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Abstract

A binary decision task, like yes-no questions or
answer verification, reflects a significant real-
world scenario such as where users look for
confirmation about the correctness of their de-
cisions on specific issues. In this work, we ob-
serve that language models exhibit a negative
bias in the binary decisions of complex rea-
soning tasks. Based on our observations and
the rationale about attention-based model dy-
namics, we propose a negative attention score
(NAS) to systematically and quantitatively for-
mulate negative bias. Based on NAS, we iden-
tify attention heads that attend to negative to-
kens provided in the instructions as answer can-
didate of binary decisions, regardless of the
question in the prompt, and validate their asso-
ciation with the negative bias. Additionally, we
propose the negative attention score alignment
(NASA) method, which is a parameter-efficient
fine-tuning technique to address the extracted
negatively biased attention heads. Experimental
results from various domains of reasoning tasks
and large model search space demonstrate that
NASA significantly reduces the gap between
precision and recall caused by negative bias
while preserving their generalization abilities.

1 Introduction

Recent advancements in large language models
(LLMs) have enabled complex reasoning tasks exe-
cuted by understanding user instructions (Ouyang
et al., 2022; Touvron et al., 2023; Achiam et al.,
2023; Jiang et al., 2023). As the capabilities of
LLMs have expanded rapidly, research has inten-
sified to analyze their characteristics and inherent
issues. One of the major issues is the generation
of factually incorrect content, known as “hallucina-
tion”, which significantly degrades the reliability of
LLM-based services (Zhang et al., 2023; Xu et al.,
2024; Huang et al., 2023).

*Equal Contribution
† Corresponding author

The hallucination problem in LLMs can be
attributed to factors such as parametric knowl-
edge, overconfidence, and biases (Zhang et al.,
2023). Studies have been conducted to understand
the decision-making mechanisms in LLMs from
a parameter perspective. For instance, the “logit
lens” technique allows for the interpretation of the
model’s reasoning process along the layers, ex-
ploiting the hidden representations from intermedi-
ate layers (Belrose et al., 2023; Ferrando et al.,
2023). This technique has been utilized to ana-
lyze model characteristics in various scenarios such
as in-context learning. On the other hand, Yuan
et al. (2024) focus on analyzing hallucination phe-
nomenon based on attention heads. However, the
causes and mechanisms of hallucination in LLMs
vary by type of task, indicating that extensive fur-
ther study is still necessary.

In this paper, we aim to identify biases that
emerge when LLMs respond to questions requir-
ing a binary decision, such as affirmation or nega-
tion. We observe a negative bias in LLMs in yes-
no question-answering (QA) and answer verifica-
tion tasks that demand complex reasoning, such
as mathematical or logical reasoning. Specifically,
we observe that LLMs generally exhibit high preci-
sion but low recall in binary decision tasks. Addi-
tionally, we find that the prediction confidence for
negative decisions is significantly higher than for
positive decisions. This suggests that LLMs tend
to be overly cautious when making positive deci-
sions, leading to a phenomenon where the model
excessively favors negative decisions as a form of
shortcut. This negative bias, which indicates a dis-
crepancy between the model’s reasoning ability and
accuracy, may ultimately reduce the reliability of
its predictions.

From the rationale that the model allocates
higher attention to the negative candidates among
the binary answer options presented in the user
prompt, we propose a negative attention score
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(NAS) to systematically probe these negatively bi-
ased attention heads in LLMs. Based on NAS, we
detect attention heads that attend to tokens asso-
ciated with negation in an instruction. Our find-
ings also confirm the existence of attention heads
that predominantly contribute to manifesting this
negative bias, regardless of the given query. To ad-
dress the identified attention heads, we introduce
a parameter-efficient fine-tuning technique named
NAS alignment (NASA).

In the NASA framework, we first construct a
probing set in the form of a binary decision task to
extract negative attention heads. This probing set is
derived from an existing short-answer QA dataset.
Next, we apply an incremental fine-tuning process
to the negative attention heads identified based on
NAS. During this process, each head undergoes
fine-tuning using the probing set, while NASA in-
cludes periodic monitoring of NAS, which auto-
matically schedules early stopping and update can-
cellations. This pipeline ensures that tuning is con-
ducted only up to an appropriate extent and in the
correct sequence, effectively mitigating negative
bias without compromising the model’s existing
capabilities.

For the evaluation of NASA, we measure the
performance of four LLMs: LLaMA3-8B-Instruct
(Touvron et al., 2023), Mistral-7B-Instruct-v0.3
(Jiang et al., 2023), Gemma-1.1-7b-it (Team et al.,
2024), and Qwen2-7B-Instruct (Yang et al., 2024a)
as the search space. We conduct a comprehensive
evaluation across multiple reasoning tasks, includ-
ing multi-hop QA: StrategyQA (Geva et al., 2021),
MuSiQue (Trivedi et al., 2022), mathematical rea-
soning: GSM8k-Rephrased and MATH-Rephrased
subset in MetaMATH (Yu et al., 2023), and logical
reasoning: AR-LSAT (Zhong et al., 2021).

Experimental results demonstrate that our
method NASA significantly reduces the gap be-
tween precision and recall while maintaining or
even improving accuracy and F1 score. This in-
dicates that the NASA method successfully mit-
igates negative bias without compromising over-
all performance. Additionally, we confirm that the
NASA-tuned model effectively preserves general
reasoning performance beyond binary decision-
making and exhibits improvements in calibration.
Furthermore, NASA demonstrates robust perfor-
mance across various prompting formats, including
few-shot settings.

Our contributions can be summarized as follows:

• We observe that LLMs exhibit a negative bias
in binary decision tasks requiring complex
reasoning and demonstrate its association with
attention heads.

• We propose negative attention score (NAS),
a metric and framework that allows for sys-
tematic probing of attention heads involved in
negative bias regardless of the input query.

• Based on NAS, we introduce NAS alignment
(NASA), a parameter-efficient fine-tuning
technique that effectively addresses negative
bias by tuning the extracted negative attention
heads in a proper order.

2 Related Work

Hallucination problems in complex reasoning
tasks The emergent abilities of LLMs, such as
the chain-of-thoughts, have significantly enhanced
the performance of complex reasoning (Wei et al.,
2022; Kojima et al., 2022; Wang et al., 2022;
Madaan et al., 2023). However, the increased com-
plexity of tasks and pipelines has made the hallu-
cination problem in complex reasoning tasks chal-
lenging to analyze and resolve, which remains an
active area of research (Zhang et al., 2023). With
the advent of benchmarks vulnerable to hallucina-
tions, recent LLMs are laying the groundwork for
analyzing the causes of LLM hallucinations based
on substantial data which requires complex rea-
soning abilities (Geva et al., 2021; Trivedi et al.,
2022;Cobbe et al., 2021).

Analysis on roles and knowledge in model pa-
rameters As the capacity and complexity of LLMs
increase, the need to understand and interpret these
models is becoming more crucial. In particular,
there is active research into analyzing parametric
knowledge and model behavior that influence the
phenomenon of model hallucination. Meng et al.
(2022) propose a framework to specify the loca-
tion where the knowledge of the model is stored,
while Belrose et al. (2023) and Yang et al. (2024b)
research to interpret the inference process of the
model. Yuan et al. (2024) suggest a method to de-
tect model parameters involved in the false premise
hallucination phenomenon of LLMs.

Recent studies have shown that attention heads
in language models play a variety of roles such
as knowledge recalling (Zheng et al., 2024b). For
example, Jin et al. (2024) find the existence of at-
tention heads in LLMs that either recall parametric
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Figure 1: Precision and recall of LLMs in complex reasoning tasks.

1

Figure 2: Confidence histograms of LLaMA3-8B-Instruct model for the rephrased GSM8K and AR-LSAT samples.

knowledge or retrieve information from external
contexts and García-Carrasco et al. (2024) propose
a method to identify attention heads that increase
vulnerability to adversarial attacks.

In this paper, we identify the negative bias in
LLMs that leads to hallucinations in binary de-
cision tasks requiring complex reasoning. We fo-
cus on the attention heads in LLMs and propose
a framework to detect and address the attention
heads responsible for the negative bias.

