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Abstract

Recent event extraction (EE) methods rely on
pre-trained language models (PLMs) but still
suffer from errors due to a lack of syntac-
tic knowledge. While syntactic information
is crucial for EE, there is a need for effec-
tive methods to incorporate syntactic knowl-
edge into PLMs. To address this gap, we
present a novel method to incorporate syntac-
tic information into PLM-based models for
EE, which do not require external syntactic
parsers to produce syntactic features of task
data. Instead, our proposed soft syntactic re-
inforcement (SSR) mechanism learns to se-
lect syntax-related dimensions of PLM repre-
sentation during pretraining on a standard de-
pendency corpus. The adapted PLM weights
and the syntax-aware representation then facil-
itate the model’s prediction over the task data.
On both sentence-level and document-level
EE benchmark datasets, our proposed method
achieves state-of-the-art results, outperforming
baseline models and existing syntactic rein-
forcement methods. To the best of our knowl-
edge, this is the first work in this direction.
Our code is available at https://github.
com/Anran971/sre-naacl25.

1 Introduction

Event Extraction (EE), which obtains poly-element
structured information regarding what happens
from unstructured text, is a challenging task in
natural language processing. Among EE literature,
syntax information has been found beneficial for
the task (Nguyen et al., 2016; Yan et al., 2019;
Liu et al., 2019a; Lai et al., 2020). Syntactic fea-
tures such as dependency trees provide clues for the
models to better learn the interrelations between
candidate trigger words and respective entities in
sentences.

With the advent of large pre-trained language
models (PLMs), there has been a notable shift to-
wards neural EE methods (Xiang and Wang, 2019),

Figure 1: Illustration of the traditional approach vs our
proposed approach to integrating syntactic knowledge
for event extraction.

which have demonstrated impressive performance
gains. As shown in Figure 1, prior to PLM, the
traditional approach to EE relies on a "word em-
bedding + representation learning" paradigm (red
dotted lines), in which syntactic annotation is added
to enhance the system via syntactic feature em-
bedding. In other words, separate embeddings for
words and syntactic features are trained and then
combined for task-specific representation learn-
ing and prediction. The latest EE studies based
on PLM replace the "word embedding + repre-
sentation learning" structure with a powerful lan-
guage model (the red block). With sufficient self-
supervised pre-training, these PLM-based models
significantly improve task-specific representation
learning and lead to new state-of-the-art results in
EE.

However, qualitative analyses reveal that PLM-
based EE models still make certain errors due to
a deficiency in syntactic structure knowledge (Lin
et al., 2020; Du and Cardie, 2020b) for event extrac-
tion. We empirically found that the conventional
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Figure 2: Our method relies on dependency parse trees, a classical structure to represent syntax. Take the sentence
"Last Monday, a 19-year-old extremist detonated a 30-kilo bomb near a military jeep, injuring three soldiers." as an
example, its dependency parse tree can be converted to a syntactic depth vector or a syntactic distance matrix.

way to inject syntactic knowledge into EE models,
i.e., to use an external syntax parser to generate a
syntactic representation on task-specific data, and
then combine them with the PLM encoding, is in-
effective. Unless human-annotated parses on task
data are used for training, the external represen-
tations are largely redundant and do not lead to
performance gain for downstream NLP tasks. This
aligns with probing studies on PLM (Ruder et al.,
2019; Hewitt and Manning, 2019; Maudslay et al.,
2020; Li et al., 2020; Newman et al., 2021), which
found that syntax trees can be implicitly embedded
in PLM’s vector geometry.

In this work, we introduce a novel approach to
syntactically enhance PLM-based EE models, us-
ing a Soft Syntactic Reinforcement (SSR) mecha-
nism. Without the need for syntactically annotating
task data, our approach leverages a general-purpose
syntactic resource, the Penn Tree Bank (PTB) de-
pendency dataset, for reinforcing implicit syntactic
knowledge learned by PLMs. The SSR mechanism
learns transformation matrices to activate syntax-
relevant dimensions for emergent syntactic struc-
tures in a PLM and then uses the enhanced syntactic
representations for event prediction. To the best of
our knowledge, this is the first work in this direc-
tion. Our results suggest that syntactic reinforce-
ment mechanisms are important for event extrac-
tion research and contribute to the understanding of
utilizing innate syntactic representation in PLMs.

Our contributions are three-fold: (1) We propose
a novel mechanism SSR, which learns to associate

syntactic tree information with PLM representation.
(2) We propose the Syntax-Reinforced Event (SRE)
model, which employs SSR and features syntax-
aware sentence representations for event extraction.
(3) Experimental results on both sentence-level and
document-level EE benchmark datasets show that
our proposed SRE model achieves state-of-the-art
performance in F1, with substantial improvements
in recall for document-level EE tasks.

