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Abstract

We introduce ScreenQA, a novel benchmark-
ing dataset designed to advance screen con-
tent understanding through question answer-
ing. The existing screen datasets are focused
either on low-level structural and component
understanding, or on a much higher-level com-
posite task such as navigation and task com-
pletion for autonomous agents. ScreenQA
attempts to bridge this gap. By annotat-
ing 86k question-answer pairs over the RICO
dataset, we aim to benchmark the screen read-
ing comprehension capacity, thereby laying
the foundation for vision-based automation
over screenshots. Our annotations encompass
full answers, short answer phrases, and corre-
sponding UI contents with bounding boxes, en-
abling four subtasks to address various appli-
cation scenarios. We evaluate the dataset’s ef-
ficacy using both open-weight and proprietary
models in zero-shot, fine-tuned, and transfer
learning settings. We further demonstrate pos-
itive transfer to web applications, highlighting
its potential beyond mobile applications.

1 Introduction

Recent advancements in machine learning, espe-
cially Visual Large Language Models (VLMs) or
Multimodal LLMs (MLLMs), have catalyzed nu-
merous applications centered on mobile screens.
These applications range from personal assistants
enabling hands-free or eyes-free interaction to code
generation from UI design mock-ups, adaptive de-
vice interfaces, automated ad creation, and mobile
app testing. All of these require reliable screen
content understanding as the foundation to ensure
quality applications.

Mobile app screenshots have been analyzed
using machine learning from multiple perspec-
tives. These include pixel-level understanding,

* Co-first authors with equal contributions. † This work was
done while the author was at Google.‡ Corresponding author.

such as layout structural analyses, UI issue de-
tection and correction (Li et al., 2022), UI ele-
ment semantics like icon recognition, button action
prediction (Sunkara et al., 2022), to even higher-
level functional analyses such as accessibility sup-
port (Li et al., 2020b), screen description (Wang
et al., 2021), and screen type classification (Deka
et al., 2017). However, the specific aspect of un-
derstanding screen contents from pixels remains
comparatively understudied.

Screen contents encompass diverse information,
from restaurant ratings to system settings and chat
messages. This capacity is crucial because: 1)
screens primarily function to present information,
and 2) autonomous agents and task completion sys-
tems require precise screen content understanding
to achieve reasonable success rates for multi-step
processes.

In this work, we propose using pixels as the
sole representation of UI screens, to eliminate de-
pendency on unreliable structural representations
such as view hierarchies (VHs) (Zang et al., 2021)
and maximize applicability to various visual under-
standing tasks. To this end, we annotated the RICO
dataset (Deka et al., 2017) with 85,984 question-
answer pairs (Section 4) and defined four tasks with
evaluation metrics (Section 3), creating ScreenQA1.

RICO remains the preferred screenshot dataset
due to its 1) extensive collection of 66k screen-
shots, 2) diverse app distribution spanning 9.3k
apps across 27 categories, 3) numerous bench-
marking tasks built upon RICO that enable cross-
referencing and comparison2 (Wang et al., 2021;
Li et al., 2020b, 2022; Ahmed et al., 2023; Lu
et al., 2024), and 4) widespread use as a training
dataset in recent document/screen understanding
and VLM research (Cheng et al., 2024; Liu et al.,
2024b; Xie et al., 2023). Despite the availability of
1 ScreenQA dataset is released at https://github.com
/google-research-datasets/screen_qa 2 We
deliberately chose not to combine RICO with other datasets
for this reason.
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(a) Question: “How many likes and
comments are there for the post Why
Michael Flynn ...?”

(b) Question with Ambiguity: “What’s
the temperature on Saturday?”

(c) No answer to the question: “What
is the date of version 1.3.1?”

Figure 1: ScreenQA examples. (a) Four corresponding tasks (Section 3): 1) Short answer (SQA-S): "1,1". 2) Long
answer (SQA-L): "There is 1 like and 1 comment". 3) UI Content (SQA-UIC): [“1”, “1”]. 4) UI Content w/ Bound-
ing Boxes (SQA-UIC-BB): also with bounding box coordinates (in green). (b) Both high and low temperatures in
two Saturdays are relevant answers. (c) Lacking the content to answer the question.

newer datasets, RICO’s comprehensive nature and
established presence in the field make it an optimal
choice for this work. See Table 1 for comparison.

This work offers the following contributions:

1. We create and release ScreenQA, the first large-
scale question answering dataset and benchmark
for mobile screens.

2. ScreenQA provides rich annotations: short an-
swers, full-sentence long answers, and support-
ing UI element contents with their bounding
boxes (Section 4).

3. We propose four tasks with evaluation metrics
to satisfy various application needs in extraction,
text generation, and grounding (Section 3).

4. We establish zero-shot, fine-tuning and cross-
domain transfer learning baselines for both
closed and open-weight models quantifying the
effectiveness of ScreenQA (Section 6).

2 Related Work

Closest to ScreenQA is work that tackles multi-
modal understanding and question answering, as
discussed below.

Dataset Size Unit Apps Categories

RICO (Deka et al., 2017) 66k screenshot 9.3k 27
LabelDroid (Chen et al., 2020) 13k screenshot 7.6k 25
MoTIF (Burns et al., 2022) 4.7k trace 0.1k n/a
AitW (Rawles et al., 2024) 715k trace 0.4k n/a

Table 1: The RICO dataset remains the most suitable
mobile app screenshot collection for this work due to
its diversity, large scale, and established presence in the
field. Although AitW is larger in scale, it lacks app and
screenshot diversity due to its sampling method.

2.1 Multimodality

We discuss the research on text-heavy images3 and
provide an overview in Table 2.

Screen UI-based understanding Unlike natural
images, UIs are designed to be informative and ac-
tionable. Examples of work dealing with informa-
tiveness include 1) UI element identification, such
as icon detection (Deka et al., 2017), widget cap-
tioning (Li et al., 2020b; Chen et al., 2020), and
2) referring expression to UI elements in classifica-
tion (Wu et al., 2023), representation learning (Bai
et al., 2021) and generation (Hong et al., 2023).

