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Abstract

Recent studies have highlighted the presence
of cultural biases in Large Language Models
(LLMs), yet often lack a robust methodology
to dissect these phenomena comprehensively.
Our work aims to bridge this gap by delving
into the FOOD domain—a universally relevant
yet culturally diverse aspect of human life. We
introduce FMLAMA, a multilingual dataset
centered on food-related cultural facts and vari-
ations in food practices. We analyze LLMs
across various architectures and configurations,
evaluating their performance in both monolin-
gual and multilingual settings. By leveraging
templates in six different languages, we in-
vestigate how LLMs interact with language-
specific and cultural knowledge. Our findings
reveal that (1) LLMs demonstrate a pronounced
bias towards food knowledge prevalent in the
United States; (2) Incorporating relevant cul-
tural context significantly improves LLMs’ abil-
ity to access cultural knowledge; (3) The effi-
cacy of LLMs in capturing cultural nuances is
highly dependent on the interplay between the
probing language, the specific model architec-
ture, and the cultural context in question. This
research underscores the complexity of inte-
grating cultural understanding into LLMs and
emphasizes the importance of culturally diverse
datasets to mitigate biases and enhance model
performance across different cultural domains.

1 Introduction

Asking a French person for the recipe of Beef Bour-
guignon in English might yield an immediate and
precise response, while the same query might pose
challenges to a Chinese individual unless posed as

R4 A (ts literal translation). In China, the
dish is also commonly referred to by its broader

héng jiti dun niG  rou

description, ZLiF A (Red Wine Stewed Beef),
highlighting the main ingredients and cooking tech-
nique, albeit without specifying a regional origin.

fi shi héng jii  dun niG  rou
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Figure 1: Summary of the various aspects of our work.

Wine Stewed Beef) with an adjectival description
can indicate adherence to French culinary tradi-
tions. This practice illustrates how cultural and
linguistic nuances shape knowledge transmission.
In cross-cultural communication, when direct trans-
lations are unavailable, speakers often switch be-
tween languages—a phenomenon known as code-
switching—to better convey meaning (Aguilar and
Solorio, 2020; Dogruoz et al., 2021). This vari-
ability underscores the challenges language models
encounter in navigating cross-cultural culinary con-
texts and highlights the difficulty of responding
with cultural knowledge, which involves using spe-
cific language, engaging in code-switching, and
integrating cultural context.

Trained on vast datasets, Large Language Mod-
els (LLMs) encode a wide array of knowledge,
but also face challenges with various biases, such
as those related to gender (Savoldi et al., 2021;
Kaneko et al., 2022), belief (Sggaard, 2021;
Gonzélez et al., 2021; Lent and S¢gaard, 2021), and
culture (Cao et al., 2023; Deshpande et al., 2022;
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Yin et al., 2022; Mukherjee et al., 2024; Singh
et al., 2024). In this paper, we adopt food-domain
knowledge data as cultural semantic proxy, “coun-
try of origin” as cultural demographic proxy (Adi-
lazuarda et al., 2024), and address the following
research questions: (1) What cultural biases exist
within the cultural knowledge contained in LLMs?
(2) How can we best prompt and evaluate LLMs to
elicit culture-specific knowledge? Specifically, we
first design an automated construction method for
the dataset FMLAMA (§3). Next, we introduce the
cultural knowledge probing method (§4), encom-
passing the probing task, template and metric. We
then conduct experiments (§5) and analysis (§6) to
address our proposed research questions. Finally,
we perform an error analysis on the probing results
(§7). Figure 1 provides an overview of our work’s
various aspects, and our contributions are:

* We present FMLAMA, a pioneering dataset
focused on the food domain, which is inher-
ently rich in cultural diversity. This dataset is
a multifaceted tool for probing LLMs across
cultures and languages.

* We propose novel metrics aimed at evaluating
LLMs’ capacity to accurately and sensitively
probe cultural knowledge, utilizing a combi-
nation of automatic and manual evaluation
methods.

* We analyze the impact of integrating cultural
context and language specificity in prompts,
offering insights to optimize LL.Ms for equi-
table cross-cultural knowledge retrieval.

Our methodology for automated collection of cul-
tural knowledge corpora extends the analysis po-
tential in other domains, broadening the scope of
research on cultural biases in LLMs. !

2 Related Work

Cultural knowledge datasets. Cultural knowl-
edge, encompassing the customs, beliefs, tradi-
tions, and practices of a culture, is crucial yet chal-
lenging to encapsulate. While some researchers
focus on manually curating cultural knowledge
datasets, others evaluate LLMs’ performance on
culturally related tasks. Yin et al. (2022) and

'Data and code are available in https://github.com/
lizhou21/FmLAMA-master.

Palta and Rudinger (2023) have developed bench-
marks such as geo-diverse prompts and food-
custom datasets (FORK) to probe cultural biases in
commonsense reasoning systems. However, man-
ual dataset construction is inefficient and hard to
scale, prompting a shift towards automated meth-
ods. For instance, StereoKG (Deshpande et al.,
2022) offers a scalable knowledge graph that blends
cultural knowledge with stereotypes, and CAN-
DLE (Nguyen et al., 2023) extracts cultural com-
monsense knowledge from the web, organizing it
into clusters. Despite these advances, the variability
in data representation—from sentences to triplets
using OpenIE—poses challenges for consistency
and noise control in knowledge probing. Keleg
and Magdy (2023) aims to mitigate this by select-
ing culturally diverse factual triples from Wikidata,
focusing mainly on explicit country information.
In contrast, our work proposes an automated, effi-
cient approach to constructing a cultural knowledge
dataset in a uniform triplet format, addressing the
limitations of existing methods and focusing on
implicit cultural knowledge. Appendix A.1 shows
a comparison of our dataset with existing ones.

Knowledge probing. Deciphering the knowl-
edge encoded by LLMs poses significant chal-
lenges due to their opaque nature , early bench-
marks like LAMA (Petroni et al., 2019) sought
to quantify the factual knowledge in English
LLMs, while ParaRel (Elazar et al., 2021) high-
lighted their consistency issues. Subsequent ef-
forts as mLAMA (Kassner et al., 2021) and mPara-
Rel (Fierro and Sggaard, 2022) expanded these
benchmarks multilingually, though such methods
often focus on single-word entities, limiting their
depth of assessment. To address these shortcom-
ings, newer studies (Shin et al., 2020; Zhong et al.,
2021; Meng et al., 2022) have evolved towards
eliciting more comprehensive factual knowledge,
including multi-word entities, with Jiang et al.
(2020a) developing algorithms for multi-token pre-
dictions. LPAQA (Jiang et al., 2020b) further re-
fines this by optimizing prompt discovery for more
accurate knowledge probing. Our work builds
on this foundation, targeting multi-token probing
within the food domain, characterized by complex
expressions like Trigonella foenum-graecum.

3 FMLAMA Construction

To assess whether LLMs encode and access cul-
tural information, we develop FMLAMA, a mul-
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ticultural, multilingual dataset focusing on culi-
nary knowledge. The designed framework can be
adapted to other cultural domains.

Step #1: Obtain countries set. Following Zhou
et al. (2023), we use countries of food origin to
delineate cultural groups. This method leverages
countries as proxies for cultural identity, encap-
sulating diverse traditions, values, and norms that
reflect the breadth of human civilizations across
geographical boundaries (Minkov and Hofstede,
2012; Peterson et al., 2018).

Step #2: Acquire food instances. We utilize
SPARQL to query Wikidata, extracting a vast array
of food-related data. This approach exploits Wiki-
data’s RDF triple structure to gather detailed infor-
mation on food instances, offering a rich source of
comprehensive food knowledge.

i. Class. For our food-focused dataset, we
concentrate on the dish class and employ two ap-
proaches to find food instances:

 Explicit instance of dish, e.g., bouillabaisse.

* Inferred through a hierarchy,

subclass of
veau Stew

e.g., Blanquette de
subclass of dish.

This enables comprehensive inclusion of food in-

(instance of|subclass of )+
stances, represented as [ y

dish, where ‘|” denotes “or”
more”.

ii. Cultural group. We organize food instances
by their origin, applying these strategies:

, and ‘4’ 1s “one or

* Directly specified in Wikidata, e.g., bouillabaisse
country of origin
—— France.

* Through the associated cuisine category, e.g.,
cuisine

mapo doufu —— Chinese cuisine oM, China.

We exclude dishes with multiple origin countries
to maintain cultural specificity.

iii. Properties included. The property “has
part(s)” identifies food ingredients for a dish. Ad-
ditional properties like “made from material” and
“image” are collected to support future research
(e.g., multimodal), though they are not utilized in
this study. In each instance, the descriptive lan-
guage for all attributes remains consistent.

Ultimately, our constructed dataset, FMLAMA,
comprises 33,600 dish instances, detailed by name,
origin, ingredients, and optionally, materials and
images, encompassing 128 cultural country groups

and 250 languages. The average number of ingre-
dients in FMLAMA dataset is 2.04. Examples and
statistics are provided in Appendix A.

4 Cultural Knowledge Probing

4.1 Probing task

We adopt Word Prediction (WP) as the knowledge-
probing task, following previous work (Fierro and
S@gaard, 2022; Wu et al., 2023; Fierro et al.,
2024b). Firstly, we manually design a prompt tem-
plate ¢ focused on the core attribute “has part(s)”,
illustrating a connection between a dish (subject)
and its ingredient(s) (object). WP is usually im-
plemented as a candidate retrieval problem. The
candidate set consists of all objects in the focused,
filtered sub-dataset of FMLAMA.? The primary
objective is to utilize LLMs to obtain the probabil-
ity of each candidate C' and subsequently rank the
predicted objects based on these probabilities.

MASK operation. Using subject-object tuples
([X1, [Y]) as queries, we probe LLMs by replacing
the subject and masking the object. Considering
that each candidate object is tokenized into d subto-
kens {c1,--- ,cq} by LLMs correspondingly, we
apply [MASK] token of varying lengths to the ob-
jects within each query. D queries are constructed
for each dish subject X based on the same template
t, D is the maximum number of object tokens, each
query Qé( is defined as:

QY =t(X,[MASK] xd),dc [1,D]. (1)

Probability acquisition. We use Mean Pooling?
method to obtain the prediction probability of each
candidate. Specifically, for candidate object C' =
{c1, -+, cq} of length d, its probability is obtained
from the likelihoods associated with the [MASK]
tokens in Qfl( , and the predicted probability of C'
is calculated as the average of the probabilities of
composing its subtokens:

&\H

d
Qd ) Z Qd ) MASK] ) (2)

where p (-) is obtained after the softmax operation.