2 Related Work

Event Extraction is challenging as it concerns more
than just binary relations. Among efforts to tackle
the task on the sentence level, syntactic knowledge
has always been relevant (Xiang and Wang, 2019).
Early approaches to EE are feature-based methods
(e.g., Li et al. (2013); McClosky et al. (2011)), in
which syntactic features such as dependency tree
parsing play a significant role. They are replaced by
representation-based methods, which rely on pow-
erful pre-trained language representations, from
Word2vec to large language models (Xiang and
Wang, 2019; Xu et al., 2024). Existing studies
that explore syntactic enhancement can be largely
divided into three categories: (1) using syntactic
knowledge as auxiliary information for encoding,
e.g., Chen et al. (2015); Nguyen et al. (2016), (2)
proposing novel architectures using parsed depen-
dency, e.g., Sha et al. (2018); Liu et al. (2018), (3)
using syntactic trees to build graphs and perform-
ing graph neural network learning, e.g., Liu et al.
(2018); Yan et al. (2019); Lai et al. (2020); Cui
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et al. (2020); Xie and Tu (2022). However, most of
these studies rely on external parsers, which lead
to error propagation1. Recently, probing studies on
PLMs have found that syntactic structures can be
emergent and intrinsic to language representation
(Hewitt and Manning, 2019; Maudslay et al., 2020;
Li et al., 2020; Newman et al., 2021). This indi-
cates a potential alternative approach to the existing
EE studies. In this paper, we propose a soft syntac-
tic reinforcement mechanism to reinforce intrinsic
syntactic knowledge learning. We use a human-
annotated, task-independent parse tree bank for
pre-training, instead of parsed dependency results
of the task dataset from a trained parser.

Document-level EE, with argument entities scat-
tering across sentences, has been formulated as
converting the text containing event information
into structured event description based on pre-
defined templates, which was first defined as Tem-
plate Filling in the MUC paradigm (Chinchor,
1992). State-of-the-art models include the follow-
ing: MMR (Yang et al., 2022) is a multi-turn and
multi-granularity, machine reading comprehension-
based model. NST (Du and Cardie, 2020a) pro-
poses a sequence tagging model that uses a gate
mechanism to merge sentence and paragraph repre-
sentations. TempGen (Huang et al., 2021) frames
the task as a template generation task, incorporating
a copy mechanism that takes the top-k important
cross-attentions as copy distributions into BART.
RICB (Zhou and Mao, 2022) leverages Redundant
Information and Closed Boundary Loss.

Recent work in event extraction has also high-
lighted the potential of generative methods, partic-
ularly in few-shot and zero-shot learning scenarios
(Xu et al., 2024; Ma et al., 2023; Huang et al.,
2024). However, their performance in fully super-
vised event extraction, both at the sentence and
document levels, often lags behind that of exist-
ing extractive methods. This is due to challenges
including the complexity of accurately generating
event structures and the tendency for generative
models to produce hallucinations, raising concerns
about their reliability in practical applications (Xu
et al., 2024). In this work, we adopt the extractive
approach and our model outperforms the state-of-
the-art generative methods (Du and Cardie, 2020b;
Liu et al., 2020; Hsu et al., 2022; Du et al., 2021;
Huang et al., 2021).

1Additionally, some studies do not provide codes or have
other reproducibility issues.

3 Proposed Approach

In this section, we first introduce the intuition of in-
trinsic syntactic encoding (Section 3.1). Then, we
describe the proposed Soft Syntactic Reinforce-
ment (SSR) mechanism (Section 3.2), and the
Syntax-Reinforced Event (SRE) model that incor-
porates the SSR mechanism (Section 3.3).

3.1 Intrinsic Syntactic Encoding

Studies on factual knowledge in PLM probing sug-
gested that syntax trees can be embedded implicitly
in deep models’ vector geometry. In other words,
deep contextual models encode the parse tree in-
formation in their word representations. Hewitt
and Manning (2019) demonstrated that a low-rank
transformation can recover the parse trees from
BERT representations, without using any syntacti-
cally annotated data as input or being supervised
to reconstruct them. Inspired by studies along this
line (Hewitt and Manning, 2019; Maudslay et al.,
2020; Li et al., 2020; Newman et al., 2021), we aim
to enhance the syntactic knowledge that is captured
in PLM representation learning layers by aligning
a linear transformation of the relevant weights to
a human-annotated syntactic tree dataset. Subse-
quently, we use the consolidated weights to enrich
the task-specific learning.

We construct the emergent syntactic structure
bias in the form of dependency parsing trees which
can be decomposed into syntactic depth and dis-
tance. Figure 2 illustrates an example of depen-
dency parsing based on depth and distance (event
triggers are shown in red and argument role labels
are shown in blue or green).