3 Natural image VQA and video VQA are omitted due to the
space constraints.

9428



Dataset # Images (k) # Examples (k) UI? Task Type

ScreenQA (this work) 35 * 86 3 Question Answering (QA)

TextVQA (Singh et al., 2019) 28 45 7 QA
DocVQA (Mathew et al., 2021) 12 50 7 QA
InfographicVQA (Mathew et al., 2022) 5.5 30 7 QA
ChartQA (Masry et al., 2022) 22 33 7 QA
WebSRC (Chen et al., 2021a) 6.5 440 3 QA on Webpage Segments
ComplexQA (Baechler et al., 2024) 10 12 3 QA on Counting, Arithmetic
VisualWebBench - WebQA (Liu et al., 2024a) 0.3 0.3 3 QA on Webpages – Eval Only
LabelDroid (Chen et al., 2020) 13 19 3 Text Generation
Screen2Words (Wang et al., 2021) 22 112 3 Summarization
ScreenAnnotation (Baechler et al., 2024) 22 22 3 Object Detection
MoTIF (Burns et al., 2022) 62 4.7 3 Navigation
AitW (Rawles et al., 2024) 5,690 † 715 3 Navigation

* A subset of the 66k images from RICO (Deka et al., 2017) as described in Section 4
† Limited app and screenshot diversity as described in Table 1

Table 2: Comparison of ScreenQA with Related Datasets. ScreenQA is the largest QA dataset for mobile screen-
shots, using entire screenshots rather than cropped answer regions (as in WebSRC) to better represent real-world
applications, and including unanswerable questions and bounding boxes. ComplexQA complements ScreenQA
with its focus on counting, arithmetic, and comparisons. Not an exhaustive comparison due to space constraints.

Actionability is related to task completion and au-
tonomous agents. MoTIF (Burns et al., 2022), Vi-
sualWebArena (Koh et al., 2024), and Android-in-
the-Wild (Rawles et al., 2024) provide interactive
app environments for evaluating visually grounded
screen agents. This work is focused on the infor-
mation retrieval aspect.

Visual Document Understanding Visual
Document Understanding concerns under-
standing scanned or photographed documents.
DocVQA (Mathew et al., 2021) uses an extrac-
tive QA format for span/segment extraction.
TextVQA (Singh et al., 2019) and several other
domain-specific datasets (Mishra et al., 2019;
Gurari et al., 2018; Huang et al., 2019; Abdallah
et al., 2024; Jaume et al., 2019; Harley et al., 2015;
Lewis et al., 2006) relate the 2D arrangement of
texts to semantic meanings. Beyond text alone,
infographics understanding (Mathew et al., 2022;
Masry et al., 2022; Kahou et al., 2017; Kafle et al.,
2018; Chaudhry et al., 2020) focus on charting
with text around.

2.2 Question Answering

We focus on closed-domain question answering
grounded in specific contexts. Answer formats in-
clude span (Rajpurkar et al., 2016), entity (Talmor
and Berant, 2018), multiple choice (Mihaylov et al.,
2018), and generation (Xiong et al., 2019). Ca-
pacities range from reading comprehension (Yang
et al., 2015), multi-hop reasoning (Yang et al.,
2018), (Chen et al., 2021b), logical reasoning (Yu

et al., 2020), and commonsense reasoning (Talmor
et al., 2019).

3 Problem Setting: Tasks and Metrics

As each example in the validation and test sets
may contain alternative ground truths from multiple
annotators, we compute the evaluation metric by:
1) calculate the maximum metric value across all
annotator-provided ground truths for each example,
and 2) average these maximum values across the
entire dataset:

avg(metric) =
1

N

N∑

i=1

max
j

[metric(Ai, A
g
i,j)],

where N is the number of questions, Ai is the pre-
dicted answer for i-th question, and Ag

i,j is the j-th
ground truth for i-th question.

ScreenQA (or SQA in short) presents four tasks
encompassing diverse application scenarios. Ex-
amples are illustrated in Figure 1.

ScreenQA Short answer (SQA-S) Given a
screenshot and a question, output a short (concise)
answer to this question using the information pre-
sented on the screen. If the screenshot doesn’t
contain the answer, output “<no answer>”.

Similar to SQuAD (Rajpurkar et al., 2016), we
propose to use Exact Match (EM) and F1-Score
for accommodating acceptable permutations and
rephrasing of the same content. We also apply
SQuAD pre-processing to normalize answers be-
fore computing the metrics. This task is the core
capability enabled by the dataset.
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ScreenQA Long answer (SQA-L) This task is
identical to SQA-S, with the distinction that it re-
quires a long, full-sentence answer instead of short
answer phrases. This task facilitates the generation
of coherent responses suitable for direct human
interaction, particularly in the context of virtual
assistant applications.

As the task resembles summarization of per-
tinent information, we propose to use ROUGE-
{1,2,L} (Lin, 2004) as the evaluation metric.

ScreenQA UI Content (SQA-UIC) Given a
screenshot and a question, output a list of UI el-
ements that contain the answer, where each ele-
ment is represented by its text representation. If
the screenshot doesn’t contain the answer, output
an empty list.

Section 4 will further details the UI elements cor-
responding to questions, their listed order, and their
contents represented in text. Except for icons with
predefined textual descriptions, most content re-
sembles OCR output: text within UI elements (Qin
et al., 2019). However, unlike OCR, the output
should be evaluated as a list rather than a continu-
ous sequence of symbols or words.

We use Exact Match and F1-score as met-
rics. Commonly, text in screenshots is directly
extractable. Therefore, we perform UI-element-
wise matching without additional pre-processing.

ScreenQA UI Content with Bounding Boxes
(SQA-UIC-BB) Given a screenshot and a ques-
tion, output a list of UI elements that contain the
answer, where each element is represented by its
bounding box and text representation.

This task extends the previous SQA-UIC, ad-
ditionally facilitating answer highlighting and ac-
tion automation over the screen. The detection of
bounding boxes, especially in screen contents, is
rarely available in existing datasets and challenges
model capabilities.

We recommend evaluating the bounding box de-
tection quality using F1-Score, where two bound-
ing boxes match if their Intersection over Union
(IoU) (Rezatofighi et al., 2019) score is higher
than 0.1. Exact match and F1-score are evalu-
ated in a similar way, but restricting the list of
matches to only those where text representation
also matches. This threshold is justified due to
the annotation methods of ground truth bounding
boxes: selection from view hierarchies (accom-
modating UI elements with substantial no-content

Stage Step # SS # Q

RICO Original 66k –

Prefiltering Non-English apps† 11k –
Section 4.1 Out-of-sync VHs† 13k –

For Question Anno. 51k –

Question Anno. 1st pass of Q anno. 35k 46k
Section 4.2 2nd pass of Q anno. 36k

Lack of content 15k –

For Answer Anno. 35k 82k

Not Ans. Anno.
Section 4.4

3rd pass of Q anno. 5k 5k

For Data Splitting 35k 86k

Data Splitting Train 28,378 68,951
Section 5.1 Validation 3,485 8,614

Test 3,489 8,419

Total 35,352 85,984
† Not mutually exclusive.