%As the size of the filtered sub-dataset increases, the can-
didate object set also expands, leading to greater difficulty
in probing. Consequently, in this paper, results obtained by
probing across different filtered sub-datasets cannot be used
for horizontal comparison.

3Mean Pooling has been shown to be superior to other
pooling methods for multi-token probing (Wu et al., 2023).
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4.2 Probing template

Considering LLMs produce varied predictions
based on prompt framing (Elazar et al., 2021; Wang
etal., 2023), we craft five templates conveying iden-
tical meanings in each prompt language. For exam-
ple, “[X] is a dish made with [Y]”, “[X] is a type
of food that includes [Y]”.

Cultural information. To explore the impact of
introducing explicit cultural context on LLMs’ abil-
ity to access cultural knowledge, we enhance the
basic templates by integrating country information.
For instance, “In [C], [X] is a dish made with [Y]”,
where [C] denotes the country of origin for the dish
[X], [Y] indicates the ingredient object.

Multilingual prompts. To explore how differ-
ent prompt language settings affect LLMs’ cultural
knowledge probing abilities, we craft prompts in
six languages written by native speakers, including
English (en), Chinese (zh), Arabic (ar), Korean
(ko), Russian (ru), and Hebrew (he). These lan-
guages span 4 different language families — Indo-
European (English, Russian), Semitic (Hebrew,
Arabic), Altaic (Korean), and Sino-Tibetian (Chi-
nese), and are spoken by more than 2.356 billion
speakers. Furthermore, these languages represent
cultural diversity, being spoken on different con-
tinents by groups with rich and distinct cultural
backgrounds. These prompt illustrations and lan-
guage details are depicted in Appendix B.

Code-switching. To simulate real-world scenar-
ios where mixed-language expression often oc-
curs, we implement code-switching prompts, vary-
ing the main language (ML) and subject language
(SL). Specifically, we define the code-switching
prompt setting as P(ML, SL), where ML, SL €
{en, zh,ar, ko, ru, he}, and ML # SL. Our ob-
jective is to ensure that the language of the pre-
dicted object remains consistent with the maln lan-

guage (ML). For instance, the prompt “?JJ E%tF

F‘] is a dish made with [Y]” follows the P(en, zh)
setting, with the expected output for [Y] in English.

4.3 Probing Metric

Despite considerable prior work on knowledge
probing, even studies employing a similar LAMA-
style approach lack a standardized evaluation crite-
rion. Although our experiments solely focus on a
single relationship, that is, the ingredients of a food
item, our probing task poses greater challenges

for LLMs: (1) The number of objects in each in-
stance is not fixed, (2) the number of food instances
contained in each cultural group varies, (3) the ver-
balization of 1ngredlents is not unique (e.g., in Chi-

nese, both & and %'\ can denote salt), and (4)
ingredients can be flexible (e.g., in the Italian dish
frico, listed with cheese as an ingredient in Wiki-
data, either mozzarella or feta are actually valid).
(5) The reference ingredients label in Wikidata is
incomplete.

Given these constraints, we introduce two auto-
matic metrics: the absolute-match metric, Mean
Average Precision (mAP), and the fuzzy-match
metric, Mean Word Similarity (mWS), along with a
Manual Evaluation Score (MES) that incorporates
both LLM-simulated and real human assessments
for implementation. All mAP, mWS, and MES
metrics are in the range [0, 1].

Mean Average Precision. mAP is widely used
in information retrieval settings, assessing the rele-
vance of predicted objects (in our case ingredients)
only when they precisely match the reference ones.
The precision at rank k& (P@k) for a given food
instance ¢ is defined as follows:

|ing; N topk;|

A .
where ing; is the reference ingredients set, and
topk; signifies the set of top-k objects with the
highest predicted probability of belonging to food
item ¢ by LLMs. Then the average precision of
food item ¢ is computed as follows:

Pak = 3

AP, = 1 P Z P@k x rel@k, 4)

Jing; |

where n refers to the size of the candidate object
set, and rel@k is 1 if the object at rank k is relevant
to food item ¢, otherwise 0. Finally, we compute
the mAP in the following way:

mAP = Z AP;, 5)
|G| icG
where G represents a dish group we are focusing
on (i.e. a subset of FMLAMA).

Mean Word Similarity. mWS is defined based
on the semantic similarity between predicted and
reference objects. First, we define the similarity
score S (i, g) for each ingredient g within each dish
1. Only the predicted objects in the top-/ rankings
of the model prediction that are most similar to g
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contribute to the evaluation score, where | = |ing;]|.
S (i, g) is defined as follows:

SQ[ (i,g9) = max [cos (wg,wp)],g € ing;, (6)
pEtopl;

where w, and w), are the Fasttext (Bojanowski
et al., 2017; Joulin et al., 2016) vectors for the
ingredient g and the predicted object p, respectively,
and cos () is the cosine similarity function. Then
we can compute the probing similarity W.S; for
each food instance ¢ and mWS for the targeted
food group as follows:

1
WS, = —— > Sa@i(i,g) (7
|ing;| geing,
mWS::ALEZW& ®)
a2

Manual Evaluation Score. MES considers only
the top-/ predicted ingredients for evaluation in
each dish, similar to the mWS metric, where [ is
the number of reference ingredients. A predicted
ingredient is considered correct if it satisfies any
of the following criteria: (1) Direct Match: The
ingredient is exactly in the Wikidata reference; (2)
Substitutability: The ingredient can replace one in
the reference; (3) Missing Traditional Ingredient:
The ingredient is traditionally or commonly used
in the dish, but not listed in the reference. Given
a manual evaluator M (-), the MES is defined as
follows:

1 .
S = 7 D M(ping) )
pEtopl;
1
MB:47Z& 10)
Gl &

where M (+) is 1 if the top-/ predicted ingredient p
is evaluated as meeting the criteria; otherwise, 0.

5 Experiments: Existing Cultural Biases

5.1 Experimental setup

Baselines We explore encoder-only LLMs, in-
cluding BERT (Devlin et al., 2019) and mBERT,
encoder-decoder LLMs, such as TS5 (Raffel et al.,
2020) and mT5 (Xue et al., 2020), as well as
decoder-only LLMs like Qwen2 (Yang et al.,
2024), Llama2 (Touvron et al., 2023), and
Llama3 (AI@Meta, 2024). Of these, BERT and T5

are English monolingual LLMs, while the remain-
ing five are multilingual LLMs. * Additionally,
we employ a ‘dumb’ baseline, in which the model
is assumed to consistently predict the top-10 most
common ingredients for each dish.

Cultural groups We identify the top 30 countries
with the most dishes across six languages, take
their intersection to ensure sufficient data, consider
geographical diversity, and ultimately narrow our
focus to 14 cultural groups, as shown in Table 1.

Metrics We evaluate all LLMs using two auto-
mated metrics. Due to cost constraints, we conduct
manual evaluation only on the LLM that achieve
the highest probing performance in the automated
metrics. Specifically, for the evaluator M (-) used
to compute MES, we utilize GPT-40 (OpenAl et al.,
2024)3 as a simulated evaluator and recruit real hu-
man evaluators from Prolific.® For each country
group, we hire 3 evaluators familiar with the related
cuisine, with a pay rate of £9/hour, considered mid-
level on the platform. Details on the GPT-40 evalu-
ation prompts and the human evaluation platform
are provided in the Appendix C.

5.2 Automatic evaluation results

The probing results based on English prompt on
the filtered dataset FMLAMA-en are illustrated
in Table 1. The average Pearson correlation be-
tween mAP and mWS across all LLMs is 0.72, in-
dicating a strong positive relationship and demon-
strating that the experimental results are consis-
tent across both automatic metrics. Overall, with-
out fine-tuning, decoder-only LLMs exhibit sig-
nificantly better cultural knowledge recall in such
challenging tasks compared to encoder-only and
encoder-decoder LLMs, highlighting their superior
capacity as knowledge bases (Petroni et al., 2019).
Besides, results across all models (Avg. Column)
indicate that the groups from the U.S. and India,
whose official languages include English, perform
the best generally. They consistently rank in the top
3 in both automatic evaluation metrics. This pattern
is especially pronounced in the results for encoder-
only LLMs and encoder-decoder LLMs. Apart
from the Iran group’, these two cultural groups also

*Monolingual LLM configurations, as well as results for
the five languages on their respective filtered sub-datasets, are
provided in the Appendix D.1.

>Version: gpt-40-2024-08-06

6https: //www.prolific.co/

’See detailed analysis in Appendix E.
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Encoder-only LLMs ‘ Encoder-Decoder LLMs ‘ Decoder-only LLMs ‘

Origin Count | Dumb Base Bb Bl mB | TS5 mTS| Qwen2  Llama2  Llama3 | Ave.
Ttaly 215 (13.9%) 18.14 | 8.12+1.14 7524043 9314133 | 4.5440.56  6.73+1.34 | 26.8244.36 19.37+3.68 29.62+3.30 | 14.00
US. 285 (18.4%) 11.10 | 19.98+2.00 18.83+1.95 19.914+5.88 | 10.2442.62 16.50+4.86 | 32.2142.05 21.64:£5.75 36.58+3.58 | 21.99
Turkey 98 (6.3%) 12.90 | 11.80+1.03  9.84+3.81 14.98+3.89 | 6.10+£1.57 10254291 | 25224146 22.96+4.04 30.0142.30 | 16.39
Japan 186 (12.0%) 935 | 11.10+1.19  9.14+1.81 11.5241.89 | 5454190  6.38+1.00 | 23.1542.01 20.24+3.10 25.47+1.73 | 14.06
France 175 (11.3%) 1650 | 9.33+1.24  7.514090 8.80+234 | 3.86+1.62 4574111 | 29.56+2.38 21.95+4.83 30.0142.19 | 14.45
UK. 83 (5.4%) 18.67 | 12.47+1.77 13.724220 14.20+4.01 | 6.16+2.89  9.88+3.06 | 29.06+2.47 21.824+3.43 32.15+4.06 | 17.43
Mexico 57 (3.7%) 940 | 825+1.04 10.35+2.88 8.87+2.18 | 3.41+049  5.96£236 | 25.14£158 22.03+£5.65 28.97+3.54 | 14.12
India 132 (8.5%) 11.57 | 18424135 16.9443.10 17.51£1.75 | 9.1842.98  7.80+1.15 | 35.82:£1.79 33.88+5.00 37.62+1.89 | 22.15
Germany 57 (3.7%) 14.02 | 854+1.77 7.84+1.01 9.0042.39 | 4.38+1.48  6.68+1.56 | 29.05+2.63 20.42+556 28.86+3.78 | 14.35
China 97 (6.3%) 8.60 | 15.0642.45 14.94+137 15244531 | 7.80+£1.97 1239+2.62 | 28.96+3.15 21.02+4.78 30.3942.70 | 18.23
Iran 21 (1.4%) 1260 | 9.16+1.75  8.19+1.51 13.56£3.16 | 9.004£2.04  6.21+0.15 | 40.26+8.19 35.36+9.81 45.7243.65 | 20.93
Greece 21 (1.4%) 1507 | 4.09+1.10  3.48+145 4.85+137 | 3.81£1.09 1.32+40.15 | 31.68+8.85 15.88+2.54 31.604+3.17 | 12.09
Spain 95 (6.1%) 1605 | 9.1840.93  7.1841.04 7424151 | 3984137 3334046 | 25214507 17.00+4.23 25.36+1.68 | 12.33
Russia 27 (1.7%) 10.64 | 4724098  7.1042.81 6444197 | 1.414£0.60 2214033 | 14.83+4.80 10.47+0.98 11.7740.59 | 7.37
ALL 1549 (100.0%) 13.29 | 12.56+1.06 11.58+129 12.96:+2.84 | 632142  8.68+2.03 | 28.56:£2.27 21.89+4.06 30.96+2.09 | 16.69
Coefficient of Variation (CV) | 24.15 | 40.87 40.76 36.89 43.29 54.29 | 20.39 28.27 23.84 -
(a) Performance results evaluated using mAP (%). CV indicates the extent of cultural bias in each model’s performance.
Orici | Encoder-only LLMs | Encoder-Decoder LLMs | Decoder-only LLMs |