3 Negative Bias in LLMs

A binary decision task, such as yes-no QA or an-
swer verification, represents a major real-world
scenario where users seek confirmation on whether
their decisions regarding specific problems are cor-
rect. For instance, a user may inquire whether a
statement formed through various contexts is true.
Also, a user may seek validation of the correctness
of their proposed solutions to problems requiring
complex logical reasoning. Such fundamental in-
teractions, represented as yes-no decisions, act as
the basic block of the high-dimensional reasoning
tasks that need step-by-step sub-tasks. Despite this
significance of the binary decision task, many com-
plex reasoning benchmark datasets are not struc-
tured in a binary decision format. In this section,
we first transform existing complex reasoning tasks
into yes-no binary decision tasks. We then conduct
statistical observations and quantitative analyses

to examine how LLMs perform in these binary de-
cision scenarios, observing a meaningful negative
bias in their decisions. Following this, we propose
a systematic framework, the Negative Attention
Score (NAS), to formulate and quantify the nega-
tive bias exhibited by LLMs.

3.1 Statistical Observation

3.1.1 Setup for Binary Decision Task

Transformation to binary decision task We
transform general QA reasoning tasks into binary
decision tasks by modifying each sample into a pos-
itive or negative sample where the answer is “Yes”
or “No”, respectively. In this section, we focus on
the case of short-answer QA datasets. We refer to
Appendix D for the multiple choice datasets.

For the positive sample, we perform a rule-based
transformation on general queries by appending a
confirmatory query. For example, the query "What
is 1+1?" is transformed into "What is 1+1? Is the an-
swer 2?". This approach is straightforward for the
cases where the correct answer is “Yes”. Formally,
given the question and its label, we use Prompt I to
transform the prompt into the positive sample:

Prompt I (Positive Sample Transformation)

You are given a question and you MUST an-
swer Yes or No. Question: {question} Is the
answer {label}? Answer:
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To transform into the negative sample, a wrong
label is necessary based on the query and answer
which will be placed in label in Prompt I. For this,
we obtain suitable incorrect answers by prompting
GPT-4 (OpenAI, 2023). We present GPT-4 prompts
for the wrong label generation in Appendix D.

Datasets and models We utilize StrategyQA,
MuSiQue, subsets of MetaMATH (GSM8k-
Rephrased and MATH-Rephrased), and AR-LSAT
for evaluation, covering three domain tasks: multi-
hop open-domain QA, mathematical reasoning,
and logical reasoning. StrategyQA is a yes-no QA
dataset, MuSiQue and the rephrased versions of
GSM8k and MATH are short-answer QA datasets,
and AR-LSAT is a multiple-choice dataset. Sam-
ples are in Table 14. To assess reasoning capabil-
ities in binary decision tasks, we convert these
datasets into binary decision sets using the tech-
niques above, except for StrategyQA. AR-LSAT is
converted to the yes-no QA formats, while the oth-
ers are rephrased for answer verification formats.
Details on the conversion can be found in Appendix
D. We sample a portion of the entire dataset, and
detailed statistics can be found in Appendix A. For
the search space of LLMs, we explore LLaMA3-
8B-Instruct (LLaMA), Mistral-7B-Instruct-v0.3
(Mistral), Gemma-1.1-7b-it (Gemma), Qwen2-7B-
Instruct (Qwen), and GPT-4.

3.1.2 Observation of Negative Bias

Fig 1 presents the precision and recall results on
the transformed datasets. We use FP, FN, TP, and
TN to denote false positive, false negative, true pos-
itive, and true negative, respectively. In most cases,
a significant drop in recall compared to precision is
observed. According to the definition, a high preci-
sion implies that a significant proportion of the sam-
ples predicted as positive by the model (TP+FP)
are true positives. Low recall means that among
all the positive samples (TP+FN), the model rarely
responds correctly with positive answers (TP). The
phenomenon where existing models exhibit high
precision but low recall can be explained to that
the model is overly cautious in outputting posi-
tive responses. Conversely, this implies that the
model outputs negative responses indiscriminately,
indicating that the trustworthiness of negative re-
sponses and positive responses is not balanced.

Fig 2 shows a histogram of the response confi-
dence of the LLaMA in mathematical and logical
reasoning tasks. We observe that the overall fre-

quency and confidence of negative responses (FN
and TN) tend to be higher than those of positive re-
sponses (FP and TP). This indicates that the model
tends to output negative responses more frequently
and with greater confidence.

In summary, we find that LLMs typically show
1) over-cautiousness to the positive response, and 2)
more frequent and confident negative responses. It
is evident that large language models possess a bias
towards negative responses in the binary decision-
making process of complex reasoning tasks. A case
study of the negative responses about the negative
bias can be found in Appendix G.

3.2 Formulation of Negative Bias
3.2.1 NAS: Negative Attention Score
In this section, we formulate negative bias from the
perspective of model intrinsic properties. Specif-
ically, we focus on the model’s internal attention
patterns. To obtain an answer for a binary decision,
a user generally provides answer candidates like
“Yes” or “No” as instructions to the model before
posing the query prompt (c.f., Prompt I). The model
follows these instructions and responds to the given
query in the manner provided in the instructions.
During this response process, the model attends to
the given instructions, and due to the operational
characteristics of attention-based models, the can-
didate with the larger attention weight generally
appears in the response. In this context, the neg-
ative bias of the LLM can be seen as originating
from assigning greater attention weight to negative
answer candidates during the reasoning process.
Fig 3 illustrates an example of negative attention
head. To validate this rationale, we define Negative
Attention Score (NAS) using the attention weights
applied to negative answer candidate tokens like
“No”, and positive answer candidate tokens like
“Yes”, observed in a attention head.

Let Lx be the length of the sample x, tY es and
tNo the positions of the “Yes” and “No” tokens
within the instruction, and LI the length of the
instruction in x. For the attention weight inferred
by the h-th attention head in the l-th layer, denoted
as Al,h ∈ RLx×Lx , the NAS is defined as:

NASl,h
x :=

Lx∑

i=LI

(
Al,h

i,tY es
+Al,h

i,tNo

)
∗ log

(
Al,h

i,tNo

Al,h
i,tY es

)
, (1)

where we omit the input x in the attention func-
tion for brevity. The NAS term consists of two
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Figure 3: An example of the negative attention head. Three queries in the figure are sampled from StrategyQA
(Geva et al., 2021), rephrased GSM8K and MATH datasets (Yu et al., 2023).

Table 1: Correlations of NAS and the negative confi-
dence (−1 to 1).

Model LLaMA Mistral Gemma Qwen
Pearson 0.5274 0.3625 0.6322 0.4806
Spearman 0.5201 0.3563 0.6725 0.5166

factors: the sum of the attention weights applied
to the “Yes” and “No” tokens, which aims to find
attention heads focusing significantly on the tokens
representing answer options; and the logarithm of
the ratio of attention weights applied to these to-
kens, identifying heads that preferentially attend to
the “No” token over the “Yes” token.

NAS can have a value for each attention head
on a single sample. Based on this, we introduce
two types of NAS variants: single head NAS and
model NAS. Single head NAS represents the av-
erage NAS of a specific attention head across the
sample(s). It is used to quantify the negative bias of
a single attention head. On the other hand, model
NAS represents the total NAS across all attention
heads for the sample(s). This is used to approxi-
mate the model’s negative bias. Formally, given a
sample set X , we define the single head NAS of
the h-th attention head in the l-th layer and model
NAS as follows:

NAS(X, l, h) :=
1

|X|
∑

xi∈X
NASl,h

xi
(single head)

NAS(X,L,H) :=
∑

l∈L

∑

h∈H
NAS(X, l, h) (model),

whereL andH are the sets of all layer and attention
head indices, respectively.

3.2.2 Empirical Studies
NAS and Negative Confidence To demonstrate
that the previously defined NAS is an effective indi-
cator of negative bias, we measure the correlation
between model NAS and the negative confidence

Table 2: Overlapping proportion of top-100 negative
heads for various datasets (0 to 1).

