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Abstract

Large Language Models (LLMs) excel in high-
resource languages but underperform in low-
resource ones. As an effective alternative to
the direct fine-tuning on target tasks in specific
languages, cross-lingual transfer addresses the
challenges of limited training data. It decou-
ples “task ability” and “language ability” by
fine-tuning on the target task in the source lan-
guage and another selected task in the target
language, respectively. However, they fail to
fully separate the task ability from the source
language or the language ability from the cho-
sen task. In this paper, we acknowledge the
mutual reliance between task ability and lan-
guage ability and direct our attention toward
the gap between the target language and the
source language on tasks. As the gap removes
the impact of tasks, we assume that it remains
consistent across tasks. Based on this assump-
tion, we propose a new cross-lingual transfer
method called AdaMergeX that utilizes adaptive
adapter merging. By introducing a reference
task, we can determine that the divergence of
adapters fine-tuned on the reference task in both
languages follows the same distribution as the
divergence of adapters fine-tuned on the target
task in both languages. Hence, we can obtain
target adapters by combining the other three
adapters. Furthermore, we propose a structure-
adaptive adapter merging method. Our empiri-
cal results demonstrate that our approach yields
new and effective cross-lingual transfer, outper-
forming existing methods across all settings.1

1 Introduction

Multilingual NLP models, including conventional
models such as mBERT (Kenton and Toutanova,
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2019), XLM (Conneau and Lample, 2019), XLM-
R (Conneau et al., 2020), as well as recent multi-
lingual large language models (LLMs) like Chat-
GPT (OpenAI, 2022), PaLM2 (Anil et al., 2023),
Llama2 (Touvron et al., 2023), have gained signifi-
cant attention given the growing need for multilin-
gual requirements. To further enhance the model’s
multilingual capability, particularly in cases where
training data of certain tasks for low-resource lan-
guages is scarce and fine-tuning becomes impracti-
cal (Ma et al., 2023), cross-lingual transfer is intro-
duced to extend the task-solving ability in a source
language to a wide range of target languages (Lin
et al., 2019; Chen et al., 2022; Deb et al., 2023).

Essentially, cross-lingual transfer aims to trans-
fer the ability to solve a certain task (“task ability”)
from a source language to a particular target lan-
guage (“language ability”). Some cross-lingual
transfer techniques do not directly improve the lan-
guage ability in specific languages. Instead, they
utilize the language ability in English for multi-
lingual tasks by employing methods such as trans-
lation (Liang et al., 2023; Huang et al., 2023b),
representation alignment (Nguyen et al., 2023;
Salesky et al., 2023; Gao et al., 2023), or prompting
method specifically developed for LLMs (Li et al.,
2023; Tanwar et al., 2023; Zhang et al., 2023b).
Some works intertwine these two abilities and uti-
lize translated parallel corpora for fine-tuning (Pan
et al., 2021; Zhang et al., 2022; Zhu et al., 2023).

On the contrary, some studies directly focus
on enhancing the language abilities in target lan-
guages, so they endeavor to decouple task abil-
ity and language ability, enhance them separately,
and subsequently merge them (Pfeiffer et al., 2020;
Ansell et al., 2022; Ponti et al., 2023). However,
such an approach overlooks the intrinsic interde-
pendence between task ability and language ability.
Given that any specific task would be expressed in
a particular language, these two abilities cannot be
distinctly isolated from one another.
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Figure 1: An overview of invariants of the language ability gap among different tasks in the adapter space, where by
employing any three we can get the remaining one. In light of this observation, we propose AdaMergeX.

In this work, we argue that language ability and
task ability are inherently interconnected. Instead
of separating one from another, they should fol-
low that task ability is affiliated with the source
language while language ability refers to the ca-
pacity gap between the target language and the
source language. In line with the famous equation
“king−queen = man−woman” in the word em-
bedding space (Mikolov et al., 2013), we assume
that the divergences between LLMs fine-tuned in
different languages on a particular task follow the
same distribution across diverse tasks. In the case
of parameter-efficient fine-tuning, the equation be-
comes read fr − read en = math fr −math en in
the adapter space, where read and math refers to
two tasks, and fr and en indicates two languages
of the corresponding tasks. As shown in the left
side of Figure 2, in the adapter space, the diver-
gence between the target language and source lan-
guage on the target task follows the same distribu-
tion as the divergence on the reference task.

Therefore, we propose to accomplish the cross-
lingual transfer through Adaptive Adapter Merging
(AdaMergeX) with such a relation as shown in the
right side of Figure 2. Specifically, we introduce a
reference task from which we obtain the divergence
between the target language and source language.
Such a reference task can be an easily accessible
task for both high-resource and low-resource lan-
guages, such as causal language modeling. In ad-
dition, we fine-tune LLMs on the target task in the
source language. Finally, by merging the language
ability and task ability, we can obtain the adapters
of the target task in the target language.

Furthermore, in contrast to previous studies
that combine models or adapters through a lin-
ear combination (Ilharco et al., 2022; Zhang et al.,
2023a; Ponti et al., 2023), we argue that the model
merging method should align with the manner in
which adapters are integrated with language mod-

els. Therefore, we design a structure-adaptive
adapter merging method, which can adaptively se-
lect merging methods for LoRA (Hu et al., 2021),
(IA)3 (Liu et al., 2022), Adapter (Houlsby et al.,
2019), Prefix-Tuning (Li and Liang, 2021) etc.

We evaluate the proposed AdaMergeX method on
a wide range of multilingual tasks spanning 12 lan-
guages, covering a broad resource spectrum from
high-resource to low-resource languages. Our eval-
uation demonstrates that AdaMergeX consistently
outperforms other state-of-the-art methods includ-
ing model merging, prompting, and general adapter
merging methods. Notably, compared to MAD-
X (Pfeiffer et al., 2020) which separates the task
and language ability with two adapters, AdaMergeX
achieves 8.0% and 15.9% absolute improvement
on XCOPA and XQuAD respectively with XLM-
R. In the case of state-of-the-art adapter merging
method Arimerge (Zhang et al., 2023a), AdaMergeX
achieves 31.1% relative improvement on average
in all languages and all tasks with Llama2. More-
over, the ablation analysis shows that AdaMergeX
performs consistently well with different backbone
models, source languages, and reference tasks.