Formally, syntactic depth refers to the syntactic
tree edge path length from each word to the root.
For example, in Figure 2, the word "detonated" is
the root, which has a syntactic depth of 0. The first
word "Last", is two edges away from the root, and
thus its syntactic depth is 2. The syntactic depth
vector d of a n-word sentence has the dimension of
n.

Syntactic distance refers to the syntactic tree
edge path length between each pair of words. For
example, the word "injuring" has "detonated" as
its parent, so the syntactic distance between "injur-
ing" and "detonated" is 1. Similarly, the distance
between "injuring" and its child "soldiers" is also 1.
The syntactic distance matrix of a n-word sentence
has the dimension of n× n.

Given a syntactic tree T with the root node
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(word) r, the syntactic distance dT measures the
number of edges between each pair of nodes.
The syntactic depth of node u is dT (u, r). For
neighboring nodes u and v, the syntactic distance
dT (u, v) = 1.

3.2 Soft Syntactic Reinforcement

With the assumption of intrinsic syntactic encod-
ing, we devise a soft syntactic reinforcement (SSR)
mechanism to inject syntactic knowledge into
the model. Unlike existing studies (e.g., Pouran
Ben Veyseh et al. (2020)), we do not use any ex-
ternal parser to generate syntactic structures on
task-specific data. Instead, we learn the transfor-
mation matrices that project PLM representations
to new syntax-relevant spaces, and use them to ob-
tain soft syntactic representation of input tokens to
reinforce the overall representation learning for the
EE task.

Following Hewitt and Manning (2019), we use
linear transformation of a PLM-based word rep-
resentation space to induce a syntax-salient rep-
resentation space via dependency tree reconstruc-
tion. Let M be an encoder model that takes in a
sentence of n words S = {wi}, i ∈ {1, . . . , n},
and produces a sequence of vector representations
h = {hi = M(wi)}, i ∈ {1, . . . , n}. Let T
be the annotated dependency parse tree of the
sentence S. We construct a transformation ma-
trix Bdep that maps h to the depth vector dT =
{dT (wi, wr) | wi, wr ∈ S,wr is the root of T}.
Similarly, we construct Bdist to map to the dis-
tance matrix DT = {dT (wi, wj) | wi, wj ∈ S}.
We have dT ∈ Nn,DT ∈ Nn×n. The transforma-
tion matrices B characterizes syntax-salient nor-
malization of the representation space learned by
the language model. To force the SSR module to
select syntax-relevant dimensions, we first define
the squared depth norm of the i-th word as:

∥hi∥2B = (Bdephi)
T(Bdephi) (1)

and the squared distance between the i-th and j-th
words in the sentence S as:

dB(hi,hj)
2 = [Bdist(hi − hj)]

T[Bdist(hi − hj)]
(2)

Then, we pre-train the SSR module to minimize the
following loss functions, Equation (3) for depth-
based transformation and Equation (4) for distance-
based transformation:

min
Bdep

∑

S

1

n

∑

i

|dT (wi, wr)
2 − ∥hi∥2B| (3)

min
Bdist

∑

S

1

n2

∑

i,j

|dT (wi, wj)− dB(hi,hj)
2| (4)

We use the Penn Tree Bank dataset, a manually
annotated syntactic dependency dataset (Marcus
et al., 1993), for this stage.

3.3 Model Architecture
This subsection describes the architecture of our
proposed soft Syntax-Reinforced Event (SRE)
model, which integrates the SSR mechanism de-
scribed in Section 3.2 into the baseline architecture.

There are two considerations in choosing the
baseline architecture. First, based on the recent
EE evaluation framework, TextEE (Huang et al.,
2024), we find empirically that after carefully fine-
tuning the PLMs, the baseline’s performance on
the task is comparable to that of the state-of-the-
art models. Second, the selected baseline models
should be relatively simple in terms of components,
which makes analysis easier and benefits future
studies. For Sentence-level EE (SEE), we use the
architecture which consists of a pre-trained PLM
encoder, such as RoBERTa (Liu et al., 2019b), and
a CRF decoder (Figure 3), as our baseline. For
document-level EE, we adopt the Multi-Granularity
Reader (MGR) model (Du and Cardie, 2020a) as
the baseline.

We now formally describe applying Soft Syntac-
tic Reinforcement to the baseline models. Given
an n-word input sentence S = {w1, . . . , wn}, the
model predicts {yi}, i ∈ {1, . . . , n}, as follows:

h1:n = PLM(w1:n) (5)

y1:n = CRF(h1:n) (6)

To incorporate the soft syntactic reinforcement,
for example, using the depth-based matrix Bk

dep

learned based on the k-th layer encoder represen-
tation, we get ẽi, the transformed word representa-
tions with syntactic tree information2 as follows:

ẽi = Bk
dephk

i (7)

2We call SSR "soft" because ẽi is obtained in a similar
way as soft attention (Bahdanau et al., 2014), i.e., by gathering
the reinforced syntactic information across multiple dimen-
sions, rather than selecting the "most syntactically relevant"
dimension.

