
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 9479–9496

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Not All Adapters Matter: Selective Adapter Freezing for Memory-Efficient
Fine-Tuning of Language Models

Hyegang Son*1, Yonglak Son*1, Changhoon Kim†‡2,3, and Young Geun Kim‡1

1Korea University, {hyegang_son, yonglak_son, younggeun_kim}@korea.ac.kr
2Arizona State University, kch@asu.edu

3Soongsil University, changhooon.kim@gmail.com

Abstract

Transformer-based large-scale pre-trained mod-
els achieve great success. Fine-tuning is the
standard practice for leveraging these models
in downstream tasks. Among the fine-tuning
methods, adapter-tuning provides a parameter-
efficient fine-tuning by introducing lightweight
trainable modules while keeping most pre-
trained parameters frozen. However, existing
adapter-tuning methods still impose substantial
resource usage. Through our investigation, we
show that each adapter unequally contributes
to both task performance and resource usage.
Motivated by this insight, we propose Selec-
tive Adapter FrEezing (SAFE), which gradually
freezes less important adapters early to reduce
unnecessary resource usage while maintaining
performance. In our experiments, SAFE re-
duces memory usage, computation amount, and
training time by 42.85%, 34.59%, and 11.82%,
respectively, while achieving comparable or
better task performance compared to the base-
line. We also demonstrate that SAFE induces
regularization effect, thereby smoothing the
loss landscape, which enables the model to gen-
eralize better by avoiding sharp minima.

1 Introduction

Large-scale pre-trained language models (PLMs)
have manifested superior performance in various
tasks (Kenton and Toutanova, 2019; Liu et al.,
2019; Radford et al., 2019; Yang et al., 2019).
However, training PLMs from the scratch is time-
consuming and resource-intensive. Common prac-
tice has been hence to fine-tune the large-scale
pre-trained models by adapting all the parameters
with the downstream tasks, i.e., full parameter fine-
tuning (full-tuning).

Recently, Parameter-Efficient Fine-Tuning
(PEFT), which focuses on optimizing a small

*Equal contribution.
†Work completed as part of Ph.D. research at ASU.
‡Corresponding authors.

Figure 1: Comparison between full-parameter fine-
tuning, adapter-tuning and our proposed SAFE on the
BERTlarge model with SQuAD dataset. SAFE signifi-
cantly reduces memory usage while providing compara-
ble accuracy to adapter-tuning.

fraction of parameters for downstream tasks, is
receiving much attention (Houlsby et al., 2019;
Lester et al., 2021; Li and Liang, 2021; Liu et al.,
2022, 2023). Among various PEFT strategies,
adapter-tuning has emerged as a prevalent method.
It integrates lightweight modules, termed adapters,
into each layer of PLMs and only tunes the
adapters with the downstream tasks. As shown in
Figure 1(a), the adapter-tuning methods (Houlsby
et al., 2019; Pfeiffer et al., 2021; Zaken et al.,
2022; Hu et al., 2021; Zhang et al., 2022), signifi-
cantly reduce the number of trainable parameters
compared to the full-tuning while exhibiting better
performance on a downstream task.

As adapter-tuning reduces the number of train-
able parameters, it is also expected to reduce the
resource (i.e., memory) usage accordingly. Un-
fortunately, parameter-efficiency does not always
translate into resource-efficiency. As shown in
Figure 1(b), although adapter-tuning significantly
reduces the number of trainable parameters (by
99.37%, on average) compared to the full-tuning,
the memory usage is not much reduced (only by
22.19%, on average). This is because adapter-
tuning does not reduce activation memory (i.e.,
intermediate values for reuse during backpropaga-
tion) which account for 76.00% of memory usage

9479



— it only reduces optimizer memory (e.g., gradi-
ents and momentum vectors). Considering the re-
markable increase in model size compared to the
modest increase in GPU memory capacity, adapter-
tuning methods still face challenges in terms of
memory efficiency. For example, fine-tuning of a
LLaMA-65B (Touvron et al., 2023) requires more
than 780GB of GPU memory. As shown in Figure
1(b), enabling resource-efficient fine-tuning may
enhance accessibility of fine-tuning to researchers
and end-users, by reducing memory requirements
below the capacity of commodity GPU memory.

According to previous work, the activation mem-
ory mostly depends on the backpropagation length
(Chen et al., 2016; Rhu et al., 2016), which is de-
termined by the number of adapters trained during
the backward pass. Hence, to reduce the activa-
tion memory, it is crucial to reduce the number
of training adapters. However, merely reducing
the number of training adapters degrades accuracy.
Here, a pivotal research problem arises:

Can we reduce the number of training adapters
without sacrificing accuracy?

To answer the question, we analyze the impact of
individual adapters on the accuracy and resource
usage of training (Figure 2 in Section 3). We ob-
serve that some adapters are being trained, even
after they finish contributing to the accuracy im-
provement, occupying memory. Thus, it is possible
to stop training (i.e., freezing) such adapters early if
they do not contribute to the adaptation for a down-
stream task, de-allocating their activation memory.
We also observe that such early freezing can even
lead to the regularization effect on the model (Fu
et al., 2023), improving the accuracy.

In this paper, we propose SAFE (Selective
Adapter FrEezing), which adaptively freezes
adapters in the early epochs of training. In each
epoch, SAFE identifies adapters that contribute rel-
atively less to the accuracy improvement by using
an importance score (Kornblith et al., 2019). It
then freezes the adapters whose importance score
is lower than a pre-defined threshold, reducing
the memory usage and accelerating training time.
By early freezing less important adapters, SAFE
induces regularization effect on the model being
trained, leading to a flatter loss surface. This is
beneficial for finding an optimal point with higher
generalization performance while optimizing neu-
ral network. In our evaluation, SAFE significantly
reduces the average memory usage and TFLOPs by

46.89% and 51.73%, respectively, across various
models and downstream tasks without compromis-
ing accuracy compared to the baseline, LoRA (Hu
et al., 2021). SAFE even improves the accuracy for
some tasks, compared to LoRA, by up to 4.33%
while reducing memory usage by 53.60%, by in-
ducing the regularization effect.

In summary, our key contributions include:
• We uncover that adapters exhibit varying de-

grees of contribution to model adaptation and
resource usage (Section 3).

• Motivated by this observation, we propose
SAFE, a novel approach that enables resource-
efficient fine-tuning by selectively early-
freezing less important adapters (Section 4).

• Our evaluation on various downstream tasks
demonstrates that SAFE not only achieves
comparable or even better task performance
to baselines but also significantly reduces re-
source usage by inducing the regularization
effect on the model (Section 5).