Table 3: Counts of distinct screenshot (SS) and ques-
tions (Q) for annotation stages and data splitting.

area) or manually drawing (tightly fitting text) (Sec-
tion 4.3). The simultaneous use of these approaches
by different annotators typically results in low IoU
values.

4 Data Annotation

We performed a five-stage process to annotate
ScreenQA: 1) Prefiltering (Section 4.1), 2) Ques-
tion annotation (Section 4.2), 3) Answer annota-
tion (Section 4.3), 4) Not-answerable question an-
notation (Section 4.4), and 5) Short answer gener-
ation (Section 4.5). See data statistics in Table 3,
data annotation details and UI tools in Appendix A,
and data examples in Appendix B.

4.1 Prefiltering

Prefiltering involves one round of human rating to
remove screenshots with the following conditions:
1. Screenshots from non-English apps.
2. Screenshots with unsynchronized view hierar-

chies (VHs).
Removing these data helps avoid language-related
obstacles and potential view hierarchy issues (Zang
et al., 2021), which could otherwise introduce noise
into subsequent annotation stages. We employed 27
annotators to perform this stage. Occlusion and
ghosting during screen transitions are deemed ac-
ceptable if the UI elements in the main content area
remain clean and accurate, resulting in different
numbers from (Li et al., 2020a). Examples of such
VH symptoms are provided in Appendix A.1.
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4.2 Question Annotation

We employed the same 27 annotators to formulate
questions based on provided screenshots, simulat-
ing real-world app usage queries. Questions were
restricted to directly observable information on the
screen, deliberately excluding those questions re-
quiring reasoning, computation, or advertisement-
related content. This is because recent multimodal
reasoning benchmarks (Yue et al., 2024; Han et al.,
2023) unveil that the multimodal LLM reasoning
capacities are heavily influenced by their underly-
ing LLM performance (Section 6 of (Wang et al.,
2024)), which can be more efficiently achieved
through inference time scaling (Brown et al., 2024;
Snell et al., 2024; Wu et al., 2024; Kumar et al.,
2024), followed by pretraining data and model pa-
rameter scaling (Zhang et al., 2024; Owen, 2024).
By focusing our scope on screen content under-
standing, we aim to investigate multimodality inde-
pendent of testing other types of intelligence.

Question annotation was a two-pass process.
First, an annotator composed up to five questions
per screenshot. Then, a second annotator, with
access to the initial questions, added up to three
more, resulting in a maximum of eight questions
per screenshot. This two-pass approach promoted a
diverse and comprehensive set of questions, while
reducing redundancies. To encourage diverse ques-
tioning styles and a varied set of questions, each
annotator was required to complete their own ini-
tial set of questions before they could see questions
created by others. Screenshots lacking interesting
content (e.g., login pages, ads) may be skipped.

4.3 Answer Annotation

Given a screenshot and a question, the annotators
are tasked to
1. Correct grammatical errors in the question.
2. Answer the question by: a) Annotating bound-

ing boxes that constitute the answer. b) Ranking
bounding boxes by relevance or reading order.

3. Provide a full-sentence long answer.
The annotator who composed a specific question
is excluded from answering it to prevent potential
bias. Our UI tool offers two bounding box annota-
tion methods: direct selection of UI elements from
view hierarchy(VH) leaf nodes, or manual drawing
when VH structure is inadequate for selection.

We further consider two exceptions: 1) Mark “in-
valid question” if incomprehensible. 2) Mark “not
answerable from the screenshot” if the screenshot

Figure 2: Distribution of question answerability. Each
split contains approximately 10% questions that have
at least one “not answerable” answer annotation, to test
models’ ability to refrain from answering unanswer-
able questions.

does not contain the answer. The “invalid ques-
tion” answer annotations are first removed for each
question. Then questions without any remaining an-
swer annotations are excluded from the ScreenQA
dataset, as they are deemed invalid. To enhance
evaluation quality, three answer were annotated for
validation and test sets, while only one for training
set (details in Section 5.1).

4.4 Not-Answerable Question Annotations

A third pass of question annotation was imple-
mented to increase “not-answerable questions” to
approximately 10% (Figure 2). This tests mod-
els’ ability to refrain from answering unanswerable
questions, similar to (Rajpurkar et al., 2018). Ap-
proximately 5k screenshots without existing “not
answerable” questions were randomly sampled.
We instructed annotators to compose one question
per screenshot that was related to the screen content
but unanswerable. See an example in Figure 1c.

4.5 Short Answer Generation

As UI design of apps may fragment a short, seman-
tic answer into multiple bounding boxes (e.g., “Oct.
15, 2024” fragmented into “Oct.”, “15”, and “2024”
in a date selector), we perform a post-processing
step to make the annotations into a coherent, hu-
man readable short answer suitable for common
question answering purposes. This also partly ac-
commodate answer variants that are semantically
identical, such as numerical representations (digit-
s/words), date/time formats, and optional descrip-
tors/units (e.g., “3 reviews” vs. “3”). We employed
PaLM 2 (Anil et al., 2023) to generate answer vari-
ants via few-shot prompting with inputs includ-
ing question, UI element descriptions, and full-
sentence answer, with a subset verified by authors.
See Appendix A.6 for the prompt details.
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5 Dataset Analysis

5.1 Dataset Splitting
The ScreenQA dataset comprises 85,984 questions
from 35,352 unique screenshots, split at the screen-
shot level into training, validation, and test sets in
an approximate 80-10-10 ratio (see Table 3).

5.2 Question Analysis
Among the 86k collected questions, 47.5k are
unique in term of SQuAD EM. Common questions
often recur across screenshots (e.g., “Which op-
tion is selected?” or “What is the email address?”).
Screenshots with more information typically gen-
erate more questions. The histogram of questions
per screenshot follows a mild exponential decay
(Figure 3a). We further categorize questions us-
ing regular expressions, providing a preliminary
overview in Table 4. It is worth noting that the cate-
gory distribution is implicitly influenced by RICO’s
crawling process. For example, the crawling pro-
cess commonly includes a step at the login page,
resulting in a higher percentage of questions about
app names, email addresses, and login permissions.