9469



Figure 3: Proposed SRE model architecture for Sentence-level and Document-level Event Extraction.

where hk
i is the k-th layer PLM representation of

the i-th word in a sentence3. For the distance-based
SSR, Bk

dep is replaced by Bk
dist in this step. We

then combine ẽi with the last-layer PLM represen-
tation hK−1

i to get a fused representation ri:

gi = sigmoid(W1hK−1
i +W2ẽi + b) (8)

ri = gi ⊙ hK−1
i + (1− gi)⊙ ẽi (9)

where K is the total number of PLM layers, ⊙
represents element-wise product. The fused repre-
sentation r1:L with Bdep reinforcement is the input
of CRF, replacing h1:L in Equation (6). For SRE
with both distance and depth reinforcement, we
fuse the distance-based ẽi and depth-based ẽi using
the same gating function in Equations (8) and (9),
and then fuse its outputs with hK−1

i .
For document-level EE, as shown in Figure 3,

on top of the baseline architecture, we deploy a
sentence-level Soft Syntactic Reinforcement before
a sentence-level BiLSTM, and do not introduce
SSRs beyond the sentence level.

Formally, given a d-sentence document D =
{S1, . . . , Sd} = {w1, . . . , wn}, j ∈ {1, . . . , d},
where wi refers to the i-th word token in D and
n is the text length, the model first encodes each
word token in the same way as Equation (5). Then,
same as in Equation (7), the syntax-aware represen-
tation ẽi is generated via an SSR mechanism from
hk
i , which is the k-th layer PLM representation

of the i-th word in a sentence. While SSR out-
puts {ẽi}, for all tokens in the sentence are passed
through a sentence-level BiLSTM, the sentence’s
last layer PLM outputs hK−1

i , are passed through a

3The actual value of k is to be empirically determined
based on the results from the development set.

document-level BiLSTM together with other sen-
tences’ PLM outputs, to infuse document context.
Finally, similar to Equations (8) and (9), a gating
function combines the BiLSTM outputs of each
word with a learnable gating factor gi, followed by
a CRF to predict {yi}.

4 Sentence-level Event Extraction4

4.1 Experimental Setup

Datasets We conduct evaluations on three bench-
mark datasets from the TextEE framework (Huang
et al., 2024): ACE05, CASIE, and PHEE. ACE05
is the most widely used benchmark dataset for SEE.
The documents contain event annotations for 33
types of news events from 6 news sources. We
evaluate on its English subset. Cyber Attack Sens-
ing and Information Extraction (CASIE) is a cy-
bersecurity domain event dataset that defines 5
event types: Databreach, Phishing, Ransom, Dis-
cover, and Patch. Pharmacovigilance Event Extrac-
tion (PHEE) dataset contains over 5000 annotated
events in medical case reports and biomedical liter-
ature. For all three datasets, we follow the TextEE
framework (Huang et al., 2024) for data preprocess-
ing and splits. The detailed statistics of the datasets
are summarized in Table 6 in Appendix A.

Evaluation Metrics We use micro-average F1 as
the primary metric. Specifically, Tri-C scores a pre-
dicted trigger as correct if its offsets and type match
a gold trigger. Arg-C scores a predicted argument
as correct if its offsets, role and event type match
a gold argument. Arg-C+ scores a predicted argu-
ment as correct if its offsets and role match a gold

4For details of Task Formulation and Implementation for
both sentence-level and document-level EE task, please refer
to Appendices B and C.

9470



Model
ACE05 CASIE PHEE

Tri-C Arg-C Arg-C+ Tri-C Arg-C Arg-C+ Tri-C Arg-C Arg-C+

DyGIE++ (2019) 71.31 56.01 51.81 44.72 36.39 29.53 70.42 60.84 45.65
OneIE (2020) 71.05 59.93 54.70 70.57 54.23 22.05 69.98 37.51 29.76
AMR-IE (2021) 71.09 60.62 54.62 71.83 10.19 2.79 68.93 43.04 32.44
EEQA (2020b) 70.04 55.28 50.36 42.79 35.14 26.23 70.29 40.40 32.02
RCEE (2020) 70.51 55.50 51.04 42.06 32.79 23.67 70.89 41.61 33.10
TagPrime (2023) 69.95 59.83 54.64 69.29 61.03 49.07 71.14 51.74 40.58
DEGREE-E2E (2022) 66.82 55.15 49.09 60.66 27.05 14.61 69.13 49.29 36.50

SRE (ours) 72.18 60.98 54.45 72.13 63.70 51.36 72.54 54.98 43.49

Table 1: Performance results for Sentence-level Event Extraction. The best performance for each column is
highlighted in boldface and the second-best performance is underlined.