2 Related Work

Parameter-Efficient Fine-Tuning: To efficiently
adapt large-scale PLMs to downstream tasks, many
adapter-tuning methods (Chen et al., 2023; He
et al., 2023; Hu et al., 2021; Houlsby et al., 2019;
Karimi Mahabadi et al., 2021; Liu et al., 2022)
have been proposed. In general, adapter-tuning
methods inject small, trainable, and task-specific
adapter modules into each transformer layer of a
pre-trained model. Given a pre-trained weight ma-
trix W0 ∈ Rd×k and input x ∈ Rk×1, the weight
update of adapter-tuning is expressed as W0+∆W .
During training, W0 is frozen and does not receive
gradient updates, while ∆W contains trainable pa-
rameters. For h = W0x, The modified forward
pass in adapter-tuning yields:

h = W0x+∆Wx. (1)

To further improve parameter efficiency of
adapter-tuning, AdaLoRA (Zhang et al., 2022)
adaptively adjusts the number of trainable parame-
ters among adapters according to their importance
score — it reduces the number of trainable param-
eters for less important adapters. However, the
adapter-tuning methods still use a large amount of
memory, as shown in Figure 1, since they do not
reduce the activation memory which accounts for a
large portion of memory usage.
Pruning LLM Model Parameters: To reduce the
model memory of fine-tuning, two categories of

9480



Figure 2: (a) Accuracy and (b) Resource usage of adapter-tuning by injecting an adapter into each transformer layer
of BERTbase model on MNLI and QNLI datasets from GLUE.

pruning methods have been proposed (Liang et al.,
2021): structured pruning and unstructured prun-
ing. Structured pruning methods remove grouped
parameters (e.g., channels, layers) from the LLM.
However, they usually degrade the accuracy. Fur-
thermore, they have a limitation in terms of the
compression ratio because of the low flexibility.
LLM-Pruner (Ma et al., 2023) compensates the ac-
curacy drop coming from pruning, by employing
post-training.

To overcome the limitation of structured prun-
ing, unstructured pruning methods remove partial
values of weight matrices regardless of their struc-
tures (Li et al., 2022b; Frantar and Alistarh, 2023).
However, unstructured pruning also degrades the
accuracy.
Resource Efficient Fine-Tuning: Several works
have tried to target resource efficient fine-tuning.
AdapterDrop (Rücklé et al., 2021), randomly ex-
cludes partial adapters from each training step.
However, it cannot de-allocate the activation mem-
ory for the adapters, because of the random se-
lections — an adapter excluded from training in
a step can be included in training in the follow-
ing steps. SparseAdapter(He et al., 2022) applies
unstructured pruning to the adapters. However, it
also does not reduce the actual memory usage —
this is because the weight matrices pruned with
zero values still need to be fully allocated in the
memory. LoRAPrune(Zhang et al., 2023) employs
structured pruning for LoRA. Unfortunately, the
aforementioned methods usually have an adverse
impact on the accuracy. MEFT (Liao et al., 2024)
applies a reversible model to PEFT. By using the
reversible network, MEFT calculates activations
with accumulated outputs of layers, without saving
the intermediate activations reducing the activation
memory. However, calculations of the activations
severely degrades the training time performance.

Different from the previous works, this work

freezes less important adapters in early steps of
training. Since the frozen adapters can only be
used for the forward pass, early freezing of less
important adapters can effectively reduce the back-
propagation length as well as the activation mem-
ory. Moreover, it induces regularization effect on
the model, improving its accuracy.

3 Motivation

In this section, we present a pivotal research ques-
tion for resource-efficient fine-tuning.

RQ: Do all adapters contribute equally to the
process of adaptation?

To answer this question, we analyze the impact
of adapters injected into each transformer layer on
accuracy and resource efficiency. We measure the
accuracy and memory usage of BERTbase model on
MNLI and QNLI dataset from GLUE (Wang et al.,
2018), by attaching an adapter to each transformer
layer one-by-one. Figure 2(a) and (b) show the
measured accuracy and memory usage respectively
— the x-axis indicates the index of transformer layer
that the adapter is injected into.

As shown in Figure 2(a), each adapter has differ-
ent impact on the accuracy, and the importance
of each adapter varies depending on the down-
stream task. In addition, despite uniform counts of
trainable parameters, resource usage decreases for
adapters closer to the output layer, as depicted in
Figure 2(b). These observations point to the possi-
bility that adapters in early layers contribute less to
task adaptation, even though they require consid-
erable resources. In other words, if we selectively
deactivate less impactful adapters, it is possible to
co-optimize the resource efficiency and accuracy.

To further analyze changes of the feature repre-
sentations for each adapter throughout the training
process, we quantify the representation similarity

9481



Figure 3: Visualization of representation similarity be-
tween the trained model and the model at different train-
ing steps during adapter-tuning of the BERTbase model
on the MNLI and QNLI datasets from GLUE.

between adapters in each training step and those
in the final model (which we obtained after the
convergence of fine-tuning). We quantify the repre-
sentational similarity using Centered Kernel Align-
ment (CKA) by referring to previous works (Li
et al., 2022a). Figure 3 visualizes the representa-
tional similarity measured throughout the training
process for each adapter for BERTbase model on
MNLI and QNLI dataset from GLUE (Wang et al.,
2018) — lighter the color becomes, higher the fea-
ture representation similarity is.

As shown in Figure 3, even in the early train-
ing steps, the feature representations of several
adapters are almost the same as those of the fi-
nal model — similar patterns are observed in
other models and datasets. This means that those
adapters are already representing the features that
should be represented by the final model, and thus
they may not further be adapted for the downstream
task in the rest of the training steps. This is why
such adapters are less contributing to the accuracy
improvement of the model on the downstream tasks
in Figure 2. One intuition is that lower adapters
generally learn basic understanding of the input
data, such as data bias and structural characteris-
tics of the data, while adapters closer to the output
build features unique to different tasks (Houlsby
et al., 2019). Motivated by the observation where
not all adapters consistently contribute to adap-
tation, in the next section, we propose a selec-
tive adapter freezing method which preemptively
freezes adapters that are relatively less important
for each task.

4 Selective Adapter Freezing (SAFE)

In this section, we propose a selective adapter freez-
ing method, SAFE. SAFE adaptively freezes less
important adapters in the early training steps, in
order to reduce unnecessary computation and mem-

ory usage without compromising the accuracy.
Figure 4 shows the overview of SAFE. SAFE

consists of two stages: warm-up stage and freezing
stage. In the warm-up stage, SAFE performs sev-
eral epochs of fine-tuning while monitoring the fea-
ture representation changes (i.e., importance score)
of the adapters (Section 4.1). If the important score
of all adapters is not much changed for consecu-
tive epochs, SAFE enters the freezing stage. In the
freezing stage, SAFE gradually freezes adapters
that contribute less to the adaptation, based on the
importance score (Section 4.2). By early freezing
less important adapters, SAFE induces regulariza-
tion effect on model (Section 4.3), leading to better
performance.

4.1 Importance Score
In the warm-up stage1, we identify less impor-
tant adapters by monitoring the feature represen-
tation changes of the adapters. To capture the fea-
ture representation changes of the adapters, SAFE
uses Centered Kernel Alignment (CKA), which is
a representative metric for representation similar-
ity — similar practice has been used in previous
works (Neyshabur et al., 2020; Raghu et al., 2021).
It calculates CKA between the activation of a layer
adapted with an adapter and that of the original
layer as:

CKAi(Xi, Yi) =
∥Y T

i Xi∥2F
∥XT

i Xi∥F ∥Y T
i Yi∥F

, (2)

where Xi and Yi are the activations of a layer that
is adapted with an adapter and the original layer,
respectively, i = Index of Layer, and ∥ · ∥2F repre-
sents the square of the Frobenius norm of a matrix.

