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Abstract

Best-of-N (BoN) sampling with a reward model
has been shown to be an effective strategy for
aligning Large Language Models (LLMs) to hu-
man preferences at the time of decoding. BoN
sampling is susceptible to a problem known as
reward hacking when the accuracy of the re-
ward model is not high enough due to the qual-
ity or the quantity of the preference dataset. Be-
cause the reward model is an imperfect proxy
for the true objective, over-optimizing its value
can compromise its performance on the true
objective. In this research, we propose MBR-
BoN, a variant of BoN that aims to mitigate
reward hacking at inference time by incorporat-
ing the Minimum Bayes Risk (MBR) objective
as a proximity regularization term. We show
empirically and analytically that the MBR ob-
jective quantifies the proximity of the response
to the reference policy, serving as a proxim-
ity regularizer. We evaluate MBR-BoN on the
AlpacaFarm and Anthropic’s hh-rlhf datasets
and show that it outperforms both BoN sam-
pling and MBR decoding. We also evaluate
MBR-BoN to generate a pairwise preference
learning dataset for Direct Preference Optimiza-
tion (DPO). Empirical results show that models
trained on a dataset generated with MBR-BoN
outperform those with vanilla BoN. Our code
is available at https://github.com/Cyber
AgentAILab/regularized-bon.

1 Introduction

Language model alignment is a widely used tech-
nique for optimizing the behavior of Large Lan-
guage Models (LLMs) to human preferences, steer-
ing the models to generate informative, harmless,
and helpful responses (Ziegler et al., 2020; Stien-
non et al., 2020; Ouyang et al., 2022). Best-of-N
(BoN) sampling is widely used to align the LLM
at decoding time (Stiennon et al., 2020; Nakano
et al., 2022). BoN samples N responses from the
language model and selects the best response ac-

cording to the proxy reward model as the output of
the system.

However, BoN sampling is known to suffer from
the reward hacking problem (Amodei et al., 2016;
Ziegler et al., 2020; Stiennon et al., 2020; Skalse
et al., 2022; Gao et al., 2023). The reward hacking
is a phenomena where the learning agent overfits to
the misspecified reward model, failing to optimise
for the true intended objective (Pan et al., 2022;
Lambert and Calandra, 2024). The problem occurs
because of reward misspecification; the proxy re-
ward trained from a human preference dataset of a
limited quality or quantity does not perfectly reflect
true human preferences. As a result, optimizing
for the reward model does not always optimize for
the preference of the true intended objective. For
example, Dubois et al. (2023) shows that with 25%
label noise, which is the amount of disagreement
observed in real-world preference annotations (Sti-
ennon et al., 2020; Ouyang et al., 2022), BoN sam-
pling degrades performance with N greater than
16 (Figures 12 and 13 in Dubois et al. 2023). Wen
et al. (2024) shows that even when the proxy re-
ward model performs reasonably well relative to
the reference model, it still exhibits overoptimiza-
tion behavior. We also observe the degradation
of performance with N greater than 32 when the
amount of train data for the proxy reward model is
limited (Appendix A).

Given that human preferences depend on the do-
main, language, culture, and various other factors
of the users (Hu et al., 2023; Wan et al., 2023; Li
et al., 2024b; Sorensen et al., 2024; Li et al., 2024a;
Afzoon et al., 2024; Agrawal et al., 2024), it is
desirable to develop a method that is robust to the
situation where the reward model is misspecified
due to limited quality and/or quality of the pref-
erence dataset. A common approach to mitigate
reward hacking in preference learning is to add a
proximity regularization term to the loss function
to keep the trained model close to the reference
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model (Stiennon et al., 2020; Ouyang et al., 2022;
Rafailov et al., 2023). Previous work in BoN has
shown that reducing the number of samples N mit-
igates the reward hacking (Nakano et al., 2022; Pan
et al., 2022; Lambert and Calandra, 2024). This
approach successfully increases the proximity to
the reference policy (Nakano et al., 2022; Beirami
et al., 2024) but at the expense of diminished im-
provement obtained by the method.

To this end, we propose MBR-BoN, a method
that introduces the Minimum Bayes Risk (MBR)
objective (Kumar and Byrne, 2002, 2004; Eikema
and Aziz, 2020) as a proximity regularization term
into the BoN to mitigate the reward hacking prob-
lem.1 The MBR objective serves as a proximity
regularizer by its nature which we show in Sec-
tion 3. Instead of optimizing the raw reward score,
we optimize a sum of the reward score and a reg-
ularization term. MBR-BoN can tune the regular-
ization strength by the hyperparameter β, similar
to the proximity regularization in RLHF and DPO.

