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Abstract
The detection of scenes in literary texts is a re-
cently introduced segmentation task in compu-
tational literary studies. Its goal is to partition
a fictional text into segments that are coherent
across the dimensions time, space, action and
character constellation. This task is very chal-
lenging for automatic methods, since it requires
a high-level understanding of the text. In this
paper, we provide a thorough analysis of the
State of the Art and challenges in this task, iden-
tifying and solving a problem in the training
procedure for previous approaches, analysing
the generalisation capabilities of the models
and comparing the BERT-based SotA to cur-
rent Llama models, as well as providing an
analysis of what causes errors in the models.
Our change in training procedure provides a
significant increase in performance. We find
that Llama-based models are more robust to
different types of texts, while their overall per-
formance is slightly worse than that of BERT-
based models.

1 Introduction

Research in the area of computational literary stud-
ies (CLS), where one of the main goals is to provide
a computational understanding of literary texts, of-
ten has to deal with texts that are much longer than
other areas of NLP. This leads to challenges for
tasks like co-reference resolution, where models
scale very badly with input length (Lee et al., 2017;
Joshi et al., 2020) and their performance deteri-
orates on longer texts. Therefore, splitting these
texts into coherent segments can be very helpful
for further analysis. Additionally, a segmentation
that is rooted in narrative theory can also be used
to gain insights into the development of the plot of
a story (Konle and Jannidis, 2022).

In this paper, we address several questions with
regard to the State of the Art in Scene Segmenta-
tion. Our main contributions are as follows: (1) We
identify a problem in the current state of the art

model based on Sequential Sentence Classification
and propose a modified training sample generation
scheme designed to alleviate this issue. (2) We anal-
yse how the relation between training and test data
influences the performance of Scene Segmentation
by employing training and test sets composed of
different types of literature (dime novels, high lit-
erature and an additional out of distribution test
set). (3) We question the previous evaluation met-
rics used for Scene Segmentation, arguing that the
exact F1-score underestimates the performance of
the models. (4) We evaluate the performance of
current LLMs, specifically versions of Llama-3
and GPT-4o, in both a zero-shot prompting and a
fine-tuning setting to see how they compare to the
SotA in Scene Segmentation, which is still based
on BERT. (5) Finally, we analyse the errors made
by the best model and identify open challenges.1

2 Task Description

The task of automatic scene segmentation was for-
mally defined by Zehe et al. (2021a). The goal
is to segment a literary text into scenes, which
are parts of the text with a consistent pattern in
the four dimensions time, space, character and ac-
tion. A break in these dimensions corresponds to a
scene change. In addition to these scenes, texts can
also contain non-scenes, which are (usually short)
parts of the text without a consistent pattern in the
four dimensions. These non-scenes are commonly
used for introductory segments before a scene or
to summarise the events of a longer period of time.
Zehe et al. (2021a) define the task of scene segmen-
tation as one of two sentence-level classification
tasks: The simpler, binary version only uses the
classes NOBORDER and BORDER (ignoring the dis-
tinction between scenes and non-scenes), while
the full task has the four classes SCENE-SCENE,

1Code and data are available at https://github.com/
LSX-UniWue/scene-segmentation.
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SCENE-NONSCENE, NONSCENE-SCENE or NOBORDER.
In this paper, we focus on the binary task for sev-
eral reasons: (a) the number of non-scenes in a text
is usually very small compared to the number of
scenes (cf. Table 5), meaning that the dataset for
fine-grained classification is even more imbalanced
than for binary classification, (b) previous work has
shown that even the binary task is very challenging
(Zehe et al., 2021a,b), (c) the distinction between
scenes and non-scenes is not necessary for most
subsequent analyses like co-reference resolution
and the tracking of developments over time and
(d) the classification into scenes and non-scenes
can be done in an independent second step. There-
fore, we define scene segmentation as a binary clas-
sification task of each sentence in a text as either a
scene border or no scene border.

Note that our labels can directly be mapped
to IOB2 labels (Tjong Kim Sang and Veenstra,
1999): The scene-begin label B is identical to
our BORDER label and the within-scene label I
corresponds to NOBORDER. We decided to use the
BORDER/NOBORDER labels for consistency with pre-
vious work (Zehe et al., 2021a).

3 State of the Art

The concept of scenes has existed in narratology
for a long time (Genette, 1983) as a part of the
narration where the amount of time that passes
in the narrative (story time, or histoire) and the
amount of time covered by its narration (narrated
time, or discours) are roughly equal. While there
have been some earlier computational approaches
to scene segmentation (Kozima and Furugori, 1994;
Reiter, 2015), the task has more recently been dis-
cussed in detail (Gius et al., 2019) and finally been
formalised, along with the introduction of an an-
notated dataset and experiments based on a BERT-
model (Zehe et al., 2021a). Consequently, there has
been a shared task (Zehe et al., 2021b) introducing
several new ideas. The existing approaches can be
divided into multiple categories:

Unsupervised Baseline Approaches Zehe et al.
(2021a) present two baseline approaches using stan-
dard text segmentation techniques, namely Text-
Tiling (Hearst, 1997) and TopicTiling (Riedl and
Biemann, 2012). Unsurprisingly, both of these ap-
proaches are not able to capture the notion of scenes
at all, as they are not designed with the notion of
scenes in mind.

End-to-End Deep Learning Approaches The
next group of models are based purely on end-to-
end deep learning with no additional features.

The first approach in this group is the BERT-
based model presented as a supervised baseline by
Zehe et al. (2021a). A pre-trained BERT-model2 is
fine-tuned in a leave-one-text-out fashion to clas-
sify, for each sample, whether there is a scene
boundary before sentence.

Another approach purely based on an end-to-end-
model was proposed by Kurfali and Wirén (2021)
and also used by (Ehrmanntraut et al., 2023), who
apply the sequential sentence classification model
proposed by Cohan et al. (2019) to scene segmen-
tation. We directly build on this approach and pro-
vide a detailed description in Section 4.1.

Multi-Stage Approaches The models in this
group use different kinds of multi-stage approaches,
that is, they convert the text into some vector repre-
sentation by use of a first model and then use this
representation as input to a second model, which is
trained to predict scene boundaries.