2 Background

Given a pre-trained model, fine-tuning is often
employed to improve the performance on specific
tasks. Specifically, for a layer h = W0x, where
x ∈ Rk is input, h ∈ Rd is output and W0 ∈ Rd×k

is pre-trained parameters, fine-tuning updates pa-
rameters from W0 to W ′ and the layer becomes
h = W ′x. However, full fine-tuning requires
many training data points and computing resources,
which inspires the design of adapters (Houlsby
et al., 2019). With adapters, the layer is changed
to h = (W0 ◦ WA)x, where WA denotes the pa-
rameters of adapters and ◦ denotes the combination
operation of pre-trained parameters and adapter
parameters. During such parameter-efficient fine-
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tuning, pre-trained parameters W0 are fixed and
only adapter parameters WA are updated. With
the number of parameters growing much bigger
for LLMs, adapters become more widely used in
the current practice of fine-tuning LLMs (Hu et al.,
2021; Li and Liang, 2021; Liu et al., 2022)

Various combination methods ◦ have been de-
signed for different adapters. In this paper, we
focus on two main widely used combination meth-
ods: addition and multiplication, corresponding to
LoRA (Hu et al., 2021) and (IA)3 (Liu et al., 2022),
respectively. We also involve Adapter (Houlsby
et al., 2019) and Prefix-Tuning (Li and Liang, 2021)
in to guarantee the generaliability.

LoRA Specializing the combination method “◦”
to element-wise addition denoted as “⊕”, LoRA
employs low-rank decomposition to reduce training
complexity. The layer is thus changed to

h = (W0 ⊕WA)x = (W0 ⊕BA)x, (1)

where B ∈ Rd×r and A ∈ Rr×k are low-rank
decomposed matrices, and the rank r ≪ min(d, k).
Specifically, the LoRA can be implemented in any
layer of the Transformer (Vaswani et al., 2017)
architecture, including the attention layer and the
feed-forward layer.

(IA)3 (IA)3 specializes the combination method
to element-wise multiplication “⊙”:

h = (W0 ⊙WA)x, (2)

where WA ∈ Rk is element-wise multiplied to
each row of W0. Furthermore, (IA)3 can only be
implemented to the key and value neuron in the at-
tention layer and dimension reduction neuron in the
feed-forward layer of the Transformer architecture.

Adapter & Prefix-Tuning By inserting layers
and prefix tokens into the model, combination
methods of Adapter and Prefix-Tuning can be for-
mulated as

h = (W0∥WA)x, (3)

where ∥ represents concatenation to original pre-
trained parameters.

3 AdaMergeX: Adaptive Adapter
Merging for Cross-lingual Transfer

3.1 Cross-Lingual Transfer via Adapter
Merging

Generally, the ability of a model in a particular task
and language can be seen as a composite of two

abilities, namely, “task ability” and “language abil-
ity”. The former denotes the model’s competence
in performing a certain task (e.g., text classification,
sentence completion), whereas the latter signifies
their general proficiency in the given language (e.g.,
English, Chinese, German). Built on the premise
that language ability and task proficiency are inher-
ently intertwined, it is advocated that rather than
isolating one from the other, the inference should
be drawn that task ability is associated with the
source language, whereas language ability refers to
the capacity difference between the target language
and the source language. In line with the famous
equation “king − queen = man − woman” in
the word embedding space, we assume that the di-
vergences between LLMs fine-tuned in different
languages on a particular task follow the same dis-
tribution across diverse tasks.

Formally speaking, Alitj denotes the adapter of
task tj in language li, then for any two languages
l1, l2 and two NLP tasks t1, t2, we have

Al1t1∥Al2t1 ∼ Al1t2∥Al2t2 , (4)

where ∥ denotes the divergence among two
adapters. For example, let’s consider l1 and l2 as
English and German, respectively, and t1 and t2 as
the text classification task and question answering
task, respectively. Assuming we have training data
for each task in both languages, we can fine-tune
LLMs to obtain four adapters: text classification
in English, text classification in German, question
answering in English, and question answering in
German. We assume that the divergence between
adapters for the text classification task in English
and German, as well as the divergence between
adapters for the question answering task in English
and German, follows the same distribution. This
divergence represents the “language ability” that is
independent of specific tasks.

In the context of cross-lingual transfer, we aim to
solve the task t1 for the target language l1, with the
knowledge transferred from a source language l2,
which is often a high-resource language such as En-
glish. By imposing the condition of cross-lingual
transfer, where labeled data is available only for
the target task in the source language and there is
unlabeled data in both the source and target lan-
guages, we can introduce another “reference task”
t2. This task can be easily constructed using un-
labeled data, and language ability can be obtained
by Al1t2∥Al2t2 . Moreover, to obtain the ability of

9787



performing target task t1 in the target language l1,
we can further transform Equation (4) as:

Al1t1 = Al2t1 ∥R (Al1t2∥Al2t2), (5)

where ∥R is the reverse function of ∥. Intuitively,
Al2t1 represents the “task ability” in the source lan-
guage, while Al1t2∥Al2t2 represents the “language
ability”. Through merging these two terms, we can
transfer the “task ability” of t1 from l2 to l1.

To transfer the knowledge from labeled data in
the high-resource language (i.e., given Al2t1), the
next step is to specify the reference task t2. We
observe that there are many easily obtained cor-
pora of low-resource languages, such as Wikipedia,
online blogs, etc. These corpora can be used to
construct intuitive tasks such as causal language
modeling, which can serve as the reference task
t2. Simultaneously, we can also construct such
tasks for the high-resource language l2. Therefore,
adapters can be fine-tuned on such easily accessi-
ble reference tasks in different languages to obtain
Al1t2 and Al2t2 . Cross-lingual transfer thus can be
achieved by merging these three adapters.

3.2 Structure-Adaptive Adapter Merging

As introduced in Section 2, adapters have different
structures, which inspires us to devise different
adapter merging methods. We propose that the
adapter merging approach must align with the way
that the adapter combined with the original model.

LoRA In the fine-tuning process of LoRA, where
the method involves element-wise addition to the
original parameters, the merging method used to
combine task ability and language ability should
also employ element-wise addition. Additionally,
since the divergence calculation approach ∥ is in-
tended to be the inverse function of the merging
method, it should be carried out through element-
wise subtraction in this scenario. Therefore, Equa-
tion (4) is equivalently transferred to

Al1t1 ⊖Al2t1 ∼ Al1t2 ⊖Al2t2 , (6)

where ⊖ denotes element-wise subtraction, and
Equation (5) is equivalently transferred to

Al1t1 = Al2t1 ⊕ t · (Al1t2 ⊖Al2t2), (7)

where ⊕ denotes element-wise addition and t is
the hyper-parameter that adapts the scale of two
distributions in the same family of distributions.