We evaluate the performance of MBR-BoN on
the AlpacaFarm (Dubois et al., 2023) and An-
thropic’s hh-rlhf datasets (Bai et al., 2022) and
show that it outperforms the performance of vanilla
BoN in a wide range of settings. We also use MBR-
BoN to generate a pairwise preference learning
dataset and show that a model trained by DPO on
a dataset generated with MBR-BoN outperforms a
model trained on a dataset generated with vanilla
BoN.

2 Background

First, we give an overview of preference learning
algorithms including RLHF and DPO. Then we
introduce the decoding-time alignment algorithm,
BoN sampling.

2.1 Preference Learning

Let D be a set of instruction, response pair,
and preference over response pair: D =

{x(i), y(i)w , y
(i)
l }i=1. RLHF uses the learned reward

function to train the language model. Typically,
the RL process is formulated as the following opti-
mization problem:

argmax
π

E
x∼D

E
y∼π(y|x)

[R(x, y)]

− βDKL[π(·|x)||πref(·|x)], (1)

1MBR-BoN was referred to as RBoNWD in an earlier ver-
sion of this manuscript.

where β is a hyperparameter that controls the prox-
imity to the base reference model πref . The proxim-
ity regularization term DKL is important to prevent
the model from deviating too far from the base
model. Since the objective is not differentiable,
reinforcement learning algorithms are used for op-
timization (Schulman et al., 2017; Stiennon et al.,
2020; Bai et al., 2022; Ouyang et al., 2022; Zheng
et al., 2023b).

DPO trains the language model to align di-
rectly with the human preference data over the re-
sponses, so it doesn’t need a separate reward model
(Rafailov et al., 2023). Although DPO is based
on supervised learning rather than reinforcement
learning, it uses essentially the same loss function
under the Bradley-Terry model (Bradley and Terry,
1952). The objective function of the DPO is the
following:

argmax
π

E
(x,yw,yl)∼D

[log σ(β log
π(yw|x)
πref(yw|x)

−

β log
π(yl|x)
πref(yl|x)

)],

(2)

where σ is the sigmoid function. Several variants
of DPO also use KL-divergence as proximity regu-
larization (Azar et al., 2023; Liu et al., 2024).

Thus, both lines of work in preference optimiza-
tion have proximity regularization in common to
keep the model π close to the reference model πref .

2.2 Best-of-N (BoN) Sampling
While many methods have been proposed for learn-
ing human preferences, a simple, popular, and well-
performing method for preference optimization re-
mains Best-of-N (BoN) sampling (Stiennon et al.,
2020; Nakano et al., 2022). Let x be an input
prompt to the language model πref . Let Yref be
N responses drawn from πref(·|x). BoN sampling
selects the response with the highest reward score
according to the proxy reward model R:

yBoN(x) = argmax
y∈Yref

R(x, y). (3)

The advantages of BoN over preference learning
methods are as follows. First, BoN is simple. It
does not require any additional training of the lan-
guage model. While learning-based alignment
methods need to train the LLM, BoN can be ap-
plied on the fly. Every time human preferences are
updated, learning-based methods must retrain the
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LLM to adapt to them. On the other hand, BoN
only requires an update of the reward model and
does not require the training of the LLM, which
is the most expensive process. Second, BoN is an
effective strategy in its own right. Several previous
works have shown that BoN sampling can outper-
form learning-based alignment methods (Gao et al.,
2023; Eisenstein et al., 2024; Mudgal et al., 2024;
Gui et al., 2024). Third, BoN is applicable to a
black-box model where fine-tuning is not available.
BoN does not require access to the model itself and
is applicable using the output sequences from the
black-box model. In summary, BoN is a practical
and efficient alignment strategy that complements
the shortcomings of learning-based strategies and
is worthy of investigation.

2.3 Minimum Bayes Risk Decoding
MBR decoding (Kumar and Byrne, 2002, 2004;
Eikema and Aziz, 2020; Bertsch et al., 2023) has
recently gained attention as an effective decoding
strategy in a variety of tasks including machine
translation, text summarization, text simplification,
and reasoning (Eikema and Aziz, 2020, 2022; Fre-
itag et al., 2022; Suzgun et al., 2023; Bertsch et al.,
2023; Heineman et al., 2024; junyou li et al., 2024;
Deguchi et al., 2024a).