Gombert (2021) aim at building a sentence rep-
resentation that distinguishes between sentences
forming a scene border and sentences within a
scene. To this end, they first train a model based
on sBERT (Reimers and Gurevych, 2019), taking
into account both a sentence and its context. Since
they notice that this representation on its own is
not enough to distinguish between the classes reli-
ably, they they use it as input for a gradient-boosted
decision tree ensemble for classification.

Schneider et al. (2021) introduce an “Embedding
Delta Signal”, which is based on a sliding window
of word embeddings clusters. For each window,
they build a vector representation counting and nor-
malising the number of word embeddings assigned
to a set of clusters within the first and the second
window. They define the cosine distance between
these two vectors as a measure of the topical differ-
ence between the two parts and select the windows
with the highest cosine distance as scene borders.
In an additional step, they train an SVM to classify
each of their detected segments as either a scene or
a non-scene.

Knowledge-Enriched Approaches The final set
of models is based on the knowledge of which text
elements are relevant to the definition of scenes,
specifically time, place and character constellation.

2https://deepset.ai/german-bert.
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Barth and Dönicke (2021) manually design gen-
eral (tense of verbs, POS tags, etc.) and scene-
specific (temporal and locational expressions and
entity mentions) features and use these as input to
a random forest classifier.

Hatzel and Biemann (2021) focus on the charac-
ter constellation, using entity features extracted
from the text by use of a co-reference model
(Schröder et al., 2021) in addition to a BERT-
based encoder. Entity features and the BERT-
representation are fed into a linear layer, which
is trained to detect scene borders. Since this model
tends to predict too many scene boundaries in close
vicinity, the authors add an algorithm to aggregate
the local decisions of the model (which only takes
into account a small area of the text) to global
decisions, where these very short scenes can be
penalised harshly.

4 Approaches to Scene Segmentation

We compare different approaches to our task, based
on either a BERT-style model or a current LLM.

4.1 BERT – Sequential Sentence Classification

Our initial model, following (Kurfali and Wirén,
2021; Ehrmanntraut et al., 2023), is based on the
Sequential Sentence Classification (SSC) architec-
ture introduced by Cohan et al. (2019). The main
idea is to use a pre-trained language model (e.g.,
BERT) to get a representation for a sequence of sen-
tences and then assign each of these sentences to
a set of classes C. To this end, the input sequence
is pre-processed in a specific way, adding a [SEP]
token after every sentence. For example, the in-
put ‘This is a sample. It consists of two sentences’
would be transformed to ‘[CLS] This is a sample.
[SEP] It consists of two sentences. [SEP]’. After
passing this input through a language model, build-
ing contextualised representations for each token,
the representations of these [SEP]-tokens are then
used as input to a classifier, which predicts a class
label for each [SEP] token (i.e., each sentence)
individually. Figure 1 provides a visualisation of
the model. We follow Kurfali and Wirén (2021);
Ehrmanntraut et al. (2023) in adapting this archi-
tecture for scene segmentation, since it provides a
natural way of detecting whether a sentence starts
a new scene while taking into account the context
provided by the surrounding sentences.

𝐓 𝐒𝐄𝐏𝐓 𝐬𝟏𝐓 𝐂𝐋𝐒

MLP

BERT

[SEP]Sentence	1[CLS] [SEP]Sentence	2 [SEP]Sentence	3

Sentence	3Sentence	2Sentence	1

𝐓 𝐒𝐄𝐏𝐓 𝐬𝟏 𝐓 𝐒𝐄𝐏𝐓 𝐬𝟏

𝒚𝟏 𝒚𝟐 𝒚𝟑

Document:
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Figure 1: The Sequential Sentence Classification model
proposed by Cohan et al. (2019). Visualisation copied
from the original paper.

4.2 Llama – Generative Scene Segmentation

Since the current State of the Art in NLP is usually
based on pre-trained Large Language Models like
Llama 3 (Dubey et al., 2024), we want to evaluate
how these models compare to the performance of
our BERT-based classifier. The SSC approach de-
scribed in the previous section cannot be adapted
for decoder-based models like Llama in a straight-
forward way, mostly for two reasons: First, Llama
does not contain a separator-token in the sense of
the BERT-model. While it is easily possible to add
a special token for this purpose, this token would
not be pre-trained to serve as a separator between
multiple sentences, as is the case for the BERT
model. Secondly, using Llama to encode the input
in the same way as the BERT-model would give the
representations of the SEP-tokens access to only
the tokens up to the respective sentence, not the
following sentences, due to the decoder-based na-
ture of the model. This is problematic for scene
segmentation, where the model needs to decide
whether there is a significant change in the text at
the location of the SEP token.3 Due to these issues,
we decided to not employ the Llama-models for the
Sequential Sentence Classification approach, but
in two ways based on the text generation task they
are usually used for.

Prompting First, we employ different variations
of the Llama 3 model in a prompting setting. We
build a prompt (cf. A.2) by giving the model a
short description of what we define as a scene and
a snippet of text with one sentence marked and then
asking it whether the marked sentence starts a new
scene, as well as to provide a reason for its answer.

3Approaches to alleviate this like
LLM2Vec (BehnamGhader et al., 2024) are promising
directions for future work.
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Fine-tuning In addition to the pure prompting
task for the pre-trained models, we also fine-tune
the models for our task, comparing different strate-
gies for building the prompt: No-CoT: The first
prompt is the same as used in the prompting set-
ting. It does not employ Chain of Thought (Wei
et al., 2022) prompting, but rather asks the model
to first provide a yes/no answer and then follow up
with a reason. CoT-List: The prompt is designed
to guide the model in its reasoning process, ask-
ing it to go over each of the dimensions used in
our scene definition explicitly, answering "There
is [a/no] significant change in [dimension]" and
finally provide a classification. The full prompts
and response templates are given in Appendix A.2.