(IA)3 Similarly, the fine-tuning method of (IA)3

is element-wise multiplication to the original pa-
rameters, and the merging method should also be
element-wise multiplication. Furthermore, we need
to employ element-wise division to obtain the diver-
gence between Al1t2 and Al2t2 . Therefore, Equa-
tion (4) is equivalently transferred to

Al1t1 ⊘Al2t1 ∼ Al1t2 ⊘Al2t2 , (8)

where ⊘ denotes element-wise devision, and Equa-
tion (5) is equivalently transferred to

Al1t1 = Al2t1⊙
((

t·(Al1t2⊘Al2t2)−1
)
+1

)
, (9)

where ⊙ denotes element-wise multiplication and t
is the hyper-parameter determining the scale of two
distributions in the same family of distributions.

Prefix-Tuning In the case of other adapter struc-
tures such as Prefix-Tuning, which involves the in-
sertion of prefix tokens into the model, the merging
process necessitates transferring adapters within
the same space, such as MLP. Formally, the adap-
tive merging method is

Al1t1 = t · (Al1t2 ∗A−1
l2t2

) ∗Al2t1 , (10)

where ∗ represents matrix multiplication and A−1
l2t2

represents Moore-Penrose pseudo-inverse of the
matrix. For Prefix-Tuning, Alt represents the prefix
tokens. In this paper, we mainly focus on LoRA
and (IA)3 when Llama2 is the backbone model due
to the subpar performance of prefix-tuning on fine-
tuning (He et al., 2021). On the contrary, in the
case of smaller language models such as mT5 (Xue
et al., 2021), we implement AdaMergeX on it with
prefix-tuning. The experiment results are shown in
Appendix A.1.

3.3 AdaMergeX

Following notations in Section 3.1, to solve a tar-
get task t1 in a target language l1, i.e., obtain the
adapter Al1t1 , we need to fine-tune another three
adapters: adapters on the target task in the source
language (Al2t1), adapters on the reference task in
the target language (Al1t2), and adapters on the ref-
erence task in the source language (Al2t2). Note
that Al1t2 and Al2t2 are easily obtainable, as we
can choose any task in the target and source lan-
guage. As mentioned earlier, the task can even
be causal language modeling, which only requires
unlabeled text corpora. Therefore, with only un-
labeled data in both source and target language,
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Task Zero-Shot Prompt

MGSM Let’s think step by step. Question: {question}

XCOPA Here is a premise and a question. Help me pick the more plausible option. Premise: {premise} Question:
What is the {question}? (A) {choice1} (B) {choice2}

XNLI You should judge whether the hypothesis is true (entailment), false (contradiction), or undetermined
(neutral) given the premise. Premise: {premise} Hypothesis: {hypothesis}

XQuAD {context} Question: {question}

XLSum Summarize the context in one sentence. Title: {title} Context: {article}

Table 1: Zero-shot prompts for each dataset.

our proposed AdaMergeX effectively transfers the
target task proficiency from the source language to
the target language. Moreover, given that the ref-
erence task remains constant, fine-tuning LLMs in
the source language on the target task is the sole re-
quirement for each new target task. This efficiency
characterizes AdaMergeX.

In the case of LoRA, which fine-tunes LLMs
by tuning {B,A} in tuned layers of LLMs as in-
troduced in Equation (1), adapters are merged fol-
lowing Equation (7) by element-wise addition and
subtraction on {B,A} in the corresponding layers
of Al2t1 , Al1t2 , and Al2t2 . On the other hand, in the
case of (IA)3, the fine-tuning parameters are WA

in tuned layers as depicted in Equation (2). Thus
the merging method follows Equation (9), which
involves performing element-wise multiplication
and division of the corresponding layers of Al2t1 ,
Al1t2 , and Al2t2 .

4 Experiments

4.1 Experimental Setup

Datasets and Language To evaluate the effec-
tiveness of our method, we conduct experiments
on a wide variety of multilingual tasks in three
main categories: reasoning tasks, natural language
understanding (NLU) tasks, and natural language
generation (NLG) tasks. For reasoning tasks, we
test on multilingual arithmetic reasoning dataset
MGSM (Shi et al., 2022) and multilingual com-
monsense reasoning dataset XCOPA (Ponti et al.,
2020). For NLU tasks, we test on the multilin-
gual natural language inference dataset XNLI (Con-
neau et al., 2018), and question-answering dataset
XQuAD (Artetxe et al., 2020). For NLG tasks,
we test on multilingual summarization dataset XL-
Sum (Hasan et al., 2021). We choose 12 languages
that appear in more than once in the above datasets,
including German (de), Russian (ru), French (fr),

Spanish (es), Chinese (zh), Vietnamese (vi), Turk-
ish (tr), Arabic (ar), Greek (el), Thai (th), Hindi (hi),
and Swahili (sw). Detailed settings of zero-shot
prompts are shown in Table 1. We utilize intuitive
prompting methods for all tasks except for XCOPA
and XNLI, where we employ prompts from Huang
et al. (2023b). Detailed examples of the prompt-
ing approach can be found in Appendix A.2. For
MGSM, XCOPA and XQuAD, we adopt the whole
testset, while for XNLI and XLSum we randomly
sample 1000 and 500 data points from the whole
testset respectively.

Baselines We conduct comparisons between our
proposed method, which utilizes model merging
for achieving cross-lingual transfer, and seven com-
peting techniques: (i) Vanilla zero-shot prompt-
ing (“Vanilla”), which directly assesses target lan-
guages using the pre-trained LLM. (ii) English
Tuning (“Eng-FT”), which involves fine-tuning
the model in English for target tasks and sub-
sequently transferring it directly to target lan-
guages. (iii) Cross-Lingual-Thought Prompting
(“XLT (Vanilla)”) (Huang et al., 2023b) achieves
state-of-the-art results on cross-lingual transfer
with LLMs through carefully designed prompt tem-
plate, which involves explicit translation from the
target to the source language, reasoning in the
source language, and translating back to the tar-
get language. (iv) “XLT (Eng-FT)”, where XLT
approach is applied to the Eng-FT model. (v)
Arithmetic Merging (“AriMerge”) (Zhang et al.,
2023a), which is the state-of-the-art adapter merg-
ing method by arithmetic addition. (vi) MAD-
X (Pfeiffer et al., 2020) decomposes language and
task via independent invertible adapters. (vii) LF-
SFT (Ansell et al., 2022) adopts sparse fine-tuning
on language and task respectively and directly
merging via addition.
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Adapters Method Reasoning NLU NLG Avg.MGSM XCOPA XNLI XQuAD XLSum

LoRA

Vanilla 2.7 52.3 14.8 0.0 20.9 18.1
Eng-FT 17.4 58.1 30.3 31.0 22.9 31.9
XLT(Vanilla) 2.8 52.6 23.7 19.3 1.3 19.9
XLT(Eng-FT) 18.1 58.2 27.7 26.4 19.1 29.9
AriMerge 6.0 57.9 13.6 30.1 19.5 25.4
AdaMergeX 19.2 59.0 33.6 31.6 23.3 33.3

(IA)3

Vanilla 2.7 52.3 14.8 0.0 20.9 18.1
Eng-FT 2.3 52.5 26.5 34.0 17.4 26.5
XLT(Vanilla) 2.8 52.6 23.7 19.3 1.3 19.9
XLT(Eng-FT) 2.8 52.6 25.5 21.3 1.4 20.7
AriMerge 0.7 51.5 28.2 32.4 15.5 25.7
AdaMergeX 3.9 53.1 28.6 35.5 21.4 28.5

Table 2: Main experimental results on 5 representative cross-lingual tasks. Details of the selected zero-shot prompt,
the baselines, and hyperparameters are described in Section 4.1.

