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Abstract

Time complexity is a theoretic measure to de-
termine the amount of time the algorithm needs
for its execution. In reality, developers write
algorithms into code snippets within limited
resources, making the calculation of a code’s
time complexity a fundamental task. However,
determining the precise time complexity of a
code is theoretically undecidable. In response,
recent advancements have leaned toward de-
ploying datasets for code time complexity pre-
diction and initiating preliminary experiments
for this challenge. We investigate the challenge
in low-resource scenarios where only a few la-
beled instances are given for training. Remark-
ably, we are the first to introduce TCProF: a
Time-Complexity Prediction SSL Framework
as an effective solution for code time complex-
ity prediction in low-resource settings. TCProF
significantly boosts performance by integrat-
ing our augmentation, symbolic modules, and
a co-training mechanism, achieving a more
than 60% improvement over self-training ap-
proaches. We further provide an extensive com-
parative analysis between TCProF, ChatGPT,
and Gemini-Pro, offering a detailed evaluation
of our approach.

1 Introduction

The task of predicting time complexity for code
snippets represents a significant challenge in pro-
gramming efficiency analysis. Time complexity is a
crucial benchmark for evaluating algorithm perfor-
mance across diverse computational domains. How-
ever, accurately computing the time complexity of a
code snippet remains theoretically undecidable (As-
perti, 2008), presenting a substantial obstacle. This
issue is particularly crucial in environments such
as educational settings, programming competitions,
and automated code reviews, where an accurate
evaluation of numerous solutions is essential.

*Corresponding author.

In the meantime, the advent of deep learning
methodologies presents a promising avenue to ad-
dress this challenge. Sikka et al. (2020) introduced
CorCoD dataset, specifically designed for code
time complexity prediction. The dataset consists of
code snippets labeled with their time complexity
classes. They also provide initial experiments for
the code time complexity prediction using both con-
ventional algorithms and basic neural models. De-
spite these advances (Baik et al., 2024; Moudgalya
et al., 2023), the efficiency of such models heavily
relies on the availability of extensively annotated
datasets. Unfortunately, datasets in this domain
are currently scarce due to the problem of data
scarcity, as time complexity annotations require
professional knowledge. While there are further ap-
proaches (Baik et al., 2024; Moudgalya et al., 2023)
with considerable potential, their effectiveness is
contingent upon the size of annotated datasets.

Addressing the shortage of labeled data, we in-
troduce several innovations. We develop data aug-
mentation techniques specifically tailored to iden-
tify key factors that influence the time complexity
of the code snippets. We also incorporate a co-
training mechanism that leverages both original
and augmented data effectively. Additionally, we
construct a symbolic module that enhances the ac-
curacy of pseudo-labels compared to the pseudo-
labels generated by a model-based approach alone.
Collectively, these components form the backbone
of TCProF!, our semi-supervised learning (SSL)
framework, which is uniquely equipped to address
code time complexity prediction in low-resource
settings.

Operating under the assumption of limited la-
beled data and a vast number of unlabeled code
snippets, we empirically analyze TCProF using pub-
licly available datasets, CorCoD and CodeCom-
plex (Baik et al., 2024). CorCoD includes code

"https://github.com/peer0/few-shot-tc

9517

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 9517-9542
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics


mailto:greghahn@yonsei.ac.kr
mailto:hsan@yonsei.ac.kr
mailto:jungin.kim@yonsei.ac.kr
mailto:aness1219@yonsei.ac.kr
mailto:emmous@yonsei.ac.kr
https://github.com/peer0/few-shot-tc

Training

Pseudo-Labeling

S Augmentation - N
AUG, || AUG AUG ¢ Original p
ﬁt Python + Labeled Data _//’i %30
while JAvA_| AUG Augmented
Labglred Data >\ Data Self Training /

Original
Labeled Data

7 §
— 3

~N

Unlabeled Data U
%}) Trained Classifier
M

"src": "n=int(input(..,
"complexity": N/A

00O O 0 o0 o0«
O o0 OO0 o )
{

"src": "def luck(n):\n..,
"complexity": N/A
}

4 i
Augmented W %ﬂ
— &«
Data
\_ Co-Training )
. 1Usp+ USymm

O Uy @ :failedby Sym
O : unlabeled data U

Figure 1: The overall framework of TCProF.

snippets categorized into five different complex-
ity classes, O(1), O(log N), O(N), O(N log N),
and O(N?). In contrast, CodeComplex consists of
codes across seven different complexity classes,
O(1), O(logN), O(N), O(NlogN), O(N?),
O(N3), and O(2"). For these benchmark datasets,
our framework TCProF significantly enhances the
performance over traditional self-training methods
with improvements exceeding 60% in accuracy and
F1-scores. In the era of ChatGPT, we further pro-
vide comparative studies against off-the-shelf large
language models (LLMs). Meanwhile, given the
early stage of research in this domain, we provide
an in-depth analysis of TCProF offering valuable
insights into their practical utility. Ultimately, our
endeavor specifically targets the practical aspect
of code time complexity prediction—the availabil-
ity of annotated data. By providing a fundamental
framework, TCProF, for code time complexity pre-
diction in low-resource settings, we aim to lay the
groundwork for future research in this domain.

2 Related Works
2.1 SSL for Classification

Data scarcity is a critical problem for various tasks.
More specifically, the problem occurs when there
are only a few labeled data even though there are
tons of unlabeled data. Generating labeled data is
costly, making research in these low-resource envi-
ronments crucial. Semi-supervised learning (SSL)
offers an effective solution in such scenarios (Saj-
jadi et al., 2016; Xie et al., 2020; Chen et al., 2020,
2022; Sohn et al., 2020; Zhang et al., 2021a; Wang
et al., 2023a; Zou et al., 2023; Huang et al., 2023;

Nie et al., 2024).

One of the popularly used SSL techniques, self-
training is a learning mechanism that trains the stu-
dent model with a few-shot labeled dataset (Geng
et al.,, 2019; Bao et al., 2020; Zhang et al.,
2021b) and then subsequently acts as a teacher
model for generating pseudo-labels (Lee, 2013).
Pseudo-labels are judged based on the predic-
tions of the model for a given unlabeled data.
Co-training (Blum and Mitchell, 1998) is also
the successful SSL mechanism that simultane-
ously employs two networks. Jointmatch (Zou and
Caragea, 2023) utilizes cross-labeling, inspired by
co-training, that uses an additional loss based on
pseudo-labels for more reliability instead of aug-
menting pseudo-labels to the initial labeled dataset
for additional training. While this approach has
been effective to some degree, it lacks reliability
as we cannot guarantee that the model generates
‘correct’ pseudo-labels. Recent approaches have
incorporated symbolic modules to enhance the reli-
ability of pseudo-label generations or data augmen-
tation (Hahn et al., 2021; Kim et al., 2022).

Likewise, data augmentation is also one of the
fundamental methods that is effective in the low-
resource setting. Data augmentation generates arti-
ficial data from the original dataset without chang-
ing their labels. Conventional data augmentations
are synonym replacements, word insertion or dele-
tion (Wei and Zou, 2019) More advanced methods
involve Back-Translation (Edunov et al., 2018) and
these days, LLMs have gained popularity in gen-
erating various data but with accurate labels. We
utilize these insights to develop TCProF, an SSL
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framework for predicting code time complexity in
low-resource environments.

2.2 Code Time Complexity Prediction

Computation of code time complexity has long
been a theoretically undecidable problem whereas
classifying the code time complexity is a recently
emerged problem. Sikka et al. (2020) first proposed
this task and presented a labeled dataset with five
time complexity classes. They propose a dataset
named CorCoD, composed of Java codes with
O(1), O(log N), O(N), O(N log N) and O(N?)
time complexity classes and experimental results
on the time complexity classification with baseline
neural models.

Similar to CorCoD, CODAIT? tried to create
good code embeddings by capturing manual fea-
tures such as number of loops and breaks, and uti-
lized graph-based representations for predicting
time complexities. Afterward, Moudgalya et al.
(2023) proposed TasTy, consisting of Java and
Python data, and Baik et al. (2024) proposed Code-
Complex, which consists of also Java and Python
data with additional labels. CodeComplex consists
of seven different time complexity classes, O(N?)
and O(2%) in addition to those of CorCoD.

While time complexity prediction has been
explored in these datasets, the scarcity of la-
beled data remains a significant challenge. Un-
like runtime-based datasets from online judge plat-
forms, which can be influenced by hardware, in-
put distributions, and implementation-specific op-
timizations (Ishimwe et al., 2021; Zhang et al.,
2023), these datasets provide explicit theoretical
complexity labels for the code snippets. However,
annotating such datasets requires expert knowledge,
making them inherently low-resource. We propose
TCProF, the SSL framework designed to alleviate
this data scarcity challenge and enhance the accu-
racy of time complexity prediction.