Higher CKA value indicates that the feature rep-
resentation of a layer is still similar with that of
the original one. To this end, SAFE calculates the
importance score of an adapter as:

Imp(Adapteri) = 1− CKAi(Xi, Yi) (3)

4.2 Adapter Freezing
In the freezing stage, SAFE gradually freezes
adapters based on their importance score. At tw-th
epoch, SAFE compares the importance score of
adapters with threshold τT . If the importance score
of an adapter is lower than τT , SAFE identifies the
adapter as a freezing candidate. After identifying

1We define the number of warm-up epochs as the epoch
at which the importance score of all adapters change by less
than 5% for consecutive epochs.

9482



Figure 4: Design overview of Selective Adapter Freezing (SAFE). At the warm-up stage, SAFE identifies important
adapters by calculating importance score. At the freezing stage, SAFE gradually freezes the adapter based on their
importance score with moving threshold τ by following a cubic schedule.

freezing candidates, SAFE freezes them based on a
moving threshold until tf -th epoch — it increases
the threshold from 0 to τT

2 between tw-th and tf -th
epochs following a cubic schedule as (Zhang et al.,
2022):

τt =





0 0 ≤ t < tw,

τT − τT
(
1− t−tw

tf−tw

)3

tw ≤ t < tf ,

τT o.w.

(4)

where t is the current epoch, tw is the number of
initial warm-up epochs, tf is the number of final
freezing epochs. The cubic schedule follows a non-
linear growth pattern, enabling rapid exploration of
the search space during initial stages and gradually
slowing down to reliably converge to the target
point. We leverage these advantages by freezing
more less-important adapters in the early stages.
As the number of trainable parameters in the model
decreases, SAFE gradually reduces the number of
freezing adapters, reaching the threshold τT stably.

4.3 Regularization Effect of SAFE
By selectively freezing less critical adapters, SAFE
induces a regularization effect within the model.
In transformer-based PLM N0, each of the l trans-
former blocks Tl is equipped with a distinct set of
parameters θ0l for l ∈ {1, . . . , n}. To reduce the
computational overhead of fine-tuning all param-
eters θ0l , lightweight adapters ∆θl are introduced.
To clarify how introducing adapters contribute to
performance enhancements, Fu et al. (2023) for-
malize the optimization function as follows:

min
θ

L(θ) + ∥(I −M)(θ − θ0)∥2, (5)

2We empirically determine τT and final freezing epochs
tf based on extensive experiments with various models and
datasets.

where θ = θ0 +M∆θ and M ∈ {0, 1}m×m, with
m = dim(θ), serves as a diagonal matrix for selec-
tive parameter adjustment. Each diagonal element
Mii ∈ {0, 1} indicates whether the corresponding
parameter of ∆θi is active (1) or inactive (0), with
all off-diagonal elements Mij set to 0. The regular-
ization term is crucial for explaining how parame-
ter constraints introduced by adapters can enhance
model performance on downstream tasks. The
rank(M) is bounded by m, reflecting full capacity
for parameter adaptation within each transformer
block. However, such an approach can lead to ex-
cessive computation (See Figure 1). In contrast,
our study explores the implications of constraining
the rank(M) to a reduced upper bound from m to
the number of trainable parameters following the
proposed freezing algorithm in Section 4.2. For
instance, in our motivational analysis in Section 3,
where we limit the number of trainable parameters
to one adapter per layer, the rank(M) is bounded
by m

l by selectively activating ∆Wl for Tl. This
constraint not only optimizes computational effi-
ciency but also preserves the adaptability essential
for superior performance on downstream tasks, as
evidenced by our empirical results detailed in Sec-
tion 5.3.

5 Experiments

5.1 Experimental Setting
Models: We assess the fine-tuning efficacy of
SAFE using state-of-the-art transformer-based
models, including BERTbase, BERTlarge (Ken-
ton and Toutanova, 2019), RoBERTabase,
RoBERTalarge (Liu et al., 2019), GPT-2medium,
GPT-2large (Radford et al., 2019), and
LLaMA-27B (Touvron et al., 2023).
Datasets: The aforementioned models are evalu-

9483



Table 1: Experimental results with BERTlarge on natural language understanding tasks from the GLUE benchmark.
SAFE significantly reduces memory usage while achieving GLUE score comparable to the baseline. Note that we
report memory usage and computation costs on RTE task.

CoLA SST-2 MNLI RTE QQP MRPC QNLI STS-B Avg. Memory Computation

Matthews corr Accuracy Accuracy Accuracy Accuracy F1 Score Accuracy Pearson corr (GB) (TFLOPs)

LoRA 65.24 93.65 85.40 72.66 90.49 87.90 90.06 91.88 84.66 20.35 46,698

+ Zhang et al. 61.78 91.97 84.61 73.18 89.20 86.83 90.00 87.50 83.13 11.20 35,415

+ AdapterDrop 64.24 92.54 85.19 73.38 89.02 86.51 91.51 91.39 84.22 20.35 35,114

+ SparseAdapter 65.25 92.66 85.19 74.10 90.43 88.50 91.61 91.99 84.97 20.35 46,698

+ LoRAPrune 63.03 91.54 83.97 70.59 88.28 87.74 84.13 86.48 81.97 10.37 25,137

+ MEFT 64.57 92.66 84.33 72.92 88.70 88.30 90.98 90.15 84.08 11.15 88,363

+ SAFE 65.26 92.78 85.41 74.10 89.96 88.84 91.78 91.80 84.99 12.1140.47%↓ 30,28535.15%↓

ated across various tasks that span a broad spectrum
of NLP applications, including Natural Language
Understanding (NLU), Question Answering (QA),
and Natural Language Generation (NLG). Initially,
we utilize eight datasets from the General Lan-
guage Understanding Evaluation (GLUE) (Wang
et al., 2018) which comprises two single-sentence
classification tasks, three similarity and paraphrase
tasks, and four natural language inference tasks.
Furthermore, we conduct experiments on the
SQuAD dataset (Rajpurkar et al., 2016) with both
BERT and RoBERTa model families. Decoder-
only models such as GPT-2large are also tested to
determine if SAFE maintains its effectiveness in
the E2E NLG Challenge (Novikova et al., 2017).
Finally, to investigate the scalability to larger mod-
els, we evaluate SAFE on the large language model
(LLaMA-27B) and the WikiText-2 dataset (Merity
et al., 2022). Detailed dataset descriptions are avail-
able in Appendix C.3.
Baselines: To evaluate the effectiveness of
SAFE, we benchmark against state-of-the-art
PEFT method, LoRA (Hu et al., 2021). We
compare SAFE with five effective resource
efficient fine-tuning methods, a previous
work (Zhang et al.), AdapterDrop (Rücklé
et al., 2021), SparseAdapter (He et al., 2022),
LoRAPrune (Zhang et al., 2023), and MEFT (Liao
et al., 2024). SAFE’s performance is further
compared with four other PEFT methods such as
Houlsby (Houlsby et al., 2019), Pfeiffer (Pfeiffer
et al., 2020), BitFit (Zaken et al., 2022), and the
adaptive method AdaLoRA (Zhang et al., 2022)
to demonstrate its versatility and applicability
across different adapter-tuning frameworks (see
Figure 1 and Appendix B for detailed results).
Comprehensive details on the experimental setup
and hyperparameters, such as training epochs and

batch sizes, can be found in Appendix C.