Evaluation Metrics For reasoning and NLU
tasks, we use accuracy scores as our evaluation
metric. For the summarization task, we evaluate
the performance by ROUGE-L score (Lin, 2004).

Experiment Details The backbone model that
we use to test AdaMergeX is Llama2-7b (Touvron
et al., 2023) for LoRA and (IA)3, and XLM-R for
Prefix-Tuning. To fine-tune Llama2 using LoRA
and (IA)3, we configure the target modules to in-
clude all available layers. We follow the notation
of (Vaswani et al., 2017). In particular, we utilize
the attention layer’s {WQ,WK ,W V ,WO} and
the feed-forward layer’s {W1,W2} for LoRA. For
(IA)3, we focus on WK and W V in the attention
layer, as well as W2 in the feed-forward layer. For
the merging target modules, inspired by Geva et al.
(2021) who attributes task ability to the feedword
layer, we merge {WQ,W V } for LoRA as we fo-
cus on language ability instead. Detailed training
parameters can be found in Appendix A.3. We em-
ploy conventional causal language modeling as the
reference task, where the prediction of the subse-
quent token is based on preceding inputs. Specifi-
cally, we generate the training set from the corpora
provided by Wikimedia Foundation (wikipedia-
2023-11-01)2, segmenting it into equal lengths 512
and randomly selecting a corpus of 20k for each
language. There is only one hyperparameter in
our method, which is t in Equation (7), (9), and
(10). When tuning this hyperparameter, for each
task, we select the validation set from French and
then extend it to encompass all other languages,
for those tasks that do not contain French valida-
tion set, we adopt Vietnamese instead. For XLT

2https://dumps.wikimedia.org/

method (Huang et al., 2023b), we adopt the same
zero-shot prompts as in the original paper.

4.2 Main Results
Table 2 presents our main experimental results on
5 representative cross-lingual tasks with LlaMa2,
where we report the average scores across all lan-
guages. Detailed results of each language are
shown in Table 7 and 8 in Appendix A.4 for LoRA
and (IA)3 respectively. Table 3 presents the results
on XLM-R, where we compare with MAD-X and
LF-SFT on XCOPA and XQuAD3.

AdaMergeX outperforms direct transfer and
prompting methods When comparing to fine-
tuning on the task in English and direct transfer to
the target language, AdaMergX outperforms it on
all settings and achieves 1.4% absolute improve-
ment with LoRA and 1.5% absolute improvement
with (IA)3. When comparing to the state-of-the-
art method for cross-lingual transfer in LLMs via
prompting, XLT with Vanilla Llama2 model (“XLT
(Vanilla)”) and model fine-tuned on target task
in English (“XLT (Eng-FT)”), AdaMergeX outper-
forms it on all settings and achieves 3.4% absolute
improvement with LoRA and 7.3% absolute im-
provement with (IA)3. This achievement proves
that the introduction of adapter merging to achieve
cross-lingual transfer is effective, especially in the
circumstance of LLMs.

AdaMergeX outperforms decoupling task ability
and language ability method As shown in Ta-
ble 3, compared to MAD-X and LF-SFT, which
struggle to fully separate task ability from language

3We only test XCOPA and XQuAD because encoder-only
models can only be applied to classification tasks.
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Task Method tr vi th sw el ru Avg.

XCOPA
MAD-X 60.3 66.1 61.8 56.3 - - 59.5
AriMerge 66.7 67.8 64.3 60.5 - - 64.8
AdaMergeX 69.4 70.5 66.9 63.2 - - 67.5

XQuAD
MAD-X 51.1 - 55.7 - 54.3 57.8 54.7
LF-SFT 58.6 - 75.2 - 65.5 64.6 66.0
AriMerge 61.1 - 75.6 - 67.4 68.2 68.1
AdaMergeX 63.8 - 77.9 - 70.2 70.4 70.6

Table 3: Experiment results on XCOPA and XQuAD with XLM-R, where AdaMergeX is implemented on LoRA.

ability, AdaMergeX demonstrates remarkable en-
hancements. In particular, AdaMergeX showcases
an impressive absolute improvement of 8.0% and
15.9% on XCOPA and XQuAD, respectively, in
comparison to MAD-X. Additionally, it achieves a
significant 4.6% absolute improvement on XQuAD
when compared to LF-SFT. Therefore, our pro-
posed new decoupling method is much more effec-
tive than others.

AdaMergeX outperforms general adapter merg-
ing methods Compared with the state-of-the-art
method for adapter merging namely Arimerge,
AdaMergeX outperforms it on all settings and
achieves 6.9% absolute improvement with LoRA
and 2.3% absolute improvement with (IA)3. There-
fore, AdaMergeX, which adaptively considers the
structure of adapters, outperforms all previous gen-
eral adapter merging methods that adopt arithmetic
addition for all kinds of adapters.

AdaMergeX performs consistently well with
LoRA and (IA)3 LoRA achieves higher absolute
performance than (IA)3, which shows the effec-
tiveness of LoRA on fine-tuning. However, com-
pared to the absolute improvement of AdaMergeX
on LoRA and (IA)3, they are comparable. For
example, for MGSM, LoRA and (IA)3 get the
same absolute improvement 1.1%, and for XNLI,
on which LoRA and (IA)3 both achieve the high-
est absolute improvement, their performance are
comparable. This proves that AdaMergeX performs
consistently well on different adapters.

4.3 Detailed Analysis

In this section, we validate the generalizability of
our proposed method across various aspects includ-
ing the source language, reference task, backbone
model, and target modules. Furthermore, we per-
form an ablation analysis to assess the essentiality
of the adaptive merging method.