MBR decoding consists of the following steps.
First, it samples N sequences from the model
(Yref ), similar to BoN sampling. Then, it computes
the utility U (e.g., similarity) between each pair of
sequences in Yref . Finally, it selects the sequence
that maximizes the average utility between the rest
of the sequences:

yMBR(x) = argmax
y∈Yref

∑

y′∈Yref

1

N
U(y, y′), (4)

where the summation represents the Bayes risk,
which we refer to as the MBR objective in this
work. MBR decoding is based on the concept of
Bayes risk minimization which originates from
the decision theoretic framework (Goel and Byrne
2000; Bickel and Doksum 2015, p.27-28). Instead
of selecting the output with the highest probability
(maximum-a-posteriori decoding; Stahlberg and
Byrne 2019; Holtzman et al. 2020), Bayes risk min-
imization selects the output that is robust to the
inaccuracy of the probability model (Meister et al.,
2022; Eikema, 2024). Bayes risk minimization is
instead formalized as expected utility maximiza-
tion as utility functions are more common in text
generation tasks.

An alternative view of the MBR decoding is that
it selects the most centered point (medoid; Kauf-
man and Rousseeuw 1987) in Yref where the utility
function U measures the similarity between the
data points (Jinnai and Ariu, 2024). In other words,
the MBR objective quantifies the proximity of the
data point to the rest of the samples.

3 Minimum Bayes Risk Objective is a
Proximity Regularizer

Although BoN sampling is shown to be effective
with a decent reward model, it is prone to the re-
ward hacking problem under less accurate reward
models (Dubois et al., 2023; Wen et al., 2024).
A naive approach to prevent reward hacking is to
introduce a proximity regularizer to the BoN sam-
pling in the form of a KL-divergence term, as is
common in preference learning methods (Stiennon
et al., 2020; Ouyang et al., 2022; Rafailov et al.,
2023). However, we observe that this strategy does
not improve over BoN in most cases (Appendix D).

To this end, we propose to use the MBR objec-
tive as a proximity regularizer. First, in Section 3.1,
we visually show that the MBR objective is corre-
lated with the semantic proximity of the reference
policy. Then, we show an analytical result in Sec-
tion 3.2 that the MBR objective corresponds to the
Wasserstein distance (Peyré and Cuturi, 2020; Vil-
lani, 2021b), indicating that the MBR objective by
its nature quantifies the proximity of the text to the
reference policy.

3.1 Empirical Evaluation
We evaluate the effect of the MBR objective as a
proximity regularizer to keep the output closer to
the center of the sample distribution. In particu-
lar, we evaluate the correlation between the MBR
objective and the closeness to the center of the sam-
ple distribution. We run an experiment using the
first 1000 entries of the training split of the Al-
pacaFarm (Dubois et al., 2023) and Anthropic’s
hh-rlhf (Bai et al., 2022) datasets. N = 128 re-
sponses are sampled from mistral-7b-sft-beta
(Mistral) for each instruction (Jiang et al., 2023a;
Tunstall et al., 2024). The MBR objective (Eq 4) is
calculated for each sample, and normalized to the
range of [0, 1]. We use a cosine similarity of the
embedding computed with all-mpnet-base-v2
(MPNet; Reimers and Gurevych 2019; Song et al.
2020):

U(y, y′) = cos(emb(y), emb(y′)), (5)
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Figure 1: Mapping of the average MBR objective values
to the first and the second principal components using
PCA. The figure illustrates that the value of the MBR
objective tends to get smaller as it moves away from the
center of the distribution in the space of the principal
components.

Table 1: Correlation of the distance to the center point
in the component space with the MBR objective (Eq 4)
on the AlpacaFarm dataset. The mean and standard
deviation of the correlation are shown in the table. The
result shows that the more an output y deviates from
the center of the distribution, the lower the value of the
MBR objective. Dim is the number of components.

Dim PCA ICA

2 -0.5747 ± 0.1858 -0.5621 ± 0.1830
5 -0.7494 ± 0.1329 -0.6683 ± 0.1291
10 -0.8512 ± 0.1010 -0.6809 ± 0.1222

where emb denotes the embedding function. We
then compute the components of the text embed-
ding using Principal Component Analysis (PCA;
Pearson 1901) and Independent Component Anal-
ysis (ICA; Comon 1994). Since the utility matrix
between samples is likely to be approximated by a
low-rank matrix (Trabelsi et al., 2024), the first few
components are likely to be sufficient to illustrate
the proximity between samples in the utility space.
We interpolate the values in component space for
each instruction and then compute the average over
the instructions of the dataset.