Model Tri-C Arg-C Arg-C+

dbRNN-E2E† 69.6 57.2 50.1
RoBERTa baseline 70.10 58.98 52.55
RoBERTa hard-synt 69.93 58.71 52.96
Syntax-RoBERTa 68.85 58.38 52.75

SRE (ours) 72.18 60.98 54.45

Table 2: Performance on other syntax-based methods
based on ACE05. † We use the reported results of the
same setting from the original paper.

argument AND its corresponding trigger’s offsets
and type match the corresponding gold trigger.

Compared Models We compare our proposed
SRE model with the following three kinds of state-
of-the-art models: (1) pipeline models, which in-
clude TagPrime (Hsu et al., 2023); (2) joint learn-
ing models, which include DyGIE++ (Wadden
et al., 2019), OneIE (Lin et al., 2020) and AMR-
IE (Zhang and Ji, 2021); and (3) generative mod-
els, which include EEQA (Du and Cardie, 2020b),
RCEE (Liu et al., 2020), and DEGREE-E2E (Hsu
et al., 2022).

To assess the performance impacts of our pro-
posed mechanism as a syntax-based enhancement
approach, we compare it with methods that uti-
lize externally parsed syntactic information: (1)
the state-of-the-art end-to-end EE model, dbRNN-
E2E (Sha et al., 2018), which is based on a
novel dependency bridge RNN structure, (2) the
traditional hard syntactic approach (RoBERTa
hard-synt), which uses dependency parsed fea-
tures as learnable embeddings and (3) the state-of-
the-art syntactic method to enhance Transformer-
based models, Syntax-RoBERTa (Bai et al., 2021),

which constructs syntactic masks based on parsed
syntax trees. For fair comparison, RoBERTa hard-
synt and Syntax-RoBERTa, and the PLM baseline
are all based on RoBERTa-large, as that for our best
SRE model. We implement BERT hard-synt using
the state-of-the-art SpaCy (Honnibal and Montani,
2017) dependency parser. The experiments are con-
ducted on ACE05, as it is the most commonly used
SEE benchmark dataset.

4.2 Results

State-of-the-art Results As shown in Table 1,
our proposed SRE model consistently outperforms
other baselines on ACE05 with its Tri-C F1 of
72.18% and Arg-C F1 of 60.98%. Its performance
on F1 for Arg-C+ is also comparable to the state-
of-the-art models such as OneIE and TagPrime.
On CASIE, we observe that our proposed SRE
model performs better or is comparable to the cur-
rent state-of-the-art models, with improvements of
0.3%, 2.67%, and 2.29% on Trig-C, Arg-C, and
Arg-C+ F1, respectively. On PHEE, SRE achieves
the best F1 score (72.54%) on Tri-C among all
the models, and its argument classification outper-
forms all other models except DyGIE++. Overall,
across all three datasets, we found that SRE consis-
tently improves the baseline by large margins and
achieves competitive results, especially on Tri-C.

Performance of Syntax-based Methods In Ta-
ble 2, we compare our proposed SRE model against
other syntax-based methods. The performance re-
sults show that our proposed SRE model based
on RoBERTa outperforms the RoBERTa baseline
with F1 improvement of 2.08%, 2.00%, and 1.90%
on Tri-C, Arg-C and Arg-C+, respectively. SRE
also performs better than dbRNN-E2E, RoBERTa
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Model Head Noun Exact Match

P R F1 P R F1

Cohesion (Huang and Riloff, 2012) 57.80 59.40 58.59 - - -
NST (Du and Cardie, 2020a) 56.44 62.77 59.44 52.03 56.81 54.32
MMR (Yang et al., 2022) 63.95 58.71 61.19 60.66 55.34 57.87
SRE (ours) 61.93 67.75 64.71 56.84 63.10 59.81

Table 3: Performance comparison of our proposed SRE and the state-of-the-art models on Head Noun and Exact
Match metrics.

Model P R F1

Cohesion 58.38 39.53 47.14
NST 56.82 48.92 52.58

GRIT 64.19 47.36 54.50
TempGen 68.55 49.90 57.76
RICB 57.68 58.03 57.85
SRE (ours) 55.93 61.84 58.95

Table 4: Performance (%) comparison of our proposed
SRE and the state-of-the-art models on CEAF-REE.

hard-synt, and Syntax-RoBERTa, across the three
subtask evaluations. While we use our best SSR
mechanisms for comparison, we also found that
other SSR configurations can similarly improve on
both BERT and RoBERTa (See Appendix D).

5 Document-Level Event Extraction

5.1 Experimental Setup

Dataset We conduct evaluations on the MUC-4
benchmark dataset (Sundheim, 1992). It contains
1,700 newswire texts with 5 types of event tem-
plates about terrorist events. Each template spec-
ifies multiple arguments of concern to a type of
event. We follow prior work in data pre-processing
and splits (Huang et al., 2021; Zhou and Mao,
2022). The detailed statistics of the datasets are
summarized in Table 7 in Appendix A.