Source Language To prove the generalizability
of AdaMergeX on the source language, we explore
its performance with different source languages in
Table 4. We test on five source languages including
German, French, Spanish, Thai, and Vietnamese.
We find that the performance is highly related to the
source language, which depends on the language
ability of the corresponding language. However,
the improvements are consistent across languages.
For example, the improvement was most significant
with Vietnamese as the source language, with an ab-
solute improvement of 3.4% with LoRA and 3.8%
with (IA)3. Therefore, AdaMergeX consistently per-
forms well with different source languages.

Method Reasoning NLU NLG Avg.MGSM XCOPA XNLI XQuAD XLSum

L
oR

A

De-Tune 20.9 − 48.3 44.4 − 37.9
AdaMergeX 22.3 − 50.9 46.5 − 39.9

Fr-Tune 19.9 − 52.9 − 24.1 32.3
AdaMergeX 22.2 − 57.1 − 24.8 34.7

Es-Tune 19.2 − 33.9 45.4 22.1 30.2
AdaMergeX 18.7 − 35.1 49.1 23.7 31.7

Th-Tune 3.2 49.3 1.9 39.8 20.3 22.9
AdaMergeX 4.5 48.9 6.2 44.2 20.1 24.8

Vi-Tune − 63.8 49.1 36.2 21.7 42.7
AdaMergeX − 64.2 53.2 38.9 22.3 44.7

(I
A

)3

De-Tune 2.9 − 43.5 45.6 − 30.7
AdaMergeX 6.3 − 44.0 47.1 − 32.5

Fr-Tune 2.5 − 48.7 − 19.8 23.7
AdaMergeX 4.1 − 47.9 − 21.6 24.5

Es-Tune 3.5 − 49.2 45.9 18.2 29.2
AdaMergeX 5.3 − 50.9 44.6 20.1 30.2

Th-Tune 1.2 49.8 0.0 27.7 20.2 19.8
AdaMergeX 1.9 50.4 0.0 28.9 24.1 21.1

Vi-Tune − 49.8 45.5 33.2 20.1 37.2
AdaMergeX − 48.7 50.2 36.1 22.5 39.4

Table 4: Ablation study on source language.

Reference Task To prove the generalizability of
AdaMergeX on the reference task, we explore its
performance with different reference task in Table
5. We test on three different reference tasks, in-
cluding XCOPA, XNLI, XQuAD, while the source
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language is English. The dataset was tested on the
corresponding available languages among German,
French, Spanish, Thai, and Vietnamese. Specifi-
cally, the improvement was most significant with
XQuAD as the reference task, with an absolute
improvement of 1.3% with LoRA and 1.7% with
(IA)3. Thus, it verifies that AdaMergeX is general
to any reference task.

Ref. Task Method MGSM XCOPA XNLI XQuAD XLSum Avg.

L
oR

A

− Eng-Tune 14.4 59.9 44.6 42.3 16.1 35.1

XCOPA AdaMergeX 15.2 60.2 45.1 43.8 18.2 36.5

XNLI AdaMergeX 14.5 60.9 46.7 44.1 18.4 36.9

XQuAD AdaMergeX 14.9 61.8 45.4 44.4 18.1 36.9

(I
A

)3

− Eng-Tune 2.6 52.7 40.0 39.2 10.8 29.1

XCOPA AdaMergeX 4.9 54.3 40.5 40.4 12.4 30.5

XNLI AdaMergeX 3.6 54.6 41.2 39.9 13.1 30.5

XQuAD AdaMergeX 4.1 53.9 42.1 41.0 12.9 30.8

Table 5: Ablation study on reference Task.

Backbone Models Not limited to Decode-only
Models such as Llama2, we do further analy-
sis on Encoder-Decoder model T5-base (Raffel
et al., 2020) to prove its universal effectiveness.
AdaMergeX achieves consistently the best perfor-
mance compared to fine-tuning on English and
AriMerge as shown in Table 9 of Appendix A.5.
Furthermore, we also implement our method on
Encoder-only model XLM-R and compare with
MAD-X and LF-SFT as shown in Table 3. This
shows the flexibility of choosing the backbone
model when implementing AdaMergeX.

Merging Method We conduct an ablation analy-
sis on merging method to ascertain the indispens-
ability and the effectiveness of adaptive merging in
AdaMergeX. Table 10 in Appendix A.6 shows the
detailed results, where AdaMergeX (adaptive) repre-
sents AdaMergeX with adaptive merging methods,
while AdaMergeX (cross) represents AdaMergeX
with cross merging methods, i.e., LoRA with merg-
ing method of (IA)3 and vice versa. We find that
when applying the merging method of (IA)3 to
LoRA, the performance is reduced much, and vice
versa. As a result, the adaptive merging method is
crucial for adapter merging.

5 Related Work

5.1 Cross-Lingual Transfer

The emergence of multilingual systems (Kenton
and Toutanova, 2019; Conneau and Lample, 2019;

Conneau et al., 2020; OpenAI, 2022; Anil et al.,
2023; Touvron et al., 2023) has sparked interest in
cross-lingual transfer (Kim et al., 2017; Lin et al.,
2019; Schuster et al., 2019; Pfeiffer et al., 2020).
Fine-tuning on the target language and target task is
an intuitive way to make models obtain the ability
of this task, but it is too costly in the era of LLMs
as we always lack enough training data (Ma et al.,
2023). Alternatively, some researchers explore re-
aligning representations among languages (Nguyen
et al., 2023; Salesky et al., 2023; Gao et al., 2023).
However, Gaschi et al. (2023) demonstrates that
aligned representations do not significantly benefit
cross-lingual transfer. To address this issue, some
works adopt explicit translation to achieve cross-
lingual transfer (Liang et al., 2023; Huang et al.,
2023b). However, they rely on translation ability
which is not guaranteed. In addition, Pfeiffer et al.
(2020) and Ansell et al. (2022) decouple language
ability and task ability, but they ignore the inter-
connection of these two abilities. Furthermore, in
the era of in-context learning (Brown et al., 2020;
Chowdhery et al., 2022; Touvron et al., 2023; Ope-
nAI, 2023), Li et al. (2023) and Tanwar et al. (2023)
utilize prompt tuning to achieve cross-lingual trans-
fer. Nevertheless, the performance remains limited
for low-resource languages, which is often not care-
fully considered in the pre-training of LLMs.

5.2 Model Merging

Model merging has been widely used in image iden-
tification (Wortsman et al., 2022; Matena and Raf-
fel, 2022), knowledge editing (Mitchell et al., 2022;
Meng et al., 2022) and task combination (Ilharco
et al., 2022). In the era of PEFT, researchers have
started exploring different approaches to merging
adapters (Zhang et al., 2023a; Yadav et al., 2023;
Huang et al., 2023a; Chronopoulou et al., 2023;
Ponti et al., 2023). These studies, however, have
primarily focused on task transfer and have solely
utilized linear combinations of different adapters,
which may not be applicable to all types of adapters.
Moreover, the utilization of model merging for
cross-lingual transfer is under-studied.