5 Data

We use an extended version of the dataset from
Zehe et al. (2021b), containing annotations for
41 texts or text fragments, with Table 5 (Ap-
pendix A.8) providing a full list of annotated texts
as well as statistics about text length, the number of
(non-)scenes and their average length for each text.
Note that, in this paper, we make no distinction
between scenes and non-scenes and only provide
the statistics separately for informative purposes.
We can see that the number of sentences in a text is
much higher than the number of scenes, meaning
that scene borders are indeed rare, leading to an
imbalanced classification problem. The texts that
are not part of the previous dataset (Zehe et al.,
2021b) are marked in bold in Table 5. They have
been annotated by student assistants and university
employees with background in computational liter-
ary studies according to the same guidelines (Gius
et al., 2021) and using the same annotation proce-
dure as the original dataset. Following (Zehe et al.,
2021a), we calculate Inter Annotator Agreement
using Mathet’s γ (Mathet et al., 2015), reaching a
value of 0.827 for the newly annotated texts.4

We form several different training and test
datasets from these annotated texts, in order to
evaluate the generalisation capabilities of our mod-
els: STSS-Train: the original training dataset
from the STSS, consisting entirely of dime nov-

4Refer to Appendix A.1 for a discussion of the problems
of this metric. We use the implementation from https://
github.com/bootphon/pygamma-agreement/ with default
parameters. This gives us γ = 0.608 for the annotations
from (Zehe et al., 2021a), which is notably lower than what
is reported in the paper. However, since our new annotations
reach a higher γ than the original dataset, their quality can be
considered sufficient.

els, Train-with-High: a new dataset consisting of
STSS-Train and high literature texts, Train-Full:
Train-with-High with additional dime novels,
STSS-Test-1: the original test dataset for track
1 of STSS, also consisting entirely of dime novels,
STSS-Test-2: the original test dataset for track
2 of STSS, consisting entirely of high literature
texts, OOD-Test: a new out-of-distribution test
dataset consisting of texts that are neither dime nov-
els nor high literature Test-Full: STSS-Test-1 +
STSS-Test-2 + OOD-Test.

The assignment of texts to the different sets is
given in Table 6. Since many of the texts both in
the original dataset as well as in our extension are
copyrighted, we cannot publish the full dataset and
choose the same access modality as (Zehe et al.,
2021a,b): We provide access to standoff annota-
tions for research purposes and provide help in
merging them to the full texts upon request.

6 Experiments

6.1 Evaluation Metrics

The evaluation of scene segmentation poses some
challenges of its own, wherefore multiple evalua-
tion metrics have been used in the past. In their
original task description paper, Zehe et al. (2021a)
propose to use both the F1-score for an exact match
of predicted and annotated scene boundaries, and
one component of Mathet’s γ (Mathet et al., 2015)
for a more lenient score. In this paper, we propose
the use of a less strict modification of the F1-score,
trying to capture the advantages of both metrics.
We provide a discussion of additional possible met-
rics in Appendix A.3.

Exact F1-Score An exact F1-score can be com-
puted for scene segmentation by labelling each
sentence in the text as either BORDER or NOBORDER
and computing an F1-score for these classifications.
This exact F1-score is a very strict metric for the
evaluation of scene segmentation, since it does not
allow even a very small deviation of the predicted
boundaries from the gold annotations. That means
that moving the boundary by one sentence in ei-
ther direction would be counted as a complete miss,
which is not well-aligned with the task of scene
segmentation: missing the annotated border by a
few sentences may in some cases not even be an
error at all, since the essence of the scene is still
captured by the predicted border.
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Mathet’s γ Zehe et al. (2021a) use Mathet’s γ as
both an inter-annotator agreement score as well -
in a modified way - as an evaluation metric. While
γ seems fitting due to its capability of dealing with
multiple segment types (scenes and non-scenes)
and alleviating the very harsh requirement of the
F1-Score to match the exact right sentence, we
encountered several problems with it in practice:
First, the metric requires setting multiple hyper-
parameters whose optimal values are not intuitively
clear. Secondly, we found multiple implementa-
tions of the metric, which sometimes return signif-
icantly different values of γ for the same data (cf.
Appendix A.1). Due to these problems, we decided
to drop the use of γ as an evaluation metric.

Relaxed F1-score We propose to use a variant of
the F1-score, which we call relaxed. For this score,
we apply a tolerance t to the predictions made by
the model: We add a post-processing step to the pre-
dicted labels, where, if a predicted scene border is
within t sentences of a gold annotated scene border,
we move the predicted scene border to the correct
position. After that, we calculate the sentence-level
F1-score as usual. We use the relaxed F1-score for
evaluation and set the tolerance to t = 3, meaning
that a predicted scene border is considered correct
if it is no more than three sentences next to a gold
annotated scene border. All reported scores are for
the minority class BORDER. We compute the dataset-
level score as the unweighted average of the scores
for all texts in the dataset.

6.2 BERT – Sequential Sentence Classification

Embedding Model We evaluate three differ-
ent embeddings models for the Sequential Sen-
tence Classification architecture: Kurfali and Wirén
(2021) originally used a GBERT-Large model5. We
compare this to a smaller GBERT-Base model6

as well as the Fiction-GBERT-Large7 used in
Ehrmanntraut et al. (2023) that was additionally
fine-tuned on German literature.

Sample Generation Kurfali and Wirén (2021)
train the model by splitting a novel into non-
overlapping context windows of a size correspond-
ing to the language model used. Each of these win-
dows corresponds to one training sample, where
the model is trained to predict, for each sentence

5https://huggingface.co/deepset/gbert-large.
6https://huggingface.co/deepset/gbert-base.
7https://huggingface.co/lkonle/

fiction-gbert-large.

in the window, whether there is a scene border at
this sentence. We call this strategy full-stride,
since it always advances the current position by a
full window.

We argue that this introduces a problem where,
for some sentences, the model has access to very
limited context on one side. In the extreme cases
(first and last sentence of a window), the model
does not have any information about the text pre-
ceding or following this sentence and needs to
make the prediction purely based on the context
on the other side. This is undesired, since scene
borders are defined by a change in the dimensions
space, time, action or character constellation and
therefore can only be reliably detected by taking
into account the context on both sides of the po-
tential border. We start by analysing whether our
intuition is correct and this does indeed cause a
notable amount of errors. To this end, we train
an SSC model with Fiction-GBERT-Large as its
embedding model, analogous to (Ehrmanntraut
et al., 2023) on Train-Full and evaluate it on
Test-Full. Figure 2 shows the count of true pos-
itives and false negatives grouped by distance to
the closest window border. We see that the full
stride (bars labelled with f) used in previous re-
search leads to many false negatives directly at the
window border, where no or very limited context is
available on one side of the current sentence.