rigin Avg.

| Bb Bl mB | T5 mT5 | Qwen2 Llama2 Llama3 |

Italy 0.3813+0.02 0.3624+0.01 0.3573£0.02 | 0.3129+£0.02 0.31954+0.01 | 0.4930+0.02 0.4510£0.02 0.5057+£0.01 | 0.3979
U.S. 0.4461+0.02 0.4358+0.02 0.4219+0.06 | 0.3516+£0.02 0.4076+0.03 | 0.5147+0.02 0.4656+0.04 0.5411+£0.02 | 0.4481
Turkey 0.4130+0.02 0.3886+£0.03 0.3954+0.04 | 0.33874+0.03 0.3419+0.02 | 0.4689+0.01 0.46124+0.03 0.5022+0.01 | 0.4137
Japan 0.3778+0.02 0.3501£0.03 0.3446+0.03 | 0.3059+0.03 0.2932+0.01 | 0.4416+£0.01 0.43044+0.02 0.4436+£0.01 | 0.3734
France 0.3750+0.02  0.3660+£0.02 0.3497+0.04 | 0.32794+0.02 0.3367+0.01 | 0.5201£0.02 0.469740.03 0.5099+0.01 | 0.4069
UK. 0.3708+0.02 0.3775+£0.02 0.3583+0.04 | 0.30314+0.02 0.3320+0.03 | 0.4532+0.03 0.42914+0.01 0.4620+0.04 | 0.3857
Mexico 0.3509+0.01 0.3654+0.03 0.32554+0.03 | 0.32874+0.01 0.3262+0.02 | 0.4547+£0.02 0.47624+0.04 0.4863+0.03 | 0.3892
India 0.44024+0.01 0.4193+0.04 0.41354+0.02 | 0.3380+0.04 0.3141£0.01 | 0.5106£0.00 0.51404+0.03 0.5190+0.02 | 0.4336
Germany | 0.3699+0.03 0.34924+0.03 0.3698+0.03 | 0.2987+0.02 0.3358+0.01 | 0.4987+0.02 0.4758+0.05 0.4983+0.01 | 0.3995
China 0.3676+0.02 0.35324+0.02 0.3317+0.05 | 0.3368+0.03 0.36704+0.03 | 0.45214+0.04 0.4285+0.02 0.4671+0.02 | 0.3880
Iran 0.3950+0.03 0.3747+0.03 0.3972+0.03 | 0.3384+0.04 0.3303+0.02 | 0.5510+0.06 0.5498+0.07 0.6086+0.03 | 0.4431
Greece 0.38544+0.03 0.3707+0.03 0.3461+0.02 | 0.3569+0.04 0.32574+0.01 | 0.54154+0.08 0.4459+0.02 0.5527+0.02 | 0.4156
Spain 0.3761+0.01 0.3386+0.02 0.3290+0.02 | 0.3215+0.02 0.29234+0.01 | 0.4630+0.03 0.4247+0.03 0.4641+0.01 | 0.3762
Russia 0.3686+0.01 0.3778+0.03 0.3286+0.01 | 0.3386+0.01 0.29124+0.02 | 0.42724+0.04 0.3969+0.02 0.4053+0.00 | 0.3668
ALL ‘ 0.3959+0.01 0.3803+0.02 0.3699+0.03 ‘ 0.3276+0.02  0.3380+0.01 ‘ 0.4864+0.01 0.4573+0.03 0.498140.01 ‘ 0.4067
Corr. | 0.35 0.59 0.38 | 0.57 0.83 | 0.86 0.71 092] -

(b) Performance results evaluated using mWS with Fasttext. Corr. represents the correlation between the FastText and BERT
base embedding evaluation results.

Table 1: Automatic Evaluation: Probing performance comparison with English prompts and FMLAMA-en
sub-dataset. “B/mB” respectively represent abbreviations for BERT and mBERT, and “b/l” stands for base/large.
Bold and underline indicate the best and second-best performing cultural groups, respectively, for each model
(within each column). The average Pearson correlation between mAP and mWS across LLMs is 0.72.

Bb Bl mB TS strengthens the persuasiveness of our experiment.

$‘A,VI; 822 8§§ giz gi? Additionally, (1) to assess the variation in model
performance across different cultural groups, we

mT5 Qwen2 Llama2 Llama3 calculate the Coefficient of Variation based on the
mAP 038 0.05 0.04 0.13 absolute-match mAP metric. This serves as an indi-
mWS -0.06 0.05 -0.04 0.02 cator of the degree of cultural bias in each model’s

performance. Our results show that decoder-only
LLMs exhibit less cultural bias compared to other
model types. Among these, the newer version,
Llama3, demonstrates greater consistency in per-
formance than Llama2. Similarly, the non-English-

Table 2: Correlation between Country Dish Counts and
Probing Performance.

demonstrate the best performance in decoder-only
LLMs. Especially, for the ‘dumb’ baseline, the
U.S. probing performance is not the best, suggest-
ing that the data distribution does not influence the
LLM’s cultural judgment capabilities. This further

dominant Qwen2 LLM also shows smaller varia-
tions in cultural bias. (2) To explore the impact
of different embedding methods in mWS, we use
BERT Base with mean pooling to evaluate prob-
ing performance under the mWS metric. Results

9845



Origin GPT-40 Human | Origin GPT-40 Human ‘ Origin GPT-40 Human
Italy 52.40 55.70 | UK. 64.12 72.33 | Iran 53.39 51.70
U.S. 70.06 70.26 | Mexico 47.05 51.95 | Greece 47.68 51.23
Turkey 55.19 53.59 | India 64.22 63.72 | Spain 43.02 53.16
Japan 50.76 56.07 | Germany 51.71 59.02 | Russia 31.42 44.86
France 52.03 58.28 | China 61.52 68.96 ‘ All 56.58 -

Table 3: Manual Evaluation: Llama3 probing results evaluated using MES. The human evaluation score is the
average MES from three evaluators per country group. Since evaluators vary by country group, the overall result

(ALL) is shown as “-”.

(a) mAP comparison (b) mWS comparison
Cultural_info vy o Cultural_info *%

30 [ZA without 4l A 0.50 3 without ti A
721 with ZZ1 with o
25 ok 0.45
< >k
e 0 0.40
s 20 %
£ *
15 e Hkk 0.35 *
10 ok 0.30
*kk
5 FB 025
S 5 5 NN © o & S
@%6&5\/\ & & &L Q’<b<‘g’<<<\& & L&

Figure 2: Comparative probing results on FMLAMA.-
en: incorporating cultural information about the origin
of dishes into English prompts can enhance the probing
of cultural knowledge. Significance levels are indicated
by * for p < 0.1, *x for p < 0.05, and *xx* for p < 0.01.

(see Table 8) show that the U.S. cultural group
achieves the highest performance, while decoder-
only LLMs exhibit significant improvement, con-
sistent with findings using FastText. We calculate
the correlation between mWS evaluations using
BERT Base and FastText for each LLM. The re-
sults reveal a strong correlation for decoder-only
LLMs, as shown in Table 1. (3) To explore the
correlation between training data size and cultural
probing performance, we use country dish counts
as a proxy for Wikidata’s cultural data size and cal-
culate their correlation with probing performance.
The correlation results are show as Table 2. Based
on the probing performance evaluated by the two
automated metrics, LLMs like Bb, B1, and T5 con-
sistently exhibit little correlations with cultural data
size. In contrast, decoder-only LLMs show almost
no correlations, indicating limited sensitivity to
cultural data size as represented by dish counts.
Therefore, in more advanced LLMs, cultural com-
petency isn’t directly tied to the training sample
size of specific cultural groups.

U ZEzh EA ko

\°Q «*

Figure 3: Comparison of probing results on Llama3

with prompts in different languages, showing that the
English prompt exhibits the best performance.

Country

en

en
60
50
40
£ E
<30
0

@\\
R

5.3 Manual evaluation results

Table 1 shows that Llama3 achieve the best prob-
ing performance, so we conduct manual evaluation
on its probing results. Table 3 displays the results
of the GPT-40 simulator and human evaluations,
showing a high Pearson correlation of 0.88. Both
evaluation methods consistently show that the high-
est MES scores come from English-speaking cul-
tural groups, including the U.S., U.K., and India,
with the U.S. performing especially well in both
manual evaluations. This aligns closely with the
automatic evaluation results, reinforcing the argu-
ment that LLMs tend to exhibit cultural bias toward
these groups.