3 Methodology

3.1 Overview

TCProF is a robust SSL framework designed for
code time complexity prediction in a low-resource
setting illustrated in Fig. 1. TCProF comprises three
primary components:

Zhttps://community.ibm.com/community/user/ai-
datascience/blogs/sepideh-seifzadeh1/2021/10/05/ai-for-
code-predict-code-complexity-using-ibms-cod

Augmentation module (AUG): This module em-
ploys augmentation involving loop representa-
tion conversion (LC') and back-translation conver-
sion (BT'), and a combined ensemble of these meth-
ods to enhance the diversity of augmented data.
Training mechanism: Utilizing a co-training ap-
proach, TCProF trains two models simultaneously;
one with original data and the other with aug-
mented data. This mitigates the error accumulation
problem of self-training.
Pseudo-label module: Integrating our symbolic
module (Sym) with the classifier, this module gen-
erates more precise pseudo-labels.

Algorithm 1 describes a detailed procedure of
our framework.

3.2 Self Training

In our experiments, we have a dataset T for train-
ing, a dataset V' for validation and a dataset & for
evaluation. we split 7" into a labeled dataset L =

{li,l2,...,lps} of size M and an unlabeled
dataset U = {uj,ug,...,un} of size N for self-
training:

L={]l=(de)}, U= {u|u=(dN\)}

where d is a code and c is a complexity class for
d. X in u represents that « does not contain a com-
plexity class for d.

For the first iteration, we train the baseline
model B with L. With the trained B, we predict
the complexity class c for d in each u € U. If the
confidence score s, (c) of u for ¢ passes the pre-
defined threshold 6, we pseudo-label each u with
its corresponding label ¢, and then add it to L:

L' =L+ {u|u=(d,c,) where sy(cy) > 0}.

For the next iterations afterward, we train B with
the updated labeled dataset L’ and then pseudo-
label the unlabeled data to update L’ again.

3.3 Co-Training

We mitigate the error accumulation problem of self-
training by implementing co-training as our learn-
ing mechanism. Our implementation of co-training
involves two different models B and By, which
are trained with two different datasets L and L.
Likewise to the self-training in Section 3.2, L is a
labeled dataset of size M. Lg, is a labeled dataset
of size M generated by our data augmentation strat-
egy in Section 3.7:

Laug = {laug | laug = (daug, ¢), Where
daug is augmented from d inl = (d, c)}.
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Figure 2: A procedural illustration of our symbolic module Sym.

Each model B and B, is trained by L and L4,
respectively. Following the pseudo-label strategy
from Sections 3.4 and 3.5, two models then gen-
erate pseudo-labels and update labeled dataset L’

and Ly, ,, respectively:

L' = L+{u | u = (d,c,) where
u is pseudo-labeled by By},
L:zug = Laug"’{u ’ U= (d, Cu) where

u is pseudo-labeled by B}.
3.4 Model-based Pseudo-Labels

The conventional pseudo-labeling procedure is
done by prediction of B. The confidence score of
unlabeled data with its corresponding class that B
outputs is the one and only component for model-
based pseudo-labels. We can adjust the threshold
value for more precise pseudo-labels.

3.5 Symbolic Pseudo-Labels

We introduce a computational module, designed
to predict the temporal complexity of source code
through symbolic analysis, employing the compu-
tational results as pseudo-labels to enhance the ac-
curacy of predictions. We have named this module,
the symbolic module Sym. The symbolic mod-
ule Sym is designed to predict the time complexity
of code by identifying specific patterns and struc-
tural elements, without relying on neural networks.
This approach effectively complements language
models that, by their nature, do not account for the
hierarchical organization inherent in programming
code (Allamanis et al., 2018; Chen et al., 2021;
Zhang et al., 2022). The module primarily employs
Regular Expressions (Regex) and Abstract Syntax

Trees (ASTs) as essential tools for a detailed anal-
ysis of the source code. This aims to describe the
time complexity of iterations, function calls, re-
cursive and iterative calls, and additional relevant
constructs, thereby facilitating a comprehensive un-
derstanding of the code’s structure and execution
flow. Our module outputs a formula consisting of
the above components and regarding the size of in-
puts in the source code, subsequently aggregating
these elements to categorize the time complexity
class of the source code.

Our approach is systematically organized into
five distinct phases and is illustrated in Figure 2:

Function Extraction: We employ Regex to iden-
tify and extract function definitions from source
code. Each function forms the basic unit of analy-
sis as an independent code block. If the source code
does not contain functions, this step is omitted.
Identify Loops and Recursions: We utilize Regex
to identify the presence of repetitive statements
(such as for loops and while loops) and recursive
functions to determine the frequency of loop itera-
tions and function calls.

Detect Specific Time Complexity (TC): We uti-
lize ASTs to detect operations that modify the input
size. By identifying the presence of sorting or bi-
nary traversal, we classify source codes according
to their time complexities such as O(log N) and
O(NlogN).

Calculate Total TC: The final time complexity
is calculated by summing the complexity of each
iteration and function call, based on the patterns
identified using Regex, and the code structure ana-
lyzed by ASTs. In this step, we calculate the overall
complexity, ensuring a robust analysis of recursive
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Algorithm 1 Procedure for the SSL frame-
work TCProF(L, U, B, Byyg, Sym, AUG). Inputs in-
clude labeled dataset £, unlabeled dataset I/, base-
line model B, co-training model Bgyg, symbolic
module Sym, and augmentation module AUG. The
set of complexity classes is denoted as C.

function PSEUDO-LABEL(B, Sym, f) > Sections 3.4, 3.5
U 0
for each u = (d, \) € U do
Cy  argmax .. B(u,c)

U +— U U{(d,cu):Blu,cy) > 6}

U «— U u{(d,Sym(d,u)) : B(u,c,) < 0}
end for
return U/’

end function
procedure TIMECOMP(L, U, B, Bayg, Sym, AUG)
Lag < AUG(L) > Section 3.7
for e + 1 to epoch_number do
if self-train then
L+ LU Layg
B < fine-tune(B, £)
Up1 < PSEUDO-LABEL(B, Sym, i)
L+ LUUy
else if co-train then
B « fine-tune(B, £)
By + fine-tune(Baug, Laug)
Up < PSEUDO-LABEL(B, Sym, i)
Uaug-pi < PSEUDO-LABEL(Bgug, Sym, )
L < LU Usugpl
»C/aug <~ »Caug U upl
end if
end for
end procedure

> Section 3.2

> Section 3.3

relationships within the source code.
TC Classification: The calculated time complex-
ity is categorized into the pre-defined complex-
ity classes. These assigned classes are utilized as
pseudo-labels.

In Appendix H, we present Figure 9 as a running
example of the symbolic pseudo-labeling.

3.6 Merge Pseudo-Labeling

We have two pseudo-label modules based on model
confidence and the symbolic module. Illustrated in
Figure 1 and Algorithm 1, we first pseudo-label
the unlabeled data by the model confidence. Then,
we use the symbolic module to pseudo-label the
unlabeled data that failed pseudo-labeling by the
model confidence.

3.7 Data Augmentation

We introduce a data augmentation module AUG, de-
signed to complement the lack of labeled data. Our
augmentation strategies leverage the ChatGPT API,
specifically employing the gpt-3.5-turbo-0125
model, to augment our experiments’ CorCoD and
CodeComplex datasets. The objective is to cre-

ate precise augmentations that respect the intrinsic
properties of the code, ensuring semantic integrity
while introducing syntactic variability. We ensure
that the augmented code snippets are free from syn-
tactic errors, reinforcing their reliability for further
analysis. We present two augmentation methods
specifically designed to augment code snippets that
preserve the original time complexity:

Back-Translation (BT): This method involves
translating a code snippet into another program-
ming language and then back to the original
language to maintain its semantic essence. For
instance, Java code snippets are translated into
Python and then back into Java. This process gives
syntactic variation while retaining the context.
Loop-Conversion (LC): Loop structures are the
primary components that determine the time com-
plexity of code snippets. This technique modifies
the loop structures to different but semantically
equivalent forms. Using regular expressions, we
filter codes containing “for” or “while” loops and
then convert these loops by employing For2While
and While2For transformation rules, preserving
the original logic of the code snippet. For in-
stance, a while loop can be converted into a for
loop (While2For) and vice versa (For2While), de-
pending on the context. If the original code snippet
contains both for and while loops, we leverage
While2for and For2while respectively.