5.2 Main results
5.2.1 Natural Language Understanding
Table 1 shows the results of different methods
on GLUE tasks. Since SAFE selectively freezes
51.04% of less important adapters early through-
out the training process, SAFE significantly re-
duces memory usage by 40.47%, from 20.35GB
(LoRA) to 12.11GB, and decreases computation
costs (FLOPs) by 35.15%. Even with such im-
provements in resource efficiency, SAFE improves
the average GLUE score from 84.66 (LoRA) to
84.99 — this is because SAFE induces a regular-
ization effect on less-important adapters improving
generalization performance of the model (see Sec-
tion 5.3).

Figure 5 shows the freezing patterns of
BERTlarge fine-tuned with SAFE — we observe
similar patterns for other tasks. We find that SAFE
tends to freeze adapters more in layers closer to the
input layer. Such behavior aligns with empirical
observations presented in Figure 2 where adapters
closer to the output layer need further adaptation to
the downstream tasks compared to those in earlier
layers, contributing more to model performance.

Compared to a previous work (Zhang et al.),
which attaches adapters only to the upper layers,
SAFE achieves 2.24% higher GLUE score. This
is because some adapters attached to lower lay-
ers keep contributing to the adaptation even in later
training epochs, as shown in Figure 5 (e.g., 2nd and
5th adapters in QNLI task). Compared to Adap-
terDrop, SAFE provides up to 2.69% higher score
(MRPC) while reducing memory usage by 49.47%
(0.91% higher GLUE score and 40.47% reduced
memory usage on average). This is because Adap-
terDrop reduces computation costs (FLOPs) by ran-

9484



Figure 5: The freezing patterns when fine-tuning
BERTlarge on GLUE with SAFE. Colors indicate
adapters that are frozen, while white represents an
adapter that is not frozen — the lighter the color is,
the higher importance score is.

Figure 6: Comparison of (a) perplexity and (b) resource
usage between LoRA and SAFE on the LLaMA-27B
model evaluated on the WikiText-2 dataset.

domly dropping adapters for each step, whereas
SAFE selectively freezes less-important adapters
preserving critical adapters and thus achieving bet-
ter performance. AdapterDrop also does not lower
memory usage because the memory allocated to
the dropped adapters cannot be de-allocated for
the next step — adapters dropped in a step may
not be dropped in the next step. Compared to
SparseAdapter, SAFE reduces memory usage by
40.47% and computation cost by 35.15% while pro-
viding comparable GLUE score. This is because
SparseAdapter performs pruning of redundant pa-
rameters but uses unstructured pruning with mask-
ing, which does not actually improve resource effi-
ciency. On the other hand, although LoRAPrune is
effective to reduce the memory usage, it severely
degrades the accuracy as it fully eliminates less im-
portant adapter weights through structural pruning.
As a result, SAFE achieves 3.68% higher GLUE
score compared to LoRAPrune. MEFT reduces the
memory usage at the cost of more than 2x of the
FLOPs and training time. This is because MEFT
applies a reversible model to LoRA, which reduces
memory usage by not caching intermediate acti-
vations, but causes substantial computation over-
head due to recomputation. Overall, SAFE strikes
a better accuracy/memory efficiency/training-time
performance trade-off compared to SOTA methods.

Table 2: Experimental results on question answering
task from the SQuAD dataset.

F1 Score
Memory Usage

(GB)
Computation

(TFLOPs)

BERTbase
LoRA 86.99 5.95 611,295
+ SAFE 87.22 4.6122.52%↓ 455,27425.52%↓

BERTlarge
LoRA 89.22 15.79 2,117,791
+ SAFE 89.72 7.4452.88%↓ 869,62458.94%↓

RoBERTabase
LoRA 90.95 11.51 1,225,147
+ SAFE 91.16 7.8032.23%↓ 808,23934.03%↓

RoBERTalarge
LoRA 93.39 17.73 2,117,791
+ SAFE 94.13 3.5679.92%↓ 245,54188.41%↓

Table 3: Experimental results on natural language gen-
eration from the E2E NLG Challenge. For all metrics,
higher is better. Note that we report memory usage re-
duction in blue.

BLEU NIST METEOR ROUGE-L CIDEr

GPT-2medium
LoRA 68.91 8.68 46.48 71.33 2.47
+ SAFE 68.67 8.66 46.40 70.88 2.43 34.34%↓

GPT-2large
LoRA 70.27 8.85 46.40 71.63 2.52
+ SAFE 70.26 8.87 46.58 71.68 2.53 25.50%↓

5.2.2 Question Answering

Table 2 shows the results of SQuAD dataset. SAFE
consistently outperforms baseline under all settings.
Notably, SAFE reduces memory usage and com-
putation costs by up to 79.92% and 88.41% on
RoBERTalarge by freezing 91.67% of the adapters,
while improving the F1 score from 93.39 (LoRA)
to 94.13. This result also demonstrates that the ben-
efits and effectiveness of SAFE are not restricted
to specific model sizes, making it a valuable strat-
egy for enhancing adapter-tuning outcomes across
models of varying scales.

5.2.3 Natural Language Generation

Table 3 shows that SAFE prevails on natural lan-
guage generation task with GPT-2. SAFE achieves
comparable performance to LoRA across all met-
rics while significantly reducing memory usage.
This result also demonstrates that SAFE is effec-
tive not only for encoder models but also works
well with decoder models.

Figure 6 compares (a) perplexity and (b) mem-
ory usage between LoRA and SAFE on the
LLaMA-27B using the WikiText-2 dataset, to ex-
amine the applicability of SAFE on large language
models. As shown in Figure 6, SAFE reduces mem-
ory usage by 48.37%, from 66.35GB (LoRA) to
34.20GB, without any degradation in model qual-

9485



Figure 7: (a) Loss landscape demonstrates that SAFE yields a flatter loss surface compared to the baseline, as shown
in the second and third columns. (b) Hessian eigenvalue spectrum analysis shows that the magnitude of the Hessian
eigenvalues for SAFE is smaller than those for the baseline, indicating a flatter local curvature and potentially better
generalization properties.

ity. This result implies that SAFE can significantly
improve the scalability of large language models by
reducing the resource usage, making it feasible to
train these models on resource-constrained devices
or with larger batch sizes.