Upon reviewing the evaluation results for the
GPT-40 simulator, we find that it treats synony-
mous expressions as Direct Matches, e.g., cooked
rice vs. gohan (the Japanese term) and cauliflower
vs. Brassica oleracea var. botrytis (the botanical
term). Additionally, reference labels from Wiki-
data often exhibit inconsistencies, with terms like
"shrimp or prawn" and "fish as food" marked as
ingredients. Furthermore, GPT-40 flags pre-made
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Figure 4:

ingredients as Substitutable; for example, flour in
Garganelli with pre-made pasta. For human evalu-
ators, evaluation results may vary due to individual
subjective biases. The average Inter-Rater Relia-
bility (IRR) across country groups, measured by
Fleiss’ kappa, is 0.57,% indicating moderate agree-
ment. While this indicates acceptable reliability for
subjective tasks, it also highlights that evaluators
from the same cultural background may still show
variation in their judgments. Although GPT-40 can
partially simulate human evaluations, its halluci-
nation issues (Ji et al., 2023) raise concerns about
the reliability of its assessments. These observa-
tions underscore the inherent challenges of using
automatic metrics for culturally-related tasks.

6 Analysis: Designing Better Prompts

We examine the impact of different prompt settings
on cross-cultural knowledge exploration, focusing
on cultural background references, multilingual
prompts, and code-switching scenarios.

Cultural background analysis. Using the En-
glish prompts from Figure 9 as a basis, we incor-
porate information about the dish country of origin
into the probing prompts for each specific dish (as
described in §4.2). Figure 2 presents the compar-
ative probing results on FMLAMA-en across dif-
ferent LLMs, considering the inclusion of cultural
information mentions in the prompts. We find that
English prompts with cultural information achieve
higher probing scores in capturing LLMs’ knowl-
edge within the food domain. This suggests the im-
portance of emphasizing the cultural background
when utilizing LLMs, especially in the exploration
of culture-related topics.

Multilingual prompt analysis. We utilize
prompts in six different languages to conduct
knowledge probing on the multilingual LLM,

8IRR and the average evaluation time for each country
group are shown in Appendix C.

Main language
zh ru ko he ar en

Llama3

19.90 19.44 19.04 28.98 40

-973 763 693 714 727 712

Qwen2

19.95

&
@
]

31.19(32.79 40

-11.00 10.08 8.97 8.43 8.97 11.09

-10.29 9.61 10.36 7.90 10.70 10.23 -13.12 9.22 10.14 843 9.85 822

~
>
Main language
h ru ko he ar en

-9.14 918 854 7.04 923 7.34 -915 6.88 7.67 653 7.18 7.88

-1572 10.49 920 9.97 1324 1238 | g -20.43 13.09 12.49 12.97 1612 1582  _15
12.66 12.07 15.62 [18.97 -10 -1511 924 882 1073 1142 1475 -10
en ar he ko ru zh en ar he ko ru zh

Subject language Subject language

Probing results using code-switching prompts on Qwen2 and LLaMA3.

Llama3.” To ensure a fair comparison of prob-
ing results across different language prompts, we
filter a sub-dataset where all food instances have
both subject and ingredient labels available in all
the languages involved. Figure 3 displays prob-
ing results on the filtered sub-dataset with prompts
in different languages.'? The English prompt per-
forms significantly better than prompts in other
languages across all cultural groups, probably due
to more training data.

Code-switching analysis. Figure 4 presents the
probing results using code-switching prompts, for
each pair out of six languages, applied to the two
best-performing decoder-only LLMs, Qwen2 and
Llama3. When English is the main language and
the dish subject is presented in another language,
probing performance significantly declines but still
outperforms probing conducted solely in other lan-
guages. This suggests that the instruction language
is important, not just the language of the dish
name. Furthermore, when the main language of
the prompt is non-English and the subject language
is English, performance does not significantly de-
cline and even shows a slight improvement. This
further emphasizes the dominant role of English in
multilingual LLMs. The detailed probing results of
each cultural group and other multilingual LLMs
are in shown Appendix D.3.

7 Error Analysis

A manual inspection of a data sample!! followed
by an automated evaluation on the complete data
reveals recurring mistake patterns: (1) Coarse-
grained confusions (foreign ingredients, e.g., cof-
fee in a Chinese dish), where the main issue lies in
the model’s lack of cultural attribute awareness for

°The probing results comparison on other multilingual
LLMs are shown in Appendix D.2.

19Some Chinese and Korean objects are missing Fasttext
vectors. Therefore, mWS cannot be calculated for them.

'Conducted by one of the authors on 500 predictions by
Llama3, Llama2, Bert-base-uncased and T5-base.
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Country ‘ Top 5 Most Falsely Predictions (Llama3)

Italy pasta, bread, meat, egg, pork
Japan rice, fish, soy, tofu, chicken
France butter, cream, meat, caramel, bread
Russia meat, beef, cabbage, pork, beet

(a) Coarse-grained confusions
Model ‘ Top 5 Most Frequent Predictions
BERT dried meat, ham, beef, pork, fish

T5 vinaigrette, scrambled eggs, buckwheat flour, ri-
cotta, sultana

rice, meat, bread, white meat, egg

rice, meat, sugar, chicken, bread

Llama2
Llama3

(b) Fine-grained confusions

Table 4: Error Analysis: Coarse and fine-grained con-
fusions in ingredient predictions by various cultural
groups and models.

both the dish and its ingredients. (2) Fine-grained
confusions (wrong local ingredients, e.g., Chinese
wine in Mapo tofu), and (3) Inconsistent confu-
sions, where the model predicts different incorrect
ingredients across prompts for the same dish.

Table 4 illustrates the described error patterns.
In the results for Llama3 in English, 47% of the
incorrect predictions for Italian dishes are the in-
gredient pasta, 45% of the incorrect predictions
for French dishes are butter, and 40% of the incor-
rect predictions for Japanese dishes are fofu. These
are examples of fine-grained confusions. Addition-
ally, rice, wheat and flour account for 11% of the
Llama3’s total predictions, regardless of the dish’s
origin. This is a coarse confusion, where the model
often predicts the same foreign ingredient.

These errors reveal a lack of cultural knowledge
about the dishes and suggest different types of
guessing. While coarse and inconsistent confusions
seem to reflect more general guesses, possibly in-
fluenced by the frequency of certain ingredients
in the training data, fine-grained confusions indi-
cate that the model has some knowledge of the
dish’s origin and is attempting to guess a local in-
gredient accordingly (i.e. overfitting to the context).
Specifically, for fine-grained errors, even when the
cultural attributes of candidate ingredients align
with the dish, LLMs still make incorrect predic-
tions. While many studies have shown that LLMs
can function as knowledge bases (Nguyen et al.,
2024; Pan et al., 2024) and memorize factual infor-
mation (Fierro et al., 2024a,b), the familiarity with
specific entities is crucial in shaping their predictive

expectations (Du et al., 2024).

8 Conclusion

This study presents an automated method for gen-
erating extensive cultural knowledge datasets, ex-
emplified by the creation of FMLAMA, a diverse,
food-centric dataset that spans multiple cultures
and languages. We introduce novel metrics for cul-
tural knowledge evaluation in LLMs, emphasizing
the influence of cultural context and language in
the probing process. Our findings reveal a predomi-
nant bias towards American culture in LLMs when
using English prompts, a bias that diminishes with
prompts in other languages. Interestingly, incorpo-
rating explicit cultural cues in prompts enhances
LLMs’ cultural knowledge access. The study also
highlights the scarcity of culturally diverse knowl-
edge across languages, pointing to a potential root
of observed biases in LLMs.

9 Limitations

While this study provides valuable insights into
cross-cultural knowledge probing in LLMs, it is es-
sential to acknowledge several limitations. Firstly,
the food domain knowledge dataset utilized in this
research is sourced from Wikidata, which may not
offer comprehensive coverage. For example, the
dish soy sauce chicken may only include the in-
gredient chicken meat while lacking the inclusion
of soy sauce. Moreover, ingredient descriptions
are not always detailed. For instance, the Wikidata
gold label might be o0il when the recipe requires
a specific type of oil, such as sesame oil. This in-
consistency underscores the motivation behind our
mWS metric. Furthermore, aside from well-known
dishes, certain recipes lack standardization and may
vary depending on individual preferences and cook-
ing styles, posing challenges to precise probing.
Additionally, the fuzzy-match metric mWS, intro-
duced in this study, relies on Fasttext for obtaining
object representation vectors. However, for cer-
tain objects in Chinese and Korean, zero vectors
may result, rendering similarity calculation impos-
sible. Furthermore, we employ manually crafted
templates in this paper. However, research has
shown that sampling templates from large corpora
can also enhance knowledge-probing evaluation.
This aspect is deferred to future work. Despite our
endeavors to construct comprehensive multilingual
and multicultural knowledge repositories, the avail-
ability of aligned cross-cultural knowledge remains
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limited in multilingual settings. This constraint
presents challenges in exploring the interaction be-
tween language and culture.
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A FMLAMA details

A.1 Examples

Figure 5 illustrates examples from dataset FM-
LAMA. Each dish instance in FMLAMA is de-
fined as: (url, na, cou, la, pa, [ma,im]), the ele-
ments in [-] indicate optional:

e url: the link in Wikidata;

e na: the name of the dish;

* cou: the country of origin of the dish;
* la: the language used in this entry;

* pa: the ingredients of this dish;

* ma: the material used in the dish;

* ¢m: the image of this dish.

Particularly, in each instance, la = LANG (na) =
LANG (pa) = LANG (ma), which indicates the
descriptive language for all attributes remains con-
sistent. For a dish with the same url, there may be
several instances with different languages. Table 5
contrasts our dataset with prior cultural knowledge
collections.

A.2 Statistics

There are a total of 33,600 dishes in FMLAMA.
We count the number of dishes corresponding to
each language and country in the dataset, as shown
in Figures 6 and 7. Figure 6a shows the top 20
languages ranked by the number of dishes, with
English (en) having the highest count at 2804, fol-
lowed by Spanish (es), French (fr), and Japanese
(ja). Figure 6b displays the distribution of dish
counts across different intervals for all languages,
indicating that most languages have fewer than
200 dishes. Similarly, Figure 7a shows the top 20
countries ranked by the number of dishes, with
Italy having the highest count at 2975, followed by
France, America, and Japan. Figure 7b shows the
distribution of dish counts across various intervals
for all countries, indicating that only 8 countries
have more than 200 dishes. Figure 8 shows the
dish statistics by ingredient count. The majority of
dishes contain only one ingredient, totaling 18,546.
Dishes with two ingredients are the second most
common, with a count of 6,426. The counts de-
crease as the number of ingredients increases, with
dishes containing eleven ingredients being the least
common, at 32.