These augmentation methods are detailed in the
prompts listed in Appendix K and are integrated
into TCProF to enhance the robustness. The aug-
mented data from BT and LC methods supple-
ment the initial labeled data in three distinct ex-
perimental configurations: 1) AUG g7 incorporates
back-translation augmented data, 2) AUG ¢ incor-
porates loop-conversion augmented data, and 3)
AUG g7 combines both back-translation and
loop-conversion augmented data.

There are two experimental setups for AUG ¢
as there are code snippets without any loop struc-
tures: 1) AUGLc Natural Uses naturally sampled
data as the initial labeled data without specific pre-
conditions and 2) AUGLc Ay ficiar Selects initial
labeled data specifically containing loop structures
to maximize the use of augmented data.

These configurations for AUGpc are
also applied to the combined augmentation
strategy AUGprirc, with corresponding
AUGBTLCc Naturat and AUGBT LC_artificial
settings. Table 2 employs AUGp7+1.c Natural @S
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CodeComplex (Java) CodeComplex (Python) CorCoD
5 10 5 10 5 10

SSL Baselines

ST (UniXcoder) 15441630 31.77+0s1 26.02+1172 40.98+114  37.89+657 45.61+1150
ST (CodeT5+) 18.87+321 31.69+1400 28.76+1747  38.32+1552  35.79+690 45.26+632
JointMatch (CodeT5+) 14.62+426 24.68+260 20.97+300 21.04+433 36491408 4211165
JointMatch (UniXcoder) 9.62+s525  19.391386 14.68+1178  20.76+1046 35441685 48.42152
TCProF(CodeT5+) 38.631132 41.98+200 44741326 59.29+3711  50.5310s6 51.93+3ss
TCProF(UniXcoder) 52.50+156 53.85+363 54.64+377  70.29+206 55.44+099 63.16+227

Table 1: Accuracy performance of SSL baselines and TCProF. ST refers to Self-Training. TCProF(CodeT5+)
represents TCProF implemented to the baseline CodeT5+ and vice versa to UniXcoder. The scores are averaged
from three runs with different seeds. We report the full result in Table 5.

the baseline for the AUG setup as it is more natural
and common compared to AUGpT4 1.c_artificial-
An extensive analysis of augmentation strategies is
provided in Appendix J.

3.8 Implementation Details

We use UniXcoder (Guo et al., 2022) and
CodeT5+ (Wang et al., 2023b) as our baselines for
TCProF. We assign the batch of size 7, the number
of epochs as 20, and set the learning rate of co-
training as 1e-5 and 2e-6. We use 1e-5 learning
rate for self-training. Our confidence score thresh-
old 4 is 0.7. We conduct experiments using the
NVIDIA RTX 3090 for training TCProfF.

4 Experimental Setup

We use CodeComplex (Baik et al., 2024) and Cor-
CoD (Sikka et al., 2020) datasets. CodeComplex
consists of 4,900 Java and 4,900 Python codes, and
CorCoD consists of 929 Java codes. We follow
Baik et al. (2024) to split train and test data. For
low-resource settings, we perform 5- and 10-shot
experiments where we pick 5 and 10 data for each
label from the train dataset and use the remaining
train dataset as an unlabeled dataset for pseudo-
labels, respectively.

Code time complexity prediction is a recent code-
related task and we are the first to perform the
task in low-resource scenarios. We use four pre-
trained code language models, CodeBERT (Feng
et al., 2020), GraphCodeBERT (Guo et al., 2021),
UniXcoder (Guo et al., 2022), and CodeT5+ (Wang
et al., 2023b) as our baseline models.

We also include JointMatch as an SSL baseline
for comparison. Recently, Zou and Caragea (2023)
proposed JointMatch for a state-of-the-art SSL
framework for low-resource settings, where the

authors employ cross-labeling to enhance pseudo-
labeling. While JointMatch is effective for text clas-
sification tasks in low-resource settings, we analyze
whether it is effective for code time complexity pre-
diction in low-resource settings and compare the
performance with our framework TCProF.

5 Results and Analysis

We present our main results in Table 1, indicat-
ing that our model outperforms baselines. In Sec-
tion 5.1, we suggest possible intuitions that can
be derived from the performance result of Table 1.
We demonstrate ablation studies in Section 5.2 and
provide error analyses in Section 5.3. Then, for
the extensive analyses of TCProF, we show how
TCProF approaches the fully fine-tuned models in
Section 5.4 and provide comparisons with commer-
cial LLMs in Section 5.5.

5.1 Comparison with Baselines

Table 1 presents the Self-Training (ST) results
for the base models, UniXcoder and CodeT5+.
The table illustrates that the average accuracy and
standard deviation scores for ST of base models,
which serve as baselines, are generally low. Specif-
ically, on the CodeComplex datasets, the accuracy
scores of these baselines are below 40%, except
for ST (UniXcoder) on CodeComplex (Python).
Furthermore, the high standard deviation scores
indicate that the performance of these models is
unstable and unreliable.

Our augmentation, symbolic pseudo-labeling,
and co-training strategies mitigate this problem.
We pick UniXcoder and CodeT5+ as the baseline
model to implement our strategies®. TCProF out-

3Appendix B demonstrates the detailed analysis of the

9522



CodeComplex (Java)  CodeComplex (Python) CorCoD
5 10 5 10 5 10

CodeT5+
+ AUG 26.85+24  35.86+1455 33941380 57441117 36.141498 43.851634
+ Sym 2192125 35.50+110s  32.10x678  46.38+65s 36.841172 42.81+27
+ Sym + AUG 37881165 38201240 41.80x140 58.88+1237 37.8912s5 4421102
TCProF(CodeT5+) 38.63+132 41981200 44741326 59.29+371  50.53+08s 51.93+3ss

UnixCoder
+ AUG 34221123 39.00x66s  51.63x1242  63.04xs75 44211316 51.57+s55
+ Sym 41761260 45341200 39.82+513  51.021214  50.88+s48 54.0416s6
+ Sym + AUG 43.70x200 45.49+110 54.03+s552  67.55:£106 50.18+424 58.60x47
TCProF(UniXcoder) 52.50+1s6 53.85:363 54.64+377 70.29+200 55441009 63.16+227

Table 2: Ablation studies of TCProF(CodeT5+) and TCProF(UniXcoder) accuracy (%) performance. AUG represents
AUG g7 1c. The full result is in Table 5 and extensive augmentation result is in Table 11.

performs the baselines illustrated in Table 1. Espe-
cially, TCProF(UniXcoder) accomplishes 64.81%
improvements on average compared to the best per-
formance of baselines. We discuss the analysis of
our strategies in Section 5.2 as ablation studies.
We also include experiments on JointMatch,
a state-of-the-art SSL baseline, to compare with
TCProF. While JointMatch is the state-of-the-art
approach for text classification in low-resource set-
tings, the case is quite different in a code time
complexity prediction. Table 1 indicates that Joint-
Match is generally less effective than self-training
baselines and TCProF(UniXcoder) outperforms
JointMatch by 131.09% on average. This is because
cross-labeling of JointMatch depends on unlabeled
data to alleviate the pseudo-label noise and the strat-
egy is not quite applicable to code time complexity
prediction data. We provide a detailed analysis in
Appendix E illustrating that TCProF is more appro-
priate than the cross-labeling of JointMatch.

5.2 Ablation Studies

In our ablation studies, delineated within Table 2,
we evaluate the impact of each module within
TCProF, as introduced in Figure 1 and Section 3.
Our framework integrates the augmentation mod-
ule AUG, the symbolic module Sym, and imple-
ments both self-training and co-training strate-
gies for code time complexity prediction in low-
resource settings. The underlying hypothesis points
that each component incrementally improves upon
basic self-training baseline models. The empiri-
cal result from Table 2 confirms our hypothesis,

comparison between UniXcoder and CodeT5+.

demonstrating performance enhancements in our
baselines, CodeT5+ and UniXcoder, as additional
modules are integrated.

Particularly, the interaction between AUG and
Sym shows a clear synergistic effect. While AUG
alone significantly boosts performance compared
to the self-training baselines, it mostly shows high
standard deviation scores, which are then relaxed
when applied with Sym. This is especially no-
ticeable in CodeComplex (Python). AUG is effec-
tive considering its enhancements from the perfor-
mance of self-training baselines in Table 1, but it
also shows high standard deviation scores, mostly
over 10%. However, this problem is substantially
mitigated when AUG is combined with Sym, reduc-
ing the average standard deviation to 5%.