5.3 Regularization Effect

To elucidate the underlying mechanisms behind
SAFE’s enhancements in model performance and
memory efficiency, we conduct a detailed empir-
ical analysis. We visualize and compare the loss
landscapes of the baseline and SAFE. Addition-
ally, we quantitatively evaluate the flatness of the
loss surfaces by analyzing the spectrum of Hessian
eigenvalues. This methodical approach allows us to
substantiate the improvements attributed to SAFE,
providing insights into its effectiveness in optimiz-
ing both performance and resource utilization.

Loss Landscape Analysis. The flatness of a loss
landscape is a recognized indicator of the general-
ization ability of models (Jiang et al., 2020). Specif-
ically, flatter landscapes are indicative of enhanced
robustness to parameter perturbations (Xie et al.,
2021), reduced model complexity (Blier and Ol-
livier, 2018), and improved generalization capabil-
ities (Cha et al., 2021, 2022; Choromanska et al.,
2015; Park and Kim, 2021; Wu and Su, 2023). To
examine these properties, we employ a compara-
tive visualization of the loss landscapes for LoRA
and SAFE using the BERTbase model on the QNLI
and SST-2 datasets, following the methodology

outlined in (Park and Kim, 2021)3. Our analysis
reveals that SAFE yields a flatter loss landscape
compared to LoRA. This flattening is attributed to
SAFE’s mechanism of controlling the norm of the
weights through regularization effects (See Equa-
tion (5)), which consequently enhances resistance
to weight perturbations, as depicted in Figure 7(a).
Hessian Eigenvalue Spectrum Analysis. To
quantitatively assess the visualized loss landscape
shown in Figure 7(a), we perform a detailed anal-
ysis of the top-5 Hessian eigenvalue spectrum. A
pivotal finding in our analysis is the reduced mag-
nitude of the maximum Hessian eigenvalue, which
correlates with a flatter loss landscape, indicative
of enhanced generalization potential. Moreover,
the diminution of large Hessian eigenvalues facili-
tates more effective model training (Ghorbani et al.,
2019). Furthermore, the suppression of the largest
negative Hessian eigenvalues markedly contributes
to a more convex loss landscape, enhancing the
stability of the training process. Figure 7(b) demon-
strates that SAFE not only effectively reduces the
magnitude of Hessian eigenvalues relative to LoRA
but also leads to a smoother and more consistent
loss landscape. This evidence highlights the advan-
tages of SAFE in promoting a more reliable and
steady training behavior for adapter-tuning.

3This involves generating two orthogonal random vectors
in a 1D flattened parameter space, which are then normalized
and used to perturb the parameters. The strength of these per-
turbations is determined by their x and y coordinates, with the
origin (0, 0) representing the unperturbed state of the param-
eters, and increasing distance indicating greater perturbation
intensity.

9486



Table 4: SAFE improves efficiency over the baseline
in all aspects including memory usage, computation
amount and training time. Note that we report computa-
tion costs for 1-step training.

NLU QA NLG

Memory Usage LoRA 20.35 12.75 16.97
(GB) + SAFE 12.11 40.47%↓ 5.85 54.08%↓ 11.90 29.91%↓

Computational Cost LoRA 1.24 5.94 8.64
(TFLOPs) + SAFE 0.93 24.74%↓ 2.33 60.86%↓ 6.79 21.42%↓

Training Time LoRA 1 1 1
(Normalized) + SAFE 0.90 10.29%↓ 0.89 10.92%↓ 0.80 19.76%↓

5.4 Resource Efficiency
We evaluate the resource efficiency of SAFE in
terms of memory usage, computation amount, and
training time. Table 4 shows the average resource
efficiency improvement for the main results on
NLU, QA and NLG tasks. Overall, SAFE reduces
memory usage, computation amount, and training
time by 42.85%, 34.59%, and 11.82% compared
to LoRA, respectively (on average). This means
that SAFE can fine-tune twice as many downstream
tasks under the same FLOPs budget and further en-
able on-device fine-tuning for personalization. For
example, when fine-tuning a RoBERTalarge model
with a question answering downstream task, SAFE
reduces memory usage from 17.73GB to 3.56GB;
8GB is the usual memory size of the edge devices.

5.5 Expanded Experimental Results
Image Classification Task Evaluations. In Ap-
pendix A, we conduct comprehensive evaluations
of SAFE on a variety of image classification tasks.
These experiments consistently demonstrate the ef-
ficacy of SAFE, confirming its robust performance
across diverse vision-related applications.
Compatibility with Advanced Adapters. Fur-
ther discussions on the integration of SAFE with
various advanced adapter modules are presented
in Appendix B. Our results highlight SAFE’s ver-
satility and compatibility with multiple adapter-
tuning frameworks (Houlsby et al., 2019; Zaken
et al., 2022). This adaptability ensures that SAFE’s
methodology remains effective, independent of spe-
cific adapter designs, thereby facilitating scalability
across existing adapter-tuning methods.

6 Conclusion

In this paper, we propose SAFE, which selectively
freezes adapters for enabling resource efficient
fine-tuning of PLMs. We observe that not all

adapters contribute equally to adaptation. Moti-
vated by the observation, SAFE gradually freezes
less-important adapters, which do not contribute to
adaptation during the early training steps. In our
evaluation on various models and datasets, SAFE
significantly saves memory usage and computation
and accelerating training time, with comparable (or
even better) accuracy. We also demonstrate that
SAFE induces regularization effect, thereby im-
proving generalization performance and accuracy
compared to the state-of-the-art PEFT methods.
We believe that SAFE can enable resource-efficient
fine-tuning of large-scale PLMs, and further pave
the path forward to personalized fine-tuning on
resource-constrained edge devices.

7 Limitations

We suggest the need for combination with prior re-
search on memory-efficient training. These include
low precision, micro-batching, weight sharding,
and gradient checkpointing techniques. Though we
have not evaluated SAFE along with such memory-
efficient training methods, SAFE can be com-
plementarily used along with the methods since
SAFE can be applied independently of the training
method or weight precision. In particular, since the
quantization-based compression technique is quite
popular and effective in terms of both compression
ratio and preservation of final accuracy, favorable
results are expected from combining the proposed
technique with the memory-efficient training meth-
ods (Han et al., 2015).

Acknowledgments

This work was supported in part by National Re-
search Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (RS-2023-
00212711), Institute of Information & Communi-
cations Technology Planning & Evaluation(IITP)-
ITRC(Information Technology Research Center)
grant funded by the MSIT(IITP-2025-RS-2023-
00260091), ICT Creative Consilience Program
through IITP grant funded by the MSIT(IITP-
2025-RS-2020-II201819), IITP grant funded by
the MSIT (No. RS-2024-00398353, Development
of Countermeasure Technologies for Generative AI
Security Threats). We also thank the anonymous
reviewers for their helpful feedback.

9487



References
Léonard Blier and Yann Ollivier. 2018. The description

length of deep learning models. Advances in Neural
Information Processing Systems, 31.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
2014. Food-101–mining discriminative components
with random forests. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part VI 13,
pages 446–461. Springer.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-
Cheol Cho, Seunghyun Park, Yunsung Lee, and Sun-
grae Park. 2021. Swad: Domain generalization by
seeking flat minima. Advances in Neural Information
Processing Systems, 34:22405–22418.