B Probing Templates

B.1 Prompt illustration

Probing templates in six involved languages are
shown in Figure 9, in which [X] represents the sub-
ject (dish) and [Y] indicates the object (ingredient).
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url dish origin language  hasParts Material (optional) Image (optional)
https://www.wikidata  beef bourguignon France en red wine, beef, broth
.org/wiki/Q102212
https://www.wikidata & Z 27| ZZA ko Lo MEEFE 4|17|
.org/wiki/Q1022;
https://wwwwikidata LB A EE zh EH, AWEE, £
.org/wiki/Q1022;
https://www.wikidata  Boeuf bourguignon Francia es vino tinto, carne de res, caldo
.org/wiki/Q1022;
https://www.wikidata  luosifen China en chili pepper, rice vermicelli, peanut, freshwater ~ Viviparus quadratus
.org/wiki/Q7211268 snail, bamboo shoots, tofu skin
https://wwwowikidata — $28f55 h zh B, @XKA, BAOKIBG, WK, E HRRERR
.org/wiki/Q7211268
https://www.wikidata  ITloresapy, Vipan ru PHC, 1appaH, CJIMBOYHOE MACIO, KOPUIIR, puc, kode, madpar,
.org/wiki/Q20087994 KapJavOH, PO30Bast Bofia KOPMLIR, CJTMBOYHOE
MAUI0, PO30Basi BOJIA,
Kap[aMoH
https://www.wikidata 2P vYo Mg he Joytoly by o A5 00y 5 u D e b 1 B ) Ty ' B bn r fra PV ) LIPAX TN N0 DN 3
.org/wiki/Q1104585 nMan 0 TR LI SR 0 on tﬁ
Iy e
https://wwwi.wikidata Lz il Wl ar e il oy ablals el bkl sle |G s g@
.org/wiki/Qag7633 552l dabia Al ; 3
Figure 5: Examples of FMLAMA.
Datasets Format Topic Construction method Size
GEOMLAMA (Yin et al., 2022) Manual Template ~ Geo-Diverse Concept Manually curated 3125
FORK (Palta and Rudinger, 2023) CommonsenseQA  Culinary culture Manually curated 184
StereoKG (Deshpande et al., 2022)  Triplet knowledge Stereotypes about religion and ethnicity Automatically constructed 4722
CANDLE (Nguyen et al., 2023) Sentences Several cultural facets (food, drinks, clothing, Automatically constructed 47360
traditions, rituals, behaviors)
FmLAMA (ours) Triplet knowledge Food domain Automatically constructed 33600

Table 5: Comparison of cultural knowledge datasets. Size is in number of instances.

B.2 Language comparison

B.2.1 Geographic differences

In this section, we discuss the representative coun-
tries where each selected language is spoken and
their geographic distribution: (1) English: Mainly
spoken in U.S., Canada, Australia, Guyana, etc.,
spanning North and South America, Europe, Aus-
tralia, and Africa. (2) Chinese: Mainly spoken in
China, Singapore, etc., covering huge area of Asia.
(3) Arabic: Mainly spoken in Saudi Arabia, Egypt,
United Arab Emirates, etc., covering the Arabian
Peninsula, North Africa, and some sub-Saharan
African countries. (4) Korean: Mainly spoken in
South Korea, North Korea. (5) Russian: Mainly
spoken in Russia, Belarus, Kazakhstan, etc., cov-
ering Eastern Europe, Central Asia, and Northern
Asia. (6) Hebrew: Mainly spoken in Israel, with
Hebrew-speaking communities worldwide. These
languages represent cultural diversity, being spo-
ken on different continents by groups with rich and
distinct cultural backgrounds, demonstrating the
broad geographic and cultural diversity represented
by these languages.

B.2.2 Grammatical differences

In addition to geographical differences in usage,
these six languages also display the following gram-
matical and reading distinctions: (1) Word Or-
der: English and Chinese follow an Subject-Verb-
Object word order, Arabic typically uses Verb-
Subject-Object, Korean follows Subject-Object-
Verb, while Russian and Hebrew are relatively flex-
ible but generally adhere to Subject-Verb-Object.
(2) Tense: English, Arabic, Russian, and Hebrew
possess complex tense systems. Chinese lacks a
strict tense structure, whereas Korean expresses
tense through verb conjugation. (3) Gender: Ara-
bic, Russian, and Hebrew have grammatical gen-
der, while English distinguishes gender only in
pronouns. Chinese and Korean do not have gram-
matical gender. (4) Articles: English, Arabic, and
Hebrew have an article system, whereas Chinese,
Korean, and Russian do not use articles. (5) Read-
ing Direction: English, modern Chinese, modern
Korean, and Russian are read from left to right,
while Arabic and Hebrew are read from right to
left. Traditional Chinese and traditional Korean are
read vertically from top to bottom, with columns
arranged from right to left. (6) Case System: Ara-
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bic and Russian have complex case systems, while
Korean employs particles to indicate grammatical
relations. English, Chinese, and Hebrew do not use
case inflections.

C Manual Evaluation Setup

C.1 GPT-40 simulator

The evaluation prompts for the GPT-40 simulator
are shown in Table 6.

C.2 Human evaluator

Figure 10 shows the human evaluation website.
The Inter-Rater Reliability (IRR) and the average
evaluation time for the three evaluators from each
country group are provided in Table 7.

D Supplementary Experiments and
Analyses

D.1 Probing results in each FMLAMA-la

In addition to the multilingual LLMs dis-
cussed in §5, configure probing for mono-

lingual, encoder-only LLMs in Arabic,
Russian, Korean, and Chinese, including
asafaya/bert-base-arabic (Safaya et al,

2020), DeepPavlov/rubert-base-cased (Kura-
tov and Arkhipov, 2019), kykim/bert-kor-base,
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La. | Prompt

La. \ Prompt

[X] is a dish made with [Y].

[X] is a type of food that includes [Y].
en | The dish [X] is made with [Y].

The dish [X] uses [Y] as an ingredient.
The dish [X] is made from [Y].

Xl= [YIE 280 2= 20,

Xl= [Y)7t Z&E 2o,

ko | 27| [X]= [Y]2 S0 HENNL.

22| [X]E [YIE MER AIEsH.

28] [X]E [Y]2 2HEoi™e.

[X] aTo Gmofo xoTopoe Aenatot ¢ [Y].

[X] 210 ena conepxamas [Y].

ru | bmomo [X] rotoBures ¢ [Y].

B 6mroe [X] B kadecTBe HHIpeAMeHTA HCTonb3yeTes [Y].

bmogo [X] nenator us [Y].

12] o g siome 3 [1]
[2] o gt G Aaaka¥) a5 2 [1]
ar [2] ¢ g sime [1] Gk
L0sSaS [2] pasiy [1] Gl
[2] e g simn [1] Gl
XIR—E%E, FT2EANER™EN].
XI2—H&aY), HRheEaE(Y].
zh | XIXEXZFZAYIFIE.
[XPXE AR B IEY].
XIXERNEERD ZLY].
.[Y] oy nonw oxn xin [X]
Y] X 790w 9oxn Nin [X]
he .[Y] oy 012on [X] 2oxnn nx
.[Y] 2902 o'wnnwn [X] 7oxna
Y] n nwy [X] oxn

Figure 9: Probing templates in six involved languages, with [X] representing the subject and [Y] indicating the

object that can be substituted.

klue/bert-base (Park et
bert-base-chinese.

al., 2021) and

The probing results with prompts in the other
five languages (Arabic, Chinese, Hebrew, Ko-
rean, and Russian) on the corresponding filtered
sub-datasets (FMLAMA-ar, FMLAMA-zh, FM-
LAMA-he, FMLAMA-ko, and FMLAMA-ru) are
depicted in Table 9, 10, 11, 12, and 13, respec-
tively. Because certain objects in Chinese and Ko-
rean have representation vectors that result in all
zeros when obtained through Fasttext, calculating
cosine similarity was not feasible. Consequently,
mWS evaluation was not conducted for prompts in
Chinese and Korean prompts.

D.2 Language analysis on other multilingual
LLMs

Figures 11, 12, 13, and 14 present a com-
parison of probing results for the multilin-
gual LLMs—mBERT, mT5, Qwen2, and
Llama2—using prompts in various languages on
the corresponding filtered sub-datasets. Decoder-
only LLMs, such as Qwen2, Llama2, and Llama3,
while representing the cutting edge of current LLM
technology, exhibit greater performance variation
under multilingual prompt settings.

D.3 Code-switching probing results in each
cultural group

Figure 15- 28 presents a detailed comparison of the
probing results for each cultural group and other
multilingual LLMs.

E Cultural bias vs Dish popularity

Table 1 shows that some LL.Ms perform better in
probing tasks for low-resource language groups.
Specifically, the decoder-only LLM performs well
in the Iran group (both mAP and mWS metric),
while Greece shows decent results with both T5
and decoder-only LLMs (only mWS metric).

To understand the strong performance of the Iran
group across different metrics, we analyzed the re-
sults for the 21 dishes. Table 14 shows 17 involved
dishes where the predicted ingredients ranked in
the top 10 (Llama3). Since the top-ranked pre-
dicted ingredients in the table are not all commonly
used, we can rule out the possibility that the strong
performance of the Iran group is due to the LLM’s
common ingredient prediction errors. We hypothe-
size two possible reasons for this performance: (1)
LLM Cultural Ability: Decoder-only LLMs may
be more familiar with the Iran cultural group. (2)
Data Bias: The dishes in the Iran group are likely
well-known and representative of Iranian cuisine,
so the LLM might show stronger memory perfor-
mance for familiar entities (Du et al., 2024).
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Instructions

You are a professional evaluator. I will provide you with a dish, its reference ingredient label
sourced from Wikidata, and a list of predicted ingredients. Your task is to evaluate whether each
predicted ingredient is appropriate for the respective dish.

### Evaluation Criteria:

For each predicted ingredient, mark it as Correct, Maybe, or Incorrect using the following
guidelines:

e Correct: The ingredient meets one of these:

— Direct Match: It is explicitly listed in the reference ingredient label from Wikidata.
— Substitutability: It can replace a specific ingredient in the reference label during cooking.

— Missing Traditional Ingredient: It is traditionally or commonly used in the dish, but
not listed in the reference label.

* Maybe: The ingredient could be used in some variations of the dish, but its use is uncommon
or ambiguous.

* Incorrect: The ingredient is rarely or never used in the dish.

### Output Format:

Please directly return the evaluation as a Python dictionary with JSON format where the key is the
predicted ingredient, and the value is a tuple consisting of:

1. The evaluation ("Correct", "Maybe", "Incorrect")

2. The reason ("Direct Match", "Substitutability"”, "Missing Traditional Ingredient", or a brief
explanation)

### Example:

Input:

Dish: Spaghetti Bolognese

Reference ingredient label: spaghetti, ground beef, onion, garlic, Carrot
Predicted ingredients: spaghetti, basil, chicken, tomato, beef

Output

{
‘ground beef': ('Correct', 'Substitutability'),
'meat': ('Maybe', 'Ambiguous'),
'beef': ('Correct', 'Substitutability'),
'pasta’: ('Incorrect', 'Pasta is not part of the sauce itself'),
"turkey meat': ('Maybe', 'It can be used in some variations'),

Table 6: GPT-40 simulator: Evaluation Instructions
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Step 1: read guidelines

Welcome to our evaluation website!