6 Conclusion

In this work, we propose a new cross-lingual trans-
fer method AdaMergeX. We split target task abil-
ity in the target language into two parts: “task
ability” and “language ability”. In the context of
PEFT, task ability can be obtained by tuning on
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the target task in the source language. To achieve
cross-lingual transfer, which aims to transfer task
ability from the source language to the target lan-
guage, we introduce a reference task from which
we obtain language ability and further merge it to
task ability by adapter merging. Different from
all previous adapter merging methods, we propose
a structure adaptive adapter merging method that
aligns the adapter merging method with the way
adapters combined to LLMs. Experiment results
show that AdaMergeX performs well among all
settings. Moreover, ablation analysis proves that
AdaMergeX is robust to backbone models, source
languages, and source tasks.

Limitations

Our research primarily utilizes models with around
7 billion parameters, specifically Llama2-7b, due
to limitations in computational resources. Explor-
ing our methodologies on larger-scale models may
offer further valuable perspectives. Furthermore,
although the training set for the reference task is
easily accessible, fine-tuning the parameters of the
entire model necessitates a certain investment of
time. However, this training time can be signif-
icantly reduced by integrating language-specific
adapters or employing language-specific Mixture
of Experts (MoE) techniques, which ultimately low-
ers the overall training cost.
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Vulić. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778–1796.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Guanhua Chen, Shuming Ma, Yun Chen, Dongdong
Zhang, Jia Pan, Wenping Wang, and Furu Wei. 2022.
Towards making the most of cross-lingual transfer for
zero-shot neural machine translation. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 142–157.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Alexandra Chronopoulou, Matthew E Peters, Alexander
Fraser, and Jesse Dodge. 2023. Adaptersoup: Weight
averaging to improve generalization of pretrained
language models. In Findings of the Association
for Computational Linguistics: EACL 2023, pages
2009–2018.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
neural information processing systems, 32.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Ad-
ina Williams, Samuel R Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. Xnli: Evaluating cross-
lingual sentence representations. arXiv preprint
arXiv:1809.05053.

Ujan Deb, Ridayesh Parab, and Preethi Jyothi. 2023.
Zero-shot cross-lingual transfer with learned projec-
tions using unlabeled target-language data. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 449–457.

Pengzhi Gao, Liwen Zhang, Zhongjun He, Hua Wu, and
Haifeng Wang. 2023. Improving zero-shot multilin-
gual neural machine translation by leveraging cross-
lingual consistency regularization. arXiv preprint
arXiv:2305.07310.

9793



Félix Gaschi, Patricio Cerda, Parisa Rastin, and Yannick
Toussaint. 2023. Exploring the relationship between
alignment and cross-lingual transfer in multilingual
transformers. arXiv preprint arXiv:2306.02790.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484–5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M Sohel Rahman, and Rifat Shahriyar. 2021. Xl-sum:
Large-scale multilingual abstractive summarization
for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023a. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. arXiv preprint arXiv:2307.13269.

Haoyang Huang, Tianyi Tang, Dongdong Zhang,
Wayne Xin Zhao, Ting Song, Yan Xia, and Furu
Wei. 2023b. Not all languages are created equal
in llms: Improving multilingual capability by
cross-lingual-thought prompting. arXiv preprint
arXiv:2305.07004.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2022. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2.

Joo-Kyung Kim, Young-Bum Kim, Ruhi Sarikaya, and
Eric Fosler-Lussier. 2017. Cross-lingual transfer

learning for pos tagging without cross-lingual re-
sources. In Proceedings of the 2017 conference on
empirical methods in natural language processing,
pages 2832–2838.

Shuang Li, Xuming Hu, Aiwei Liu, Yawen Yang,
Fukun Ma, Philip S Yu, and Lijie Wen. 2023. En-
hancing cross-lingual natural language inference by
soft prompting with multilingual verbalizer. arXiv
preprint arXiv:2305.12761.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yaobo Liang, Quanzhi Zhu, Junhe Zhao, and Nan Duan.
2023. Machine-created universal language for cross-
lingual transfer. arXiv preprint arXiv:2305.13071.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-
ian He, Zhisong Zhang, Xuezhe Ma, et al. 2019.
Choosing transfer languages for cross-lingual learn-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, vol-
ume 57.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Bolei Ma, Ercong Nie, Helmut Schmid, and Hinrich
Schütze. 2023. Is prompt-based finetuning always
better than vanilla finetuning? insights from cross-
lingual language understanding. arXiv preprint
arXiv:2307.07880.

Michael S Matena and Colin A Raffel. 2022. Merging
models with fisher-weighted averaging. Advances in
Neural Information Processing Systems, 35:17703–
17716.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2022. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

9794

https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353


Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Hoang H Nguyen, Chenwei Zhang, Tao Zhang, Eu-
gene Rohrbaugh, and Philip S Yu. 2023. Enhancing
cross-lingual transfer via phonemic transcription in-
tegration. arXiv preprint arXiv:2307.04361.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue. OpenAI Blog.

OpenAI. 2023. Gpt-4 technical report.

Xiao Pan, Mingxuan Wang, Liwei Wu, and Lei Li. 2021.
Contrastive learning for many-to-many multilingual
neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 244–258.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
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A Appendix

A.1 AdaMergeX on Prefic-Tuning
The results demonstrate that AdaMergeX excels re-
markably within the realm of prefix-tuning, a dis-
tinct and separate approach to fine-tuning. Results
on XNLI task with mT5 (Xue et al., 2021) are
shown as follows in Table 6.

A.2 Prompts
Detailed prompts of tasks in each language are
listed in Figure 2.

A.3 Training Details
For the settings details of experiments on XQuAD
on XLM-R, comprehensive settings are provided
below. We utilize XNLI as the reference task for
both English and the target language, and employ
SQuAD to train the task adapter for English. De-
tails regarding hyperparameters are outlined as fol-
lows.
LoRA setting

lora_r = 8
lora_alpha = 16
target_modules = ["q_proj", "v_proj"]
lora_dropout = 0.1

Training setting

NUM_EPOCHS = 5
PADDING_SIDE = "right"
EPOCHS = 3
LR = 2e-5
TRAIN_BS = 4

A.4 Detailed Results
We present detailed results in Table 7 and Table 8.

A.5 AdaMergeX on T5-base
Because T5-base only supports Spanish and French
in chosen languages, we only test these two lan-
guages. In the case of LoRA on XNLI, AdaMergeX
obtains 4.2% absolute improvements in Spanish
and 2.8% absolute improvements in French. For
(IA)3, the improvements are 1.1% and 4.0% re-
spectively.