Junbum Cha, Kyungjae Lee, Sungrae Park, and
Sanghyuk Chun. 2022. Domain generalization by
mutual-information regularization with pre-trained
models. In European Conference on Computer Vi-
sion, pages 440–457. Springer.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. In The Twelfth International Conference on
Learning Representations.

Anna Choromanska, Mikael Henaff, Michael Mathieu,
Gérard Ben Arous, and Yann LeCun. 2015. The
loss surfaces of multilayer networks. In Artificial
intelligence and statistics, pages 192–204. PMLR.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On the
effectiveness of parameter-efficient fine-tuning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 12799–12807.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao.
2019. An investigation into neural net optimiza-
tion via hessian eigenvalue density. In International
Conference on Machine Learning, pages 2232–2241.
PMLR.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang,
and Dacheng Tao. 2022. Sparseadapter: An easy
approach for improving the parameter-efficiency of
adapters. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 2184–2190.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei
Yang, and Xin Eric Wang. 2023. Parameter-efficient
model adaptation for vision transformers. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 817–825.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi,
Dilip Krishnan, and Samy Bengio. 2020. Fantas-
tic generalization measures and where to find them.
In International Conference on Learning Representa-
tions.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022–1035.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
conference on machine learning, pages 3519–3529.
PMLR.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-
Fei. 2013. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE inter-
national conference on computer vision workshops,
pages 554–561.

Alex Krizhevsky et al. 2009. Learning multiple layers
of features from tiny images.

Ya Le and Xuan Yang. 2015. Tiny imagenet visual
recognition challenge. CS 231N, 7(7):3.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Sheng Li, Geng Yuan, Yue Dai, Youtao Zhang, Yanzhi
Wang, and Xulong Tang. 2022a. Smartfrz: An effi-
cient training framework using attention-based layer
freezing. In The Eleventh International Conference
on Learning Representations.

9488



Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Yuchao Li, Fuli Luo, Chuanqi Tan, Mengdi Wang,
Songfang Huang, Shen Li, and Junjie Bai. 2022b.
Parameter-efficient sparsity for large language mod-
els fine-tuning. arXiv preprint arXiv:2205.11005.

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi,
and Xiaotong Zhang. 2021. Pruning and quantiza-
tion for deep neural network acceleration: A survey.
Neurocomputing, 461:370–403.

Baohao Liao, Shaomu Tan, and Christof Monz. 2024.
Make pre-trained model reversible: From parameter
to memory efficient fine-tuning. Advances in Neural
Information Processing Systems, 36.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2023. Gpt
understands, too. AI Open.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2022. Pointer sentinel mixture mod-
els. In International Conference on Learning Repre-
sentations.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
Advances in neural information processing systems,
33:512–523.

Maria-Elena Nilsback and Andrew Zisserman. 2008.
Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on com-
puter vision, graphics & image processing, pages
722–729. IEEE.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-
to-end generation. In 18th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 201–206. Association for Computational Lin-
guistics.

Namuk Park and Songkuk Kim. 2021. How do vision
transformers work? In International Conference on
Learning Representations.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487–503.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 46–54.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748–8763. PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. 2021. Do
vision transformers see like convolutional neural net-
works? Advances in neural information processing
systems, 34:12116–12128.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

Minsoo Rhu, Natalia Gimelshein, Jason Clemons,
Arslan Zulfiqar, and Stephen W Keckler. 2016.
vdnn: Virtualized deep neural networks for scalable,
memory-efficient neural network design. In 2016
49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13. IEEE.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946.

9489



Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353–355.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Lei Wu and Weijie J Su. 2023. The implicit regular-
ization of dynamical stability in stochastic gradient
descent. arXiv preprint arXiv:2305.17490.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Aji. 2024. Lamini-
lm: A diverse herd of distilled models from large-
scale instructions. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 944–964.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017.
Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747.

Zeke Xie, Fengxiang He, Shaopeng Fu, Issei Sato,
Dacheng Tao, and Masashi Sugiyama. 2021. Artifi-
cial neural variability for deep learning: On overfit-
ting, noise memorization, and catastrophic forgetting.
Neural computation, 33(8):2163–2192.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen
Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
2023. Loraprune: Pruning meets low-rank
parameter-efficient fine-tuning. arXiv preprint
arXiv:2305.18403.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and

Tuo Zhao. 2022. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. Revisiting few-sample bert
fine-tuning. In International Conference on Learning
Representations.

9490



A Results on Image Classification Tasks

We conduct experiments with 8 datasets including class-level transfer and task-level transfer in the image
classification tasks within Computer Vision (CV) domain. These datasets include CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), Country-211 (Radford et al., 2021), Fashion MNIST (Xiao et al., 2017), Food-
101 (Bossard et al., 2014), Oxford Flowers (Nilsback and Zisserman, 2008), Standford Cars (Krause et al.,
2013) and Tiny ImageNet (Le and Yang, 2015).

Table 5 shows that SAFE can effectively reduce memory usage while achieving comparable accuracy
on eight datasets in the image classification task. For example, SAFE achieves a 50.69% memory usage
reduction on ViTlarge while maintaining comparable accuracy. Additionally, SAFE remains consistently
effective regardless of variations in the pre-trained model size and backbone structure.

Table 5: Experimental results on eight common computer vision tasks. SAFE significantly reduces memory usage
while achieving accuracy comparable to the baseline. Note that blue indicates the memory usage reduction rate of
SAFE compared to the baseline.

CIFAR-10 CIFAR-100 Country-211 Fashion MNIST Food-101 Oxford Flowers Stanford Cars Tiny ImageNet Avg.

LoRA 97.77 95.68 16.56 94.52 88.84 99.41 82.56 88.90 83.03ViTbase + SAFE 98.66 95.55 16.29 93.71 88.78 99.61 82.05 89.16 82.98 24.35%↓

LoRA 99.09 96.71 20.44 94.92 90.32 - 86.97 92.13 82.94ViTlarge + LoRA 99.13 97.00 20.44 94.88 90.69 - 86.83 92.03 83.00 50.69%↓

LoRA 98.92 96.20 20.06 95.12 91.36 99.50 87.14 90.31 84.83SWINbase + SAFE 98.94 96.31 20.26 95.12 91.51 99.71 86.88 90.14 84.86 32.01%↓

LoRA 99.07 97.01 22.19 95.44 92.68 - 85.06 92.02 83.35SWINlarge + LoRA 99.17 96.72 22.66 95.47 92.69 - 85.13 92.11 83.42 25.06%↓

B Results with Various PEFT Methods

We validate the applicability of SAFE upon advanced adapter modules (Houlsby et al., 2019; Zaken et al.,
2022; Hu et al., 2021). Table 6 shows that SAFE reduces memory usage by 24.76% on average while
achieving a comparable GLUE score. This result demonstrates that SAFE can be applied to a variety of
adapter-tuning methods to enable resource efficient fine-tuning of large language models.