Figure 1 shows the mapping of the average MBR
objective values, with the horizontal and vertical
axes showing the first and second principal compo-
nents of the embeddings. Table 1 shows the correla-
tion of the distance to the center in principal compo-
nent space with the MBR objective. Regardless of
the dimension of the components, we observe qual-

itatively the same result that the correlation of the
distance from the center with the MBR objective is
strongly negative. On the other hand, the correla-
tion with the log probability of the output is weak,
indicating that the KL-divergence based on proba-
bility may not be a reliable measure of proximity in
the embedding space (Table 6 in Appendix B). The
result shows that the MBR objective value becomes
smaller as it moves away from the center of the dis-
tribution. We observe the same qualitative results
in Anthropic’s hh-rlhf and in a machine translation
dataset (WMT’21 De-En; Akhbardeh et al. 2021)
which we show in Appendix B.

3.2 Analytical Evaluation

Formally, the MBR objective corresponds to select-
ing the output y that minimizes the Wasserstein Dis-
tance (WD; Peyré and Cuturi 2020; Villani 2021a)
to the sample distribution. WD, also known as the
Earth Mover’s Distance (EMD; Rubner et al. 1998),
measures the cost required to transform one proba-
bility distribution into another. The cost function
C typically represents the “distance” or “effort” re-
quired to move a unit of probability mass from one
location to another. In the context of NLP, it is also
called the Word Mover’s Distance to evaluate the
similarity between a pair of texts (Kusner et al.,
2015; Huang et al., 2016). For a pair of probability
distributions P and Q over Yref , WD is defined as
follows:

WD(P,Q) =

min
{µi,j}i,j∈J (P,Q)

|Yref |∑

i=1

|Yref |∑

j=1

µi,jC(yi, yj), (6)

where C is the cost function that represents the
dissimilarity of the elements. J (P,Q) is a set of
all couplings over P and Q (Villani, 2021a):

J (P,Q) =
{
{µi,j}i,j :

|Yref |∑

i=1

µi,j = Q(yj),

|Yref |∑

j=1

µi,j = P (yi), µi,j ≥ 0
}
.

(7)

The objective of MBR decoding is identical to
minimizing the WD to the empirical distribution of
πref .

Proposition 1. Let the cost function C for WD
be C(y, y′) = −U(y, y′) for all y and y′. MBR
decoding selects the output with the smallest WD
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of the sample distribution:

yMBR(x) = argmax
y∈Yref

∑

y′∈Yref

1

N
U(y, y′) (8)

= argmin
y∈Yref

WD(πy(· | x), π̂ref(· | x)),

(9)

where πy is a policy that outputs y with a prob-
ability of 1 and π̂ref is the empirical distribu-
tion constructed from Yref : π̂ref(y | x) =
1
N

∑
yi∈Yref

I[yi = y].

Proof. The proof is in Appendix C.

The proposition shows that the MBR objective
measures the WD of the output selection strategy
to the sample distribution of the reference policy.
Maximizing the objective results in selecting an
output that is closest to the sample distribution
of the reference policy with respect to the utility
function U .

Summary. Both the empirical and analytical re-
sults show that the MBR objective serves as a prox-
imity regularizer to penalize an output that is less
representative of the samples from the reference
policy, as measured by the utility function.

4 MBR-Best-of-N (MBR-BoN) Sampling

We propose MBR-Best-of-N (MBR-BoN) sam-
pling, a variant of BoN sampling with an MBR ob-
jective as the proximity regularizer, to mitigate the
reward hacking problem of BoN sampling. MBR-
BoN uses the MBR objective as the proximity reg-
ularizer:

yMBR-BoN(x) =

argmax
y∈Yref

R(x, y) + β
∑

y′∈Yref

1

N
U(y, y′), (10)

where β is a hyperparameter to adjust the strength
of the regularization. As the MBR objective cor-
responds to the WD between the resulting policy
and the reference policy (Section 3), it serves as a
proximity regularizer to ensure that the resulting
policy is close to the reference policy πref .

The hyperparameter β controls the tradeoff be-
tween the reward and proximity to the reference
model. Using a small β makes the output more
aligned with the proxy reward, with β = 0 recov-
ering vanilla BoN sampling. A larger β makes the
output closer to the behavior of the reference model
πref , with β = +∞ recovering MBR decoding.

Advantage of WD over KL-divergence. WD
is a more suited regularizer than KL-divergence
for inference-time algorithms where the number of
samples is very small. While KL-divergence is use-
ful for training-time alignment algorithms, it poses
several challenges for inference-time algorithms
with limited samples.