5.3 Answer Analysis
We analyze the answer annotations in two as-
pects: 1) How often multiple bounding boxes are
required for answers, indicating task complexity,
and 2) How often VH is sufficient for bounding
box annotation, indicating the reliability of VHs.

Figure 3b illustrates the histogram of bounding
boxes per answer. About 84% of answers con-
tain a single bounding box, with 51% utilizing
VH leaf nodes and 49% using manually drawn
boxes. When all answers are considered, 51% rely
solely on VH leaf nodes, 48% on manual boxes,
and 0.8% on a combination. Combinations typi-
cally occur for multi-part answers involving diverse
UI elements, scattered components (e.g., dates), or
measurements with units. Despite VHs being com-
monly used in prior screen tasks (Burns et al., 2022;
Li et al., 2020b), the near-equal preference for man-
ual bounding boxes reflect VH limitations: VHs
cannot capture UI elements in WebViews and Can-
vas, and are inconsistent for certain screen designs.
This justifies our decision to use screenshot as input
in ScreenQA.

6 Experiments and Baselines

We conducted three sets of experiments: zero-shot,
fine-tuning, and transfer learning, each of which is

explained below.

6.1 Zero-Shot Experiments

We evaluated Fuyu-8B (Bavishi et al., 2023), Gem-
ini 1.5 Flash, Gemini 1.5 Pro (Gemini Team
Google, 2023), and GPT-4o (OpenAI et al., 2024)
on SQA-S in a zero-shot setting. Results are sum-
marized in Table 5. We prompted each model using
an instruction followed by a question. For the Fuyu-
8b model, we used the instruction that model’s au-
thors recommended in their examples. For GPT-4o,
we iterated on the prompt design using a set of
10 examples from the ScreenQA validation split
and then reused the prompt for Gemini 1.5 mod-
els. See Appendix D.1 for the detailed prompts.
Despite the prompt being originally designed for
GPT-4o, Gemini 1.5 Pro outperforms GPT-4o in
this particular setup.

6.2 Fine-Tuning Experiments

We fine-tuned three series of models spanning open-
source, domain specific, and general purpose pro-
prietary models on the ScreenQA tasks as described
below.

PaliGemma 3B We used the pre-trained
PaliGemma 3B model checkpoints (Beyer et al.,
2024) with three input resolutions, 224×224,
448×448 and 896×896, and fine-tuned for 10
epochs with a learning rate 1.0 × 10−5 using the
Adam optimizer and a cosine decay schedule.
Both vision and language backbones were trained
during fine-tuning.

ScreenAI 670M and 5B This VLM specializes
in UI and infographics understanding (Baechler
et al., 2024). We used a dynamic 812× 812 input
resolution and fine-tuned this model until conver-
gence, using a learning rate of 1.0×10−3. Only the
language backbone was trained during fine-tuning.

Gemini 1.5 Flash We also fine-tuned Gemini 1.5
Flash (Gemini Team Google, 2023) model4 on the
downstream tasks for ∼ 7 epochs with a learning
rate of 1.0 × 10−4 for SQA-S and SQA-L and
1.0× 10−6 for SQA-UIC and SQA-UIC-BB. Only
the language backbone was trained during fine-
tuning.

Note that we did not test PaliGemma and
ScreenAI models’ zero-shot performance as they

4
https://cloud.google.com/vertex-ai/generative-ai

/docs/models/gemini-use-supervised-tuning
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(a) Composed questions per screenshot. (b) Bounding boxes used to answer a question.
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(c) Questions per app category.
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(d) Fine-tuned PaliGemma 896 performance on SQA-S.

Figure 3: Histograms for various data and model performances. (b) Approximately 91% of questions are either not
answerable or can be answered by a single bounding box, hence, omitted to emphasize the long tail distribution.
(d) The model exhibits consistent SQuAD-F1 performance across app categories, except for Events and Videos,
which present higher scores due to lower support for those categories.

are not instruction-tuned, therefore, not suitable for
evaluation in a zero-shot setting.

We use the metrics introduced in Section 3 to
measure the performance of models along various
dimensions: i) Extracting relevant information for
answering a question in the SQA-S and SQA-UIC
tasks, ii) Ability to provide fluent answers in the
SQA-L task, and iii) Identifying relevant UI ele-
ments through their bounding box coordinates in
the SQA-UIC-BB task.

We present the results in Table 6. We observe a
slightly higher performance for the ScreenAI 5B
model compared to PaliGemma 3B, and attribute
it to its larger model capacity and specialized pre-
training mixture that includes a rich variety of UI
elements. The ScreenAI model also performs on
par with the Gemini 1.5 Flash model in a fine-
tuned setting. We also notice a larger difference
between the ScreenAI model and other approaches
in the SQA-UIC-BB tasks involving bounding box
prediction. PaliGemma performance is however
very competitive, and by fine-tuning both language
and vision backbones we enable better use of the
entire model capacity.

In Appendix E we present a few examples of the

different errors made by the models and a catego-
rization of these errors.

6.3 Cross-Domain and Transfer Learning

We conducted cross-domain learning (CDL) and
transfer learning (TL) by fine-tuning PaliGemma
models (Table 7). For CDL, we fine-tuned the mod-
els using either SQA-S or DocVQA (Mathew et al.,
2021) and evaluated on the other. These experi-
ments aim to characterize the differences between
ScreenQA and other VQA datasets from related
domains like document images by investigating
the performance difference by training on related
datasets vs. training on the corresponding training
split. We observe that the use of in-domain training
data results in significant improvements for both
SQA-S and DocVQA datasets. However, we do
note that for the SQA-S task, using training data
from the related domain of document images re-
sults in performance gain over the zero-shot setting
with a larger Fuyu-8B model (Table 5), showing
that they are related but distinct domains.

For transfer learning, summarized in Table 7, we
used VisualWebBench-WebQA (Liu et al., 2024a),
a recently released QA task on web screenshots,
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Category % Examples

UI selection & config 18.1 Which option is selected? What is the selected ringtone?
Quantity number 11.7 How many unread messages? How many pictures are there in Western Europe?
App name 10.4 What is the name of the application? What is the app name?
Date time 9.4 When was “Heal the Living” released? When is happy hour?
Price 3.4 How much is the gift bonus in 3rd place? What is the price?
Name of item 3.3 What is the name of the drug? What is the name of chef?
User name 2.8 What is the name of the user? What is the username on telegram?
Duration 2.5 What is the duration of video? How long is the song?
Enum. of avail. options 2.5 Which social media options are given there? What are the options available for logging in?
Address and direction 2.4 What is the current location? What is the service zip code?
Email address 2.4 What is an email address? What is customer service email?
Person’s name 2.1 Who sang the song? What is the last name?