LLaMA Mistral Gemma Qwen

0.74 0.76 0.80 0.74

observed in model responses. For this measure-
ment, we construct a test set consisting of a total
of 1,500 samples, drawing 500 samples each from
StrategyQA, rephrased GSM8K, and rephrased AR-
LSAT. Table 1 shows the Pearson correlation and
Spearman’s rank correlation coefficient measured
between model NAS and negative response confi-
dence for each model. In all cases, we confirm that
model NAS has a positive correlation with negative
confidence. This validates that NAS is an effective
indicator of a model’s negative bias.

Overlapping Negative Attention Heads We
conduct a study on negative attention heads defined
through NAS. Using our previously constructed
test set, which spans three different domains, we
investigate whether the negative attention heads
extracted from each domain subset overlap with
one another. For each sample xi in a domain subset
X , we first define the tuple list P i consisting of the
layer and head indices of the top-k attention heads
with the highest single head NAS:

P i
X = Top-k(l,h) NAS({xi}, l, h). (2)

Among these extracted heads, we select those that
are consistently included in over 90% of the tuple
lists, which we denote as CX :

CX = {(l, h) |
(l, h) appears in at least 0.9× |X| of P i

X

}
. (3)

Finally, we extract the list of top N attention heads
PX , sorted by their single head NAS values on X .

PX = Top-N(l,h)∈C NAS(X, l, h). (4)
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Figure 4: Overall framework of negative attention score alignment method.

In this process, we set k to 200 and N to 100.
Keeping the model type constant, we extract

such negative attention heads from each domain
subset and then measure the extent of their overlap.
The overlapping rates are displayed in Table 2, and
surprisingly, we find that negative heads extracted
through different domain subsets significantly over-
lap. This indicates the existence of query-agnostic
negative attention heads that represent a common
underlying cause of the model’s negative bias.

4 NASA: NAS Alignment Framework

Motivated by previous observations, we propose
NAS Alignment (NASA), a framework designed
to address attention heads that induce negative bias
in a parameter-efficient manner. In NASA, we start
by constructing a probing set to identify negative
attention heads, followed by a selection process to
determine which of these heads will be fine-tuned.
Our framework fine-tunes the target attention heads
in the order based on single head NAS.

4.1 Probing Set Construction

To construct the probing set, we use a short-answer
QA dataset and select the parametric samples
where the model can correctly answer the question.
A detailed explanation of the parametric sample
selection can be found in Appendix E. Next, we
convert the selected parametric samples into binary
decision making format using Prompt I in Section
3.1.1. Note that in the probing set, the label is uni-
formly set to “Yes”. The probing set is designed to
have two properties: i) the model possesses knowl-
edge about the question, and ii) the model should
respond “Yes” to the converted question. We as-

sume that attention heads with a high single head
NAS for the converted samples that meet the two
conditions are strongly associated with negative
bias and should be addressed.

In Section 3.2.2, we observe that the negative
bias attention heads exhibit query-agnostic proper-
ties. Based on this observation, we employ another
multi-step reasoning dataset, HotpotQA (Yang
et al., 2018), to construct the probing set. We pre-
sume that HotpotQA, being less challenging com-
pared to recent datasets, has a higher proportion of
samples that can be answered using the parametric
knowledge of LLMs.

4.2 Negative Attention Head Probing
Using the negative attention head detection process
described in Section 3.2.2, we extract the attention
heads to be fine-tuned by utilizing the probing set
X . In this process, we set k to 100 and N to 30.

At this point, we further categorize the probing
setX into cases where the model correctly answers
TP (X) (i.e., the true positive set) and cases where
it does not FN(X) (i.e., the false negative set).
During the fine-tuning phase of the model (See
Section 4.3), we use the false negative set as the
fine-tuning set D. This approach is aimed at in-
ducing the model to generate positive answers for
samples that it fails to answer due to a negative
bias. Meanwhile, the true positive set is used to
determine the threshold τ for early halting of the
fine-tuning process.

τ := min
x∈TP (X)

NAS({x}, L,H) (5)

In other words, during the training process aimed at
reducing the model NAS, if the model NAS on the
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validation set (i.e., subset of FN(X)) falls below
the minimum model NAS of true positive set, train-
ing is halted to minimize the bias towards positives.

4.3 Head-wise Incremental Tuning

Training setup As mentioned in Section 4.2, we
utilize the FNs in the probing set for fine-tuning.
Because the model fails to generate positive an-
swers for the samples although the model pos-
sesses parametric knowledge, it is expected that
fine-tuning with these samples can effectively ad-
dress the negative bias. We do not provide contexts
containing related facts to the model because the
model already has the corresponding knowledge.

Similar to a standard supervised fine-tuning
objective, we target only the answer token (e.g.,
“Yes”) for training. Since the fine-tuning set con-
tains only short answers, training the model to gen-
erate the end of a sequence token could introduce a
bias towards short responses. To prevent this side
effect, we exclude the end of a sequence token in a
loss calculation.

Training strategy We fine-tune the query and
key projection modules of each attention head se-
quentially in order of decreasing single head NAS
which is measured during the probing stage.

Since we fine-tune with data where the target
answer is positive, there is a risk of inducing a pos-
itive bias. Furthermore, updating a single attention
head might change the NAS of another attention
head. To prevent these, we set aside a portion of the
dataset as a validation set and apply early stopping
and update cancellation schemes for each attention
head tuning and early halting scheme for the whole
fine-tuning process.

For early stopping, we set criteria based on the
model NAS and single head NAS. For the former
criteria, we check for a decrease in the value after
each epoch. For the latter one, we verify that i) the
value decreases and ii) remains above a specific
threshold ρ after each epoch. Fine-tuning of the
current attention head is stopped if either of the
three conditions is not met.

For the update cancellation, after fine-tuning
each attention head, we calculate the difference
between the single head NAS and the model NAS
before and after fine-tuning. If any of these values
have increased compared to before training, we re-
vert the parameter update of that attention head to
exclude attention heads that reinforce the negative
bias from the training target.

For the early halting, we utilize the model NAS
of each sample within the TP (X), τ , as mentioned
in Section 4.2. This threshold setting is based on
the rationale that if the model NAS in a FN(X) is
lower than in a TP (X), it may induce a positive
bias. After training each negative attention head,
we measure the model NAS on the validation set. If
this value falls below τ , training is halted to prevent
falling into local optima. Algorithm for the entire
process can be found in Appendix F.

5 Experiments

5.1 Experimental Setup

We use LLaMA, Mistral, Gemma, and Qwen for
our experiments. We use those supervised fine-
tuned models before NASA-tuning as baselines.
We use LLaMA-Factory (Zheng et al., 2024a)1 and
HuggingFace Transformers (Wolf et al., 2020)2 for
all the experiments. The models are evaluated us-
ing binary decision datasets, which are described
in Section 3, measuring accuracy, precision, recall,
F1, and the model NAS. We set ρ to 0.5, the initial
learning rate to 1e−6, the batch size to 32, and the
maximum number of epochs to 30. We reference
the Alpaca repository3, setting the weight decay to
0 and the warmup ratio to 0.03.

5.2 Main Results

Tables 3 and 4 show the performance of our method
across various binary decision tasks. Generally, we
observe an improvement in accuracy and a signifi-
cant reduction in the precision-recall gap. As noted
in Section 3, high precision coupled with low recall
indicates that the model is excessively cautious in
providing positive responses, resulting in a degra-
dation in the trustworthiness of negative responses.
From this perspective, the negative bias can be mit-
igated by reducing the gap between precision and
recall while maintaining accuracy, which balances
the trustworthiness of the model’s responses and
ultimately improves the model.

Additionally, based on the improvement in the
F1 score, which is the harmonic mean of preci-
sion and recall, we demonstrate that the balance
between precision and recall has been achieved in
the direction of improving the model’s capability
for reasoning. We also observe that our method
effectively reduces the model NAS. In Appendix K,

1https://github.com/hiyouga/LLaMA-Factory
2https://github.com/huggingface/transformers
3https://github.com/tatsu-lab/stanford_alpaca
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Table 3: Model evaluation results on multi-step reasoning datasets.