This enhancement is further developed when
we implement the co-training strategy, solidify-
ing not only the accuracy but also reducing the
standard deviation. These observations are partic-
ularly pronounced in Python datasets rather than
Java datasets. The variance between Python and
Java can primarily be attributed to the differential
effectiveness of AUG across these programming
languages. The less stringent syntax of Python
compared to Java allows greater variability in aug-
mented Python code snippets, contributing to this
performance boost. This phenomenon is further
supported by Tables 11 and 12 in Appendix J. De-
spite these differences, a closer analysis of the F1-
scores in Table 6 shows that both languages exhibit
substantial improvements, each around 50%.

Furthermore, implemented all together with a
co-training strategy, TCProF strengthens the per-
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formance both in accuracy and standard deviation.
We also provide detailed analysis on F1-scores in
Appendix A.
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Figure 3: Confusion matrix of ours for CodeCom-
plex (Python) 10-shot.

5.3 Error Analysis

Furthermore, we examine the types of errors to
which our method is particularly vulnerable for ex-
tensive analysis. Figure 3 illustrates that our ap-
proach is especially weak on O(N?) class. We
notice that the codes with this class are mostly
predicted as O(N). Codes in both classes involve
loops and usually the only difference is the depth
of the loops. However, precisely, the core factor
that makes the difference is the loops involving the
input length. For instance, codes in O(N) class
can contain multiple-depth loop statements where
only a single loop statement involves the length
of the input. The model needs to precisely deter-
mine whether the iteration number of each loop is
proportional to the input size for the correct predic-
tion. Likewise, the class O(NlogN) involving both
loops linear and logarithmic to the input size and
the class O(2") involving exponential iterations
are also relatively erroneous compared to the other
classes. We present examples of code instances,
demonstrating the errors in Appendix I.

5.4 Comparison to the full-train result

TCProF demonstrates a promising result in a few-
shot settings, improving the baselines on a large
scale. We conduct further experiments on com-
paring the best 10-shot performance of TCProF
to the baselines trained with the whole train
datasets in Table 3. For CodeComplex datasets,

TCProF(UniXcoder) exceeds the accuracy of all
the baselines except for CodeT5+ and the perfor-
mance gap with CodeT5+ is small. Take CodeCom-
plex (Python) for instance, TCProF(UniXcoder)
achieves 70.29% accuracy and the accuracy of
CodeT5+ fine-tuned with the full train dataset is
72.88%. Our approach catches up to 96.45%.

CodeComplex

FULL Java Python CorCoD
Acc. Acc. Acc.
CodeBERT 39.82+690 66.39+145 74741172
GraphCodeBERT  46.46+21s 67.83+s536 72.98+1m
UniXcoder 46.76+191 68.44+466 T7.54+ 13
CodeT5+ 5511+21s 72.88+195 75.79+227

Table 3: Accuracy of base models trained with the full-
train dataset.

Appendix C presents the full results of accu-
racy and F1 performance in Table 7. Overall to all
the datasets, TCProF catches up to 91% and 94%
for accuracy and F1-scores, respectively, compared
to the base models fine-tuned with the full train
dataset. This indicates that TCProF, a framework
designed for low-resource settings, is highly ef-
fective in achieving competitive performance even
with limited labeled data. By leveraging co-training,
symbolic pseudo-labels, and data augmentation,
TCProF enhances model generalization and robust-
ness, making it a viable alternative to fully super-
vised approaches, particularly in scenarios where
the amount of labeled data is scarce or costly to
obtain. We also present Figures 7a and 7b in the
appendix for clear visualization of the results.

CodeComplex

Java  Python CorCoD

Acc. Acc. Acc.
Gemini-pro 49.54 31.05 6191
GPT-3.5 62.15 32.55 69.42
GPT-4 64.01 53.04 78.86
TCProF(UniXcoder) 53.85 70.29 63.16

Table 4: Comparison with the performance of LLM for
Java and Python datasets of CodeComplex, and CorCod
dataset.

5.5 Comparison with LLMs

LLMs are known to be effective in general NLP
tasks and we extend the analysis into comparing our
performance with LLMs. We evaluate the LLMs in
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a 5-shot in-context learning setting by the prompt
demonstrated in Appendix L. Our baseline LLMs
are Gemini-pro (Anil and et al., 2023), GPT3.5,
and GPT-4 (OpenAl, 2023). The results of Table 4
indicates that TCProF shows competitive perfor-
mance to these commercial LLMs. These LLMs
perform much better than CodeT5+ and UniXcoder
fine-tuned with the full train dataset for CodeCom-
plex (Java) and CorCoD referring to Table 3. As
TCProF takes CodeT5+ and UniXcoder as the base-
line models, competitive performance of TCProF
compared to LLMs is remarkable.

Furthermore, TCProF performs better than any
of these LLMs for CodeComplex (Python). In Ap-
pendix F, we also present Table 9 that includes both
the accuracy and F1 performance of LLMs.

6 Conclusion

Code time complexity prediction remains a largely
unexplored yet critical task, and our framework,
TCProF, is the first attempt to tackle this challenge
within low-resource environments. We have de-
veloped TCProF as a robust SSL framework for
predicting code time complexity, showing through
comprehensive analyses that it significantly im-
proves upon the performance of baseline models.
As we reflect on the capabilities of TCProF, it is im-
portant to recognize that our current focus has been
on establishing an effective framework that per-
forms well in constrained environments. Looking
ahead, expanding the generalization capabilities of
TCProF to accommodate a wider range of program-
ming languages is a vital next step. We believe
TCProF will serve as a significant milestone, pro-
pelling forward the research in code time complex-
ity prediction, especially in low-resource settings.

Limitation

Application Scope TCProF is specifically de-
signed for few-shot settings and thus, its application
would not be effective in fine-tuning with the full
dataset. One possible exploration is employing the
augmentation module of TCProF for fine-tuning the
full dataset. We provide the analyses in Appendix J.
Another limitation of TCProF is the space com-
plexity prediction. This is also due to the absence
of datasets involving the space complexity. Thus,
we will be happy to apply and develop our frame-
work for the space complexity prediction when the
datasets are released.

Framework Adaptability to Zero-Shots As our
framework targets few-shot settings where ‘several’
data instances for each class are provided, We do
not provide initial configuration for zero-shot set-
tings. However, we can adapt the zero-shot setting
by altering the structure of TCProF to incorporate
the symbolic module for generating initial training
data with pseudo-labels. It is essential to clarify that
our objective is not zero-shot learning but few-shot
learning.

Dynamic Calculation TCProfF is focused on clas-
sifying time complexity into seven discrete classes,
rather than dynamically calculating time complex-
ities across a continuous range. We are eager to
develop further modules and implement generative
models for targeting the time complexity ‘calcula-
tion’, extending from the time complexity ‘predic-
tion’.
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A TCProF Full Result

TCProF consists of three core parts. The first is a symbolic module Sym for pseudo-labeling. The second
is a data augmentation module AUG which employs Back-Translation (BT), Loop-Conversion (LC), and
both (BT+LC). Finally, the third one is a co-training module. Our hypothesis is that the more components
implemented, the better the performance and eventually, TCProF, with all modules implemented, performs
the best. The result of ST(CodeBERT) and ST(GraphCodeBERT) were omitted in Table 1, and the result
of AUG g1 andAUG o were omitted in Table 2. We present the full experimental results regarding all the
three components of TCProF in Tables 5 and 6, each for the accuracy and F1 performance.

CodeComplex (Java)  CodeComplex (Python) CorCoD
5 10 5 10 5 10

SSL Baselines

ST(CodeBERT) 22.82+000 26.47+63 16331024  15.51x11s  35.79+000 35.79+000
ST(GraphCodeBERT) 22.89+013  20.51+s67  16.19+000 23.57+127s 36.14x061  35.79+ 000
ST(CodeT5+) 18.87+321  31.69+1200 28.76+1747 38.32+1882  35.79+690 45.26+632
ST(UniXcoder) 1544163 31.92+61a  26.02+1172 40981114 37.89+657 45.61+ 1150
JointMatch (CodeT5+) 14.62+426  24.68+2600 20.97+3900 21.04+1433  36.49+40s 42.11+65
JointMatch (UniXcoder) 9.62+52: 19.39+38  14.68+1158  20.76+1046 35441685 48.42+s52

CodeT5+
+ AUGpr 20.13+331  26.77+s53  39.34+1017  45.36xnss  34.73+750  38.94+279
+ AUG o 2647540  29.53+583 329241447 53.89+1605 35.78+s547 42451797
+ AUGpr4 L0 26.85+24  35.86+4ss 33941350 57441117 36.14+149s  43.85+634
+ Sym 21924250 35.50+11s  32.10+673  46.38+6ss 36.84+172 42.81+27
+ Sym+ AUGpr 10 37.88+165 38.26+240 41.80+140 58.88+1237  37.89+2s55 4421422
TCProF(CodeT5+) 38.63+132 41981200 44741326  59.29+371  50.53+0s6  51.93+3ss
UnixCoder