Others 12.8 What’s the average speed?
What is the spending limit?

What is the user’s middle initial
Which team has 41 points?

Subtotal 83.8

Table 4: Top question category distribution (≥ 2.0%) and examples (See Appendix C for remaining categories).

SQuAD-EM SQuAD-F1

Fuyu-8B 39.5 47.3
Gemini 1.5 Flash 80.6 86.4
Gemini 1.5 Pro 81.4 87.2
GPT-4o 77.8 86.6

Table 5: Zero-shot public models evaluation on SQA-S.
Bold is best performance.

as the target evaluation dataset. We fine-tuned
the models using DocVQA alone and using both
DocVQA and ScreenQA, demonstrating positive
transfer when incorporating the ScreenQA dataset.

Additionally, we tested the hypothesis that train-
ing models to predict bounding boxes would en-
hance their performance on tasks not explicitly in-
volving bounding boxes. For example, fine-tuning
models on both SQA-S and SQA-UIC-BB tasks
and evaluating performance on SQA-S task. How-
ever, in our experiments with smaller models such
transfer benefits did not materialize. One possible
explanation could be that this is due to increased
complexity caused by introducing an additional
task. While this may seem like a limitation, it
also reflects the standalone challenges each task
presents, reaffirming the value of our dataset.

6.4 Importance of Multimodality and
Fine-Tuning

We used Gemini 1.5 Flash (Gemini Team Google,
2023) model and SQA-S and SQA-L tasks to
demonstrate the complexity of the screen data for
screen understanding. Experiments in Table 8 show
that using text representation of the screen informa-
tion (OCR) as model input produces significantly
worse results than using multimodal (image & text)
setup. Noticeable difference in performance be-
tween zero-shot and fine-tuned setups suggests that
screen understanding domain presents its own chal-

lenges on top of generic image understanding.

7 Conclusion

We introduced ScreenQA, a rich dataset that en-
ables training and evaluating models on question-
answering tasks on screen content. We described
the annotation process, statistics of the collected
dataset, which contains 85,984 question-answer
pairs. In addition to answers, our dataset contains
extensive annotations of the UI elements, enabling
the ability to train or probe models for their holistic
understanding of the screen, a necessary capabil-
ity for high-level reasoning and automation using
UI interfaces. Compared to other vision-language
tasks, such as document understanding or visual-
question answering, the four constructed tasks on
the ScreenQA dataset pose unique challenges: rich
in text, diverse in mobile applications, blended with
icons and symbols. The tasks not only evaluate
content quality, but also UI element identification
quality. Furthermore, we conducted a diverse set of
experiments, including zero-shot, fine-tuned, and
transfer learning, on a series of open-weight and
proprietary models to assess the capacity of our
ScreenQA dataset. We encourage the community
to tackle screen content understanding challenges
present in our benchmark, fostering new technolo-
gies and user experiences.

8 Limitations

We acknowledge limitations of our work.

Language Released data is only in English and
further work would be necessary to create a multi-
lingual variant of our dataset. This is further ampli-
fied by the need of screenshots with phones config-
ured in the different locales.
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Model
SQA-S SQA-L SQA-UIC SQA-UIC-BB

EM F1 R-1 R-2 R-L EM F1 BBOX-F1 EM F1

ScreenAI 670M 51.2 60.6 77.3 68.4 76.7 47.8 49.4 62.7 41.1 42.6
PaliGemma 3B 224 77.5 83.9 88.2 81.5 87.4 74.8 76.7 84.9 67.5 69.6
PaliGemma 3B 448 88.3 92.2 91.1 85.5 90.3 86.0 87.7 89.4 79.1 81.6
PaliGemma 3B 896 89.4 93.2 90.9 85.3 90.1 86.1 87.8 88.8 78.8 81.2
ScreenAI 5B 90.7 94.6 92.6 87.4 91.9 87.0 88.7 94.2 84.0 85.7
Gemini 1.5 Flash 90.5 94.9 92.4 86.2 91.7 88.2 89.7 92.4 83.9 85.7

Table 6: Model performance for ScreenQA tasks after fine-tuning. Bold is best performance.

Experiment | Task CDL | SQA-S CDL | DocVQA TL | VisualWebBench-WebQA

Fine-Tuned on SQA-S DocVQA SQA-S DocVQA DocVQA SQA-S + DocVQA

Model \ Metrics EM F1 EM F1 ANLS ANLS F1 F1

PaliGemma 3B 224 77.5 83.9 52.6 60.5 27.5 43.7 19.31 21.51
PaliGemma 3B 448 88.3 92.2 66.2 72.9 55.1 78.0 48.33 49.11
PaliGemma 3B 896 89.4 93.2 63.6 70.4 62.0 84.8 57.07 58.69

Table 7: Cross-domain learning (CDL) and transfer learning (TL) experiments via PaliGemma model fine-tuning.
For CDL, models were fine-tuned on either SQA-S or DocVQA and evaluated on the other. In-domain and cross-
domain model scores exceed 60 for the 896×869 model and differ by 20∼25 points across the board (underlined).
TL experiments revealed positive transfer when additionally using SQA-S for the WebQA evaluation (bold).

Evaluation setup
SQA-S SQA-L SQA-UIC SQA-UIC-BB

EM F1 R-1 R-2 R-L EM F1 BBOX-F1 EM F1

Zero-Shot, Text-Only 64.4 72.5 78.2 67.8 75.6 38.6 41.2 30.1 49.7 28.5
Zero-Shot 80.6 86.4 83.8 70.8 79.3 62.4 66.8 26.2 33.3 24.0
Fine-Tuned 90.5 94.9 92.4 86.2 91.7 88.2 89.7 85.7 92.4 83.9

Table 8: Gemini 1.5 Flash performance against ScreenQA for various evaluation setups. Note that for SQA-UIC-
BB, the Zero-Shot, Text-Only case (the 1st row) outperforms its multimodal counterpart (the 2nd row) because
the bounding box coordinates are given as text input: the model just needs to select the right UI elements with the
given coordinates, which makes bounding box prediction very precise when they are correct, hence, an easier task.

