y
_ _J

Figure 21: A Correctnessyy,.-based MiCEval metric low-scoring case of MiCEval-NORMAL.
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What can you see in the picture?

imitation crab sticks.

&

s s

MCoT Answer Description | Incorrect
You can see a blue mug on a wooden ]

table. Inside the mug, there is a || Reasoning \
dark liquid. There are red and

white pieces that resemble MCoT Incorrect

Figure 22: A Correctness;yp.-based MiCEval metric low-scoring case of MiCEval-NORMAL.

Which of these states is farthest east?

( N
MCoT Answer Description Correct
The map shows the states of .

Washington, Nevada, Colorado, and || Reasoning Correct
Iowa. Iowa is located farther east

than  Washington, Nevada, and MCoT Correct
Colorado. So, Iowa is the farthest -

\east.

Figure 23: A Correctness;;-based MiCEval metric high-scoring case of MiCEval-HARD.
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s . M
Question

Is the school bus driving towards or away from the camera?

. J
e N

MCoT Answer Description Correct

The image shows the back of a .

school bus. The rear lights and || Reasoning Correct

the "SCHOOL BUS" sign are visible.

The bus is on a road, and the MCoT Correct

front of the bus is not visible.
Therefore, the school bus is
driving away from the camera.

Figure 24: A Correctness,;;-based MiCEval metric high-scoring case of MiCEval-HARD.

( -
Question

When will the baby have hair?
g

r N 2
MCoT Answer Description|  Correct

The baby in the picture has very .

little hair. Babies typically || Reasoning Correct
start to grow more hair as they

get older. By the age of 6 to 12 MCoT Correct

months, many  babies have a
noticeable amount of hair. So the
baby will likely have more hair in
a few months.

. J
\

Figure 25: A Correctness,;-based MiCEval metric high-scoring case of MiCEval-NORMAL.
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What are the men doing?

'd N\ N\
MCoT Answer Description|  Correct
In the image, two men are holding )
game controllers and pointing at a || Reasoning Correct
screen. The men are playing a

| video game. \ MCoT Correct

Figure 26: A Correctness,;-based MiCEval metric high-scoring case of MiCEval-NORMAL.

-
s . )
Question
Subtract all large gray things. Subtract all small brown
kmetallic balls. How many objects are left? )
e N ( )
MCoT Answer Description | Incorrect
In the image, there are five large .
gray things and six small brown || Reasoning Incorrect
metallic balls. Five 1large gray
things minus six small brown || MCoT Incorrect
metallic balls equals one object
remaining. Therefore, only one
object remains in the scene. This
could potentially be any object
that was not mentioned or depicted
(in the original image. )
. J

Figure 27: A Correctnessq;;-based MiCEval metric low-scoring case of MiCEval-HARD.
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Solvent volume: 20 mL Solvent volume: 20 mL
Solution A Solution B

r .
Question

Which solution has a higher concentration of purple particles?
& J

- N ( )
MCoT Answer Description | Incorrect

Both solutions contain equal .
volumes (20 mL) of solvent. || Reasoning Incorrect
Solution A contains two purple
particles while Solution B MCoT Incorrect
contains only one purple particle.

Since there are twice as many

particles present in Solution A
compared to Solution B, it can be

concluded that Solution A has a

higher concentration of purple

particles

> - Y

Figure 28: A Correctnessq;;-based MiCEval metric low-scoring case of MiCEval-HARD.

N
e . p
Question
What is hanging from the oven?
. J
MCoT Answer Description | Incorrect
In the image, there 1is a banana .
peel hanging from the oven. The || Reasoning Incorrect
banana peel 1is hanging from the
oven. MCoT Incorrect

\\ J O JJ

Figure 29: A Correctnessy-based MiCEval metric low-scoring case of MiCEval-NORMAL.
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( N
Question

What pattern is the tie that the gentleman is wearing?
g

MCoT Answer

The tie the gentleman is wearing
is striped.

r

Description
Reasoning

MCoT

Incorrect

Incorrect

Figure 30: A Correctnessq;;-based MiCEval metric low-scoring case of MiCEval-NORMAL.
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