Dataset Model Accuracy Precision Recall F1 NAS

StrategyQA
LLaMA / + NASA 0.871 / 0.877 0.919 / 0.864 0.795 / 0.875 0.852 / 0.869 160.6 / 55.0
Mistral / + NASA 0.842 / 0.830 0.882 / 0.802 0.772 / 0.861 0.823 / 0.830 114.1 / 34.3
Gemma / + NASA 0.778 / 0.771 0.923 / 0.907 0.676 / 0.690 0.777 / 0.784 107.8 / 71.8
Qwen / + NASA 0.829 / 0.844 0.921 / 0.907 0.694 / 0.742 0.792 / 0.816 209.6 / 107.2

MuSiQue
(Rephrased)

LLaMA / + NASA 0.720 / 0.757 0.859 / 0.815 0.555 / 0.683 0.675 / 0.743 199.8 / 64.0
Mistral / + NASA 0.649 / 0.707 0.848 / 0.802 0.416 / 0.594 0.558 / 0.682 131.2 / 110.7
Gemma / + NASA 0.518 / 0.503 0.837 / 0.834 0.529 / 0.555 0.648 / 0.667 259.8 / 96.2
Qwen / + NASA 0.621 / 0.639 0.883 / 0.858 0.482 / 0.552 0.624 / 0.672 418.8 / 282.9

Table 4: Model evaluation results on mathematical and logical reasoning datasets.

Dataset Model Accuracy Precision Recall F1 NAS

GSM8K
(Rephrased)

LLaMA / + NASA 0.537 / 0.545 0.587 / 0.531 0.336 / 0.838 0.428 / 0.650 218.2 / 74.7
Mistral / + NASA 0.501 / 0.512 0.518 / 0.509 0.163 / 0.782 0.247 / 0.617 115.5 / 77.0
Gemma / + NASA 0.533 / 0.524 0.546 / 0.541 0.837 / 0.887 0.661 / 0.672 159.6 / 66.2
Qwen / + NASA 0.538 / 0.576 0.640 / 0.614 0.534 / 0.738 0.582 / 0.670 210.9 / 82.9

MATH
(Rephrased)

LLaMA / + NASA 0.563 / 0.549 0.587 / 0.534 0.530 / 0.874 0.557 / 0.663 183.3 / 60.8
Mistral / + NASA 0.504 / 0.526 0.527 / 0.522 0.136 / 0.685 0.216 / 0.592 117.9 / 109.6
Gemma / + NASA 0.546 / 0.543 0.556 / 0.553 0.810 / 0.871 0.659 / 0.677 185.0 / 64.0
Qwen / + NASA 0.564 / 0.581 0.661 / 0.617 0.537 / 0.715 0.593 / 0.662 224.0 / 103.1

AR-LSAT
(Rephrased)

LLaMA / + NASA 0.513 / 0.518 0.547 / 0.537 0.297 / 0.444 0.385 / 0.486 178.1 / 63.6
Mistral / + NASA 0.511 / 0.530 0.547 / 0.553 0.280 / 0.447 0.370 / 0.494 108.7 / 80.02
Gemma / + NASA 0.509 / 0.510 0.525 / 0.523 0.468 / 0.534 0.495 / 0.528 151.7 / 68.0
Qwen / + NASA 0.492 / 0.496 0.529 / 0.528 0.110 / 0.182 0.182 / 0.270 317.6 / 207.3

we demonstrate that the components of our method
contribute effectively to tackling negative bias.

Meanwhile, the slight decrease in precision
might superficially appear as a performance de-
cline. However, it can be interpreted as enhanc-
ing the model’s trustworthiness by adjusting the
alignment between the model’s actual knowledge
and its responses. This means that precision might
slightly decrease because some samples incorrectly
categorized as true negatives due to negative bias
might shift to false positives. Specifically, even if
the model makes incorrect inferences or remains
uncertain about a question, in a binary decision
scenario, negative bias could lead to it being classi-
fied as a true negative. An analysis of the shifts in
negative responses due to NASA can be found in
Appendix H.

6 Analysis

We analyze the impact of NASA on the general
reasoning capability of LLMs beyond the binary
decision task which is the primary focus of this
work. After that, we examine the effect of NASA
on model calibration. Additionally, regarding per-
formance improvement and negative bias, we inves-
tigate the relationship between few-shot examples
and NASA in few-shot prompting scenarios. We

present an instruction following analysis and an
ablation study in Appendices I, J and K.

6.1 General Reasoning Abilities

We evaluate the performance of LLMs fine-tuned
with NASA on general QA reasoning tasks. We
utilize general reasoning benchmarks such as
MuSiQue, GSM8K, and AR-LSAT without the
transformation. For short-answer QA, we first ver-
ify whether each model-generated prediction in-
cludes an answer in these benchmarks and then
utilize GPT-4 to double-check whether the predic-
tion is semantically correct. To generate predictions
from the model, we utilize Prompt II in Section 4.1.
The content of the GPT-4 prompt for prediction
verification can be found in Table 15.

As shown in Table 5, models fine-tuned with
NASA show enhanced or maintained general rea-
soning abilities while effectively tackling negative
bias. Since negative bias is a task-specific factor
contributing to hallucination in binary decision
tasks, its influence on general reasoning QA, like
short-answer QA, is relatively low compared to
other factors contributing to hallucination such as
parametric knowledge. Therefore, improving rea-
soning ability in binary decision tasks does not
necessarily enhance reasoning capabilities in gen-

9986



Table 5: General QA reasoning ability of baseline (left
of “/”) and ours (right of “/”).

Model MuSiQue GSM8K AR-LSAT
LLaMA 0.594 / 0.596 0.329 / 0.325 0.235 / 0.227
Mistral 0.415 / 0.408 0.126 / 0.133 0.174 / 0.174
Gemma 0.139 / 0.137 0.257 / 0.251 0.125 / 0.131
Qwen 0.541 / 0.541 0.478 / 0.481 0.220 / 0.221

Table 6: Expected calibration error of baseline and ours.

Dataset Mistral + NASA
StrategyQA 0.120 0.116
MuSiQue (Rephrased) 0.278 0.212
GSM8K (Rephrased) 0.301 0.269
MATH (Rephrased) 0.353 0.260
AR-LSAT (Rephrased) 0.399 0.355

eral reasoning QA. This means that addressing bias
in binary decision tasks while maintaining perfor-
mance in general reasoning QA can be considered
an advancement in the model’s overall reasoning ca-
pability, not overfitted to the binary decision task.

6.2 Enhanced Model Calibration

As Fig 2 illustrates, the negative bias of LLMs
is also associated with the model’s confidence in
its predictions. This issue regarding the gap be-
tween prediction confidence and actual accuracy is
related to research on calibration, which aims to en-
hance the trustworthiness of LLMs (Kadavath et al.,
2022). Table 6 shows that the expected calibration
error (He et al., 2022) is reduced when NASA is
applied to Mistral. This indicates that NASA effec-
tively mitigates model bias, better aligning predic-
tion confidence and accuracy.

6.3 Analysis in a Few-shot Scenario

We compare the F1 scores of the baselines and
our models in a 4-shot setting on StrategyQA,
rephrased GSM8K / AR-LSAT. As shown in Table
7, we first observe that the F1 score gap between
the baselines and our models decreases compared
to the zero-shot scenario, as reported in Tables 3
and 4. Given that few-shot prompting has been
reported to improve model calibration (Kadavath
et al., 2022), these results suggest that the inclusion
of few-shot examples enhances model calibration,
thereby partially reducing negative bias. Neverthe-
less, our model consistently outperforms the base-
lines in terms of F1 score across all cases. This
indicates that NASA remains effective in mitigat-
ing negative bias in few-shot scenarios.

Table 7: Precision, recall, and F1 scores in a 4-shot
scenario (baseline / NASA).