A.6 Ablation on Adaptive Merging
We find that when applying the merging method of
(IA)3 to LoRA, the performance is reduced much.
Specifically, on XNLI the performance gets 39.5%
absolute reduction, while for XQuAD the reduction

is 45.9% absolute value. When applying the merg-
ing method of LoRA to (IA)3, the performance also
decreases compared to that of the adaptive merging
method. For XNLI the reduction is 2.4%, while for
XQuAD the reduction is 0.7%. The reduction is
smaller than that for LoRA. This can be attributed
to the fact that the fine-tuning of (IA)3 is not as ef-
fective as that of LoRA and has a relatively minor
impact on the overall model performance.

A.7 Ablation on Merging Modules
We present ablation on merging methods in Table
11 and Table 12.
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Task Method es fr ru tr vi th sw el Avg.

XCOPA Eng-FT − − − − 69.5 57.4 62.8 − 65.2
AriMerge − − − − 65.4 59.7 64.1 − 63.1
AdaMergeX − − − − 71.3 63.2 65.6 − 66.7

XNLI
Eng-FT 31.2 29.7 30.4 19.8 43.1 11.6 13.2 16.3 24.4
AriMerge 29.8 28.3 33.2 21.4 42.9 11.8 14.6 21.8 25.5
AdaMergeX 34.1 31.4 34.2 20.9 44.8 20.3 16.7 25.3 28.5

XLSum
Eng-FT 13.4 14.2 12.7 14.1 18.9 14.9 7.8 − 13.7
AriMerge 14.5 15.2 15.6 13.9 20.2 15.6 8.6 − 14.8
AdaMergeX 14.9 16.1 17.4 16.1 19.8 17.1 10.3 − 16.0

Table 6: Results of AdaMergeX on Prefix-tuning with mT5.

Figure 2: One-shot prompting examples of tested datasets.
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Table 7: Comprehensive experimental results for both baselines and AdaMergeX are obtained across all datasets in
corresponding available languages. The fine-tuning method employed was LoRA, with Llama2-7b serving as the
backbone model.

Models Method de ru fr es zh vi tr ar el th hi sw

MGSM
Vanilla 2.4 3.6 3.6 3.2 2.4 − − − − 2.0 − 2.0
Eng-FT 22.4 24.8 20.4 22.4 22.8 − − − − 6.8 − 2.4
XLT(Vanilla) 2.0 2.8 2.8 3.2 2.8 − − − − 2.0 − 3.2
XLT(Eng-FT) 22.0 24.0 22.8 24.4 24.2 − − − − 5.2 − 4.4
AriMerge 6.4 8.0 2.4 10.4 3.2 − − − − 11.6 − 0.0
AdaMergeX 24.8 26.2 23.6 22.4 22.0 − − − − 8.0 − 7.2

XCOPA
Vanilla − − − − 54.4 54.0 − − − 51.8 − 49.0
Eng-FT − − − − 61.8 67.2 − − − 52.6 − 50.6
XLT(Vanilla) − − − − 56.8 52.4 − − − 51.0 − 50.0
XLT(Eng-FT) − − − − 60.6 70.0 − − − 51.6 − 50.4
AriMerge − − − − 61.0 69.8 − − − 50.6 − 50.0
AdaMergeX − − − − 61.8 69.8 − − − 51.8 − 52.2

XNLI
Vanilla 27.4 26.6 24.0 20.2 0.3 21.5 14.3 0.1 0.3 0.3 0.0 43.0
Eng-FT 54.0 54.0 58.2 60.5 33.5 47.0 9.6 0.8 5.4 3.3 5.2 31.8
XLT(Vanilla) 44.7 44.4 39 36.9 5.3 36 20.6 0.4 0.2 13.9 0.2 42.6
XLT(Eng-FT) 54.1 44.3 44.6 58.6 34.0 43.0 15.9 0.0 1.2 2.0 0.9 33.9
AriMerge 28.7 16.5 12.8 21.2 1.0 32.1 16.2 0.3 1.8 0.0 10.2 22.8
AdaMergeX 57.8 56.7 63.1 62.8 32.9 49.2 10.3 1.0 9.1 13.3 14.9 35.9

XLSum
Vanilla − 13.4 12.5 11.4 56.0 22.1 15.7 23.5 − 14.8 31.6 8.1
Eng-FT − 21.7 16.1 11.3 58.4 21.2 16.4 25.8 − 15.6 32.9 9.9
XLT(Vanilla) − 0.6 2.3 1.8 0.5 1.3 2.5 0.8 − 0.2 0.8 2.1
XLT(Eng-FT) − 17.8 5.0 6.6 56.8 13.5 10.8 28.9 − 13.5 33.9 3.9
AriMerge − 14.5 8.7 9.8 49.8 12.6 11.7 29.8 − 17.2 34.2 6.5
AdaMergeX − 21.6 16.2 11.9 58.4 21.6 16.7 25.6 − 15.5 33.9 11.4

XQuAD
Vanilla 0.0 0.0 − 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −
Eng-FT 49.0 34.1 − 48.2 53.5 40.9 17.3 10.2 13.9 31.0 11.8 −
XLT(Vanilla) 34.8 14.0 − 29.8 33.1 21.8 20.2 12.0 8.6 7.1 12.1 −
XLT(Eng-FT) 39.1 26.3 − 40.7 41.2 33.9 19.0 13.8 13.0 23.8 13.2 −
AriMerge 50.7 31.8 − 49.1 50.2 42.3 15.9 10.4 12.6 28.7 9.7 −
AdaMergeX 50.7 34.1 − 50.0 53.2 41.7 17.3 10.4 13.7 31.8 13.1 −

9798



Table 8: Comprehensive experimental results for both baselines and AdaMergeX are obtained across all datasets in
corresponding available languages. The fine-tuning method employed was (IA)3, with Llama2-7b serving as the
backbone model.