In order to address this issue, we propose to
build the context windows in a different manner:
We build context windows with overlap, starting
window n+ 1 at the sentence in the middle of win-
dow n, and refer to this strategy as half-stride.
Since this means that a sentence is part of multiple
windows, we also get multiple predicted labels for
each sentence. We select the prediction which has
the most balanced context (measured by number
of sentences on either side of the target sentence)
as the final prediction. Training the same model
with the half-stride strategy naturally addresses
this, since samples with very limited context on
one side of the current sentence are only used for
classification if the sentence is at the beginning or
the end of the full text. The bars labelled with h
in Figure 2 show the results for the same model
trained with the half-stride strategy. We see that
the errors directly at the window borders vanish, as
expected. We will see in Section 7 that this training
strategy also improves the results overall.
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Figure 2: Correctly and incorrectly classified scene borders by distance to the closest window border using full (f)
and half (h) stride. Sentences with 0 distance are directly at the border of the context window used for classification.

Hyper-Parameters Unless otherwise specified,
we use a random seed of 1 and train all models for 5
epochs with learning rate 1×10−6 using the default
HuggingFace trainer. We fine-tune the embedding
model along with the classification head.

6.3 Llama – Generative Scene Segmentation

We use Llama models in the two ways described
above: Prompting and fine-tuning.

Prompting For prompting, we use an Ollama
API8 and the three different models Llama 3 8b9,
70b10 and the recently released Lllama 3.1 405b11.

We iterate over the texts in the test dataset, con-
structing a sample from each sentence by wrapping
it in a <sentence>...</sentence> marker and
surrounding it with context on either side up to a to-
tal of up to 512 tokens, balanced by the number of
sentences. We keep the context size at 512 to allow
a fair comparison to the BERT-based models. Note
that, while only the Llama 3.1 models are officially
marked as being multilingual, initial experiments
confirmed that Llama 3 is able to understand our
German input texts well enough.

Fine-Tuning We use the Unsloth library12 for
fine-tuning the models. We fine-tune a 4bit-
quantised version of Llama 3 8b13 using QLoRA
adapters, with the config listed in Appendix A.4.
We do not fine-tune the 70b and 405b version due

8https://ollama.com/.
9https://ollama.com/library/llama3:8b.

10https://ollama.com/library/llama3:70b.
11https://ollama.com/library/llama3.1:405b.
12https://github.com/unslothai/unsloth.
13https://huggingface.co/unsloth/

llama-3-8b-Instruct-bnb-4bit.

to lack of computational resources. We generate a
training sample for each sentence as in the prompt-
ing approach. However, due to the high computa-
tional cost of training the Llama models and the
very imbalanced label distribution, we sub-sample
the non-border sentences: We select all positive
samples (label BORDER) and 10% of the negative
samples (label NOBORDER). For evaluation, we build
samples for each sentence in the test sets in the
same way (without sub-sampling). We use regular
expressions to match the answer templates for the
respective prompt to extract the classification and
reasoning from the text generated by the model.

7 Results

7.1 BERT – Sequential Sentence Classification

The first two lines in Table 1 show the results of an
SSC model analogous to Ehrmanntraut et al. (2023)
(LLPro) trained on Train-Full and evaluated on
the different test splits, as well as the same model
trained with our modified sample generation (LL-
Pro + Half Stride). We see that, across all datasets,
the half-stride strategy provides clear improve-
ments in performance. The next four lines provide
results for using GBERT-Large and GBERT-Base as
an embedding model. Note that the GBERT-Large
setting is a reimplementation of the best model
from the STSS (Kurfali and Wirén, 2021). Again,
half-stride consistently improves results across
all datasets. We also see that performance between
GBERT-Large and Fiction-GBERT-Large is gen-
erally comparable, while GBERT-Base clearly per-
forms worse. Interestingly, contrary to the findings
in Ehrmanntraut et al. (2023), GBERT-Large outper-
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Figure 3: Median F1-Scores over 5 seeds for BERT SSC
models trained and evaluated on different test sets. E.g.,
the lower left cell shows the result for the model trained
on STSS-Train and evaluated on STSS-Test-1

forms Fiction-GBERT-Large in our experiments.
To analyse the relation between training and

test data, that is, the generalisation capabilities
of the models and the stability, we train the best-
performing model with 5 different seeds on each
training dataset and evaluate the models on each
test dataset. Figure 3 shows the median results
and standard deviation over the 5 seeds for each
combination of training and test dataset. Our main
takeaways from this figure are as follows: (a) The
performance on STSS-Test-1 (bottom row in Fig-
ure 3) does not change with the additional training
from the expanded sets. This is very interesting,
as more training data, either from another domain
(Train-with-High) or even from the same domain
(Train-Full) does not seem to make the model
better. (b) Providing more training data, includ-
ing high literature texts (both Train-with-High
and Train-Full), leads to a slight improvement
on the high literature test set STSS-Test-2 (second
row from the bottom) and a notable improvement
on OOD-Test (second row from the top). Conse-
quently, performance on Test-Full also improves.
(c) Overall, the model seems to not generalise well
from dime novels in the training data to different
types of literature in STSS-Test-2 and OOD-Test.
Specifically, as expected from literary theory, the
high literature texts seem to be the hardest.

We also analyse the influence of our relaxed
F1-Score on the results by computing the score
with different values for the tolerance t. Figure 4
shows the relaxed F1-Scores for t ∈ {0, 1, 2, 3}.
Note that t = 0 corresponds to a regular, strict

Figure 4: Relaxed F1-Scores with different tolerance.
t = 0 corresponds to exact F1-Score.

F1-Score, where a border needs to be predicted at
exactly the right position. We find that, while the
values increase with tolerance, the ranking of the
models always stays the same. It is also notable
that the better models seem to benefit more from
the tolerance. This suggests that these models fre-
quently make good predictions that are off by some
sentences, while the worse models just make com-
pletely wrong predictions. We decided to focus on
the evaluation with the Relaxed F1-score since, as
argued in section 6.1, it provides the more realistic
estimate of the model’s performance.