+ AUGpgr 29.75+317  33.40+1443  50.31+1927  52.93+1066 33.15+372  50.17+943
+ AUG ¢ 30.72+s840  33.03+655 44.53+1340 53.55+410 38941316 47.01+a3s
+ AUGpr4 10 342241232 39.00+664  51.63+1242  63.04+s75 44211316 51.57+55
+ Sym 41.76+£262  45.341201  39.82+513  51.021214  50.88+s48 54.041656
+ Sym + AUGBr+ Lo 43.70+200 45.49+100 54.03+s552  67.55+106 50.18+42¢ 58.60+47
TCProF(UniXcoder) 52.50+156 53.85+363 54.64+377 70291206 55.44+109 63.16+227

Table 5: Accuracy performance comparisons. The scores are averaged from three runs with different seeds.
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Figure 4: Confusion matrices of 10-shot TCProF(UniXcoder) performance.
Both results are consistent with our hypothesis. Comparing the performance of AUG g1 and AUG ¢

with AUG g1, ¢, the tendency of performance scores demonstrates that using both augmentation methods
is superior to using the single method. Additional implementation of Sym also improves the scores. It is
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notable that some performance scores of AUG g1, ¢ with high standard deviation scores show lesser
standard deviation scores when implemented with Sym. This indicates that the usage of symbolic pseudo-
labels and augmentation complements each other and enhances the model performance. Finally, with all
modules and co-training strategy implemented, TCProF, performs the best.

CodeComplex (Java)  CodeComplex (Python) CorCoD
5 10 5 10 5 10
SSL Baselines
ST(CodeBERT) 5.31+000 8.89+620 427105 4.50 090 10.54+000  10.54+ 000
ST(GraphCodeBERT) 5.52+029 12.33+1197  3.98+ 000 9.89+ 1024 12.82+304  10.54+ 000
ST(CodeT5+) 189413600 29.20+1037  23. 741226 284811105 26.87+£1765 45.17+7.10
ST(UniXcoder) 13.52+665 3491+s573  21.61+043 34571080 38.92+724  51.16+s6

JointMatch (CodeT5+) 7.43+ 126 25244151 13.61+60s 14461318 30.31+£s00  45.86+77s
JointMatch (UniXcoder) 9.70+541 10.38+520  7.87+s82 13.02+5ss  18.98+743  39.44+ 1103

CodeT5+
+ AUGpRr 22.90+160 27.31+313  31.941017  35.83+152  35.80+10908 43.85+29
+ AUG ¢ 25334356  26.42+400  26.60+s577  42.50+s851 39.36+615  46.76+6m2
+ AUGgryrc 26.23+207  30.69+s0s  31.12+s561  42.38+111 41.78+s512 47.98+470
+ Sym 19.54+ 176  30.52+1061  23.18+275  34.69+351  39.86+177  46.60+420
+ Sym + AUGBT+LC 2911+ 164 3272+ 148 31.99+ 164 42.95+1001 42.36+ 508 48.09+ 178
TCProF(CodeT5+) 28.58+037  33.60+09s 34.49+4s5  44.03+274  45.13+527  49.60+s512
UnixCoder
+ AUGpgr 29.18+395  33.52+1003 31.43+s508 39.241360 38.82+997  52.37+s00
+ AUG ¢ 27244277 362611608 29.48+387  34.82+426  40.33+ss51  48.20+1378
+ AUGgT4 10 31.02+1422 34.21+1092 33.53+s573  4595+860 43.42+120 52.57+501
+ Sym 31.88+12s 44.74+210 24.50+348  40.77+256  48.7T+632  54.12+647

+ Sym + AUGpgr4 10 39.66+044 45311448  37.64+200 51.58+161 47.45+103 56.87+1095
TCProF(UniXcoder) 42.89+300 49.45:097 38.15+400 53171213 56.56+352  63.57+300

Table 6: F1-score performance comparisons. The scores are averaged from three runs with different seeds.

It is remarkable that our hypothesis holds on both the accuracy and F1 performance of TCProF.
Intriguing facts are that while the SSL baselines tend to have higher standard deviation scores for F1
performance than accuracy, TCProF generally shows less standard deviation scores for F1 performance.
This is because F1-scores evaluate how well the model performs for ‘all’ classes while accuracy does
not consider whether the model is biased on specific classes. We provide confusion matrices of 10-shot
TCProF(UniXcoder) for CodeComplex (Java), CodeComplex (Python), and CorCoD in Figures 4a, 4b,
and 4c, respectively. We can see that TCProF produces unbiased performance compared to those seen in
Figures 6b and 8b.

B Baseline Selection for Self-Training

From the four well-known code language models, CodeBERT, GraphCodeBERT, UniXcoder, and
CodeT5+, we experimented with which baseline models would fit for semi-supervised learning (SSL) in
low-resource settings. Generally, UniXcoder and CodeT5+ are better than CodeBERT and GraphCode-
BERT. We can also see the same tendency comparing the performance of each model trained with the
full data in Table 8. Additionally analyzing for low-resource settings, we selected two best-performing
models, UniXcoder and CodeT5+ to implement TCProF.

CodeBERT and GraphCodeBERT have satisfactory accuracy for 5-shot CodeComplex (Java) and
CorCoD compared to the other two models as shown in Table 5. However, Table 6 reveals that CodeBERT
and GraphCodeBERT perform significantly lower than that of the other two models. The large performance
gap of CodeBERT and GraphCodeBERT between Tables 5 and 6 and the low F1 performance of these
two models indicate that they are unsuitable to implement our methodology.
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Figure 6: UniXcoder self-learning performance visualization for CodeComplex (Java) 10-shot.

The relatively high performance of UniXcoder and CodeT5+ in Tables 5 and 6 empirically prove that
they are suitable for low-resource settings. From confusion matrices of the two models in Figures 5b
and 6b, we can also easily see that UniXcoder and CodeT5+ do not overfit to a certain class. Furthermore,
we depict the learning processes of these two models in Figures 5a and 6a. In the figures, acc_train,
acc_val, acc_test, and acc_psl indicate the accuracy of the train, valid, test, and pseudo-labeled
datasets, respectively. These figures demonstrate that the converging patterns of acc_train, acc_val,
acc_test are similar, indicating that the two models are both suitable for training in low-resource settings.
From these two models, we also analyze which model is more suitable for low-resource settings, and
eventually TCProF.

In Figure 5a, acc_psl1 is not shown in the graph, meaning that CodeT5+ does not produce pseudo-labels
in the self-training at all. This is because pseudo-labels are produced based on the confidence score and
the confidence score of CodeT5+ does not match the pre-defined threshold. It is quite surprising as
CodeT5+ has high acc_train. We have run an experiment of training CodeT5+ continuously to inspect
when CodeT5+ generates pseudo-labels and the model produced biased pseudo-labels for only a few
classes for CodeComplex (Python). Thus, independent to the performance, CodeT5+ is not suitable for
pseudo-labeling when implemented with only self-training.

UniXcoder, on the other hand, surely generates pseudo-labels referring to Figure 6a. For all datasets,
UniXcoder generates pseudo-labels for all 7 classes, indicating that the model shows consistent per-
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formance without being biased toward a specific class. Figure 6b also confirms that UniXcoder shows
relatively well-distributed performance for each class in test data. This confirms that UniXcoder is more
suitable that CodeT5+ in a low-resource setting.

Referring to Table 1 in Section 5.1, we can see that our proposed framework TCProF effectively
improves the performance of both UniXcoder and CodeT5+ but we can also notice that UniXcoder is
more effective for TCProF and eventually, low-resource settings.

C Comparison to Baselines Fine-Tuned with Full Dataset

We have provided a comparative analysis of TCProF and baselines fine-tuned with the entire train dataset
in Section 5.4. Detailed results for accuracy and F1-scores are shown in Table 7 and Figures 7a and 7b
provide full results of accuracy and F1 performance.

CodeComplex (Java) CodeComplex (Python) CorCoD
Acc. F1 Acc. F1 Acc. F1
Baselines trained with the Full train dataset
CodeBERT 39.82+690 37.35+356 66.39+143 54.341 00 74.74+172  76.64+30
GraphCodeBERT 46.46+215  37.75+11s  67.83+s36 54.13+725 72.98+179 76.48+226
UniXcoder 46.76+£191 38.76+03 68.44+166 55.45+33 77.54+15 81.69+ 14
CodeT5+ 5511+218 44141358 72881105 56.39+225 75794227 79.51+196

10-shot performance of TCProF
TCProF(CodeT5+) 41.981290  33.60 1095 59.2913711  44.03+274 51.93+385 49.60+5.12
TCProF(UniXcoder) 53.85+363 49.45+097 70.29+206 53.17+2.13 63.16+227 63.57+300

Table 7: Performance comparison of baselines trained with the full-train dataset and TCProF 10-shot performance.
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Figure 7: Visualized performance of baselines trained with full train dataset and TCProF 10-shot.