Theoretically, any high confidence lower bound
on KL-divergence requires a sample size exponen-
tial in the value of KL-divergence (McAllester and
Stratos, 2020). This suggests that estimating KL-
divergence is unreliable in finite-sample settings.
For example, for the first instance of the AlpacaE-
val instruction (What are the names of some famous
actors that started their careers on Broadway?),
the KL-divergence of the randomly sampled 128
responses from Mistral has a minimum of 627, a
maximum of 5870, a mean of 1854, and a standard
deviation of 1039.

Moreover, KL-divergence is sensitive to small
differences in the sequences. Specifically, KL-
divergence can be large even if the underlying se-
quences differ very little. For example, the two
sentences: “Yes I will do it.” and “Yes I’ll do it.”
are considered completely different data instances
when computing KL-divergence. Conversely, WD
considers them to be quite similar data instances.
This is because the WD uses the utility function
to quantify the divergence and represents the dif-
ference between two distributions in terms of the
semantic distance between the sequences. This
makes the WD a more robust measure against the
minor variances that naturally occur in natural lan-
guage texts. See Appendix D for experimental eval-
uation of using KL-divergence as a regularization
term.

In addition to being a good proximal regularizer,
the MBR objective is a useful text generation ob-
jective in its own right. The objective is shown to
be effective, outperforming MAP decoding in a va-
riety of text generation tasks, including instruction-
following task (Suzgun et al., 2023; Bertsch et al.,
2023; junyou li et al., 2024).

5 Experiments

We evaluate the performance of MBR-BoN for two
use cases. First, we evaluate the performance of
MBR-BoN for decoding time alignment (Section
5.1). Then, we evaluate MBR-BoN as a sampling
strategy to generate a preference learning dataset
to be used for DPO (Section 5.2).
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Table 2: Average Spearman’s rank correlation coeffi-
cient of the proxy reward models to the gold reference
reward model (Eurus) on AlpacaFarm.

Proxy reward Correlation Coefficient

SHP-Large 0.32
SHP-XL 0.39
OASST 0.40

5.1 MBR-BoN for Decoding-Time Alignment

Setup. The evaluation is conducted using the Al-
pacaFarm (Dubois et al., 2023) and Anthropic’s
hh-rlhf datasets (Bai et al., 2022). For the Al-
pacaFarm dataset, we use the first 1000 entries
of the train split (alpaca_human_preference) as
the development set and the whole evaluation split
(alpaca_farm_evaluation) (805 instructions) as
a test dataset. For Anthropic’s datasets, we conduct
experiments on the helpful-base (Helpfulness)
and harmless-base (Harmlessness) subsets sep-
arately. For each subset, we use the first 1000
entries of the train split as the development set
and the first 1000 entries of the test split as a test
dataset. We use mistral-7b-sft-beta (Mistral)
and dolly-v2-3b (Dolly) as the language models
(Jiang et al., 2023a; Tunstall et al., 2024; Conover
et al., 2023).

To evaluate MBR-BoN under various conditions,
we use SHP-Large, SHP-XL (Ethayarajh et al.,
2022), and OASST (Köpf et al., 2023) as proxy
reward models. We use Eurus as a gold reference
reward model as it is one of the most accurate re-
ward models (Lambert et al., 2024; Zhou et al.,
2024) and is open-source which makes the exper-
iments reproducible. The results using other re-
ward models as a gold reference are reported in
Appendix E and G. The average Spearman’s rank
correlation coefficient ρ (Spearman, 1904) to the
gold reference reward (Eurus) is reported in Table
2.

We compare the performance of BoN, MBR, and
MBR-BoN. We sample up to N = 128 responses
per instruction using nucleus sampling and select
the output using the algorithms. We set the top-p
to be p = 0.9 and the temperature to be T = 1.0
for the nucleus sampling (Holtzman et al., 2020).
For a fair comparison, we use the same set of N
responses for all algorithms. We use the Sentence
BERT model (Reimers and Gurevych, 2019) based
on MPNet (Song et al., 2020) to compute the sen-

Table 3: The values of hyperparameter β used by MBR-
BoN determined using the development set.

Dataset SHP-Large SHP-XL OASST

AlpacaFarm 0.5 0.5 20.0
Helpfulness 0.05 0.1 20.0

Harmlessness 2.0 2.0 20.0

tence embedding for MBR and MBR-BoN.
MBR-BoN use the development set to select the

optimal β. For each pair of a proxy reward and
a gold reference reward, we run MBR-BoN with
β ∈ {10−6, 2 ·10−6, 5 ·10−6, 10−5, ..., 2 ·101} and
pick the best performing β for N = 128. We use
the same β for all N in evaluation. See Appendix G
and F for the ablation study on the regularization
strength β.