7.2 Llama – Generative Scene Segmentation

Prompting Zero-short prompting of Llama 3
models does not perform well overall. Llama3:8b
reaches a relaxed F1-score of 0.13 on Test-Full.
Manual inspection of the predictions suggests that
the model does not understand the task and pre-
dicts a scene border for almost every sentence be-
cause of minor plot progression. Llama3:70b per-
forms significantly better, reaching an F1-score of
0.34, close to the results achieved by a fine-tuned
GBERT-Base model, but still clearly behind our best
BERT-based models. Llama3.1:405b performs al-
most the same as the 70b model, also reaching an
F1-score of 0.34. For comparison, we also evaluate
the prompting approach with ChatGPT.14 While 4o-
mini performs comparably to llama3:8b (Relaxed
F1-score of 14%), 4o performs notably better than
the -mini version and also than llama3:70b (45%
Relaxed F1). All prompting results are given in
Table 2 However, since these results are still quite
a bit off from the best BERT models, we do not
analyse the prompting approach further.

14Specifically, the models gpt-4o-2024-08-06 and gpt-4o-
mini-2024-07-18.
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Table 1: Relaxed F1-Scores (tolerance t = 3) for SSC models trained on Train-Full and evaluated on all test sets.

Model \ Test Dataset STSS-Test-1 STSS-Test-2 OOD-Test Test-Full

LLPro + Half Stride 0.62 0.57 0.66 0.62
LLPro 0.51 0.47 0.43 0.47

GBERT-Large + Half Stride 0.68 0.66 0.69 0.68
GBERT-Large 0.59 0.61 0.60 0.60
GBERT-Base + Half Stride 0.37 0.46 0.46 0.42
GBERT-Base 0.26 0.37 0.33 0.31

Table 2: Relaxed F1-Scores (tolerance t = 3) for Llama
and ChatGPT models prompted on Test-Full without
fine-tuning

Model Relaxed F1-score

llama3:8b 0.13
llama3:70b 0.34
llama3.1:405b 0.34

gpt-4o-mini 0.14
gpt-4o 0.45

Fine-Tuning As described in Section 4.2, we
use two different prompt templates (No-CoT and
CoT-List) for fine-tuning the Llama model. Ta-
ble 3 shows the performance of these models. We
refer to Appendix A.10 for full details. Three
things stand out: (a) models trained with CoT-List
very clearly and consistently outperform models
trained with No-CoT, (b) the model trained with
CoT-List performs comparably to the best BERT
models and (c) the Llama-based models are less
sensitive to the different types of literature, gener-
alising better from dime novels to high literature
than the BERT-based models. Overall, the Chain of
Thought reasoning is very beneficial to the models.
However, the best Llama-based models (relaxed
F1-score of 0.62) are still slightly worse than the
best BERT-based models (0.68).

8 Analysis

We are interested in finding out what causes our
models to either miss (false negative) or add (false
positive) scene borders. To this end, we analyse our
best model’s predictions on the test data in detail.

Visual Error Analysis As a first step for this
analysis, we build a visualisation of the predic-
tions from the SSC model based on GBERT-Large
with half-stride and their errors. Figure 5 (Ap-

pendix A.9) shows this visualisation for two texts.
For the Harry Potter chapter, the model reaches
an F1-Score of 0.77 (Precision: 0.63, Recall: 1).
We see that all gold scene borders are detected cor-
rectly, but the model additionally predicts three
false positives, provided verbatim in Appendix A.5.
In all three cases, there is a change in character con-
stellation and to a lesser extent in narration, which
has not been deemed as significant enough to war-
rant a scene change by the annotators, but could
be argued to actually start a new scene. For the
second text (F1-Score: 0.76, Precision: 0.78, Re-
call: 0.75), the model produces both false negatives
and false positives. Interestingly, 8 of the 14 false
negatives in this text are borders between scenes
and non-scenes: non-scenes are often merged to
one of the surrounding scenes.

False Positives We manually went over all false
positives produced by the model on the datasets
STSS-Test-1 and OOD-Test. In almost all cases,
there was a clear reason visible for why the model
predicted a scene border. In many cases, these are
valid markers for scene changes that have been
judged by the annotators as not significant enough
to start a new scene. In two cases, a scene starts
with a few lines of dialogue followed by an intro-
ductory, narrative sentence and the model detects
the border at the introductory sentence. In several
cases, either a plan for the future or a memory from
the past was described, making it seem like a new
scene has started (due to time, location and char-
acters changing). Another source of errors, which
we already discovered in the previous analysis, are
time jumps in non-scenes, which are detected by
the model as scene borders. In one case, the pre-
dicted border was correct, but had been missed by
the annotators. We provide (informal) notes for
each false positive in Appendix A.6. Overall, we
consider 25 of the inspected false positives possible
scene borders, and 14 as clearly wrong.
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Table 3: Relaxed F1-Scores (tolerance t = 3) for Llama3:8b models trained on Train-Full with different Chain of
Thought (CoT) prompting strategies and evaluated on all test sets.

CoT Config \ Test Dataset STSS-Test-1 STSS-Test-2 OOD-Test Test-Full

No-CoT 0.05 0.04 0.18 0.09
CoT-List 0.55 0.63 0.69 0.62

False Negatives For false negatives, we analyse
the reasons given for scene borders by the annota-
tors of the gold data. We count the number of false
negatives and true positives annotated with each of
the possible reasons (narrative action, time, space
and location), expecting that, for example, tempo-
ral markers should be easier to detect and therefore
have a high true positive rate. However, we find no
notable differences between the different reasons,
with the true positive rate for all reasons ranging
from 55.92% (location) to 58.88% (time). In addi-
tion, we manually analyse the texts from OOD-Test
and one text from STSS-Test-1, "Im Bann der
Vampire". Again, informal notes for possible false
negative reasons are given in Appendix A.7. We
found five cases where it is not clear why the border
was missed. The most frequent apparent reason for
missing borders was that the model merged a non-
scene to the previous or following scene. Apart
from that, the model sometimes misses implicit
markers for scene changes, where no direct refer-
ence to time, location or characters is provided. In
the case of "Hänsel & Grethel", the narrative style
is very different from that in the other texts, with
large parts of the story being narrated in almost a
non-scene style. This seems to cause several errors
where small jumps in time are not annotated as
scene changes. At the end of this text, there is a
remark made by the narrator, breaking out of the
story "Mein Märchen ist aus, dort lauft [sic!] eine
Maus, wer sie fängt, darf sich eine große große
Pelzkappe daraus machen."15, which is not anno-
tated by the model as a new scene. Overall, we
consider 8 of the inspected false negatives as ar-
guably non-borders and 12 as definitely missing.