Model Dataset Precision Recall F1

LLaMA
StrategyQA 0.899 / 0.872 0.812 / 0.851 0.853 / 0.862

GSM8K 0.543 / 0.532 0.720 / 0.870 0.619 / 0.661
AR-LSAT 0.562 / 0.557 0.431 / 0.590 0.488 / 0.573

Mistral
StrategyQA 0.877 / 0.832 0.824 / 0.889 0.850 / 0.859

GSM8K 0.548 / 0.522 0.763 / 0.885 0.638 / 0.656
AR-LSAT 0.552 / 0.532 0.589 / 0.720 0.570 / 0.612

Gemma
StrategyQA 0.903 / 0.897 0.654 / 0.659 0.758 / 0.760

GSM8K 0.588 / 0.590 0.876 / 0.894 0.704 / 0.711
AR-LSAT 0.550 / 0.535 0.366 / 0.405 0.439 / 0.461

Qwen
StrategyQA 0.901 / 0.894 0.770 / 0.805 0.830 / 0.847

GSM8K 0.596 / 0.569 0.765 / 0.827 0.670 / 0.674
AR-LSAT 0.535 / 0.546 0.194 / 0.303 0.285 / 0.390

7 Discussion

Through our experiments, we identify two key char-
acteristics of negative bias.

Model NAS may not negatively correlate with
F1 score during fine-tuning As shown in Table
19, we observe instances where freezing certain
parameters in the attention module yields higher F1
scores despite an increase in NAS. These results
suggest that a phase during fine-tuning exists where
the negative correlation between the F1 score and
NAS is disrupted. To mitigate performance degra-
dation, we introduce thresholds such as early stop-
ping and halting within our framework.

Accurate identification of negative attention
heads is crucial, and NAS facilitates this pro-
cess Our ablation study in Table 20 indicates that
fine-tuning randomly selected attention heads leads
to suboptimal results. In some cases, we observe
abnormal increases or decreases in model NAS, im-
plying the importance of fine-tuning problematic
attention heads rather than unrelated parameters.
Leveraging NAS and the probing set, we success-
fully detect negative attention heads, leading to
consistent improvements in the F1 score.

8 Conclusion

We identify a critical issue where large language
models exhibit negative bias in binary decision
tasks requiring complex reasoning. To address this
issue, we propose a negative attention score and em-
ploy it to discover query-agnostic negative heads.
By performing parameter-efficient tuning on these
heads, we introduce the NASA method, which ef-
fectively mitigates the bias problem. Our method
not only enhances the performance of the model
but also serves as a useful analytical framework
from the perspective of interpretability.
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Limitations

In this work, we focus on understanding the rela-
tionship between negative biases exhibited in fine-
tuned LLMs and attention heads. However, further
research is still needed to comprehend the causes
and mechanisms behind the occurrence of nega-
tive biases in LLMs, and we anticipate that our
observations and experimental results will lay the
groundwork for future work. Additionally, we have
adopted a scheme of fine-tuning a small number of
attention heads individually. In future work, it may
be possible to explore more time-efficient training
methods. While this study focuses on understand-
ing the characteristics of negative bias attention
heads, future work could involve a more integrated
research approach connecting various elements.
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Table 8: Data statistics of datasets utilized in our work.

Data # of Positives # of Negatives # of total
StrategyQA 1071 1219 2290
MuSiQue (Rephrased) 1208 1208 2416
GSM8K (Rephrased) 1001 999 2000
MATH (Rephrased) 1000 1000 2000
AR-LSAT (Rephrased) 820 777 1597

Table 9: Results of multiple regression alongside a cor-
relation for multiple comparisons. r2 denotes the effect
size.

Model Coefficient Corrected p-value r2

LLaMA −3.04 7.18E − 01 0.271
Mistral 19.57 1.22E − 03 0.060
Gemma 29.61 1.23E − 21 0.377
Qwen 126.03 4.65E − 69 0.265

A Data Statistics

Table 8 shows the statistics of dataset utilized in
our work.

B A Statistical Analysis of the
Relationship between Negative
Confidence and NAS

To analyze the impact of negative confidence on
model NAS, we conduct a multiple regression anal-
ysis by including positive confidence as a variable,
as shown in Table 9. In all cases except for LLaMA,
where the corrected p-value is high, negative confi-
dence is observed to have a statistically significant
positive correlation with model NAS. Meanwhile,
considering the effect sizes, future work could in-
vestigate additional factors influencing model NAS.

C Instructions for NASA

Table 12 presents the instructions utilized for
NASA process in our work and Table 11.

D Details of Binary Decision Data
Construction

To convert general QA datasets into binary decision
tasks, we create positive and negative examples
where the answers are “Yes” and “No”, respectively.
Note that StrategyQA is a yes-no QA dataset and
does not require a transformation.

MuSiQue, GSM8K, and MATH are short-answer
QA datasets, and AR-LSAT is a multiple-choice
dataset. For short-answer QA datasets, we use
Prompt I in Section 3.1.1 to generate positive
examples. AR-LSAT, a multiple-choice dataset,

utilizes the positive question generation prompt
from Table 13 to create questions with the an-
swer "Yes." Consequently, StrategyQA and AR-
LSAT (Rephrased) are yes-no QA datasets, while
MuSiQue (Rephrased), GSM8K (Rephrased), and
MATH (Rephrased) is the form of answer verifica-
tion.

D.1 GPT-4 Prompts for Negative Example
Construction

To construct negative examples, we utilize GPT-4.
In short-answer QA (i.e., MuSiQue, GSM8K, and
MATH), we use the wrong label generation prompt
from Table 13 to obtain incorrect answers. We then
replace the label in Prompt I with the incorrect
answer to generate a negative example.

In multiple choice (i.e., AR-LSAT), we use the
negative question generation prompt from Table
13 to create questions with the answer “No”. An
example of a rephrased AR-LSAT example can be
found in Table 14.

E Details of Parametric Sample Selection

As mentioned in Section 4.1, we construct the
probing and fine-tuning sets using the HotpotQA
dataset, which is a short-answer QA dataset. From
the HotpotQA dataset, we use samples that can be
correctly answered solely with parametric knowl-
edge, without any context, as our probing samples.
Specifically, we suppose that the probing samples
must meet the condition: the question should be an-
swerable using the model’s parametric knowledge.
To determine whether the question in the sample
meets the condition, we construct the prompt as
follows:

Prompt II (Inquiring Parametric Knowledge)

You MUST answer shortly the given ques-
tion based on your knowledge. Question:
{question} Answer:

This prompt is designed to identify attention
heads that attend to the negative token in the in-
struction even when a positive answer is expected.
We assume that if attention heads attend to the neg-
ative token when the model knows the correct an-
swer and the target answer is “Yes”, it is generated
by a negative bias in the model. This prompt effec-
tively selects samples that belong to the model’s
parametric knowledge while minimizing the influ-
ence of the model’s negative bias. We assume that
samples meet the condition if the model returns the
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correct answers for the prompt, and we use them as
the probing set. We utilize GPT-4 to verify whether
the prediction matches the label.

During the probing sample selection process, we
first input the question into the target model to
extract a prediction. Since the HotpotQA dataset
can contain various forms of answers, we use GPT-
4 to determine if the prediction corresponds to the
label. Specifically, we input the prompt from Table
15 into GPT-4 and only include samples in the
probing set if the response is “Yes”.

F Algorithm of Incremental Head Tuning

Algorithm 1 shows the details of head-wise incre-
mental tuning of NASA.

G Case Study for Negative Responses

In this section, we classify negative responses
based on the following criteria:

Firstly, in a general QA reasoning task, a model’s
response to a specific question can be broadly cate-
gorized into below two cases.

• Deterministic Case (Det): The model provides
a certain answer regardless of its correctness.

• Non-Deterministic Case (Non-Det): The
model fails to provide a certain answer, in-
dicating that the question is unanswerable due
to insufficient information from the given con-
text or its knowledge base.

Also, the deterministic case can be further classi-
fied based on whether the certain answer provided
by the model is correct (True) or incorrect (False).
Considering this, a model’s response to a general
question requiring a short answer can be catego-
rized into the following three types.

• True Deterministic (Det-T): The model pro-
vides a correct answer.

• False Deterministic (Det-F): The model pro-
vides an incorrect answer.

• Non-Deterministic (Non-Det): The model in-
dicates that the question is unanswerable.