Results. Figure 2 shows the performance of BoN,
MBR, and MBR-BoN using Mistral as a language
model, evaluated by Eurus score. See Appendix G
for the result of Dolly. Overall, MBR-BoN out-
performs BoN and MBR in most of the settings,
showing that the method is effective in a wide
range of tasks. Figure 3 shows the performance
of MBR-BoN with N = 128 and with varying
regularization strength β. The vertical line shows
the β selected using the development set. Overall,
MBR-BoN outperforms BoN in a wide range of β
and is relatively robust to the choice of β.

As expected, we observe that MBR-BoN have
lower scores with respect to the proxy reward than
BoN (Appendix G). The regularization term effec-
tively mitigates the reward hacking of the BoN,
resulting in a higher score in the gold reference
score (Eurus).

Choice of Regularization strength. Table 3 sum-
marizes the regularization strength β picked using
the development set. The optimal value of β de-
pends on the choice of the language model, dataset,
and proxy reward model, which requires the use
of the development set to tune the hyperparameter
β. Still, we find that the amount of development
data we need for hyperparameter tuning is small.
Our post-hoc analysis on the size of the develope-
ment set shows that with as little as 10 instances it
already outperforms BoN and also finds β close to
the optimal β (Appendix F). Also note that the com-
putational cost of tuning the hyperparameter for
MBR-BoN is marginal compared to that of RLHF
or DPO as it does not involve any training of the
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Figure 2: Evaluation BoN, MBR, and MBR-BoN on the AlpacaFarm, hh-rlhf Helpfullness, and hh-rlhf Harmlessness
datasets. Mistral is used as the language model.

language model or reward model. Running MBR-
BoN with different β only requires the computation
of Eq. 10 with the different β.

5.2 MBR-BoN for Generating Preference
Learning Dataset

Previous work has shown that BoN sampling is an
effective strategy for generating an efficient prefer-
ence dataset (Xu et al., 2023; Yuan et al., 2024b;
Pace et al., 2024). They show that the efficiency of
pairwise preference learning is improved by using
the best and worst responses according to the re-
ward model as the chosen and rejected responses.
We evaluate the performance of DPO (Rafailov
et al., 2023) using the response selected by MBR-
BoN as the chosen response and the response with
the lowest reward score as the rejected response.

Setup. We sample 128 responses for each instruc-
tion in the training dataset and use the response
selected by MBR-BoN or BoN as the chosen re-
sponse and the response with the lowest reward
as the rejected response. We use all 9.69k instruc-
tions from AlpacaFarm and the first 5k instructions
from each of the Helpfulness and Harmlessness
subsets to train a model for the hh-rlhf datasets.
We use Mistral as the language model to generate
the pairwise preference dataset and train it using
the generated dataset (Jiang et al., 2023a; Tunstall
et al., 2024).

OASST is used as a proxy reward model and
Eurus is used for evaluation (Köpf et al., 2023;
Yuan et al., 2024a). We train a model with DPO us-
ing Low-Rank Adaptation (LoRA; Hu et al. 2022;
Sidahmed et al. 2024). The trained models are eval-
uated using the evaluation split of the AlpacaFarm
dataset. Other hyperparameters are described in
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Figure 3: Evaluation of the MBR-BoN using Mistral on the AlpacaFarm dataset with varying regularization strength
β. The number of samples is N = 128.
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Figure 4: Evaluation of the DPO using MBR-BoN to generate the preference dataset. OASST is used as the proxy
reward model to generate the preference dataset, and Eurus is used as the gold reference reward. The line represents
the mean of three runs, and the error bar shows the standard error of the mean.

Appendix J.

Results. Figure 4 shows the performance of mod-
els trained using MBR-BoN and BoN to generate
a pairwise preference dataset. The models trained
with MBR-BoN outperform a model trained with
BoN. According to Figure 2, MBR-BoN gener-
ates higher quality response texts than BoN with
respect to the gold reference reward. We expect
the models trained by DPO on the higher quality
responses to achieve higher quality generation. In
addition, MBR-BoN generates on-policy responses
that are representative of the reference policy (Sec-
tion 3.1 and Appendix B) which is shown to be one
of the important characteristics of efficient pref-
erence datasets (Chang et al., 2024; Guo et al.,
2024; Xu et al., 2024b; Tajwar et al., 2024; Tang
et al., 2024). Thus, we postulate that by generat-
ing high-quality and on-policy responses, models
aligned with responses generated by MBR-BoN
outperform that of BoN.