9 Discussion

Our experiments reveal several interesting findings
regarding scene segmentation. First, we find that
building samples for SSC using the half-stride
strategy greatly improves the performance. Sec-
ondly, we find that BERT-based models are sen-
sitive to the type of texts in training and test set –

mixing dime novels and high literature in the train-
ing set leads to better performance on non-dime
novels. However, we also see that the model’s per-
formance on dime novels does not improve with
the additional training data. This is very interesting,
as it suggests that, contrary to our assumption, the
performance of scene segmentation is not limited
by the amount of available training data, but rather
by the capabilities of the model. Our analysis re-
veals challenging cases and suggests some changes
in the way the task is approached: Since borders to
non-scenes cause a notable amount of errors, our
decision to not include this distinction may have
to be revised: as it is, the model does not have any
indication that there are structurally different seg-
ments in the texts. Distinguishing between scenes
and non-scenes may therefore actually be benefi-
cial. Manual analysis of the errors shows that, in
many cases, the predictions of the model can be ar-
gued to be correct, depending on how fine-grained
the segmentation is supposed to be. This suggests
that, even though the metrics still leave room for
improvement, the produced segmentation can be
sufficient for downstream tasks.

10 Conclusion

We have explored the State of the Art for automatic
scene segmentation in fictional texts. We achieve a
new best result for the task, with a relaxed F1-Score
of 0.68 on a diverse test set with the best model.
While this still leaves room for improvement, it
shows that it is feasible to train models that achieve
good results for automatic scene segmentation. Our
analysis shows that many of the best model’s wrong
predictions are still understandable and could be
argued to be correct in many cases, depending on
how fine-grained one wants the scene segmentation
to be. We have also demonstrated that the task is
challenging even for current large language models,
making it a valuable addition to benchmarks aiming
to explore the limits of these models.

15"My story is over, there is a mouse running, who catches
it may make a big big fur hat of it."

9930



Limitations

Scenes vs Non-Scenes In the current paper, we
only perform scene segmentation by detecting bor-
ders between segments, ignoring the distinction
between scenes and non-scenes. For the full task
as defined by Zehe et al. (2021a), this distinction
needs to be considered. However, the classifica-
tion of a segment as either scene or non-scene is
expected to be much easier than the segmentation
(Zehe et al., 2021a).

Dataset Our experiments are only performed on
one dataset of German texts, potentially raising
questions about the generalisability of the results.
However, to the best of our knowledge, this is cur-
rently the only existing dataset for the task of scene
segmentation.

Ethics Statement

We perform experiments on an extended version of
an existing dataset of fictional texts that are publicly
available (although partially only for purchase). We
do not see any ethical concerns regarding the task
of scene segmentation in itself, or its future appli-
cations. The models presented in this paper are
purely intended to enable the analysis of fictional
texts.
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A Appendix

A.1 γ Implementation Issues

The authors of γ provide both an online and an
offline application.18 For both of these applications,
it is not clear how the hyper-parameters are set
and they yield very different values of γ for the
examples provided in the online version. There is
an additional re-implementation,19 which explains
some issues with the original implementation20 and
their own implementation choices. However, even
with these notes, we were unable to reproduce the
values from the original implementation.

18https://gamma.greyc.fr/. Currently unavailable,
archived version at https://web.archive.org/web/
20230607124122/https://gamma.greyc.fr/.

19https://pygamma-agreement.readthedocs.io/.
20https://pygamma-agreement.readthedocs.io/en/

latest/issues.html.
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A.2 Llama Prompts
The gold annotations partially contain a reason (lo-
cation, characters, . . . ) for the scene change pro-
vided by the annotators. We use this information
to fill in the templates provided below.

No-CoT Does the sentence in <sen-
tence>...</sentence> introduce the beginning
of a new scene and a significant break in time,
location or characters? Answer ’True’ or
’False’ and provide a reason for your decision.
A scene is defined as a segment of text with
a coherent structure across the dimensions
’characters’ (which characters are present
in the narration), ’location’ (where does the
narration take place), and ’time’ (continuous
time in the narration). A significant break
in any of these dimensions corresponds to a
scenes change.

→ [True/False], because there is [a/no] sig-
nificant change in [narrative action, location,
time or characters].

CoT-List A scene is defined as a segment of
text with a coherent structure across the di-
mensions ’characters’ (which characters are
present in the narration), ’location’ (where
does the narration take place), and ’time’ (con-
tinuous time in the narration). A significant
break in any of these dimensions corresponds
to a scenes change. Does the sentence in <sen-
tence>...</sentence> introduce the beginning
of a new scene? Think step by step: a) Does
the sentence introduce a significant change in
narrative action? b) Does the sentence intro-
duce a significant change in location? c) Does
the sentence introduce a significant change in
time? d) Does the sentence introduce a sig-
nificant change in characters? e) Does the
sentence therefore start a new scene?

→ a) There is [a/no] significant change in
narrative action, b) there is [a/no] significant
change in location, c) there is [a/no] signifi-
cant change in time, d) there is [a/no] signif-
icant change in characters, e) therefore, the
sentence [starts/does not start] a new scene.

For example, if a sentence has a scene border
which is annotated with the reasons “narrative ac-
tion” and “character", our target for the Llama
model becomes “a) There is a significant change in
narrative action, b) there is no significant change in

location, c) there is no significant change in time,
d) there is a significant change in characters, e)
therefore, the sentence starts a new scene.”.

If no reason is annotated for a scene border, we
train the model to predict that "there may be a
significant change" for each dimension, and to con-
clude that this causes a scene border.

For the extraction of the labels from the model’s
output, we use two strategies: For No-CoT, we sim-
ply check whether the response string starts with
“True” or “False” and assign the class label accord-
ingly. For CoT-List, we use the following regular
expression to parse the model’s output:

r"a\) (?P<action>.*)"
r"b\) (?P<location>.*)"
r"c\) (?P<time>.*)"
r"d\) (?P<characters>.*)"
r"e\) (?P<border>.*)"

We then check for the presence of the phrase
“therefore the sentence starts a new scene” in the
group “border”.