Evaluation Metrics We use micro-average Pre-
cision (P), Recall (R), and F1 based on Head
Noun (HN) and Exact Match (EM) as the standard
metrics. HN only evaluates predicted argument
mentions based on their head noun, whereas EM
requires predicted mentions to match the whole
phrase of a gold one. To compare with more re-
cent models, we also report results based on a new
metric CEAF-REE (Du et al., 2021) F1, which
encourages implicit coreference resolution.

Compared Models We compare our SRE pro-
posed model with the following state-of-the-art
models: Cohesion (Huang and Riloff, 2012), MMR
(Yang et al., 2022) and NST (Du and Cardie, 2020a)
on the old metrics, and Cohesion, NST, GRIT (Du
et al., 2021), TempGen (Huang et al., 2021) and
RICB (Zhou and Mao, 2022) on the new CEAF-
REE metric.

5.2 Results

New State-of-the-art Performance Table 3 re-
ports the performance comparison of our proposed
framework and state-of-the-art methods on MUC-4
using the standard metrics. We observe that our
models significantly improve both HN recall and
EM recall compared to other methods. More specif-
ically, our proposed SRE model achieves 67.75% in
HN recall, which is 8.35% higher than the feature-
based Cohesion method, and 4.98%-9.04% higher
than the neural methods NST and MMR. It also
achieves 63.10% in EM recall, which is 2.44%-
6.29% higher than all the other methods.

On CEAF-REE, as shown in Table 4, our pro-
posed SRE model achieves 58.95%, which is the
highest F1 among all compared models. It is 1.10%
higher than RICB, the second-best model. It also
achieves exceptionally high recall, 61.84%, which
is 3.79% higher than RICB.

Comparison with PLM baseline Our best
document-level SRE model uses BERT-large as
PLM. We conducted experiments to evaluate the
improvement of SRE models over the baseline and
found that depth+distance SSR achieves the highest
F1 score of 58.95%, improving the PLM baseline
for 1.61% on CEAF-REE F1. SREs with depth-
based and distance-based SSR mechanisms have
similar positive effects (See Appendix D).

9472



Sentence-level EE Gold OneIE RoBERTaLarge SRE
Eight people 1⃝, including a pregnant woman 2⃝ and
a 13-year-old child 3⃝ were killed a⃝ in Monday’s Gaza
raid.

a⃝Trg[ATTACK]
1⃝Arg[TARGET]
2⃝Arg[TARGET]
3⃝Arg[TARGET]

✓
✓
✓
NONE

✓
✓
✓
NONE

✓
✓
✓
✓

Document-level EE Gold RICB BERTLarge SRE
. . . ⟨2⟩ The massacre against the Salvadoran Workers
National Union Federation 1⃝ (FENASTRAS) 2⃝ was
planned in cold blood. . . . ⟨4⟩ We have trustworthy
information from our intelligence organs that this action
was ordered by Colonel Ponce 3⃝, that Cristiani 4⃝
knew about it and approved it, and that it was carried
out by Colonel Elena Fuente 5⃝ as the head of the
morbid death squad . . . ⟨7⟩ Only a few days ago,
ARENA assassins 6⃝ tried to kill the president of the
Mortgage Bank 7⃝, Mr Mason 8⃝, for not following
their orders. . . .

ATTACK Event 1
1⃝TARGET

2⃝TARGET

3⃝PERPIND

4⃝PERPIND

5⃝PERPIND

✓
✓
✓
NONE

NONE

✓
NONE

✓
NONE

NONE

✓
✓
✓
✓
✓

ATTACK Event 2
6⃝PERPIND

7⃝NONE

8⃝TARGET

✓
✓
NONE

✓
✓
NONE

✓
TARGET

✓

Table 5: Case studies for sentence-level and document-level EE between a SOTA model, the PLM baseline, and our
proposed SRE model. For sentence-level EE, the triggers (Trg) are in bold with circled alphabetic labels and the
arguments (Arg) are in italics with circled number labels. For document-level EE, sentence indices are in angle
brackets. The argument candidates are in italics with circled number labels. ‘✓’ indicates a correct prediction.

6 Case Studies

To better understand how our proposed SSR mech-
anism helps EE, we present two case studies based
on the ACE05 and the MUC-4 development set,
which are shown in Table 55. For sentence-level
EE, the sentence "Eight people, including a preg-
nant woman and a 13-year-old child were killed in
Monday’s Gaza raid" has the event trigger word
"killed" (event type= CONFLICT:ATTACK) with the
three corresponding arguments, which are in ital-
ics. While OneIE and RoBERTaLarge fail to identify
the third argument mention "a 13-year-old child"
as a TARGET, our proposed SRE model can cor-
rectly identify it. Analysing the depth-based SRE
model, we found that the predicted parse depths
of the head words of the two argument mentions,
"woman" and "child", are similar to one another,
possibly providing a clue for the task. Our distance-
based SRE model also correctly predicts the argu-
ment "a 13-year-old child". We observe that the
distance-based SRE learns short distances between
the indefinite articles "a", as well as the head words
("woman" and "child") of candidate arguments 1⃝
and 2⃝. Moreover, the model learns short distances
between the verb "killed" and each of the three
arguments, i.e., "people", "woman" and "child".