We can see that TCProF effectively catches up with both the performance of accuracy and F1-scores. It is
remarkable TCProF even exceeds the F1 performance of CodeT5+ for CodeComplex (Java), accomplishing
the best F1-scores for the dataset.

D Baselines Fine-Tuned with the Augmented Full Dataset

We have implemented AUG g7 1., which combines Back-Translation (BT) and Loop-Conversion (LC)
to investigate the impact of data augmentation on the full dataset. The results in Table 8 demonstrate the
effectiveness of augmentation across the baselines and datasets. Notably, CodeT5+ shows a significant
enhancement, particularly in Python, where it achieves over 90% accuracy and 85% F1-scores. This
improvement is consistent across different models, indicating that AUG g7, ¢ is beneficial in predicting
time complexity more accurately and reliably.
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CodeComplex (Java) CodeComplex (Python) CorCoD

Acc. F1 Acc. F1 Acc. F1

Original

CodeBERT 39.82+690 37.35+356 66391143 54341005 74741172 T6.641507
GraphCodeBERT  46.46+21s  37.75+11s  67.83xs36  54.131725 72981179  76.48+226
UniXcoder 46.76+ 191 38.76+030 68.44+166 55.45+33  T7.54+131 81.69+14
CodeT5+ 55114218 44144350 72881195  56.39+225  75.79+207  79.51+196
Augmented

CodeBERT 5041+28¢ 42.11+190 81.83+179 69.20+£407  78.60+09 80.06+ 060
GraphCodeBERT  58.69+28 46.961225 8531x0s  77.82+062  78.60x+09 81.08x0s0
UniXcoder 63.91+12s 49.07+18 86.13+15s  77.47+280 78.95+000 82.22+050
CodeT5+ 59.51 +os0 48.79+13 90.91+225 85.67+611  79.65+05 82.65+06

Table 8: Performance of baselines trained with augmented train dataset. The scores are averaged from three runs
with different seeds.

E Comparison to JointMatch

JointMatch is a recognized SSL approach. It displays the state-of-the-art performance for text classification
in low-resource settings. However, we found this unsuitable for the code time complexity prediction
task. Tables 5 and 6 illustrates that JointMatch underperforms compared to the standard self-training
approaches. Confusion matrices in Figures 8a and 8b provide further details that JointMatch is either
biased on several classes or is underfitted. This is even more remarkable as Figures 5b and 6b displays
much better performance. This poor performance of JointMatch is that the model is primarily developed for
text classification datasets such as AG News, Yahoo! Answers, and IMDB. These datasets are completely
different from the code time complexity prediction datasets and thus, it is reasonable that the learning
mechanism of JointMatch is not effective on the time complexity prediction.
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Figure 8: CodeT5+, UniXcoder JointMatch performance visualization for CodeComplex (Java) 10-shot.

F LLM Comparison

Table 9 illustrates the accuracy and F1 performance of LLMs and TCProF. Likewise to the analysis from
Section 5.5, TCProF demonstrates performance competitive to the LLLMs for F1-scores as well.
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CodeComplex (Java) CodeComplex (Python) CorCoD

Acc. F1 Acc. F1 Acc. F1
GPT3.5 62.15 37.96 32.55 29.24 69.42 43.29
GPT4 64.01 46.90 53.04 45.15 78.86 56.95
Gemini-pro 49.54 29.73 31.05 29.76 6191 41.26
TCProF(UniXcoder) 53.85 49.45 70.29 53.17 63.16 63.57

Table 9: Comparison with the performance of LLM and 10-shot TCProF.

G Usage of Sym as a Code Time Complexity Classifier

Our symbolic module, Sym, is specifically designed to enhance the pseudo-labeling process within the
TCProF, aiming to improve the code time complexity prediction accuracy. This module leverages symbolic
reasoning to generate more reliable pseudo-labels, empirically proven in Tables 1 and 2. For an extensive
analysis, we present the experimental results in Table 10, using Sym alone to classify the time complexity
of given code snippets.

CodeComplex (Java) CodeComplex (Python) CorCoD
Acc. F1 Acc. F1 Acc. F1

Sym ‘ 49.69 40.83 55.76 41.27 53.68 37.53

Table 10: The performance of Sym as a time complexity classifier of the code snippets.

Notably, Sym shows relatively better performance on Java datasets compared to Python datasets. This
difference can be attributed to the strict syntax of Java, which aids Sym in more effective identification
and process of loop structures—a critical aspect for time complexity analysis. Although the overall
performance of Sym is promising, its integration with the broader TCProF, demonstrates the most effective
results. Appendix H illustrates with examples, the detailed procedure of how Sym operates.

While Sym does not capture every potential operation involved in computing time complexity, its design
is strategically tailored to assist the baseline model’s capability in producing more precise pseudo-labels.
Moving forward, we recognize the potential for further enhancing Sym by expanding its scope to include
a broader range of conditions. This development is part of our future research aimed to broaden our
understanding of code time complexity prediction.

H Symbolic Pseudo-Labeling Running Example

In the symbolic module Sym, the first step involves employing regular expressions (Regex) to ascertain
the existence of functions within the source code. Figure 9 presents a Python code snippet that contains
a function named solve(). The module recognizes solve() as a function due to the presence of the
keyword def. Subsequently, Sym extends its analysis to detect loops and recursion, again utilizing Regex.

In the given example, Sym identifies two for-loops due to the the keyword for: one within the solve()
function and another in the main code section. In the main code section, Sym checks solve() is called
only once. Through Regex matching, the module employs the keyword in, along with the associated
range variables aa and n, to determine the size of each loop. As depicted in Figure 9, Sym calculates
the time complexity of for loop in solve() as O(N). Additionally, the module detects the use of
the keyword sorted, which leads to the derivation of the combined time complexity for solve() as
O(N)+ O(NlogN).

Finally, Sym computes the overall time complexity for the main code section. Given the presence of

an additional for loop in this code section, the module calculates the total time complexity as O(N) +
O(N)+ O(Nlog N) = O(NlogN).
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1. Extracted function

<main code section>
b

—insolve() O(N) 2. Identified
«— inmain O(N) loops

.. Symbolic
i~ maxr[2]: Module
if ai[1] <= maxr[1] and ai[0]i>= maxr[0]: ] Sym

return(aif[2], maxr[2])

if ai[1] >= maxr[1] and ai[0]i<= maxr[0]: | Time()

return(maxr[2], ai[2])

if ai[1] > maxr[1]:

maxr = ai e
return(-1, -1) 7

n = int(input()) .........................

1,r = [int(s) for s in input().split()] Time(SOIVE(a)) ZO(N) + O(NlogN)
a.append((1, r, i+1)) Time(Main) = O(N) + Time(solve(a))
i,j = solve(a)
print(i,j) <main code section> =0(N) + O(N) + O(NlogN)
= O(NlogN)

Figure 9: Execution process of the Symbolic Module using Python code snippet.

I Error Analysis

From the test cases, we have analyzed the errors, and as discussed in Section 5.3, O(N?) — O(N) errors
occur the most. Without sufficient attention to the input size, it is sometimes confusing, even for human
experts, to differentiate two codes, each in O(NN) and O(N?) classes, respectively. For instance, the code
instance in Figure 10a is rather straightforward. The stones_after function is called in the main part
which runs linear to the input size. The main part calls the function n times and thus, the time complexity
of the whole code in O(IN?). However, the code in Figure 10b contains count operation which runs linear
to the size of arr. If the code does not have the knowledge on the operation, the model is likely to predict
its time complexity as O(N), which is wrong. This is mostly seen in the codes of class O(N?) and thus,
the majority of errors are the O(N?) — O(N).

( X J L N
def stones_after(n, s):

for i in s: a, b = map(int, input().spli

arr = list(map(int,
input().split()))
mn = float("inf")

return n

n = int(input().strip())
s = input().strip()
for 1 in range(n+1):
stones = stones_after(i, s)

for 1 in range(1l, a+l):
mn = min(mn, arr.ca

print(mn)

print(ans)

(a) Correct code example predicted O(N?). (b) Incorrect code example predicted O (V).

Figure 10: Code examples of O(NN?) class.