A.3 Metrics
Previous work as well as the discussion with
reviewers after submission of this paper has shown
that there are several suitable metrics for the
evaluation of scene segmentation, each with their
advantages and disadvantages. In addition to the
scores described in the main paper, we considered
the following alternatives:

Intersection over Union Schneider et al. (2021)
adapt the Intersection over Union (IoU) to scene
segmentation. They describe the computation of
the measure as follows: “For every ground truth
part we find the detected part with the biggest
overlap and assign it to the ground truth part if
it has not been assigned yet. We then add the
length of all the overlapping regions and normalize
them by the total length of the text, resulting in
an intersection over union score value for the
document.” Similarly to γ this measure has the
desirable property of assigning a high score to
scenes that have been detected “almost” correctly
(i.e., only deviate a few sentences from the gold
annotation). For comparison, we also evaluated the
BERT models using IoU on Test-Full, the results
are given in Table 4. We see that the ranking of the
approaches stays the same as with the F1-score.
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Precision/Recall@k Our proposed relaxed F1-
score is similar in spirit to the metrics of Preci-
sion and Recall@k that are used in Information
Retrieval and Recommendation (Manning et al.,
2008). In these settings, there is a list l of cor-
rect items and a list l̂ of items returned by a
model, sorted by their score according to the model.
Precision@k then counts the number of items in
the first k entries of l̂ that are also part of l, while
Recall@k counts how many of the items in l are
covered by the first k entries in l̂. Since we don’t
have lists of relevant items, but rather labels for
each sentence, these metrics are not directly appli-
cable. Instead, we allow the model to deviate some
sentences from the location of the gold annotated
border.

A.4 PEFT config

We use the configuration from the example note-
book21 provided by the Unsloth library for Llama
fine-tuning:

model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj",

"v_proj", "o_proj",
"gate_proj", "up_proj",
"down_proj", ],

lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=random_seed,
use_rslora=False,
loftq_config=None,

)

A.5 False Positive Predictions in Harry Potter

• "With a sudden exclamation she pointed at
the clock’s face. Mr. Weasley’s hand had
switched to "traveling." "He’s coming!" And
sure enough, a moment later there was a
knock on the back door. Mrs. Weasley
jumped up and hurried to it;"

• "But his question was answered before he
could finish it. The bedroom door flew open

21https://colab.research.google.com/drive/
135ced7oHytdxu3N2DNe1Z0kqjyYIkDXp?usp=sharing.

again, and Harry instinctively yanked the bed-
covers up to his chin so hard that Hermione
and Ginny slid off the bed onto the floor. A
young woman was standing in the doorway,
a woman of such breathtaking beauty that
the room seemed to have become strangely
airless. She was tall and willowy with long
blonde hair and appeared to emanate a faint,
silvery glow. To complete this vision of per-
fection, she was carrying a heavily laden
breakfast tray. "’Arry," she said in a throaty
voice. "Eet ’as been too long!""

• ""You lot had better come down quickly too,"
she said as she left. Harry took advantage
of the temporary silence to eat more break-
fast. Hermione was peering into Fred and
George’s boxes, though every now and then
she cast sideways looks at Harry. Ron, who
was now helping himself to Harry’s toast, was
still gazing dreamily at the door."

A.6 False Positive Reasons

Suspected reasons for false positive predictions
along with their counts (most of the reasons are too
specific to occur more than one time).

• ’A new character arrives at the scene, inter-
rupting the action’: 1

• ’A new character arrives at the scene’: 2

• ’A character leaves the scene and a short break
in time occurs (zeitweilige Stille)’: 1

• ’Two characters walk away from the scene’: 1

• ’The character arrives at a new location after
a short time, but the narration continues’: 1

• ’The character is relaxing and a phone call
interrupts’: 1

• ’The characters arrive at a new location after
a short time’: 1

• ’A new character arrives after a short time’: 1

• ’A memory is narrated, making it seem like
time and location change’: 1

• ’A memory is narrated’: 1

• ’The characters walk to a different room in the
same house’: 1
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Table 4: Comparison of Relaxed F1-score (tolerance t = 3) and Intersection over Union for SSC models trained on
Train-Full and evaluated on Test-Full.

Model \ Metric F1-Score Precision Recall IoU

LLPro + Half Stride 0.62 0.80 0.53 0.51
LLPro 0.47 0.82 0.35 0.35

GBERT-Large + Half Stride 0.68 0.78 0.62 0.57
GBERT-Large 0.60 0.78 0.52 0.50
GBERT-Base + Half Stride 0.42 0.80 0.31 0.33
GBERT-Base 0.31 0.80 0.20 0.22

• ’A new character is mentioned, but was al-
ready present before’: 1

• ’A car has left, but was not part of the main
cast of the scene’: 1

• ’The character goes to the toilet’: 1

• ’A character has left’: 1

• ’A character is joining the scene’: 1

• ’A character is leaving and a short time
passes’: 1

• ’A remote conversation is started, not really
introducing new characters’: 1

• ’A short amount of time (10 minutes) has
passed’: 1

• ’A short amount of time passes without dia-
logue’: 1

• ’A new location is reached after a short time’:
2

• ’The character moves a (probably very small)
way’: 1

• ’The character is surprised by a noise while
moving down a corridor’: 1

• ’A signal arrives, which does not introduce a
new scene’: 1

• ’A short amount of time passes’: 1

• ’A character leaves the scene’: 1

• ’A medium amount of time passes, but the
narration continues directly’: 1

• ’A character leaves and a short amount of time
passes’: 1

• ’The scene has started several sentences ear-
lier’: 1

• ’A future scene is described’: 1

• ’This should have been marked as a scene
border in the gold annotations’: 1

• ’The scene started serveral sentences earlier.
However, as before, there is an introductory
sentence only now after some initial dialogue’:
1

• ’Border predicted slightly too early’: 1

• ’A character leaves the scene, but the narration
continues’: 1

• ’This is within a non-scene, where major time
jumps can occur. If it was in a scene, this
would be a border’: 1

• ’This is still within a non-scene’: 1

• ’Non-scene again’: 1

A.7 False Negative Reasons

• ’There is a non-scene before this sentence,
which the model has merged to the scene’:
2

• ’No obvious reason for missing the border’: 5

• ’Only a small jump in time occurs, the over-
all location stays the same (the train) and the
narration continues’: 1

• ’There is a non-scene after this sentence,
which the model has merged to the scene’:
4

• ’There is no change in time or overall location,
but the focus of the narration shifts’: 1
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• ’Minor time jump, same characters, same nar-
ration’: 1

• ’Very uncommon case, where the narrator de-
viates from the main story at the very end and
makes a personal remark’: 1

• ’Minor, implicit time jump, no location
change, same characters, similar narration’:
1

• ’The scene border was predicted earlier, which
is ok. There is a short non-scene-like narration
in between which could be included in either
scene’: 1
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A.8 Dataset Statistics

Table 5: Statistics about the texts in our dataset. Average (non-)scene length is measured in tokens (i.e, words or
punctuation marks), document length is measured in sentences as detected by our parser. Texts marked in bold are
new additions over the previous dataset (Zehe et al., 2021b).