We additionally evaluate the performance of
DPO with responses generated by random sam-
pling (i.e., BoN with N = 2). According to the

Eurus reward model, the scores were as follows:
1140.0 for Alpaca, 1556.9 for Helpfulness, and
433.3 for Harmlessness. Both BoN and MBR-RoN
significantly outperform random sampling. This
result aligns with prior work showing BoN outper-
forming random sampling (Xu et al., 2023; Yuan
et al., 2024b; Pace et al., 2024).

The result shows the potential of MBR-BoN as
a tool for generating pairwise preference datasets
for preference learning. See Appendix H for the
results using GPT-4o as an evaluator.

6 Related Work

Mitigating reward hacking at inference time.
Using proximity regularization is not the only way
to mitigate the reward hacking problem. Several
studies have explored the use of multiple rewards.
(Mudgal et al., 2023; Coste et al., 2024; Rame et al.,
2024) propose to ensemble multiple reward func-
tions to mitigate reward hacking. Several studies
have investigated training models by the reward
functions and combining by interpolating the pa-
rameters (Ramé et al., 2023; Jang et al., 2023) or
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ensembling the model (Mitchell et al., 2024; Shi
et al., 2024). Our approach is applicable to any
proxy reward model, so it can be combined with
these methods.

MBR for training a model. Prior work has dis-
covered that MBR decoding for LLM is useful
for inference and for generating preference dataset
in machine translation tasks (Farinhas et al., 2023;
Ramos et al., 2024). Finkelstein and Freitag (2024);
Guttmann et al. (2024) uses the output generated
by MBR decoding for supervised fine-tuning to
improve the generation quality of a machine trans-
lation model. Yang et al. (2024) trains a model by
DPO to prefer outputs with higher MBR objective
values than lower ones. Tomani et al. (2024) trains
the machine translation model to predict the qual-
ity of the generation so that it can improve its own
generation using the estimate. The novelty of our
work is to introduce the MBR objective combined
with BoN sampling for language model alignment,
improving both the text generation and the training
using the generated texts.

7 Conclusions

We propose MBR-BoN, a variant of BoN sampling
with MBR objective as a proximity regularizer to
mitigate the reward hacking problem. We show that
the MBR objective is a proximity regularizer by its
nature and show it in the experiments. We evaluate
the performance of MBR-BoN using the Alpaca-
Farm and Anthropic’s hh-rlhf datasets. The result
shows that MBR-BoN outperforms BoN when the
proxy reward is weakly correlated with the refer-
ence objective. As an application of the method, we
also show that MBR-BoN is an effective strategy
for generating a preference dataset for DPO.

We believe that MBR-BoN will be a practical
choice for future decoding-time alignment meth-
ods because of its applicability and performance
improvements.

8 Limitations

The drawback of the proposed method is that it
requires a development set to tune the hyperpa-
rameter. Given that there is no clear strategy to
pick the β parameter even for RLHF and DPO, we
speculate that it would be challenging to develop a
strategy to find an effective β automatically. Still,
the hyperparameter tuning of MBR-BoN is much
more computationally efficient than that of RLHF

and DPO as it does not involve any training proce-
dures. In fact we observe that around 10 instances
are enough to find a near-optimal choice of β (Ap-
pendix F).

One of the critical limitations of MBR decoding
is its generation speed. It requires computing a
utility function that is quadratic to the number of
samples. MBR-BoN inherits the same limitation
because it is derived from MBR. Given that recent
work (Cheng and Vlachos, 2023; Jinnai and Ariu,
2024; Deguchi et al., 2024b; Vamvas and Sennrich,
2024) has improved the computational complex-
ity of MBR decoding to linear in the number of
samples, we are optimistic that the overhead of
MBR-BoN will be reduced in the future.

We use automated evaluation metrics to evaluate
the models. Although we use one of the most accu-
rate publicly available reward models and GPT-4o
to evaluate the performance of the models (Yuan
et al., 2024a; Lambert et al., 2024), it would be
desirable to perform a human evaluation.

Our experiments on preference learning are lim-
ited to the evaluation of DPO. Evaluation of MBR-
BoN for other preference optimization algorithms
is future work (Azar et al., 2023; Liu et al., 2024;
Ethayarajh et al., 2024; Xu et al., 2024a; Morimura
et al., 2024; Hong et al., 2024; Meng et al., 2024;
Park et al., 2024).