J Extensive Analyses on Augmentation

We have performed an extensive analysis of our augmentation strategy across four models: CodeBERT,
GraphCodeBERT, UniXcoder, and CodeT5+. As stated in Appendix B, CodeBERT and GraphcodeBERT
are unsuitable for self-training. Similarly, in this experiment, we notice that CodeBERT and Graphcode-
BERT have no consistent tendency of the results. In contrast, UniXcoder and CodeT5+ exhibit more
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CodeComplex (Java) CodeComplex (Python) CorCoD

Models Augmentation p 10 5 10 5 10
AUGpr 21.85+261  29.23+318  25.06+s516  43.44 41519 35.78+918  38.94 452
AUGLc Natural 26.32+420  30.20x621  39.82+156  50.61160s 33.334540  34.031243

CodeBERT AUGc_artificial 17.524820  20.06xs13  38.864760 45.421364 2842121 33.68x105

AUGBT+LC Natural 25.72+023  38.10+131  39.82+s830  55.53+1025  36.13x161  41.05+1s2
AUGBT1c_artificial  24.75+62s  39.30+s21 43241676  43.301336 28.77+s540  40.00+422

AUGgT 29.00+1099 36.91+462 34221728 47.40+763 32.65+382  44.56+530
AUGLc Natural 25.87+307  24.76+105  29.64+239  47.06+7.40 36.49+240 45.26+842
GraphCodeBERT  AUGrc_artificial 22.07+10s  30.42+205  33.46+1561  46.30+6s5 34.38+338  41.75+s8s3

AUGBTLC Natural 25.80+240  33.851220  34.1511208 47.881380 38941278 43.86476
AUGBT1c_artificial  21.10x170 35464507 45211780  52.59x460 37.89+459  40.65+740

AUGgT 20.13+331  26.77+s38  39.34+1944  45.36+1158  34.73+750  38.941279
AUGLc Natural 26.47+540  29.53+s585  32.92+1447  53.89+1605  35.78+547 42451797
CodeT5+ AUGLc artificial 21.25+879  31.09+645  33.33+1773  60.86+s522 27.37+278  41.40+550

AUGBT+LC_Natural 26.85+114  35.86+453 33941382 57.44+107 36.14 408  43.85+634
AUGBT1C_artificial 24.53x7118 36164524 40.43:1716  59.15x160 31.931219  40.69+426

AUGpT 29751317 33.40x1445  50.31x1927 529311066 33.151372 50.17 2043
AUGLc Natural 30.72+s40  33.031655  44.53+1340 53.551410 38941316 47.01443s
UniXcoder AUGLc artificial 22.81+602  42.28+1647 40.91+s5905  50.75+s10 37.89+s842  43.15+316

AUGBT+L.C_Natural 3422+03  39.00+664  51.63+1242  63.041575 44214316 51.57 1557
AUGBT1C Artificial 32.73x15¢  40.19+1507  47.33x38  59.15+7.10 38.59+978  51.93+677

Table 11: Accuracy of augmentation strategies, AUGpr and AUG and AUGpr ¢ in natural and artificial
settings. The scores are averaged from three runs with different seeds.

consistent performance tendencies. Therefore, this section focuses on the accuracy and F1-score results of
UniXcoder and CodeT5+.

AUGpr involves augmenting data through Back-Translation of the original labeled code.
AUGLc Natural denotes the experimental condition where the initial labeled data is used without specific
constraints. In contrast, AUGLc 4, ficial Testricts the initial labeled data to code containing either for
loops or while loops, ensuring that all augmented Loop-Conversion data can be generated for every
initial labeled data. The combined strategy AUGp1+ 1.0 Natural integrates Back-Translation augmentation
with Loop-Conversion augmentation under natural conditions. Similarly, AUG 74 1.c_Arti ficial cOmbines
Back-Translation augmentation with Loop-Conversion augmentation under artificial conditions.

We analyzed the results in two parts: AUGLc naturat VS- AUGLC artificia and AUGpr vs.

AU GLC’_Natural .

The first comparison, AUGc_naturat and AUGLc Artificial» highlights two different augmentation
strategies within AUGrc natural- Notably, AUGLc Naturaer significantly enhances model performance
compared to AUG,c_arti ficial» particularly in the UniXcoder model. The average number of data points
used for training in the AUG ¢ naturar 18 65, while the AUG Lo a4 ficial uses 70 data in 5-shot settings
on the CodeComplex dataset, which has seven labels. Despite having less training data, AUG Lo Natural
achieves higher performance.

The second comparison, AUGpT vs. AUGLc Natural, €valuates the differences between AUG g7 and
AUGLc Natural- In Tables 11 and 12, AUG ¢ Natural consistently outperforms AUGpr in both accuracy
and F1-score across all evaluated models while maintaining lower standard deviations, indicating more
reliable and stable performance. The average number of data points used for training in the AUG ¢ Natural
is 65, while the AUG 1 uses 70 data in 5-shot settings on the CodeComplex dataset, which has seven
labels. Despite having less training data, AUGLc naturar achieves higher performance.

For the CodeT5+ model, AUG ¢ naturar achieves higher accuracy except in the CodeComplex Python
5-shot setting, where a high standard deviation of 19.44% was observed in AUGpr. Similarly, for the
UniXcoder model, AUGc Natural achieves higher accuracy in most cases, except in the CodeComplex
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CodeComplex (Java) CodeComplex (Python) CorCoD

Models Augmentation 5 10 5 10 5 10
AUGgr 19.944556  27.48+651 19901500 25.46+778 33451885 35.44+1080
AUGrc Natural 2854060 34381104 22.751523  33.691s540 33.09x1001  24.47 1393

CodeBERT AUG 1 c_artificial 15224707 15.78+s574  27.811s6s  33.00+667 18.37+360 3231475

AUGBT+LC Naturdl 23954142 28.231036  28.344343  35.95+799 29.80+504  46.394301
AUGBT1c_Artificial 22451729 34144606 28.19+701 3412160 22.30+145  41.05+425

AUGpT 24771226 2914455 25781432 33.16120 27361660  44.89 506
AUGrc Natural 26.43+625 22301204 25.751966  33.39x17 34294875  43.8814s57
GraphCodeBERT  AUGLc Atificial 15594634 22184370 26.07xs580 36.00x321 40.69+465  41.711723

AUGBT+LC Natural 20.69+423  35.641723  27.33+572 35.99+430 38.17+17s  40.76+6064
AUGBTi1c_artificial 20981175 34341200  31.30+300 4297125 40.96+45¢  36.77+s18

AUGgr 22.90+160  27.31x313  31.9419017  35.83145 35.80+1098 43.85+299
AUGLc Natural 25331356 26421400 26.60xs577  42.501s51 39.361615  46.76x672
CodeT5+ AUGrc_artificial 16.67+402  27.681s833 347315420 43.3714m 27924356  44.87 172
AUGBT+LC Natural 26.23 4200 30.69+s08  31.124561 42.38+111 41.78+512 47.98+470
AUGBT1c_aArtificial 21.70+s73  32.924343  33.27+225  43.07:160 30.77+s12 48.19+478
AUGgr 29184395 33.52+1003 31434508 39.2441360 38.824997  52.394503
AUGLc Natural 272447  36.26x1628 29.48+387  34.82+42 40.331851  48.20x1378
UniXcoder AUGLC?Artificial 28.08+1397 35581597 311171 35.811466 38.41 1957 44361743

AUGBT+LC Natural 31.02+£1420 342141092 33.534573 45951860 43421120 52.571591
AUGBT1c_Artificial 29.34x62:1 389914556 30.94z600  42.07:40 40.62+1050 51.83+s38

Table 12: Fl-scores of augmentation strategies, AUGpr and AUGr~ and AUGpT, ¢ in natural and artificial
settings. The scores are averaged from three runs with different seeds.

Python 5-shot setting, where it shows 6%p lower accuracy. These large performance differences are likely
due to the inherent variability in the CodeComplex Python data results, contributing to the instability
observed across all models. Despite this 6%p lower standard deviation compared to AUGpt in the
CodeComplex Python 5-shot setting, indicating more stable performance even with a slight drop in
accuracy. In the 10-shot setting, where the data is more comprehensive, AUG1c Natural OUtperforms
AUGpgT in accuracy.

There are some exceptions, such as in the CodeComplex Java 10-shot setting, likely due to the limited
diversity of training data. AUG ¢ Naturel fOcuses on converting loop parts rather than making substantial
code changes, while AUG g enhances the diversity of the training data. When AUGpr is added to the
training data, it helps bridge the performance gap observed in these exceptional cases, as evidenced by
the results for AUG g7 1.c_Artificial in CodeComplex Java 10-shot setting. These findings suggest that
AUGLc Natural 1s the most effective augmentation strategy for enhancing the performance of code models.
Moreover, combining AUGpr with AUGLc Natura further boosts the performance of the models.