@ Objective:

You will select a cultural group (country) whose dishes you are familiar with. Based on your selection, you will receive a list of related dishes, each with its English name
and a reference ingredient label sourced from Wikidata.

Your task is to evaluate whether the predicted ingredients are appropriate for the respective dishes. For each predicted ingredient, you will have the option to mark it as
Correct, Maybe, or Incorrect

Evaluation Criteria:

+ Correct: The ingredient meets one of these:
o Direct Match:ltis explicily listed in the reference ingredient label sourced from Wikidata.

o Substitutability: It can effectively replace a specific ingredient listed in the reference label during the cooking process.

o Missing Traditional Ingredient: It is traditionally o commonly used in this dish, but is not isted in the reference ingredient label from Wikidata.
« Maybe: The ingredient could be used in some variations of the dish, but its use is uncommon or ambiguous.
+ Incorrect: The ingredient is rarely or never used in the dish.

& Additional Instructions:

« I you are ot familiar with the ingredients of a particular dish, you are encouraged to search for the recipe online to gather accurate information.
« Please do not directly ask ChatGPT or other Al models for the answer.

i Confirmation:

O I have thoroughly read and understood the guidelines, and | am clear about my task and the evaluation criteria.

Start Evaluation

Step 2: choose cultural group
Select Your Cultural Group

Please select the cultural group (country) whose cuisine you are familiar with:

-- Select Cultural Group -

e
Step 3: evaluate each dish
Dish Evaluation

Evaluation Criteria:
For each predicted ingredient, you will have the option to mark it as Correct, Maybe, or Incorrect using the following guidelines:

+ Correct: The ingredient mests one of these:

o Direct Match:ltis explicity listed in the reference ingredient label sourced from Wikidata.

o Substitutability: It can effectively replace a specific ingredient listed in the reference label during the cooking process

© Missing Traditional Ingredient: It is traditionally or commonly used in this dish, but is not listed in the reference ingredient label from Wikidata.
« Maybe: The ingredient could be used in some variations of the dish, but its use is uncommon or ambiguous.
+ Incorrect: The ingredient is rarely or never used in the dish.

There are a total of 97 dishes that you need to evaluate.

@ Dish Information: (6197

Image:

Dish Name: Kung Pao chicken (E{#35T)

Reference (Wikidata) Ingredient Label:

peanut Sichuan pepper Shaoxing wine

chicken meat

@ Evaluation Process:

Please determine whether the following predicted ingredient is correct:

# | Predicted Ingredient Correct (Yes/No/Maybe) Correct Reason (if Yes)

1 chicken [Yes v [Subsiutabity v
2| chii [Yes v [Missing Tradilonal Ingredient v |
3| meat [Maybe >

4 | shrimp [No >

Comment: (if you have any questions about this dish information, please write them below. Optional)

oS m

Figure 10: Human evaluation website
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Figure 11: Comparison of probing results on mBERT with prompts in different languages,
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Figure 12: Comparison of probing results on mT5 with prompts in different languages,
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Figure 13: Comparison of probing results on Qwen2 with prompts in different languages,
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Figure 14: Comparison of probing results on Llama2 with prompts in different languages,
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Figure 15: Italy: Probing results of code-switching prompts.
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Figure 16: U.S.: Probing results of code-switching prompts.
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Figure 17: Turkey: Probing results of code-switching prompts.
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Figure 18: Japan: Probing results of code-switching prompts.
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Figure 19: France: Probing results of code-switching prompts.
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Figure 20: U.K.: Probing results of code-switching prompts.
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Figure 21: Mexico: Probing results of code-switching prompts.
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Figure 22: India: Probing results of code-switching prompts.
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Figure 23: Germany: Probing results of code-switching prompts.
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Figure 24: China: Probing results of code-switching prompts.
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Figure 25: Greece: Probing results of code-switching prompts.

Llama3

7.05 6.95

5.34 5.05
7.88

8.99

3.72 338 3
ar ko
Subject language

8.50 8.

10.70

69

.60

ru

. 11.82 13.98 10.12 - 13.98

6.80 7.26 6.61

5.26 5.64

8.40

6.46

3.53

mT5 Llama3
275
c c B
10 ° 2 122 225 ¢ . 25.0 ® o7
9 . 20.0 H —12,85.10.90 9.64 12.83 12.93 225 %5-945 990 6.72 7.13 8.86 9.10
o ° °
g 175 § 200 §
. S 2-1054 1045 1171 12.00 S2-809 857 665 724 797 839 S2-646 401 473 485 491 470
& 150 § 175 g
c9-584 620 595 599 586 6.70 c9-717 714 716 865 7.5 7.11 150 £8-524 714 680 936 614 638
7 ] 125 & . 8
= = =
E 11.39 10.78 .. L 100 2-1015 992 809 679 1244 976 125 2 7.89 855
" -
-10.0
5 ﬁ-- 2 -75 5 Nu.u 11.40 1172 s 5 «m 674 6.27 558 7.86
-5 . . . R . . . .
en ar he kot zh en ar he ko 1 zh en ar he kot zh
Subject language Subject language Subject language
. . . . .
Figure 26: Spain: Probing results of code-switching prompts.
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Figure 27: Russia: Probing results of code-switching prompts.
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Figure 28: ALL: Probing results of code-switching prompts.
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Group Dishes IRR Time(m)

Italy 215 0.60 74.93
U.S. 285 0.48 104.25
Turkey 98 0.78 32.05
Japan 186 0.64 49.25
France 175 0.63 71.83
U.K. 83 0.46 30.33
Mexico 57 044 22.25
India 132 0.58 40.25
Germany 57 0.69 20.03
China 97 0.59 48.50
Iran 21 0.61 13,33
Greece 21 0.35 11.30
Spain 95 0.57 41.50
Russia 27 0.51 26.50
Mean 111 0.57 -

Table 7: Human evaluator: IRR and average evaluation
time for the three evaluators from each country group.

9863



‘ Encoder-only LLMs

‘ Encoder-Decoder LLMs ‘

Decoder-only LLMs ‘

Origin Avg.
| Bb Bl mB | mT5 T5 | Qwen2 Llama2 Llama3 |
Italy 0.7393+0.01  0.7425+0.01 0.7438+0.00 | 0.6865+0.02 0.65794+0.01 | 0.774940.01 0.7658£0.01 0.7869+0.01 | 0.7372
Us. 0.7748+0.01 0.7763+0.01 0.7815:£0.01 | 0.7071£0.02 0.7178+0.03 | 0.7968+0.01 0.7839+£0.02 0.8107+£0.01 | 0.7686
Turkey | 0.73574£0.01 0.7461£0.01 0.7545+0.01 | 0.7015+0.02  0.6703£0.01 | 0.7681+£0.01 0.7571+0.01 0.783040.01 | 0.7395
Japan 0.7113£0.00  0.7144+0.00 0.7218+0.01 | 0.6788+0.02 0.6442:0.01 | 0.7446+£0.00 0.7446+0.01 0.7516+0.00 | 0.7139
France | 0.7398+0.01 0.7520+0.02 0.7513+0.01 | 0.6755£0.02 0.6642+0.01 | 0.7941+0.01 0.7796+0.01 0.7846+0.00 | 0.7426
UK. 0.7460+0.01  0.7500£0.01  0.7550£0.00 | 0.6697+0.02 0.6745+0.02 | 0.7678+0.01 0.7701£0.01 0.7790+0.01 | 0.7390
Mexico | 0.7273+0.01 0.7313+0.01 07291001 | 0.7171£0.01 0.6734:£0.01 | 0.7605+0.01 0.7752+0.02 0.7852+0.02 | 0.7374
India 0.7477£0.01  0.7523£0.00 0.7568+:0.00 | 0.6998+0.01 0.6619£0.01 | 0.7867+0.00 0.7944:£0.01 0.7935+0.01 | 0.7491
Germany | 0.7348£0.01  0.7305+0.03 0.749340.00 | 0.6755+0.01 0.65350.01 | 0.7835+0.01 0.7769+0.02 0.7849+0.01 | 0.7361
China 0.7273£0.01 0.7319£0.01 0.73170.01 | 0.7024:0.01 070542001 | 0.7698+0.01 0.7593£0.01 0.7793+0.01 | 0.7384
Tran 0.7064+0.01  0.7013+0.01 0.7310+0.01 | 0.7042+0.02 0.6686+0.01 | 0.7905+0.03 0.7914:£0.04 0.8026+0.01 | 0.7370
Greece | 0.7488+£0.01 0.7618+0.02 0.7566:0.02 | 0.7190£0.03 0.6369:£0.00 | 0.8137:£0.04 0.7739:0.01 0.8247+0.01 | 0.7544
Spain 0.74024+0.00 0.7465+0.01 0.7472+0.00 | 0.6883+0.01 0.639140.01 | 0.77484+0.01 0.7663+£0.01 0.7765+0.01 | 0.7349
Russia | 0.7467+£0.01 0.7571+0.01 0.757320.00 | 0.7216=0.02 0.6710:£0.01 | 0.7716:£0.01 0.7680+0.01 0.7721£0.00 | 0.7457
ALL | 0.7419£0.00 0.7466+0.01 0.7507£0.00 | 0.6924:0.01 0.6723+0.01 | 0.7778+0.01 0.77110.01 0.7859:£0.00 | 0.7423
Corr. | 0.35 0.59 038 | 0.83 0.57 | 0.86 0.71 0.96 | -

Table 8: Probing performance comparison with English prompts and FML AMA -ar sub-dataset. The results are
evaluated using mWS with BERT base. Corr. denotes the correlation of mWS evaluations using BERT Base and
FastText for each LLM, which reveal a strong correlation on decoder-only LLMs,