Models Method de ru fr es zh vi tr ar el th hi sw

MGSM
Vanilla 2.4 3.6 3.6 3.2 2.4 − − − − 2.0 − 2.0
Eng-FT 2.0 2.0 3.6 2.4 1.6 − − − − 2.4 − 2.0
XLT(Vanilla) 2.0 2.8 2.8 3.2 2.8 − − − − 2.0 − 3.2
XLT(Eng-FT) 0.8 1.6 4.8 4.0 3.2 − − − − 2.8 − 2.4
AriMerge 0.0 0.4 0.4 0.0 1.6 − − − − 2.0 − 0.4
AdaMergeX 4.4 3.6 4.8 6.0 3.6 − − − − 2.8 − 2.0

XCOPA
Vanilla − − − − 54.4 54.0 − − − 51.8 − 49.0
Eng-FT − − − − 54.8 54.2 − − − 51.2 − 49.8
XLT(Vanilla) − − − − 56.8 52.4 − − − 51.0 − 50.0
XLT(Eng-FT) − − − − 56.8 53.2 − − − 51.4 − 49.8
AriMerge − − − − 53.0 50.6 − − − 52.2 − 50.2
AdaMergeX − − − − 55.0 55.2 − − − 52.1 − 50.0

XNLI
Vanilla 27.4 26.6 24.0 20.2 0.3 21.5 14.3 0.1 0.3 0.3 0.0 43.0
Eng-FT 46.4 45.3 51.9 50.7 1.6 51.0 31.4 0.1 0.8 0.0 0.0 39.3
XLT(Vanilla) 44.7 44.4 39.0 36.9 5.3 36.0 20.6 0.4 0.2 13.9 0.2 42.6
XLT(Eng-FT) 34.3 36.8 36.3 34.2 25.4 34.4 32.1 5.2 3.8 20.7 8.0 34.4
AriMerge 42.4 47.2 52.9 49.3 6.4 54.5 49.1 0.2 0.5 0.1 0.0 35.5
AdaMergeX 45.3 46.5 53.0 54.3 1.5 58.8 41.7 2.2 0.9 0.1 0.1 38.4

XLSum
Vanilla − 13.4 12.5 11.4 56.0 22.1 15.7 23.5 − 14.8 31.6 8.1
Eng-FT − 4.2 9.0 6.8 56.6 14.7 13.6 16.6 − 12.5 32.3 7.6
XLT(Vanilla) − 0.6 2.3 1.8 0.5 1.3 2.5 0.8 − 0.2 0.8 2.1
XLT(Eng-FT) − 0.6 3.1 1.8 0.4 1.3 2.5 1.1 − 0.3 0.8 2.1
AriMerge − 4.8 6.3 7.6 44.1 9.9 11.8 15.4 − 13.1 32.3 9.4
AdaMergeX − 14.5 13.1 11.5 55.2 24.4 15.3 23.5 − 13.6 33.4 9.2

XQuAD
Vanilla 0.0 0.0 − 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −
Eng-FT 47.3 32.8 − 47.6 53.7 35.1 28.9 22.8 21.9 26.9 23.2 −
XLT(Vanilla) 34.8 14.0 − 29.8 33.1 21.8 20.2 12.0 8.6 7.1 12.1 −
XLT(Eng-FT) 37.1 16.8 − 32.4 37.6 25.1 19.3 14.0 10.0 7.0 14.1 −
AriMerge 46.0 32.2 − 44.5 51.2 35.4 28.2 23.4 20.6 21.6 20.7 −
AdaMergeX 48.6 33.0 − 48.2 56.0 35.7 29.3 25.4 24.5 29.2 24.6 −

Table 9: Ablation study on backbone models. Results are evaluated on T5-base.

Adapters Task Method es fr Avg.

LoRA

XNLI
Eng-FT 33.0 32.9 33.0
AriMerge 34.1 30.1 32.1
AdaMergeX 37.2 35.7 36.5

XLSum
Eng-FT 12.4 15.3 13.9
AriMerge 13.1 16.5 14.8
AdaMergeX 14.9 16.6 15.8

(IA)3
XNLI

Eng-FT 38.2 38.4 38.3
AriMerge 35.6 36.1 35.9
AdaMergeX 39.3 42.4 40.8

XLSum
Eng-FT 13.2 14.7 14.0
AriMerge 14.3 15.1 14.7
AdaMergeX 14.2 16.7 15.5
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Table 10: Ablation study on adaptive merging method. AdaMergeX (adaptive) represents AdaMergeX with adaptive
merging methods, while AdaMergeX (cross) represents AdaMergeX with cross merging methods, i.e., LoRA with
merging method of (IA)3 and vice versa. Increase ↑ and decrease ↓ are both compared to the baseline method
Eng-Tune.

Adapters Tasks Method es vi Avg.

LoRA

XNLI
Eng-Tune 60.5 47.0 53.8
AdaMergeX (adaptive) 62.8 ↑ 2.3 49.2 ↑ 2.2 56.0 ↑ 2.2
AdaMergeX (cross) 17.6 ↓ 42.9 15.4 ↓ 31.6 16.5 ↓ 37.3

XQUAD
Eng-Tune 48.2 40.9 44.6
AdaMergeX (adaptive) 50.0 ↑ 1.8 41.7 ↑ 0.8 45.9 ↑ 1.3
AdaMergeX (cross) 0.0 ↓ 48.2 0.0 ↓ 40.9 0.0 ↓ 44.6

(IA)3
XNLI

Eng-Tune 50.7 51.0 50.9
AdaMergeX (adaptive) 54.3 ↑ 3.6 58.8 ↑ 7.8 56.4 ↑ 5.5
AdaMergeX (cross) 50.9 ↑ 0.2 57.4 ↑ 6.4 54.2 ↑ 3.1

XQUAD
Eng-Tune 47.6 35.1 41.4
AdaMergeX (adaptive) 48.2 ↑ 0.6 35.7 ↑ 0.6 42.0 ↑ 0.6
AdaMergeX (cross) 47.5 ↓ 0.1 34.9 ↓ 0.2 41.3 ↓ 0.1

Models Method de ru fr es th sw Avg.

XNLI
Eng-Tune 63.3 56.4 56.6 58.6 4.1 41.5 46.8
AdaMergeX 63.8 57.2 58.2 58.9 3.7 41.8 47.3↑ 0.5

XQuAD
Eng-Tune 9.8 8.7 − 15.2 4.4 − 9.5
AdaMergeX 10.4 7.8 − 21.4 5.4 − 11.2↑ 1.7

Table 11: Llama2-7b on LoRA with fine-tuning target modules as WQ, WV and merging target modules as WQ,
WV .

Models Method de ru fr es th sw Avg.

XNLI
Eng-Tune 54.0 54.0 58.2 60.5 3.3 31.8 43.6
AdaMergeX 53.7 55.6 60.5 62.7 4.9 33.6 45.2↑ 1.6

XQuAD
Eng-Tune 49.0 34.1 − 48.2 31.0 − 40.6
AdaMergeX 50.2 32.9 − 48.9 31.3 − 40.8 ↑ 0.2

Table 12: Llama2-7b on LoRA with fine-tuning target modules as WQ, WK , WV , WO, W1, W2 and merging
target modules as WQ, WK , WV , WO, W1, W2.
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