K Augmentation Prompts

The augmentation prompts presented in this section are designed to enhance the capabilities of lan-
guage models in code Back-Translation and Loop-Conversion tasks. The first prompt, Back-Translation,
challenges the model to translate Java code into Python and then back into Java, ensuring functional
equivalence without syntactical similarity to the original code. The second prompt, Loop-Conversion,
requires the model to convert all ‘for’ loops to ‘while’ loops and vice versa in the given Java code, even at
the cost of readability. To illustrate the effectiveness of these methods, we provide both original code and
augmented code examples for each augmentation technique. Note that we only show parts of the codes
because they are too long to display.

K.1 Back-Translation Examples

The following is an original example of a Java code.
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import ...
public class ProblemD {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
String[] data = s.readLine().split(" ");
String[] line = s.readLine().split(" ");
double ans = solve(a, v, 1, d, w);
out.println(String.format("\%.07f", ans));
out.flush();
}
private static double solve(double a, double v, double 1, double d, double w) {
double maxSpeedAtD = Math.sqrt(2 x d / a) * a;
if (v <= w || maxSpeedAtD <= w) {
// okay. just go

3

double time = 0.0d;

double maxSpeedTime = Math.sqrt((d / a) + (w x w / (2 * a * a)));
double maxSpeed = maxSpeedTime * a;

if (maxSpeed <= v) {

j..

// after that, just go.

double timeToV = (v - w) / a;

double timeToVLen = timeToV * w + 0.5 * timeToV * (v - w);
if (timeToVLen <=1 - d) {

j..

return time;

The following is a transformed example of a Java code.

import ...

public class ProblemD {
public static void main(String[] args) throws IOException {
BufferedReader s = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);

String[] data
String[] line

s.readLine().split(" ");
s.readLine().split(" ");

double ans = solve(a, v, 1, d, w);
out.println(String.format("%.07f", ans));

out.flush();
}

private static double solve(double a, double v, double 1, double d, double w) {

double maxSpeedAtD = Math.sqrt(2 * d / a) * a;
if (v >= w && maxSpeedAtD > w) {

}

private static double findTimeToReachL(double a, double v, double 1) {

return timeToMaxSpeed + leftDist / v;

3

private static double calculateTimeToReachDestination(double a, double v, double 1,
< double d, double w) {
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return maxSpeed <= v ? maxSpeedTime + (a * maxSpeedTime - w) / a :
— calculateTimeForCaseThree(a, v, d, w, maxSpeedTime);

}

private static double calculateTimeForCaseThree(double a, double v, double d, double w,
— double maxSpeedTime) {

return v >w ? v / a + time : v / a + vtime + (v - w) / a;

.

K.2 Loop-Conversion Examples

The following is an original example of a Java code.

’

import java.util.x;
import java.io.*;

public class Soldiers {
public static void main(String[] args) throws IOException {
new Soldiers().run();

3

void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);

int n = nextInt();
pw.println(3 * (n / 2));

pw.close();

3

BufferedReader br;
StringTokenizer st;
PrintWriter pw;

String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readlLine());

}

return st.nextToken();

}

int nextInt() throws IOException {
return Integer.parseInt(next());

3

double nextDouble() throws IOException {
return Double.parseDouble(next());

3

The following is a transformed example of a Java code.

import java.util.*;
import java.io.x*;

public class Soldiers {
public static void main(String[] args) throws IOException {
new Soldiers().run();

3
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void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);

int n = nextInt();
pw.println(3 * (n / 2));

pw.close();

}
BufferedReader br;
StringTokenizer st;

PrintWriter pw;

String next() throws IOException {

for(; st == null || !st.hasMoreTokens(); st = new
— StringTokenizer(br.readLine())) {
3

return st.nextToken();

}

int nextInt() throws IOException {
return Integer.parseInt(next());

3

double nextDouble() throws IOException {
return Double.parseDouble(next());

3
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K.3 Back-Translation Prompt

Back-Translation Prompt

You are a powerful Al that can translate Java code into Python code and then back into Java code.

I will provide you with a piece of Java code.

Your task is to generate an equivalent Python code and then translate it back into Java.

When translating back into Java, the code should not be identical to the original Java code, but it should
still be functionally equivalent.

Please ensure that the output is valid Java and does not contain any syntax or constructs from the other
language. The Java output should be in the following JSON format:

{

"back-translation": "[ Your transformed Java code here]"

}.

Please note that "[ Your transformed Java code here]" should be replaced with your transformed Java
code.

Do not include any other keys in the "back-translation" value.

Please ensure that you generate the complete transformed Java code, do not stop halfway through.
Do not generate Python code, only Java code.

Given Java Code:

for (int i = 0; i < 5; i++) {
System.out.println("Number is " + i);

3

Your Transformed Python Code(Java to Python):

for i in range(5):
print("Number is " + str(I))

Your Transformed Java Code(Python to Java):

int i = 0;

while (i < 5) ¢
System.out.println("Number is " + i);
i++;

Here is the Java code:"[Original Java Code]"

Please translate this Java code into Python code and then back into Java code, and generate your answer
in the following JSON format:

{{

"back-translation": "[The transformed Java code]"

1

Don’t cut me off in the middle, create it all the way through. The output should not contain any text,
only code. This includes avoiding explanations, comments, or any other form of text.
Please ensure that the transformed code is properly indented for readability.

Do not generate Python code, only Java code.

Figure 11: LLM prompt examples used in Back-translation.

9540



K.4 Loop-Conversion Prompt

Loop-Conversion Prompt

Your task is to convert all ‘for’ loops into ‘while’ loops and all ‘while’ loops into ‘for’ loops.

For example, if the Java code contains a ‘for’ loop, you should change it into a ‘while’ loop.

If the Java code contains a ‘while’ loop, you should change it into a ‘for’ loop.

If the Java code contains both ‘for’ and ‘while’ loops, you should change all ‘for’ loops into ‘while’
loops and all ‘while’ loops into ‘for’ loops.

Please note that all ‘while’ loops should be converted into ‘for’ loops, even if it breaks the readability
of the code. Please note that all ‘while’ loops should be converted into ‘for’ loops, even if it only runs
once. This may result in ‘for’ loops with empty initialization or increment sections.

The output should be valid Java code and should not contain any syntax or constructs from other
languages.

The Java output should be in the following JSON format:

Please ensure that your transformed Java code is enclosed in double quotes and ends with a closing
quote.

{

"forwhile": "[ Your transformed Java code here]"
}.

Here is an example of how to convert a ‘for’ loop to a ‘while’ loop in Java:

And here is an example of how to convert a Java code that contains both ‘for’ and ‘while’ loops:

Given Java Code:

for(int i = @; i < 10; i++) {
System.out.println("For loop: " + i);

3
while(!st.hasMoreTokens()) {
st = new StringTokenizer(in.readlLine());

3

Your Transformed Java Code:

int i = 0;
while(i < 10) {
System.out.println("For loop: " + i);
i++;
}
for(; !st.hasMoreTokens(); st = new StringTokenizer(in.readLine())) {

3

Here is the Java code: "[Original Java Code]".
Please convert all ‘for’ loops into ‘while’ loops and all ‘while’ loops into ‘for’ loops, and generate your
answer in the following JSON format:

i

"forwhile": "[The transformed Java code]"

1

Don’t cut me off ...

Figure 12: LLM prompt examples used in Loop-conversion.
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L. LLM 5-shot In-Context Learning Prompts

LLM Prompt

You are the best programmar in the world. You will be asked to determine the time complexity of
the following code. For the time complexity, choose one time complexity from the following options
’constant’, logn’, ’linear’, nlogn’, *quadratic’, ’cubic’, and ’exponential’. Do not hesitate to use any
other supplementary materials you need for the task. I will first give you the code. After you read the
code, I will ask you to compute the time complexity of the code. The following are the demonstrations
of the time complexity for codes:

n = int(input())
for i in range(n): print(i)

"complexity": linear

print(int(input())) ]

"complexity": constant

print(u*n)
print("**")
print(”***")

"complexity": constant

n = int(input())
items = list(map(int, input().split()))
items.sort()

"complexity": nlogn

def powerset(items):
n = len(items)
for i in range(1 << n):
subset = []
for j in range(n):
if i \& (1 << j):
subset.append(items[j])

print(subset)
items = list(map(int, input().split()))
powerset(items)

"complexity": exponential

Please output the time complexity of the whole code in a json format. Json format should be

{

"complexity": time complexity of the whole code

}.

Figure 13: LLM prompt used for 5-shot in-context learning evaluation.
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