5PERPIND and PERPORG are short forms of PERPETRA-
TOR INDIVIDUAL and PERPETRATOR ORGANIZATION, re-
spectively.

For document-level EE, we show the differences
in the predictions of RICB, BERTLarge, and our pro-
posed SRE model. Table 5 shows two events in this
paragraph. For Event 1, RICB and BERTLarge only
detect "Colonel Ponce" as a PERPIND argument,
whereas SRE successfully detects "Cristiani" and
"Colonel Elena Fuente" as well. Besides, we can
see that sentence ⟨4⟩ is very long. We observe
that the SSR mechanism in SRE helps the model
link "this action" with the following "it" pronouns,
while action verbs "ordered", "knew", and "carried
out" have similar estimated syntactic depths. This
demonstrates the usefulness of the incorporation of
syntactic knowledge. Similarly, for Event 2, SRE
identifies "Mason" in sentence ⟨7⟩ as a TARGET

argument, while RICB and BERTLarge fail. Also,
SRE predicts "president of the Mortgage Bank" as
a TARGET argument. Although it is not a gold ar-
gument with the corpus, it is appositive to "Mason",
and thus also a correct argument.

7 Conclusion

In this paper, we propose a Soft Syntactic Rein-
forcement mechanism for neural event extraction.
To our best knowledge, this is the first work explor-
ing mechanisms that enhance syntactic knowledge
intrinsically captured by PLMs. Experiments on
both sentence-level and document-level EE bench-
mark datasets show that our proposed method
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achieves state-of-the-art results and significantly
improves recall for document-level EE.

8 Limitations

We did not investigate more complex SSR mecha-
nisms. Probing studies have used more than linear
transformation (White et al., 2021) and the emer-
gent syntactic structures are also not limited to
dependency parse trees. Constituency and other
syntactic parsing structures are also valid choices
for syntactic reinforcement (Arps et al., 2022). We
chose to use dependency parse tree as it is most
suitable for our research objective of syntactic re-
inforcement. It contains dependency relationships
between words, which helps identification of men-
tions of key information for event extraction. Con-
stituency trees, for example, focus on the hierar-
chical structure of phrases within a sentence and
associate these phrases with certain parts of speech
(e.g., noun phrase, verbal phrase), which is less di-
rectly beneficial for our purpose and may be more
useful for tasks like machine translation. Future
work may explore these alternative structures.

We also limited the syntactic pre-training data
to Penn Tree Bank. The effects of pre-training on
other corpora and other pre-training variations on
EE performance remain to be investigated.
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A Datasets

Figure 6 and 7 summarize the detailed statistics for
the sentence-level and the document-level datasets,
respectively.

Dataset Split #Doc #Inst #Event #Arg

ACE05

Train 481 16,887 4,325 6,527
Dev 59 1,957 503 792
Test 59 2,076 520 778
Total 599 20,920 5,348 8,097

CASIE

Train 701 1,044 5,973 15,890
Dev 149 220 1,252 3,318
Test 149 219 1,244 3,367
Total 999 1,483 8,469 22,575

PHEE

Train 2,897 2,897 3,011 15,456
Dev 965 965 1,002 5,117
Test 965 965 1,006 5,186
Total 4,827 4,827 5,019 25,760

Table 6: Detailed statistics for the sentence-level
datasets, ACE05, CASIE and PHEE, including the num-
ber of documents, instances, events, and arguments,
with average counts across 5 data splits.

B Task Formulation

We formulate the sentence-level EE as a sequence
tagging task, formally defined as follows: given
a sentence S = {w1, . . . , wL}, where wi refers
to the i-th word token and L is the sentence
length, the model outputs a sequence of labels
Y = {y1, . . . , yL}, where each yi indicates all the
event triggers (text spans that depict events) and
the corresponding event arguments (text spans that
denote entities taking certain roles in an event).

We formulate the document-level EE task as fol-
lows: given an input document comprised of N
sentences D = {S}, the DEE task aims to ex-
tract one or more structured events Y = yi, where
each event yi with event type t contains a series
of roles (rt1, r

t
2, . . . , r

t
n) filled by argument spans,

n is the number of pre-defined roles for the event
type t, t ∈ T and r ∈ R, T represents the set of
pre-defined event types, and R is the set of role
categories.