Additionally, beyond the extrinsic responses of
the model, we can classify the model’s responses
based on the intrinsic factor of confidence. Specif-
ically, if the model exhibits low confidence in the
response, it can be considered closer to not know-
ing the answer to the question. We calculate the

Algorithm 1 Head-wise Incremental Tuning
Input: Fine-tuning set D, validation set V , model
ψ, single head NAS threshold ρ, list of negative
attention heads to be fine-tuned P , early halting
threshold τ , maximum training epoch T , set of all
layer and head indices L and H , respectively.
Output: NASA-tuned model.

1: for each (l, h) ∈ P do
2: ψinit = ψ
3: αinit = NAS(V, l, h)
4: βinit = NAS(V,L,H)
5: α = β =∞
6: for epoch = 1 to T do
7: Update ψ by fine-tuning h-th
8: attention head in the l-th layer using D.
9: α′ = NAS(V, l, h)

10: β′ = NAS(V,L,H)
11: if α′ > α or α′ < ρ or β′ > β then
12: break ▷ Early stopping
13: α← α′, β ← β′

14: if α′ > αinit or β′ > βinit then
15: ψ ← ψinit ▷ Update cancellation
16: if β′ < τ then
17: break ▷ Early halting
18: return ψ

entropy of the output distribution for the first to-
ken of the model’s response and use the median
value of these entropies across all responses to clas-
sify them as high-confidence (low-entropy) or low-
confidence (high-entropy). This classification is
performed based on the original model’s responses
before applying NASA method.

We apply this classification to cases where the
model gives a negative response in a binary de-
cision task. Negative responses can be classified
as true negative (TN) or false negative (FN), with
our focus in this discussion on FN. In this, an FN
response classified as high-confident Det-T is the
case where the model knows the answer is correct
but says “No”, while an FN response classified
as Non-Det is the case where the model doesn’t
know the correct answer and says “No”. For high-
confident Det-F responses, the model does not in-
dicate unanswerability but rather holds incorrect
knowledge. This issue falls outside the scope of our
methodology, which focuses on handling negative
bias in binary decision tasks rather than general
knowledge-intensive tasks.
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Although it is clear that the case where the model
knows the answer is correct but says “No” is the
most problematic, we argue that in a binary deci-
sion task, the case where the model doesn’t know
the correct answer and says “No” can be related
to the issue of negative bias. In a binary decision
task where the model must answer “Yes” or “No”,
instances where the model is uncertain about the
correct answer should result in an equal frequency
of positive (yes) and negative (no) responses. How-
ever, our analysis indicates that existing models
tend to output negative responses more confidently
and frequently (as shown in Figures 1 and 2 in the
paper). This suggests that when the model is uncer-
tain, it predominantly outputs negative responses,
which negatively impacts the trustworthiness of
these negative responses. Therefore, for models
exhibiting such negative bias, Non-Det and low-
confident responses should also be partially ad-
justed.

Table 16 shows the compositions of FN re-
sponses from the original models according to the
classifications mentioned. It is evident that across
all types of reasoning tasks examined in our work,
including multi-hop, mathematical, and logical rea-
soning, FN responses encompass two distinct cases:
(A) instances where the model recognizes the cor-
rect answer but incorrectly responds with “No”, and
(B) instances where the model lacks knowledge of
the correct answer and responds with “No”.

Meanwhile, for Gemma, we observe that the
model tends to generate overly cautious responses
when performing multi-hop QA. Specifically, in-
stead of selecting the “unanswerable” option for
multiple samples, Gemma rephrases its responses
in an alternative long-form manner. As a result, in-
stances that should have originally been classified
as Non-Det are instead categorized as Det-F. This
should be taken into account when interpreting the
results in Table 16.

H Analysis of Negative Responses
Shifting in NASA

In this section, we analyze the ratios of samples
which are originally responded to as negative by
the original model and subsequently changed to
positive by the NASA model. We categorize the
ratio cases by each classification group explained
in section G.

Table 17 illustrates the ratios of samples shifted
from FN to TP. This demonstrates that the Det-T

Table 10: Accuracy and F1 (left and right of “/”, respec-
tively) scores on various positive and negative tokens.

Type Dataset LLaMA + NASA

True/False
StrategyQA 0.855 / 0.828 0.866 / 0.853

MATH 0.559 / 0.452 0.574 / 0.583
AR-LSAT 0.512 / 0.306 0.506 / 0.405

Correct/Wrong
StrategyQA 0.852 / 0.838 0.846 / 0.840

MATH 0.545 / 0.660 0.544 / 0.675
AR-LSAT 0.523 / 0.540 0.522 / 0.590

corresponding to the case where the model knows
the answer is correct but says “No” generally has
the highest rate of change. This finding indicates
that our methodology does not indiscriminately
add positive bias to the model but rather enhances
the model’s binary decision reasoning ability effec-
tively.

Table 18 illustrates the ratios of samples shifted
from TN to FP. As discussed in the section on main
results, some samples that are incorrectly catego-
rized as TN due to negative bias might shift to FP
(Det-F), and this case does not correspond to the
model degradation. Actually, among the TN sam-
ples, those classified as Det-T with high confidence
exhibit a lower shift ratio compared to their Det-F
counterparts. This indicates that the model tends to
maintain predictions for samples that it can accu-
rately classify. In conclusion, it can be interpreted
that NASA has improved reasoning capability in
binary decision tasks while maintaining general
reasoning capability.

I Generalization to Universal Binary
Decision

We analyze the generalization ability for binary
decisions by replacing the positive and negative
vocabulary used in our fine-tuning set. Our fine-
tuning set consists of “Yes” and “No” in the in-
struction, and we test with the tokens “True” and
“False”, as well as “Correct” and “Wrong”. Table
10 presents the results of experiments with LLaMA
on three datasets transformed for the binary deci-
sion task. We observe that models fine-tuned with
NASA achieve semantic-level generalization with-
out overfitting to the specific vocabulary.

J Transferability across Various
Instructions

We fix the instruction for binary decision-making
throughout the application of our method. In this
section, we evaluate the robustness of our method
when presented with instructions in the inference
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Table 11: Accuracy and F1 (left and right of “/”, respec-
tively) scores on various instruction types.

It. Type Dataset LLaMA + NASA

A
MuSiQue 0.686/0.641 0.710/0.700
GSM8K 0.534/0.472 0.543/0.575

AR-LSAT 0.508/0.306 0.507/0.370

B
MuSiQue 0.708/0.692 0.736/0.756
GSM8K 0.536/0.611 0.531/0.665

AR-LSAT 0.512/0.382 0.518/0.500

stage that are different forms of content. We assess
the binary decision performance using the LLaMA
with and without NASA on benchmarks: MuSiQue,
GSM8K, and AR-LSAT using paraphrased instruc-
tion types A and B. Note that the datasets are trans-
formed for the binary decision task. Details of in-
struction types can be found in Appendix C. As
shown in Table 11, models fine-tuned with NASA
still demonstrate superior performance compared
to the baseline in both prompt types. This supports
our claim of instruction robustness for our method.
Fig 11 in Appendix C shows the content of instruc-
tions.

K Ablation Study

NASA updates the parameters related to the in-
ference of attention weights of negative attention
heads (i.e., query and key projection weights). To
demonstrate the effectiveness of NASA, we con-
duct two ablation studies: i) updating only the query
projection weight and ii) random attention head
tuning.

K.1 Freezing Key Projection Weight

We perform fine-tuning using the same pipeline as
before, except that we freeze the key projection
weight. Note that strategies such as early stopping
and halting, as well as other hyperparameters, re-
main the same as those used in the NASA settings.

The experimental results of NASA and freezing
key projection weights are shown in Table 19. In
general, both the F1 score and NAS are relatively
better for NASA, while the trend in accuracy is not
distinctly observable. An exceptional case is Qwen
at AR-LSAT, where NASA’s accuracy and F1 score
are significantly lower than those of its counterpart.

K.2 Random Attention Head Tuning

In another ablation study, we experiment by ran-
domly selecting attention heads to be fine-tuned.
As shown in Table 20, NAS typically outperforms

most others in terms of F1 score and expected cal-
ibration error. Notably, during random attention
head tuning, model NAS largely diverges in the
case of LLaMA and Mistral. These results im-
ply that carefully selecting attention heads is criti-
cal and our framework effectively detects and ad-
dresses negatively biased attention heads.