Table 6: Experimental results for various adapter-tuning methods on the GLUE benchmark. Note that blue indicates
the memory usage reduction rate of SAFE compared to the baseline.

CoLA SST-2 MNLI RTE QQP MRPC QNLI STS-B Avg.

BERTbase Matthews corr. Accuracy Accuracy Accuracy Accuracy F1 Score Accuracy Pearson corr.

Houlsby 62.38 91.17 83.44 70.50 90.85 89.52 90.59 90.75 83.65

+ SAFE 62.83 93.00 84.15 74.10 90.93 89.70 91.03 91.29 84.6325.70%↓

BitFit 60.92 91.86 82.41 71.94 89.20 88.14 89.80 90.95 83.15

+ SAFE 61.73 93.00 81.85 69.78 89.21 88.85 89.51 90.75 83.09 25.53%↓

LoRA 64.46 91.63 82.88 71.22 90.01 88.39 90.01 90.86 83.68

+ SAFE 66.80 90.83 82.03 71.22 89.74 88.51 90.65 90.26 83.7623.06%↓

9491



C Experimental Setup

C.1 Model
We conduct experiments using a pre-trained model deployed on HuggingFace (Wolf et al., 2019). For
experiments on the NLU and QA benchmarks, we use bert-base-uncased and bert-large-uncased trained
on BookCorpus, a dataset consisting of 11,038 unpublished books and English Wikipedia. We use roberta-
base and roberta-large trained on 5 datasets (BookCorpus, English Wikipedia, CC-News, OpenWebText,
and Stories) for the RoBERTa model. For experiments on the NLG benchmark, we use GPT-2 medium
and GPT-2 large distributed by OpenAI. We also employ the LLaMA-2 7B model, an open-weight
large language model released by Meta, which has been trained on a mixture of publicly available and
licensed datasets, including Common Crawl, C4, GitHub, Wikipedia, Project Gutenberg, ArXiv, and
Stack Exchange. We use vit-base-patch16-224-in21k and vit-large-patch16-224-in21k distributed by
Google for experiments in the ViT model. Finally, We use the swin-base-patch4-window7-224 and
swin-large-patch4-window7-224 models distributed by Microsoft for experiments in the SWIN model.

C.2 Computing Resources
Our experimental setup leverages 2 RTX4090 with 24GB memory for NLU, QA, and NLG tasks and 1
RTX 4090 for CV downstream task, excluding the LLaMA experiments.

C.3 Dataset Statistics
We present the dataset statistics of GLUE (Wang et al., 2018), SQuAD (Rajpurkar et al., 2016), E2E
NLG Challenge (Novikova et al., 2017), and WikiText-2 (Merity et al., 2022) in following table. We
fine-tune models on the LaMini instruction dataset (Wu et al., 2024) for LLaMA-27B and evaluate their
performance on WikiText-2 using perplexity.

Table 7: Summary of the NLU, QA, and NLG benchmarks.

NLU Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

Single-Sentence Classification (GLUE)

CoLA 8,551 521 522 2 Acceptability Matthews corr
SST-2 66,349 1,000 872 2 Sentiment Accuracy

Pairwise Text Classification (GLUE)

MNLI 392,702 9,832 9,815 3 NLI Accuracy
RTE 2,490 138 139 2 NLI Accuracy
QQP 362,846 1,000 40,431 2 Paraphrase Accuracy
MRPC 3,668 204 204 2 Paraphrase F1 score
QNLI 103,743 1,000 5,463 2 QA/NLI Accuracy

Pairwise Text Classification (GLUE)

STS-B 5,749 750 750 1 Similarity Pearson corr

QA Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

SQuAD 87,600 5,300 5,300 2 Question Answering F1 score

NLG Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

E2E NLG Challenge 42,061 4,672 4,693 Generation BLEU, NIST, METEOR, ROUGE-L, and CIDEr
WikiText-2 2,589,000 1,000 4,360 Language Modeling Perplexity (PPL)

9492



The following table lists dataset statistics evaluated in the CV domain.

Table 8: Summary of CV benchmark.

CV Benchmark

Dataset # Train # Valid # Test # Label Task Evaluation Metric

CIFAR-10 45,000 5,000 10,000 10 Classification Accuracy
CIFAR-100 45,000 5,000 10,000 100 Classification Accuracy
Fashion MNIST 54,000 6,000 10,000 10 Classification Accuracy
Oxford Flowers 6,453 717 1,020 102 Classification Accuracy
Food-101 68,220 7,580 25,300 102 Classification Accuracy
Country-211 25,920 2,880 21,100 211 Classification Accuracy
Stanford Cars 7,326 814 8,040 196 Classification Accuracy
Tiny ImageNet 90,000 10,000 10,000 200 Classification Accuracy

9493



C.4 Hyperparameter Settings
We explore 10% of all epochs for at least 5 learning rates. Hyperparameter settings, including learning
rate, are made by referring to previous works (He et al., 2023; Houlsby et al., 2019; Hu et al., 2021; Zaken
et al., 2022). We use the AdamW optimizer (Loshchilov and Hutter, 2018) and LinearLR learning rate
scheduler and set weight decay to 0 in experiments. In our evaluation, we configure LoRA as follows: r =
4, alpha = 16, target modules = ["query", "value"], and LoRA dropout = 0.1.

Since the lower layers of the BERT model are more easily converted to fine-tuning than the upper
layers, we extend the previous study (Zhang et al.) that froze most of the lower layers with adapter-tuning
and experiment with a baseline that naively inserts adapters only into six layers. For LoRAPrune, we
configure the pruning ratio to 0.5, pruning frequency to 10, and the pruning metric to ’lora,’ as these
settings have shown effective results in prior work (Zhang et al., 2023). In the case of MEFT, for a fair
comparison, we set the reversible layers to half of the total number of layers. We employ the MEFT1

method, where the F architecture is the layer, from the three reversible transformation methods proposed
in MEFT. For the hyperparameters of MEFT, such as λ and β, we follow the values proposed in previous
work (Liao et al., 2024) to ensure consistency in the evaluation.