Name Scenes Non-
Scenes

Average
Scene
Length

(Tokens)

Average
Non-scene

Length
(Tokens)

Document
Length

(Sentences)

Harry Potter IV - Der Slug Club 11 3 756.55 105 454
Harry Potter IV - Schleim 5 0 1671.80 - 463
Hänsel und Gretel 18 5 154.56 90.40 126
Die Begegnung 33 5 752.85 186.60 1967
Hochzeit wider Willen 48 12 574.62 292.33 2435
Bomben für Dortmund 44 2 786.77 253.50 2977
Im Bann der Vampire 24 1 982.83 91 1811
Aus guter Familie 145 74 352.64 458.11 5025
Effi Briest 172 55 587.08 314.02 5906
Der Turm der 1000 Schrecken 58 0 535.52 - 3016
Wechselhaft wie der April 70 2 426.61 148.50 2790
Lass Blumen sprechen 52 2 564.88 522 2414
Deus Ex Machina 43 0 723.56 - 2430
Der Sohn des Kometen 39 2 789.10 782.50 2234
Die Abrechnung 56 0 508.55 - 2352
Die Widows Connection 54 12 546.93 396.17 2900
Hetzjagd durch die Zeit 50 2 682.56 282 2256
Als der Meister starb 80 2 942.46 194.50 4492
Prophet der Apokalypse 64 1 484.05 85 2212
Ein sündiges Erbe 42 1 766.83 377 3048
Immer wenn der Sturm kommt 71 10 489.79 245.30 3179
Wir schaffen es - auch ohne Mann 46 7 696.67 70.71 3262
Tausend Pferde 103 1 435.60 30 3196
Widerstand zwecklos 31 6 773.19 316.67 1859
Bezaubernde neue Mutti 44 0 760.91 - 2904
Die hochmütigen Fellmann-Kinder 74 5 524.68 69.60 3048
Ein Weihnachtslied für Dr. Bergen 67 3 457.99 223.33 2485
Verschmäht 77 0 502.06 - 2781
Griseldis 68 7 551.29 395.71 2741
Krambambuli 13 7 256.85 176.14 206
Das Erdbeben in Chili 10 4 501 373.75 191
Die Braut des irischen Kriegers 17 4 740.82 284.25 904
Der Schimmelreiter 113 0 415.73 - 2769
Im Dschungel der Lust 14 1 815.14 200 938
Agenten und Spione 42 6 673.95 269 2226
In den Dreck getreten 42 4 825.38 458 2227
Die Verwandlung 20 8 835.05 699.38 718
Wenn Tote plötzlich wieder sprechen 61 9 613.11 169.33 3516
Die Judenbuche 30 18 420.87 415.94 1031
Der Geisterfelsen im Baikal-See 23 10 323.74 554.50 540
Nur noch eine heiße Nacht mit dir! 6 2 1833.50 142 885

Average 50.73 7.15 659.47 284.48 2266.20
Sum 2080 293 27038.10 9672.25 92914
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Table 6: Train and test dataset split for texts.

Dataset Name

STSS-Train Der Turm der 1000 Schrecken
Wechselhaft wie der April
Lass Blumen sprechen
Deus Ex Machina
Der Sohn des Kometen
Die Abrechnung
Die Widows Connection
Hetzjagd durch die Zeit
Als der Meister starb
Prophet der Apokalypse
Ein sündiges Erbe
Immer wenn der Sturm kommt
Wir schaffen es - auch ohne Mann
Tausend Pferde
Widerstand zwecklos
Bezaubernde neue Mutti
Die hochmütigen Fellmann-Kinder
Ein Weihnachtslied für Dr. Bergen
Verschmäht
Griseldis

Train-with-High STSS-Train +
Krambambuli
Das Erdbeben in Chili
Die Verwandlung
Die Judenbuche
Der Schimmelreiter

Train-Full Train-with-High +
Im Dschungel der Lust
Agenten und Spione
Wenn Tote plötzlich wieder sprechen
Der Geisterfelsen im Baikal-See
Die Braut des irischen Kriegers
Nur noch eine heiße Nacht mit dir!
In den Dreck getreten

STSS-Test-1 Bomben für Dortmund
Die Begegnung
Hochzeit wider Willen
Im Bann der Vampire

STSS-Test-2 Aus guter Familie
Effi Briest

OOD-Test Harry Potter VI - Kapitel Der Slug Club
Harry Potter VI - Kapitel Schleim
Hänsel und Gretel

Test-Full STSS-Test-1 + STSS-Test-2 + OOD-Test
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A.9 Visual Error Analysis

Figure 5: Visualisation of errors made by the best model on one of the annotated chapters from Harry Potter and
the novel "Hochzeit wider Willen". The lower line shows scene borders annotated in the gold data, the upper line
scene borders predicted by the model. For visualisation, the lines are blue for parts of the text that are labelled as
scenes in the gold annotation and yellow for parts that are labelled as non-scenes (the predicted labels make no such
distinction). Predicted borders are always mapped to the closest annotated gold border, as shown by the connecting
lines. If a prediction is counted as correct (no more than three sentences from the closest gold annotated scene
border), the connecting line is green (true positive), otherwise it is red (false positive). Undetected scene borders
(false negatives) are shown in red on the lower line.

9940



A.10 Llama Results

Figure 6: Llama-3-8b fine-tuned with the No-CoT (left) and CoT-List (right) strategy
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