L Confidence Histogram Analysis

To analyze the confidence of binary decisions be-
tween the baseline and our model, we plot confi-
dence histograms for the LLaMA model, similar to
Fig 2. In Fig 5, we observe that NASA influences
the prediction confidence of LLMs in binary deci-
sion tasks. In the baseline model, except for Strate-
gyQA, we frequently observe the return of negative
responses with high confidence. On the other hand,
after incorporating NASA, the model demonstrates
a reduction in the frequency and confidence gap
between positive and negative responses.

Meanwhile, for datasets of mathematical reason-
ing, there has been a significant increase in the
frequency of positive responses, even though F1
scores also increased. As discussed in Section 5.2,
future research could explore additional regulariza-
tion during the fine-tuning process.

M Samples of Attention Heads

Fig 6 presents the real examples of attention
weights of heads in the LLaMA model for a
GSM8K rephrased sample. Fig 7 presents the real
examples of attention weights of heads in the
LLaMA model with NASA for the same GSM8K
rephrased sample.

N Computation

For all fine-tuning experiments, we use 2 NVIDIA
A40 GPUs for approximately 3 hours.

O Licenses

StrategyQA, MuSiQue, MetaMATH, and AR-
LSAT are under the license of MIT license, CC-
BY-4.0 license, MIT License, and MIT license,
respectively. LLaMA3-8B-Instruct, Mistral-7B-
Instruct-v0.3, Gemma-1.1-7b-it, and Qwen2-7B-
Instruct, and GPT-4 are under the license of META
LLAMA 3 COMMUNITY LICENSE AGREE-
MENT, Apache License 2.0, Gemma, Apache Li-
cense 2.0, and OpenAI, respectively.
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P Usage of AI Writing Assistance

This paper received linguistic assistance from the
AI assistant GPT-4, which provided services includ-
ing paraphrasing, spell-checking, and refinement
of the original content authored. No additional help
was utilized beyond this support.
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Table 12: Instructions used NASA process in our work and Table 11.

Instruction in NASA
You are given a question and you MUST answer Yes or No.

Instruction type A
You are asked a question that demands a clear Yes or No answer.

Instruction type B
A question is posed to you, and you are obligated to answer either Yes or No.

Table 13: GPT-4 prompts used in wrong label or question generation for binary decision sample construction.

Wrong Label Generation (MuSiQue, GSM8K, and MATH)
[System]

Generate the short wrong answer word for the given question. You MUST refer the given context
about the question.

[User]

Question: {question}
Context: {context}
Answer: {label}
Wrong answer:

Positive / Negative Question Generation (AR-LSAT)
[System]

Convert the given question to the binary Yes-No question based on the context about the given
question and the answer of the given question. The answer of the converted question must be YES.
Do NOT omit the condition in the given question like ‘If ...’ or ‘Suppose ...’. You MUST include
the entire contents of the given question to the converted question.

[User]

Context: {context}
Question: {question}
Answer: {label / wrong label}
Converted Question:
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Table 14: Examples of original datasets and rephrased AR-LSAT. Examples are sampled from StrategyQA (Geva
et al., 2021), MuSiQue (Trivedi et al., 2022), GSM8K-Rephrased and MATH-Rephrased (Yu et al., 2023), and
AR-LSAT (Zhong et al., 2021).

StrategyQA
Context: Depression is caused by low levels of serotonin, dopamine and norepinephrine. Monoamine Oxidase breaks
down neurotransmitters and lowers levels of serotonin, dopamine and norepinephrine.
Question: Would a Monoamine Oxidase candy bar cheer up a depressed friend?
Answer: No
MuSiQue (Original)
Context: [Title: President of the Confederate States of America] The president was indirectly elected by the people
through the Electoral College to a six - year term and was one of only two nationally elected Confederate officers ...
Question: When did the president of the Confederate States of America end his fight in the Mexican-American war?
Answer: 1848
GSM8K (Original)
Question: What is the total cost of purchasing equipment for all sixteen players on the football team, considering that
each player requires a $25 jersey, a $15.20 pair of shorts, and a pair of socks priced at $6.80?
Answer: 1500
MATH (Original)
Question: What is the sum of all positive integer values of n for which n+6

n
is an integer?

Answer: 23
AR-LSAT (Original)
Context: Hannah spends 14 days, exclusive of travel time, in a total of six cities. Each city she visits is in one of three
countries—X, Y, or Z. Each of the three countries has many cities. Hannah visits at least one city in each of the three
countries. She spends at least two days in each city she visits. She spends only whole days in any city. If the city of
Nomo is in country X, and if Hannah spends as many days as possible in Nomo and as few days as possible in each of
the other cities that she visits
Question: Which one of the following must be true?
(A) Hannah cannot visit any other cities in country X.
(B) Hannah can visit four cities in country Y.
(C) Hannah can spend six days in Nomo.
(D) Hannah cannot spend more than four days in country Z.
(E) Hannah can visit, at most, a total of four cities in countries Y and Z.
Answer: (B) Hannah can visit four cities in country Y.
AR-LSAT (Rephrased)
Question: Hannah spends 14 days, exclusive of travel time, in a total of six cities. Each city she visits is in one of three
countries—X, Y, or Z. Each of the three countries has many cities. Hannah visits at least one city in each of the three
countries. She spends at least two days in each city she visits. She spends only whole days in any city. If the city of
Nomo is in country X, and if Hannah spends as many days as possible in Nomo and as few days as possible in each of
the other cities that she visits can Hannah visit four cities in country Y?
Answer: Yes

Table 15: GPT-4 prompt used in prediction verification for the general reasoning task.

[System]

Can the prediction be considered as the same meaning as the answer to the question? You must
answer only yes or no.

[User]

Question: {context}
Prediction: {model prediction}
Answer: {label}
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Table 16: Composition of false negative samples of original models in the rephrased datasets. High denotes high-
confident and Low denotes low-confident.

Dataset Model Det-T Det-F Non-Det
High Low High Low High Low

MuSiQue

LLaMA 0.21 0.182 0.141 0.261 0.04 0.166
Mistral 0.159 0.103 0.218 0.27 0.095 0.155
Gemma 0.009 0.022 0.546 0.42 0 0.003
Qwen 0.25 0.174 0.139 0.327 0.007 0.104

GSM8K

LLaMA 0.209 0.092 0.286 0.414 0 0
Mistral 0.076 0.03 0.407 0.486 0.001 0
Gemma 0.097 0.065 0.378 0.459 0 0
Qwen 0.194 0.121 0.278 0.407 0 0

AR-LSAT

LLaMA 0.057 0.06 0.303 0.312 0.158 0.11
Mistral 0.058 0.078 0.385 0.437 0.002 0.04
Gemma 0.011 0.025 0.49 0.474 0 0
Qwen 0.068 0.108 0.306 0.413 0.092 0.013

Table 17: Response shift ratio by NASA on false negative samples (FN→ TP ratio) in the rephrased datasets. High
denotes high-confident and Low denotes low-confident.

Dataset Model Det-T Det-F Non-Det
High Low High Low High Low

MuSiQue

LLaMA 0.364 0.39 0.268 0.326 0.136 0.197
Mistral 0.432 0.449 0.265 0.28 0.203 0.163
Gemma 0.185 0 0.029 0 0 0
Qwen 0.122 0.15 0.074 0.093 0 0.032

GSM8K

LLaMA 0.662 0.694 0.629 0.715 N/A N/A
Mistral 0.817 0.667 0.746 0.638 1 N/A
Gemma 0.14 N/A 0.254 N/A N/A N/A
Qwen 0.315 0.586 0.389 0.386 N/A N/A

AR-LSAT

LLaMA 0.5 0.432 0.298 0.33 0.228 0.281
Mistral 0.585 0.189 0.289 0.195 0 0
Gemma 0.143 0.158 0.146 0.131 N/A N/A
Qwen 0.22 0.098 0.079 0.095 0.062 0.111
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Table 18: Response shift ratio by NASA on true negative samples (TN→ FP ratio) in the rephrased datasets. High
denotes high-confident and Low denotes low-confident.