Origin Count Bb-ar mB mT5 Qwen2 Llama2 Llama3 | Avg.
Italy 76 (19.2%) | 2.56+0.69  3.07+1.02 5.12£1.20 5.13£3.42 3.30+£1.13 4.05+0.81 | 4.03
U.S. 54 (13.7%) | 5.29+£1.18  7.224+391 5.68+1.53 9.41+4.12 3.93+1.00 5.95+2.38 | 5.09
Turkey 52 (13.2%) | 4.07£0.88  6.66+£3.09 3.30+0.53 9.20+£5.71 3.33+1.04 9.54+3.48 | 5.47
Japan 44 (11.11%) | 2.69+£1.50  2.56+0.50 2.13+0.78  9.914+3.73 3.754+1.12 5.43+1.62 | 5.20
France 37 (9.4%) | 7.51£2.43  6.50+4.55 4.51+£1.21 7.16+£3.23 5.714+0.82 4.63+£1.77 | 4.70
UK. 26 (6.6%) | 5.80£2.15 9.17+£6.85 6.72+£1.67 11.7746.35 5.7244.86 8.624+6.52 | 5.75
Mexico 20 (4.6%) | 3.52£1.57 7.37£1.01 3.43+0.61 3.60+0.55 2.3840.48 3.724+1.68 | 2.82
India 18 (3.2%) | 4.39+1.09 8.86+5.19 3.08+1.17 10.82+9.44 3.04+1.56 3.03+1.38 | 7.29
Germany 13 (3.3%) | 7.39+2.52 10.65+4.95 5.87+2.04 9.53+4.72 2.75+2.12 7.67+3.29 | 4.69
China 13 (3.3%) | 2.07+0.53  4.86+4.36 2434093  6.79+£2.17 2.75+0.70 6.54+2.51 | 4.58
Iran 11 (2.8%) | 9.30+4.85 8.19+5.41 7.3842.56 11.23+7.82 6.31+2.85 6.67+5.02 | 5.90
Greece 11 (2.8%) | 3.12£0.98 5214326 4.25£1.23  9.2544.78 3.13£1.09 4.54+3.95 | 4.63
Spain 10 (2.5%) | 5.84+1.24  4.134£2.32 8.01+1.35 12.74+3.84 3.41+1.18 6.90+4.08 | 7.34
Russia 10 (2.5%) | 3.62+0.80  3.13+0.79 2.48+0.26 4.20+0.98 4.88+2.78 4.76+0.94 | 4.34
ALL 395 (100.0%) | 4.41+0.35 5.80+2.56 4.484+0.60 8.24+3.65 3.85+1.00 5.85+1.47 | 4.96
(a) Performance results evaluated on mAP (%).
Origin ‘ Bb-ar mB mT5 Qwen2 Llama2 Llama3 Avg.
Italy 0.32804+0.01 0.2259+0.02 0.3547+0.05 0.3213+0.06 0.2252+0.05 0.2802+0.05 | 0.2892
US. 0.33554+0.02 0.2746+0.05 0.3581+0.03 0.32614+0.05 0.2419+0.03 0.3194+0.02 | 0.3093
Turkey 0.31414+0.01 0.2434+0.04 0.3154+0.03 0.3111+0.06 0.2210+0.03 0.3164+0.06 | 0.2869
Japan 0.2876+0.02 0.24114+0.04 0.3150+0.05 0.3030+£0.05 0.1834+0.04 0.25534+0.04 | 0.2642
France 0.359940.02 0.298440.04 0.3462+0.03 0.3129+0.04 0.2608+0.02 0.284440.01 | 0.3104
UK. 0.34504+0.02 0.3118£0.08 0.3651+0.04 0.3450+0.06 0.2406+0.07 0.3435+0.05 | 0.3252
Mexico 0.3098+0.02 0.2891+£0.04 0.3335+0.07 0.2687+0.03 0.2163+£0.02 0.2665+0.02 | 0.2807
India 0.28504+0.03 0.2474+0.07 0.3051+0.03 0.3355+0.09 0.221740.05 0.2455+0.03 | 0.2734
Germany | 0.3300+£0.02 0.2859+0.07 0.35304+0.04 0.2772+£0.06 0.2046+0.04 0.31724+0.05 | 0.2946
China 0.2938+0.02 0.28364+0.06 0.32554+0.07 0.2889+0.03 0.1907+£0.04 0.27744+0.04 | 0.2767
Iran 0.34534+0.04 0.26444-0.06 0.36341+0.03 0.3488+0.04 0.2405+0.06 0.325740.02 | 0.3147
Greece 0.32414+0.02  0.2559+0.04 0.3502+0.05 0.33584+0.06 0.2325+0.03 0.3052+0.04 | 0.3006
Spain 0.3659+0.02 0.3213+£0.03 0.4071+£0.06 0.3626+0.06 0.2869+0.05 0.3576+0.05 | 0.3502
Russia 0.3323+0.02 0.2772+£0.02 0.3347+0.02 0.3451+0.02 0.2964+0.03 0.3145+0.00 | 0.3167
ALL ‘0.324310.01 0.26254+0.03 0.3421+£0.04 0.3176+0.05 0.2282+0.04 0.2957+0.03 ‘ 0.2951

(b) Performance results evaluated on mWS.

Table 9: Probing performance comparison with Arabic prompts and FMLAMA -ar sub-dataset.

9864



Origin Count ‘ Bb-zh mB mTS Qwen2 Llama2 Llama3 | Avg.
Italy 49 8.7%) | 17.18+1.67 13.07£4.92 10.55+0.84 24544287  9.32+4.48 13.58+4.08 | 14.71
U.S. 101 (17.9%) | 19.324+1.47 13.79£3.56 12.37+£1.09 26.50+2.94 12.91+£3.61 13.17+6.45 | 16.34
Turkey 12(21%) | 8.924+3.86 6.30+2.12  5.2240.18 18.164+3.49  8.184+3.58 11.00+6.39 | 9.63
Japan 114 (20.2%) | 15.79+2.32 11.18+4.41  7.85x0.60 17.67+2.73 11.15+2.66 11.78+4.54 | 12.57
France 70 (12.4%) | 19.45+4.13 16.04£5.31  9.14+0.98 20.96+1.45 13.36+3.62 14.71+5.89 | 15.61
UK. 38 (6.7%) | 27.884+2.65 19.55+7.36 10.64+0.68 28.43+4.16 18.02+8.33 21.46+6.75 | 21.00
Mexico 19 3.4%) | 21.12£0.86 13.40£3.51 12.05+0.79 16.25£4.70 10.60+1.32  8.2143.83 | 13.61
India 24 (43%) | 547+£1.65 5.02+2.68  1.13+0.17 1237£3.79 4.57+£2.20 6.58+5.13 | 5.86
Germany 16 2.8%) | 10.314£2.53 12.464+3.54  6.81£1.75 10.4142.12 4.0842.38  7.62+4.63 | 8.62
China 87 (15.4%) | 22.55£4.86 18.32+£6.75  7.88£0.91 33.48+£6.15 13.83£3.72 19.96+9.42 | 19.34
Iran 7(1.2%) | 7.72+1.44  8.19+£4.58  3.54+0.20 839+£2.08 3.40+0.38  8.824+3.50 | 6.68
Greece 7(1.2%) | 4.11+0.68 2.88+1.08 543+0.43 14.81£3.05 1.40+0.37 3.46+1.23 | 535
Spain 12(2.1%) | 13.00£1.83 10.21+1.58 12.724+1.17 21.02+£0.93  5.53+3.77 12.41£6.05 | 12.48
Russia 8(1.4%) | 5.58+£0.93  3.98+0.76  2.29+0.38  5.89+1.09 4.06+2.84 5.14£1.07 | 4.49
ALL 564 (100%) ‘ 17.84+2.37 13.56+£4.36  8.96+0.44 22.71+£2.37 11.46+3.32 13.76£5.56 ‘ 14.71

Table 10: Probing performance comparison with Chinese prompts and FMLAMA -zk sub-dataset.

Origin Count ‘ mB mT5 Qwen2 Llama2 Llama3 | Average
Italy 59 (18.6%) | 4.18+2.54  4.30+149  7.7842.37 3.97+1.47 6.29+3.14 5.30
U.S. 67 (21.1%) | 8.62+7.22  8.13£2.02  9.09+4.52 3.62+0.81  10.17+4.44 7.93
Turkey 12(3.9%) | 8.994£8.65 6.33+4.01 9.214£592 2.93+1.18 10.68+6.33 7.63
Japan 19 (6.0%) | 6.69+£5.23  5.99+3.64  6.60+4.19 6.924+3.85 4.39+3.12 6.12
France 65 (20.5%) | 5.43+3.01 4.5440.92 6.40+2.74 2.7240.54 5.50+1.47 4.92
UK. 23 (7.3%) | 9.43+6.79  6.95+2.26 9.79+5.06 3.97+2.49  10.08+5.66 8.04
Mexico 11 (3.5%) | 2.2240.75  2.26+0.74  4.33+2.44 2.87+1.99 2.1442.01 2.76
India 18 (5.7%) | 8.124+3.72  3.31£1.07  2.80+2.77 3.26+1.95 4.734+2.46 4.44
Germany 11 (3.5%) | 7.57£5.98 14.84+6.23 8.59+3.46 5.92+1.83 9.38+5.42 9.26
China 9 (2.8%) | 3.61£3.34  2.12+0.78  3.75+£3.62 1.64+1.29 4.05£1.62 3.03
Iran 6 (1.9%) | 8.58+5.37  5.05£2.90 19.40+9.90 2.95+0.57 20.63+10.96 11.32
Greece 6 (1.9%) | 2.76+0.60  4.31+0.49 12.96+9.55 7.67+2.85 3.3442.19 6.21
Spain 7(22%) | 458+1.81 7.02+1.87 3.86+1.66 4.04+1.62 2.82+1.26 4.46
Russia 4(1.3%) | 431£3.65 3.35+£0.07 2.10+0.28 2.56+0.46 2.56+0.44 2.98
ALL 317 (100%) ‘ 6.41+4.30 5.77+1.59  7.57+2.66 3.744+0.85 7.17+2.63 ‘ 6.13
(a) Performance results evaluated on mAP (%).
Origin ‘ mB mT5 Qwen2 Llama2 Llama3 ‘ Average
Italy 0.31024+0.03 0.3320+0.03 0.3197+0.03 0.29734+0.04 0.326540.05 0.3171
U.S. 0.343540.06 0.3626+0.03 0.3524+0.03 0.304240.03 0.3517£0.04 | 0.3429
Turkey 0.2976+0.06 0.3225+0.05 0.3110£0.04 0.262140.05 0.3296+0.10 | 0.3046
Japan 0.313440.05 0.31674+0.04 0.311440.05 0.2839+0.03 0.28994+0.02 | 0.3031
France 0.3082+0.03 0.3509+0.04 0.3334+0.02 0.2838+0.04 0.313440.03 0.3179
UK. 0.3400+0.06 0.34184+0.04 0.341440.04 0.2930+0.02 0.31674+0.06 | 0.3266
Mexico 0.2959+0.05  {0.382940.06} 0.3420+0.06 0.2847+0.06 0.28654+0.04 | 0.3184
India {0.3614+0.05} 0.3437+0.06 0.3354+0.01 0.313340.04 0.3192+0.05 0.3346
Germany | {0.3595+0.04} 0.3763+0.02  {0.3756+0.03}  {0.3339+0.05} {0.358640.06} 0.3608
China 0.28634+0.03 0.313140.06 0.271440.06 0.2683+0.03 0.243240.04 | 0.2765
Iran 0.34354+0.05 0.3521£0.07 {0.4569+0.07} 0.2902+0.02  {0.44164+0.09} 0.3769
Greece 0.301440.02 0.342340.02 0.3722+0.08 0.333240.03 0.2951+£0.04 | 0.3288
Spain 0.3493+0.03  {0.422940.07} 0.35474+0.02  {0.3635+0.06} 0.3260+0.03 0.3633
Russia 0.3276+0.03 0.37484+0.06 0.331940.04 0.3308+0.01 0.31794+0.04 | 0.3366
ALL ‘ 0.32374+0.04 0.348440.03 0.3369+0.02 0.2969+0.03 0.32484+0.04 ‘ 0.3261

(b) Performance results evaluated on mWS.