Rich Layouts Our data and annotation process
focuses on rather static content, facilitating us to
focus on information extraction from canonical lay-
outs. There are a number of challenges our dataset
does not capture, specifically rich layouts coming
from gaming or other highly interacting applica-
tions that may be present on a user’s device. Screen-
shots that contain natural images and videos are
also missing.

Reasoning The type of challenges our dataset fo-
cuses on are a lot more related to information look-
up and rewriting. We therefore capture challenges
grounded in UI content and composition under-
standing, rather than arithmetic or other forms of
complex compositional reasoning challenges. See
Section 4.2 for details.

Multi-Image An example in our dataset always
consists of a single screenshot. Several challenges
that come with multi-image understanding such as

a trace of screenshots are therefore not covered by
our tasks in the dataset. Similarly, no UI animations
are included or scrolling actions.

Platform ScreenQA contains screenshots only
from the Android ecosystem and the phone form
factor. As all of the composed questions are fo-
cused on the main content area without involving
any gestures and actions, we do not anticipate ma-
jor performance differences across ecosystems. In
addition, our experiments show positive transfer
for VisaulWebBench-WebQA when additionally
using ScreenQA (Table 7), indicating the efficacy
of ScreenQA for other form factors.

9 Ethical Considerations

Information Retrieval Only ScreenQA focuses
on information retrieval of screen contents, with the
primary intent of improving screen content under-
standing. ScreenQA dataset does not involve any
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materials related to decision-making for or against
users, nor does it execute actions on behalf of users,
avoiding potential harm.

Privacy The technologies fostered by ScreenQA,
when used on a mobile device, require access to
information at a level comparable to that of a stan-
dard accessibility application. Furthermore, the
promising results from fine-tuned PaliGemma mod-
els (Table 6) suggest that the technologies enabled
by ScreenQA can be effectively hosted on mobile
devices, significantly limiting potential privacy con-
cerns.

App Category Fairness ScreenQA contains
questions across 27 categories of apps (Figure 3a),
which is the most diverse set at the time of writing
(Table 1). Also, our fine-tuned PaliGemma 896
model exhibits consistent SQuAD-F1 performance
across these app categories (Figure 3d), demon-
strating that ScreenQA has a fair support across
app purposes.
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bune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. ScreenAI: A vision-language model
for UI and infographics understanding. Preprint,
arXiv:2402.04615.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Aguera y Arcas. 2021. UIBert: Learning
generic multimodal representations for UI under-
standing. Preprint, arXiv:2107.13731.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne,
Maxwell Nye, Augustus Odena, Arushi Somani, and
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A Data Annotation Details

A.1 VH Out-of-Sync Rules

We asked annotators to mark screenshots which
are 1) from non-English apps and 2) not synchro-
nized with VHs, as described in Section 4.1. The
out-of-sync symptoms are oftentimes harder to dis-
tinguished than expected. UI elements may be
occluded (Figure 4a) and “ghosting” VHs appear
in addition to the in-sync VHs because of UI an-
imation effects such as menus sliding/popping in
and out (Figure 4b). These two cases are deemed to
be acceptable in-sync scenarios as a user or an an-
notator can still select the correct bounding boxes
from VH. However, the example in Figure 4c is
an out-of-sync case, in which the text “No Alarms.
Set an alarm and start your ...” is not supported
by a VH bounding box. All the other bounding
boxes that appear on the screen are all irrelevant
to the current main content, hence, determined as
an out-of-sync case. We trained our annotators to
distinguish these cases and only mark the third case
to remove.

A.2 Question Annotation UI

The question annotation interface is shown in Fig-
ure 5a. Question annotation was performed in a
sequential manner by multiple annotators. An an-
notator can see all previous questions to diversify
question framing and avoid duplication. We also
used the same sequential process to provide more
feedback and training to the annotators for quality
improvement.

A.3 Answer Annotation UI

The answer annotation interface is shown in Fig-
ure 5b. Answer annotators were tasked to deter-
mine if the question is valid and if the question is
answerable from the screen context. If both are
positive, the annotators need to answer the ques-
tions by 1) selecting or drawing the bounding boxes
of UI elements, 2) filling the text for each select-
ed/drawn bounding box on the right, 3) ranking
them appropriately, 4) providing the full-sentence
answer to the question. The annotators were also
tasked to review and make necessary corrections if
the question has grammatical errors or typos.

A.4 Annotation quality control

We leveraged a rating platform for collecting hu-
man annotations to ensure that raters go through
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(a) VH with occluded elements. (b) Ghosting VH from menu. (c) Out-of-sync VH for main con-
tent.

Figure 4: View hierarchies (VHs) are overlaid on the screenshots with class names and the first few characters
printed to assist annotators to determine whether the VHs for the main contents are in sync.

a training phase, and proceed to collecting anno-
tations only after reaching 90% quality bar. Fur-
thermore, output quality was monitored throughout
the annotation process, consistently reaching more
than 95%.

A.5 Annotation post-processing

Aside from removing answer annotations marked
as “invalid question” and questions with no re-
maining answer annotation, post-processing of the
records in the train split included applying ques-
tion modification, if there was one provided during
answer annotation.

The same could not be easily done for valida-
tion and test splits, as those contained 3 answer
annotations per question, and corresponding ques-
tion modifications could vary. The inter-annotator
agreement was therefore estimated. The 2 answer
annotations were considered to be in agreement if
any of the following conditions apply:

• The questions (after modifications if some
were provided) are the same.

• The full-sentence answers are the same.

• The lists of bounding boxes that constitute the
answer contain the same elements, ignoring
permutations.

• Both answer annotations are in agreement
with the same other answer annotation.

Here two bounding boxes correspond to the same
element if they correspond to the same VH node, or
if they intersect and have the same textual content.
As a result, 97.9% of the questions in validation
and test splits had full agreement of the answer
annotations, 1.9% had partial agreement (2 out of
3), and 0.2% had no agreement.

We then removed the disagreeing answer anno-
tations from questions with partial agreement, and
questions with no agreement. And applied question
modification with the biggest consensus (2-3 out
of 3), or chose the latest if all modifications are
different.

A.6 Short Answer Generation Prompts
We describe below the prompts used in PaLM
2 (Anil et al., 2023) to generate short answers for
ScreenQA, as described in Section 4.5. ScreenQA
dataset annotations (question, list of text of UI el-
ements, and full-sentence answer) were used as
input. To improve the prompt quality, we used an
identical prompt template with two sets of few-shot
examples for answers with 1) one or 2) more than
one UI elements involved, each set of which is used
and inserted into the template for the example with
answers that utilize the corresponding number of
UI elements. The prompt template is give below:
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List various ways to rephrase the answer. The answer
should be as short as possible, without extra words
from the question. Use all provided elements in

each answer. Provide the output in square brackets.