Dataset Model Det-T Det-F Non-Det
High Low High Low High Low

MuSiQue

LLaMA 0.057 0.06 0.144 0.112 0 0.06
Mistral 0.073 0.075 0.097 0.08 0.119 0.032
Gemma 0 N/A 0.007 N/A 0 N/A
Qwen 0.009 0.018 0.015 0.026 0 N/A

GSM8K

LLaMA 0.587 0.632 0.516 0.606 N/A N/A
Mistral 0.784 0.65 0.736 0.652 N/A N/A
Gemma 0.271 N/A 0.188 N/A N/A N/A
Qwen 0.213 0.208 0.234 0.303 N/A N/A

AR-LSAT

LLaMA 0.229 0.349 0.306 0.247 0.176 0.21
Mistral 0.208 0.204 0.248 0.162 0 0.174
Gemma 0.133 0.083 0.152 0.134 N/A N/A
Qwen 0.109 0.041 0.13 0.095 0 0

Table 19: Ablation results of updated parameters (NASA / query projection only).

Dataset Model Accuracy Precision Recall F1 NAS ECE

StrategyQA
LLaMA 0.877 / 0.877 0.864 / 0.895 0.875 / 0.836 0.869 / 0.864 55.0 / 96.2 0.102 / 0.128
Mistral 0.830 / 0.849 0.802 / 0.846 0.861 / 0.837 0.830 / 0.841 34.3 / 71.9 0.116 / 0.114
Gemma 0.771 / 0.774 0.907 / 0.907 0.690 / 0.692 0.784 / 0.785 71.8 / 79.2 0.162 / 0.161
Qwen 0.844 / 0.836 0.907 / 0.915 0.742 / 0.716 0.816 / 0.804 107.2 / 194.9 0.106 / 0.115

MuSiQue
(Rephrased)

LLaMA 0.757 / 0.741 0.815 / 0.844 0.683 / 0.609 0.743 / 0.707 64.0 / 118.6 0.039 / 0.055
Mistral 0.707 / 0.704 0.802 / 0.821 0.594 / 0.558 0.682 / 0.664 110.7 / 185.9 0.212 / 0.217
Gemma 0.503 / 0.510 0.834 / 0.836 0.555 / 0.552 0.667 / 0.665 96.2 / 107.1 0.276 / 0.274
Qwen 0.639 / 0.622 0.858 / 0.873 0.552 / 0.500 0.672 / 0.636 282.9 / 405.7 0.200 / 0.215

GSM8K
(Rephrased)

LLaMA 0.545 / 0.558 0.531 / 0.551 0.838 / 0.688 0.650 / 0.612 74.7 / 123.6 0.170 / 0.105
Mistral 0.512 / 0.511 0.509 / 0.515 0.782 / 0.463 0.617 / 0.487 77.0 / 127.4 0.269 / 0.294
Gemma 0.524 / 0.517 0.541 / 0.542 0.887 / 0.888 0.672 / 0.673 66.2 / 74.7 0.346 / 0.349
Qwen 0.576 / 0.560 0.614 / 0.634 0.738 / 0.606 0.670 / 0.620 82.9 / 141.6 0.115 / 0.085

MATH
(Rephrased)

LLaMA 0.549 / 0.572 0.534 / 0.562 0.874 / 0.740 0.663 / 0.639 60.8 / 103.6 0.175 / 0.118
Mistral 0.526 / 0.533 0.522 / 0.549 0.685 / 0.384 0.592 / 0.452 109.6 / 152.8 0.260 / 0.299
Gemma 0.543 / 0.539 0.553 / 0.555 0.871 / 0.867 0.677 / 0.677 64.0 / 73.0 0.340 / 0.338
Qwen 0.581 / 0.549 0.617 / 0.639 0.715 / 0.611 0.662 / 0.624 103.1 / 187.5 0.162 / 0.168

AR-LSAT
(Rephrased)

LLaMA 0.518 / 0.510 0.537 / 0.536 0.444 / 0.337 0.486 / 0.414 63.6 / 109.2 0.227 / 0.245
Mistral 0.530 / 0.526 0.553 / 0.556 0.447 / 0.382 0.494 / 0.453 80.02 / 121.3 0.355 / 0.382
Gemma 0.510 / 0.514 0.523 / 0.526 0.534 / 0.551 0.528 / 0.539 68.0 / 75.6 0.372 / 0.383
Qwen 0.496 / 0.559 0.528 / 0.643 0.182 / 0.574 0.270 / 0.607 207.3 / 204.4 0.359 / 0.384
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Table 20: Ablation results of attention head selection (NASA / random attention heads).

Model Dataset Accuracy Precision Recall F1 NAS ECE

LLaMA

StrategyQA 0.877 / 0.870 0.864 / 0.924 0.875 / 0.789 0.869 / 0.851 55.0 / −507.6 0.102 / 0.176
MuSiQue 0.757 / 0.722 0.815 / 0.862 0.683 / 0.547 0.743 / 0.669 64.0 / −956.7 0.039 / 0.076
GSM8K 0.545 / 0.554 0.531 / 0.570 0.838 / 0.482 0.650 / 0.522 74.7 / −433.8 0.170 / 0.109
MATH 0.549 / 0.562 0.534 / 0.573 0.874 / 0.561 0.663 / 0.567 60.8 / −390.1 0.175 / 0.095

AR-LSAT 0.518 / 0.518 0.537 / 0.570 0.444 / 0.249 0.486 / 0.346 63.6 / −817.5 0.227 / 0.259

Mistral

StrategyQA 0.830 / 0.849 0.802 / 0.888 0.861 / 0.784 0.830 / 0.833 34.3 / 750.8 0.116 / 0.112
MuSiQue 0.707 / 0.679 0.802 / 0.850 0.594 / 0.483 0.682 / 0.616 110.7 / 1405.1 0.212 / 0.244
GSM8K 0.512 / 0.518 0.509 / 0.539 0.782 / 0.287 0.617 / 0.374 77.0 / 1055.0 0.269 / 0.339
MATH 0.525 / 0.528 0.522 / 0.563 0.685 / 0.266 0.592 / 0.361 109.6 / 1042.2 0.260 / 0.354

AR-LSAT 0.530 / 0.514 0.553 / 0.551 0.447 / 0.290 0.494 / 0.380 80.0 / 1015.0 0.355 / 0.396

Gemma

StrategyQA 0.771 / 0.780 0.907 / 0.922 0.690 / 0.678 0.784 / 0.782 71.8 / 104.7 0.162 / 0.165
MuSiQue 0.503 / 0.532 0.834 / 0.829 0.555 / 0.534 0.667 / 0.650 96.2 / 123.8 0.276 / 0.279
GSM8K 0.524 / 0.533 0.541 / 0.540 0.887 / 0.855 0.672 / 0.662 66.2 / 103.5 0.346 / 0.357
MATH 0.543 / 0.547 0.553 / 0.554 0.871 / 0.835 0.677 / 0.666 64.0 / 105.4 0.340 / 0.331

AR-LSAT 0.510 / 0.513 0.523 / 0.529 0.534 / 0.489 0.528 / 0.508 68.0 / 98.6 0.372 / 0.374

Qwen

StrategyQA 0.844 / 0.832 0.907 / 0.917 0.742 / 0.705 0.816 / 0.797 107.2 / 202.0 0.106 / 0.116
MuSiQue 0.639 / 0.627 0.858 / 0.880 0.552 / 0.505 0.672 / 0.642 282.9 / 392.8 0.200 / 0.221
GSM8K 0.576 / 0.540 0.614 / 0.637 0.738 / 0.562 0.670 / 0.597 82.9 / 195.7 0.115 / 0.091
MATH 0.581 / 0.563 0.617 / 0.652 0.715 / 0.556 0.662 / 0.600 103.1 / 201.3 0.162 / 0.168

AR-LSAT 0.496 / 0.493 0.528 / 0.530 0.182 / 0.117 0.270 / 0.192 207.3 / 299.4 0.359 / 0.392
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Figure 5: Confidence histograms of LLaMA before and after NASA.
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1

Figure 6: Examples of attention heads of LLaMA for a GSM8K dataset sample.

1

Figure 7: Examples of attention heads of LLaMA model with NASA for a GSM8K dataset sample.
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