9494



Table 9: Hyperparameter settings on the NLU and QA tasks.

pre-trained model dataset method final learning rate batch size # epochs

BERT-base-uncased

GLUE / CoLA
LoRA, LoRA + SAFE 6.00E-04 32 100
BitFit, BitFit + SAFE 9.00E-04 32 100
Houlsby, Houlsby + SAFE 5.00E-04 32 100

GLUE / SST-2
LoRA, LoRA + SAFE 7.00E-04 32 75
BitFit, BitFit + SAFE 7.00E-04 32 75
Houlsby, Houlsby + SAFE 2.00E-04 32 75

GLUE / MNLI
LoRA, LoRA + SAFE 9.00E-04 32 50
BitFit, BitFit + SAFE 8.00E-04 32 50
Houlsby, Houlsby + SAFE 4.00E-04 32 50

GLUE / RTE
LoRA, LoRA + SAFE 9.00E-04 32 100
BitFit, BitFit + SAFE 8.00E-04 32 100
Houlsby, Houlsby + SAFE 4.00E-04 32 100

GLUE / QQP
LoRA, LoRA + SAFE 4.00E-04 32 50
BitFit, BitFit + SAFE 6.00E-04 32 50
Houlsby, Houlsby + SAFE 4.00E-04 32 50

GLUE / MRPC
LoRA, LoRA + SAFE 5.00E-04 16 50
BitFit, BitFit + SAFE 5.00E-04 32 50
Houlsby, Houlsby + SAFE 5.00E-04 32 50

GLUE / QNLI
LoRA, LoRA + SAFE 5.00E-04 32 50
BitFit, BitFit + SAFE 5.00E-04 32 50
Houlsby, Houlsby + SAFE 4.00E-04 32 50

GLUE / STS-B
LoRA, LoRA + SAFE 8.00E-04 32 50
BitFit, BitFit + SAFE 9.00E-04 32 50
Houlsby, Houlsby + SAFE 5.00E-04 32 50

SQuAD
LoRA, LoRA + SAFE 3.00E-04 16 50
BitFit, BitFit + SAFE 9.00E-04 16 50
Houlsby, Houlsby + SAFE 1.00E-04 16 50

BERT-large-uncased

GLUE / CoLA LoRA, LoRA + SAFE 1.00E-04 32 80
GLUE / SST-2 LoRA, LoRA + SAFE 6.00E-04 32 60
GLUE / MNLI LoRA, LoRA + SAFE 1.00E-04 16 40
GLUE / RTE LoRA, LoRA + SAFE 6.00E-04 32 80
GLUE / QQP LoRA, LoRA + SAFE 3.00E-04 16 40
GLUE / MRPC LoRA, LoRA + SAFE 3.00E-04 4 50
GLUE / QNLI LoRA, LoRA + SAFE 2.00E-04 8 50
GLUE / STS-B LoRA, LoRA + SAFE 8.00E-04 32 50

SQuAD

Full-param Fine-tuning 7.00E-05 16 50
LoRA, LoRA + SAFE 3.00E-04 16 50
BitFit, BitFit + SAFE 9.00E-04 16 50
Houlsby, Houlsby + SAFE 1.00E-04 16 50
Pfeiffer, Pfeiffer + SAFE 3.00E-04 16 50
AdaLoRA, AdaLoRA + SAFE 4.00E-04 16 50

RoBERTa-base SQuAD
LoRA, LoRA + SAFE 5.00E-04 32 50
BitFit, BitFit+SAFE 8.00E-04 32 50
Houlsby, Houlsby+SAFE 4.00E-04 32 50

RoBERTa-large SQuAD
LoRA, LoRA + SAFE 6.00E-04 16 50
BitFit, BitFit+SAFE 7.00E-04 16 50
Houlsby, Houlsby+SAFE 4.00E-04 16 50

Table 10: Hyperparameter settings on the NLG task.

pre-trained model GPT-2 medium GPT-2 large LLaMA-2 7B

Training
final learning rate 1.00E-04 5.00E-05 1.00E-04
batch size 8 4 128 (w/ micro batch size 2)
# epochs 10 10 3
Seq Length 512 512 512
Label Smooth 0.1 0.1

Inference
Beam Size 10 10
Length Penalty 0.8 0.8
no repeat ngram size 4 4

9495



Table 11: Hyperparameter settings on the CV task.

pre-trained model dataset method final learning rate batch size # epochs

ViT-base-patch16-224

CIFAR-10
BitFit, BitFit + SAFE 3.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

CIFAR-100
BitFit, BitFit + SAFE 3.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

Fashion MNIST
BitFit, BitFit + SAFE 4.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

Oxford Flowers
BitFit, BitFit + SAFE 2.00E-03 64 30
LoRA, LoRA + SAFE 8.00E-04 64 40

Food-101
BitFit, BitFit + SAFE 4.00E-03 64 100
LoRA, LoRA + SAFE 3.00E-03 64 100

Tiny ImageNet
BitFit, BitFit + SAFE 1.00E-03 64 100
LoRA, LoRA + SAFE 8.00E-04 64 100

Country-211
BitFit, BitFit + SAFE 2.00E-03 64 100
LoRA, LoRA + SAFE 4.00E-03 64 100

Stanford Cars
BitFit, BitFit + SAFE 9.00E-03 64 100
LoRA, LoRA + SAFE 7.00E-03 64 100

ViT-large-patch16-224

CIFAR-10
BitFit, BitFit + SAFE 4.00E-03 64 100
LoRA, LoRA + SAFE 6.00E-04 64 100

CIFAR-100
BitFit, BitFit + SAFE 2.00E-03 64 100
LoRA, LoRA + SAFE 5.00E-04 64 100

Fashion MNIST
BitFit, BitFit + SAFE 3.00E-03 64 100
LoRA, LoRA + SAFE 9.00E-04 64 100

Oxford Flowers
BitFit, BitFit + SAFE - - -
LoRA, LoRA + SAFE - - -

Food-101
BitFit, BitFit + SAFE 9.00E-04 64 100
LoRA, LoRA + SAFE 7.00E-04 64 100

Tiny ImageNet
BitFit, BitFit + SAFE 8.00E-04 64 100
LoRA, LoRA + SAFE 6.00E-04 64 100

Country-211
BitFit, BitFit + SAFE 2.00E-03 64 100
LoRA, LoRA + SAFE 9.00E-04 64 100

Stanford Cars
BitFit, BitFit + SAFE 1.00E-03 64 100
LoRA, LoRA + SAFE 1.00E-03 64 100

SWIN-base-patch4-window7-224

CIFAR-10 LoRA, LoRA + SAFE 1.00E-03 64 50
CIFAR-100 LoRA, LoRA + SAFE 1.00E-03 64 50
Fashion MNIST LoRA, LoRA + SAFE 1.00E-03 64 50
Oxford Flowers LoRA, LoRA + SAFE 7.00E-04 64 30
Food-101 LoRA, LoRA + SAFE 9.00E-04 64 50
Tiny ImageNet LoRA, LoRA + SAFE 1.00E-03 64 50
Country-211 LoRA, LoRA + SAFE 7.00E-04 64 50
Stanford Cars LoRA, LoRA + SAFE 1.00E-03 64 50

SWIN-large-patch4-window7-224

CIFAR-10 LoRA, LoRA + SAFE 8.00E-04 64 50
CIFAR-100 LoRA, LoRA + SAFE 7.00E-04 64 50
Fashion MNIST LoRA, LoRA + SAFE 1.00E-03 64 50
Oxford Flowers LoRA, LoRA + SAFE - - -
Food-101 LoRA, LoRA + SAFE 5.00E-04 64 50
Tiny ImageNet LoRA, LoRA + SAFE 6.00E-04 64 50
Country-211 LoRA, LoRA + SAFE 6.00E-04 64 50
Stanford Cars LoRA, LoRA + SAFE 3.00E-03 64 50

9496