C Implementation Details

For sentence-level EE, we implement the proposed
model in Pytorch (Paszke et al., 2019). To be con-
sistent with previous studies (Wang et al., 2020,
2019), we use the Stanford CoreNLP toolkit for
sentence segmentation. The non-content part of

Split #Doc #Sent #Arg

Train 1,300 18,967 2,551
Dev 200 3,112 483
Test 200 2,786 533
Total 1,700 24,865 3,567

Table 7: Detailed statistics for the document-level
dataset, MUC-4.

the raw text (e.g., XML tags) is excluded from the
input. We use the large, cased version of BERT
and the base uncased version of RoBERTa. We find
k =8 for base-size models and 16 for large-size
models tend to give best results in most cases. We
use Adam (Kingma and Ba, 2017) optimizer with
the learning rate tuned around 3e-5 with a linear
warm-up. The batch size is set to 24. We imple-
ment early stopping (patience = 5) and limit the
training to 50 epochs. We apply a dropout of 0.9
for both dense and attention layers. The values of
λ and α are manually tuned between [1, 200] and
[0, 1], respectively. The best results are selected
from 5 runs based on development set evaluation
results.

For document-level EE, we implement our pro-
posed model based on PyTorch and Hugging Face’s
Transformer library. For each experiment we fine-
tune BERT-large-cased and k = 16 tends to give
best results in most cases. The Bi-LSTM modules
for both sentence-level and document-level contex-
tualized learning have 3 layers each. We set the
maximum sequence length as 200 for sentences
and 512 for paragraphs. The average training run-
time for each model is 3.5 hours. The models were
trained for 15 epochs with a batch size of 5. We use
SGD as the optimizer and pose learning rate decay.
We implement early stopping with the patience of 3.
The learning rates betweeen range {1.5e-4, 1.5e-2}
were evaluated, of which the starting learning rate
of 1.5e-3 performed best on the validation set.

All the experiments were run on single NVIDIA
RTX A6000 and Quadro GV100 GPUs.

D Performance comparison of different
SSR mechanisms

For Sentence-level EE, we conduct experiments to
compare the performance of various SSR mech-
anisms on BERT and RoBERTa. As shown in
Table 8, the performance results show that the
depth-based SSR mechanism with the RoBERTa
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PLM dep. dist. Tri-C Arg-C Arg-C+

BERT 66.43 53.14 48.61
BERT ✓ 69.13 55.53 49.96
BERT ✓ 68.23 55.05 49.74
BERT ✓ ✓ 67.46 53.69 49.08

RoBERTaLarge 70.10 58.98 52.55
RoBERTaLarge ✓ 72.18 60.98 54.45
RoBERTaLarge ✓ 71.76 60.89 54.38
RoBERTaLarge ✓ ✓ 70.98 60.31 53.83

Table 8: Performance on different PLMs for SSR based
on ACE05.

Model F1 ∆ F1

BERT-large baseline 57.34 -
SRE depth+distance SSR 58.95 +1.61%
SRE depth SSR 58.74 +1.40%
SRE distance SSR 58.55 +1.21%

Table 9: Performance comparison of different SSR
mechanisms on CEAF-REE.

encoder achieves a state-of-the-art performance
of 72.18% on F1, which is 2.08% higher than
RoBERTa PLM. The distance-based SSR mech-
anism and the depth+distance SSR mechanism also
improve performance on RoBERTa, with F1 on Tri-
C of 71.76% and 70.98%, respectively. With the
BERT encoder, SREBERT also achieve improved re-
sults over the BERT baseline, with 67.46%-69.13%,
53.69%-55.53%, and 49.08%-49.96% F1 on Tri-C,
Arg-C and Arg-C+, demonstrating the effectiveness
of our proposed mechanism.

As shown in Table 9, we also compare dif-
ferent SSR mechanisms for our SRE model for
document-level EE. We found that depth+distance
SSR achieves a high F1 score of 58.95%, which is
1.61% higher than the PLM baseline. The depth-
based SSR mechanism obtains an F1 score of
58.74%, whereas the distance-based SSR mech-
anism obtains an F1 score of 58.55%. The perfor-
mance improvements over the baseline are 1.40%
and 1.21%, respectively. We observe that all three
variations of SSR mechanisms improve the perfor-
mance similarly for DEE.

E Empirical Computational Costs

To show that our proposed method is computation-
ally efficient, we present the estimated computa-
tional costs based on our empirical experiments
of pre-training on the PennTree Bank corpus and
training and inference on the sentence-level ACE05

Time Cost
Depth-based SSR Pre-training 3-4 hours
Distance-based SSR Pre-training 4-5 hours
SRE Training 4-6 hours
SRE Inference 2-3 minutes

Table 10: Estimated times to complete different stages
of our experiments.

dataset, in Table 10. We will also release the trained
model checkpoints with our code to facilitate fur-
ther experimentation.

9478