Table 11: Probing performance comparison with Hebrew prompts and FMLAMA -he sub-dataset.
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Origin Count ‘ Bb-ky Bb-kl mB-u mTS Qwen2 Llama2 Llama3 | Avg.
Italy 88(16.7%) | 6.90£1.57 7.75+£2.34 3.85+£2.54  6.02+£0.64 3.50+1.10 1.19+£0.22 2.234+0.75 | 4.49
U.S. 64 (12.2%) | 11.3742.66 10.874+3.86 6.32+5.20 10.154+0.34 2.46+0.69 1.68+0.12 2.95+0.93 | 6.54
Turkey 19 3.6%) | 2.75+2.47 4.13+2.62 4.07£3.17 1.82+0.44 3.86£1.00 2.16+0.12 7.47+1.45 | 3.75
Japan 101 (19.2%) | 7.34x2.12  7.74+£1.86 1.93+1.24  525+0.99 6.56+5.34 2.194+0.22 2.62£1.15 | 4.80
France 67 (12.7%) | 2.33+0.43  3.09+£0.44 3.15+0.17 2.79£0.30 3.10+£0.68 1.40+0.09 2.41+1.27 | 2.61
UK. 27 (5.1%) | 14.07+2.83 15.89+4.43 6.00+4.42 7.55+£1.34 3.21+1.02 1.79+0.31 6.89+5.70 | 7.91
Mexico 13(2.5%) | 5.18+£3.69  8.37+2.85 4.894+3.29 231+£040 7.1243.13 2.75£1.99 4.18+1.61 | 4.97
India 32(6.1%) | 7.98£2.29 5.74+1.32 3.28+£2.09 2.96+0.61 7.69+6.42 2.01+0.32 2.3640.67 | 4.57
Germany 15(29%) | 2504094  5.08+1.25 2.42+1.68 3.20£1.18 2.63£0.95 1.33£0.48 1.91+0.21 | 2.72
China 54 (103%) | 9.024+2.76 10.124+3.04 2.36£2.22 4.05£1.50 4.43£1.74 2.16+£0.48 3.06+1.48 | 5.03
Iran 8(1.5%) | 7.99+£523 3.76+1.41 1.62+0.67 1.52+0.24 1.50+0.14 2.874£249 2.12+1.83 | 3.05
Greece 9(1.7%) | 2.324+0.73  6.76£3.73 2.74+0.76  5.76+£4.22 4.59+1.31 3.67+2.94 3.35+1.87 | 4.17
Spain 21 (4.0%) | 4.05£2.25 590+2.70 1.79+1.24  5.82£1.33 3.99+1.38 2.50+0.97 3.85+0.99 | 3.99
Russia 8(1.5%) | 3.70£0.99  4.22+1.83 2.68+£1.12  2.12+0.05 3.01£1.41 1.72+£0.20 3.07£1.46 | 2.93
ALL 526 (100%) ‘ 7.05+£1.47  7.68+£2.00 3.454+2.10 5.194042 4.32+1.76 1.86%£0.18 3.07£0.95 ‘ 4.66

Table 12: Probing performance comparison on mAP (%) with Korean prompts and FMLAMA -ko sub-dataset.

Origin Count‘ Bb-ru mB mT5 Qwen2 Llama2 Llama3 | Avg.
Italy 101 (15.9%) | 4.2942.04  6.57+£3.51 4.52+1.27 7.9942.61 4.30+2.32 10.61+£2.60 | 6.38
U.S. 79 (12.5%) | 9.76+£4.95 9.99£525 551+0.71 12.01£3.53  9.04+4.33 11.97£3.75 | 9.71
Turkey 28 (4.4%) | 5.75£2.12  9.46+1.68 3.58+1.61 11.084+8.01 10.49+£290 16.37+£2.97 | 9.46
Japan 68 (10.7%) | 7.89+4.76  7.13£2.34  1.76+0.56  6.10£2.74  8.50+5.79 14.11+0.74 | 7.58
France 93 (14.7%) | 7.08+3.04 6.83+2.85 5.03+1.86 7.03+2.48  8.85+4.96 10.55+£3.43 | 7.56
UK. 33 (5.2%) | 8.42+5.82 10.03£5.01 5.54+£3.74 11.89+6.16 13.17+8.89 16.82+8.31 | 10.98
Mexico 22 (3.5%) | 4.08£0.89 2.01£0.82 2.08£0.95 4.70£1.40 5.64+3.25 4214134 | 3.79
India 21 (3.3%) | 11.46+£9.78 19.02+2.71 4.27+3.11 16.80+6.73 12.95+£5.70 22.93+2.60 | 14.57
Germany 45 (7.1%) | 7.534£5.26  7.95+3.59 4.3942.03 9.41+2.54 11.744+4.92 11.57+4.32 | 8.77
China 30 (4.7%) | 9.67+4.64 11.864+3.63 3.28+2.19 10.444+4.98 12.63+£6.07 12.82+4.43 | 10.12
Iran 13(2.1%) | 10.86+£6.84 11.06£5.99 15.51+4.53 22.88+6.61 10.77+8.30 23.88+6.87 | 15.83
Greece 18 (2.8%) | 3.45+2.42 1.74+0.43 3.38+1.24 8.56+2.57 4914£285 4.77+1.28 | 4.47
Spain 38 (6.0%) | 3.35£1.51 6.51£2.61 3.37+£1.37 5274252 3.884£2.07 5.61+1.84 | 4.67
Russia 45 (7.1%) | 4.794£2.05 3.75+£0.77  2.804+0.92 5214294 53142.18 547+£2.27 | 4.55
ALL 634(100%)‘ 6.85+3.14  7.76+£1.83  4.28+1.11 8.84+2.67 8.194+4.04 11.52j:2,82‘ 791
(a) Performance results evaluated on mAP (%).
Origin ‘ Bb-ru mB mT5 Qwen2 Llama2 Llama3‘ Avg.
Italy 0.3319£0.04 0.3217+0.06 0.3633+0.03 0.4073+0.04 0.3774+0.02 0.3779£0.05 | 0.3633
US. 0.3796+0.04 0.35564+0.05 0.3692+0.02 0.4393+0.03 0.3938+£0.05 0.4068+0.05 | 0.3907
Turkey 0.3199+£0.06 0.3317+0.04 0.3300+0.04 0.3966+0.06 0.40124+0.02 0.4178+0.04 | 0.3662
Japan 0.29554+0.03  0.27964+0.04 0.2740+0.02 0.3085+0.04 0.3110£0.05 0.3319+0.01 | 0.3001
France 0.3438+0.05 0.31324+0.03 0.36524+0.04 0.3875+0.02 0.3954+0.04 0.37524+0.04 | 0.3634
UK. 0.36474+0.08 0.344240.05 0.3771+£0.04 0.4327+0.04 0.414940.08 0.41794+0.09 | 0.3919
Mexico 0.3150£0.01 0.3081+0.04 0.3604+0.04 0.3688+0.03 0.3909+0.02 0.3225+0.04 | 0.3443
India 0.3475+£0.10  0.3808+0.05 0.3062+0.03 0.43754+0.06 0.36654+0.07 0.4236+0.04 | 0.3770
Germany | 0.3500£0.08 0.3330+0.05 0.3402+0.04 0.3968+0.03 0.40534+0.04 0.3743+0.07 | 0.3666
China 0.3318+0.04 0.33484+0.05 0.3276+0.03 0.3741+£0.07 0.3819£0.06 0.35204+0.05 | 0.3504
Iran 0.32524+0.06 0.33584+0.03 0.4221+0.06 0.4916+0.06 0.4418+0.04 0.4818+0.09 | 0.4164
Greece 0.3360+0.05 0.30154+0.04 0.3573+0.03 0.4045+0.01 0.4012+£0.03 0.336540.05 | 0.3562
Spain 0.3240+£0.03  0.3283+0.04 0.3625+0.04 0.3880+0.04 0.3638+0.03 0.3313+£0.04 | 0.3497
Russia 0.3583+£0.03 0.3199+0.04 0.3899+0.03 0.37324+0.04 0.39074+0.01 0.3591£0.03 | 0.3652
ALL ‘0.339510,04 0.3247+£0.04 0.3515+0.03 0.3940+0.03 0.38244+0.03 0.375040.04 ‘ 0.3612

(b) Performance results evaluated on mWS.

Table 13: Probing performance comparison with Russian prompts and FMLAMA -ru sub-dataset.
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Table 14: Top 17 dishes from the Iran group with ingredients ranked in the top 10 by Llama3, excluding common

prediction errors.

ID Subject (dish) Involved Object (ingredients) Rank
0  pomegranate soup pomegranate 0

1 Albaloo polo rice 1

2 Kofta minced meat 0

3 Sabzi polo herb 5

4 falooda milk, vermicelli 1,0
5  ghormeh sabzi parsley, herb 0,4
6  Bastani milk, sugar, egg 8,7,
7  zeytoon parvardeh olive 8

8  rock candy sugar 0

9  Faloodeh vermicelli 0

10  muhallebi milk, rice flour 2,1
11  rogan josh lamb meat 1
12 ash-e doogh yogurt 0
13 Mahyawa fish 4
14 sholezard rice 1

15 Eggplant Caviar eggplant 0

16 nin-e panjere flour 6
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