{examples}

Now is your turn.
Question: {question}
Answer elements: {list of text of UI elements}
Full answer: {full-sentence answer}
Rephrases:

An example of single-UI-element answer is as be-
low:
Here is another example:
Question: 'What is the gender?'
Answer elements: ['Male']
Full answer: 'The gender is male.'
Rephrases: ['male']

An example of multiple-UI-element answer is as
below:
Here is another example:
Question: 'What is the name?'
Answer elements: ['Jon', 'Brown']
Full answer: 'The name is Jon Brown.'
Rephrases: ['Jon Brown']

B Data Examples

Table 9 presents a few examples from the
ScreenQA dataset. Each example contains
• A screenshot
• A question
• Multiple annotations of lists of UI elements rele-

vant to the question, each annotation of which is
completed by an annotator

• Multiple annotations of long full-sentence an-
swers corresponding to the UI element annota-
tions

• Multiple short answers, generated by the proce-
dure outlined in Section 4.5

Note that the bounding boxes of selected UI el-
ements are highlighted on the screenshot for the
illustrated purposes of the corresponding annotated
bounding boxes, but they are not present in the cor-
responding image from RICO (Deka et al., 2017)
or during our data annotation process outlined in
Section 4.
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(a) Question annotation UI

Annotators can correct 
errors in the given 
question, but are asked not 
to alter the intention.

UI elements can be 
selected from available 
View Hierarchy nodes, or 
drawn manually.

Added UI elements can be 
easily re-ranked using 
arrows, or removed.

(b) Answer annotation UI

Figure 5: Annotation interfaces.
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Question When was the match held at Kent State?

UI elements • [09/24] • [09/24]

Full answers • The match was held at Kent State on
September 24.

• The match was held on September 24.

Generated
Short Ans.

• 09/24
• September 24
• September 24th
• 9/24

Question What is the birth date of the user?

UI Elem. • [1999], [January], [1]
• [January], [1], [1999]
• [1], [January], [1999]

Long Ans. • The birth date of the user is January 1, 1999.
• The user’s birth date is January 1, 1999.
• The birth date is January 1, 1999.

Generated
Short Ans.

• 1/1/1999
• January 1, 1999
• 1 January 1999
• 1 January, 1999
• January 1st, 1999

Question What is the status of "Open links inside the app"?

UI Elem. • [off] • [off]

Long Ans. • The status of "Open links inside the app" is "off".
• The status is "off".

Generated
Short Ans.

• off
• disabled
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Question What is the odometer reading?

UI Elem. • [0 m] • [0 m]

Long Ans. • The odometer reading is 0m.
• The odometer reading is 0 m.

Generated
Short Ans.

• 0 m
• 0 meters

Question What other applications can be used?

UI Elem. • [Android Beam], [Bluetooth]
• [Facebook], [Android Beam]

Long Ans. • The applications that can be used are "Facebook",
"Android Beam", and "Bluetooth".

• The other applications that can be used are
"Android Beam" and "Bluetooth".

Generated
Short Ans.

• Android Beam, Bluetooth
• Android Beam and Bluetooth
• "Android Beam", "Bluetooth"
• "Android Beam" and "Bluetooth"
• Facebook, Android Beam, Bluetooth
• Facebook and Android Beam and Bluetooth
• Facebook or Android Beam or Bluetooth

Table 9: Examples from ScreenQA dataset
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C Dataset Annotation Analysis

Additional dataset annotation analysis is provided
in this section. Table 10 shows the remaining ques-
tion categories and examples continuing from Ta-
ble 4. Figure 6 shows distribution of question types
(e.g., Wh- questions, Yes/No questions, etc.), re-
gardless of the subject.

D Evaluation Configurations

In Section 6 we report the performance of various
models on ScreenQA tasks in a zero-shot setting
and after fine-tuning. We provide additional de-
tails as to how we evaluated the baselines for the
corresponding model sizes.

D.1 Zero-shot
Question answering is one of the most common
tasks for LLMs and VLMs. Since the output for-
mat of the SQA-S task is similar to other existing
benchmarks, we attempt evaluating publicly avail-
able models in zero-shot setting. Specifically, we
focus our evaluations on Fuyu-8b5 (Bavishi et al.,
2023), Gemini 1.5 Flash6, Gemini 1.5 Pro7 (Gem-
ini Team Google, 2023), and GPT-4o8 (OpenAI
et al., 2024). We refer to Table 5 for the results.

Further, we describe for each model the prompt
used in the evaluation is an instruction followed by
a question. Fuyu-8B model came with an author
recommendation for a prompt, which we made use
of 9:
Answer the following DocVQA question based on the
image. \n

For GPT-4o we optimized the prompt using 10
examples from the validation split. The one we
picked was:
Answer the question based on the screenshot only. Do
not use any other sources of information. The

answer should be succinct and as short as possible.
If the answer is a text from the image, provide it
exactly without rephrasing or augmenting. If there
is no answer on the image, output "<no answer>".\n

The same prompt was re-used for the Gemini
model evaluation. Although this may represent a
disadvantage for Gemini compared to GPT-4o, our
results indicate that Gemini 1.5 Flash is on par with
and 1.5 Pro outperforms GPT-4o using it.

D.2 Fine-tuning
The training data for SQA-L, SQA-UIC and SQA-
UIC-BB tasks has one annotation per example
(with a few exceptions), so it’s usage for fine-tuning
5 Fuyu-8b 6 Gemini 1.5 Flash 7 Gemini 1.5 Pro
8 GPT-4o 9 See Fuyu-8B discussion

is straightforward for all models. Short answers,
on the other hand, were generated automatically
(see Section 4.5), resulting in multiple answers
per question for the SQA-S task. The fine-tuning
setup for PaliGemma 3B (Beyer et al., 2024) and
ScreenAI 5B (Baechler et al., 2024) models ran-
domly select one answer each time. Through suf-
ficient epoch, it is however likely that all answer
variants are utilized.

For Gemini 1.5 Flash fine-tuning on SQA-S task,
however, one answer per question was randomly
selected before training, limiting the diversity of
answers observed by the model. We therefore ran
fine-tuning twice for 2 different random selections,
and reported the best obtained results among the
two experiments.

E Observed prediction errors on SQA-S
task

While Section 6 contains evaluations of different
models in different settings to provide baselines,
in this paper we deliberately refrain from making
conclusions about upsides and downsides of each
individual model. Instead, in Table 11 we provide
examples from SQA-S task of some errors mod-
els made during evaluation, as a demonstration of
complexity of this dataset. While this may not be a
complete list, we categorized those errors into:

• Misinterpreted question: the predicted answer
answers a different question.

• Misinterpreted screenshot info: the predicted
answer is based on the screenshot information
that has a different meaning.

• Hallucination: the predicted answer is not
based on the screen at all.

• Modified or misread content: the predicted an-
swer originates from correct answer but con-
tains typos or is incorrectly transformed into
something different.

• Lack of understanding/reasoning to identify/-
compose answer: the predicted answer sug-
gests poor model’s screen understanding or
reasoning capabilities.
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Figure 6: Histogram for the types of questions.

Category % Examples

Subtotal from Table 4 83.8

Signup/login 1.6 Which application can be used to sign up / login? What are the alternative choices for signing up?
Version information 1.6 What is the version number? What is the new feature in version v3.1.3?
Weather 1.5 What is the range of temperature shown on Sunday? What is the weather forecast for Sunday?
Score & value 1.4 What is height/weight of the person? What is the score?
Yes/No 1.1 Is there any travel plans? Is there any favorite?
Phone number 1.0 What is the phone number? What is the prefix for the international mobile number?
# of Stars 0.8 What is the star rating? How many stars are given to the product?
Share/sharing 0.8 Which application can be used to share? Where can I share this application?
Age 0.8 How old is ...? What is the age?
Percentage 0.7 What is the percentage of ... ? What is the brightness percentage for foreground?
Settings 0.6 What is the setting of ... ? Which settings are switched on?
Quantity amount 0.6 How much fat is there? What is the amount?
Permission 0.5 Which application is asking for permissions? What permissions are required for MyCarTracks?
# of Likes 0.5 How many likes for ... ? How many likes does ... get?
Country 0.5 What is the name of the country? Which country has the +54 code?
Distance 0.5 What is the visibility distance? How far is it from ... ?
# of Reviews 0.4 What is the number of comments on ... ? How many comments?
Website 0.3 What is the url? What’s the website address?
Gender 0.3 What is the gender? Which gender is displayed on the screen?
How to 0.3 How to start on boot? How to pronounce his name?
Currency 0.3 What is the currency? What is the currency for the price?
Unit of measurement 0.2 What is the unit of temperature? What is the unit of weight and length?
Language 0.1 Which language is used in the setting? Which language is being translated into which language?
Color 0.0 What is the UI color? What is the amount of green color?

Total 100.0

Table 10: Remaining question categories and examples (cont. from Table 4)
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Question What is the total number?

Correct answer 600

Incorrect answer 721

Error category Misinterpreted question

Explanation The serial number present on the screen was
incorrectly identified as the total.

Question For which setting is the "Compositor" option
selected?

Correct answer "Color Driver" setting

Incorrect answer Advanced (and Debugging)

Error category Misinterpreted question

Explanation "Advanced (and Debugging)" is a group of set-
tings, and "Color Driver" is a single setting in
that group, which is the correct answer.

Question Through which applications can we open the
browser?

Correct answer <no answer>

Incorrect answer Facebook, TheYoungTurks, Email, Messaging,
Android Beam and Bluetooth

Error category Misinterpreted question

Explanation Predicted the ways to share content, instead of
opening the browser.
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Question What’s the title of the expense amount for Febru-
ary 15th?

Correct answer Other

Incorrect answer 50000.00 USD

Error category Misinterpreted screenshot info

Explanation The expense amount of 50000.0 USD was mis-
takenly identified as the title.

Question How long is the audio?

Correct answer 11 minutes and 31 seconds

Incorrect answer 3:36

Error category Misinterpreted screenshot info

Explanation The current audio playing position at 3:36 was
identified as the total duration instead of 11:31.

Question What is the number of shown items?

Correct answer 29

Incorrect answer 738,867

Error category Misinterpreted screenshot info

Explanation The total number of items is 738,867, while 29
is the shown number.
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Question When was the article published?

Correct answer <no answer>

Incorrect answer 18 / 20

Error category Misinterpreted screenshot info

Explanation 18 / 20 represents the number of characters in a
text field and not the date.

Question Which option is selected for high quality stream-
ing?

Correct answer Wi-Fi Only

Incorrect answer "Only for VIPs" option

Error category Hallucination

Explanation "High Quality Streaming" setting has value "Wi-
Fi Only".

Question Who has taken six wickets?

Correct answer Yuzvendra Chahal

Incorrect answer Lelebhim Yuzvendra Chahal

Error category Hallucination

Explanation Possibly the word "Leg-spinner" was misread or
hallucinated into "Lelebhim".
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Question Which company is giving 252 coupons?

Correct answer macy’s

Incorrect answer "mady’s"

Error category Modified or misread content

Explanation "Macy’s" was misspelled.

Question What is the application name?

Correct answer Math Formulary

Incorrect answer Math Formulas Free

Error category Modified or misread content

Explanation Hallucination of "Forumlas Free" instead of
"Formulary"

Question What are the different types of genres?

Correct answer "AVANT-GARDE", "INTERNATIONAL",
"BLUES", "JAZZ", "CLASSICAL" and
"NOVELTY"

Incorrect answer "AVANT-garde", "INTERNATIONAL",
"BLUES", "JAZZ", "CLASSICAL" and
"SAVELY"

Error category Modified or misread content

Explanation Hallucination of "SAVELY" instead of "NOV-
ELTY"
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Question How many minutes does a beginner have to do
the breathing basics session?

Correct answer 10 to 15 minutes

Incorrect answer 10 minutes and 15 minutes

Error category Lack of understanding/reasoning to identify/-
compose answer

Explanation The UI indicates that the breathing session is
"10/15 min", which from the context should be
interpreted as 10 to 15 mins, rather than 10 and
15 mins, separately.

Question What is the day on the 17th of March?

Correct answer FR

Incorrect answer TH

Error category Lack of understanding/reasoning to identify/-
compose answer

Explanation The day of the week was not correctly identified
from the calendar.

Table 11: Examples of errors made by the models from ScreenQA dataset on SQA-S task.
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