9 Impact Statement

We believe that this work will have a positive im-
pact by providing a method for fine-tuning an LLM
with limited annotation resources, allowing for
alignment with less representative communities in
language resources. LLMs would be more useful if
we could prevent them from reward hacking, even
when the annotation for the task is limited.
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A Overoptimization of BoN Sampling

Figure 5 shows the performance of BoN sampling
using proxy reward models evaluated by a gold
reference reward model. The proxy reward models
are based on the Pythia-1B model (Biderman et al.,
2023) and trained using the first 1000, 2000, and
4000 entries of the training set of AlpacaFarm. The
gold reference reward model is based on the Pythia-
2.8B model and trained using the entire training
set (9600 entries). Spearman’s rank correlation
coefficients (Spearman, 1904) of the proxy reward
models with the gold reference reward models are
present in Table 4. The hyperparameters used in the
reward model training are described in Table 10.

The performance of BoN sampling improves
with larger samples up to some point and it then
decreases with more samples from that point.
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Figure 5: Performance of BoN sampling using proxy
reward models. The lines show the mean and the bars
show the standard deviation of three runs.

Table 4: Spearman’s rank correlation coefficients of
the proxy reward models with the gold reference re-
ward model (Pythia 2.8B). The proxy reward models
are trained with 1000, 2000, and 4000 instances of the
training split.

#Training ρ

1000 0.189 ± 0.264
2000 0.327 ± 0.215
4000 0.358 ± 0.224

B Evaluation of MBR Objective as a
Proximity Regularizer

Table 5 shows the correlation of the distance to
the center of the distribution of the sentence em-

beddings (i.e., L1-norm of the component vector)
with the value of the MBR objective in the hh-rlhf
datasets. See Section 3 for the experimental setups.
The distance from the center of the distribution has
a strong negative correlation with the MBR objec-
tive. On the other hand, the correlation with the log
probability of the output is weak which shows that
the log probability and the KL-divergence using
that is not a reliable source to quantify the prox-
imity of the output with respect to the embedding
space (Table 6).

Figure 6 shows the average normalized MBR
objective values mapped to the first and second
principal components. The result shows that the
outputs that lie in the center of the distribution tend
to have higher MBR scores, which indicates that
the MBR score serves as a regularizer to keep the
output faithful to the reference policy.

As an ablation study, we evaluate the correla-
tion for a machine translation task using a ma-
chine translation model and a utility function
for machine translation. We use WMT’21 De-
En (Akhbardeh et al., 2021) as a dataset and
wmt21-dense-24-wide-x-en (Tran et al., 2021)
as the translation model. Both the embedding func-
tion and the utility function use wmt20-comet-da
(Rei et al., 2020b). Note that wmt20-comet-da is
not designed to be a symmetric function with re-
spect to y and y′ as the model measures the utility
over y and y′ and also the translation quality di-
rectly using the source text x. Figure 6c shows the
mapping of the values of the MBR objective on
WMT’21 De-En. Overall, we observe qualitatively
the same result as in the AlpacaFarm and hh-rlhf
datasets. The result shows that the MBR objec-
tive serving as a regularizer is observed in a ma-
chine translation task in addition to the instruction-
following tasks.
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Table 5: Correlation of the distance from the center of
the distribution in the component space with the MBR
objective.

Dim PCA ICA

hh-rlhf Helpfulness

2 -0.5702 ± 0.2013 -0.5696 ± 0.1906
5 -0.7478 ± 0.1339 -0.6931 ± 0.1299

10 -0.8407 ± 0.1136 -0.6792 ± 0.1375

hh-rlhf Harmlessness

2 -0.6050 ± 0.1770 -0.5917 ± 0.1727
5 -0.7536 ± 0.1305 -0.6920 ± 0.1298

10 -0.8550 ± 0.1066 -0.6909 ± 0.1311

WMT’21 De-En

2 -0.3917 ± 0.2108 -0.3820 ± 0.2055
5 -0.5676 ± 0.1540 -0.5287 ± 0.1458

10 -0.6705 ± 0.1306 -0.5612 ± 0.1360

Table 6: Correlation of the distance from the center of
the distribution in the component space with the log
probability on AplacaFarm.

Dim PCA ICA

2 0.0826 ± 0.2340 0.0806 ± 0.2373
5 0.0954 ± 0.2315 0.0905 ± 0.2075
10 0.0784 ± 0.2357 0.0425 ± 0.2061
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Figure 6: Visualization of the mean values of the MBR
objective in the space of the first and second principal
components.
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C Derivation of Proposition 1

We show the derivation of Proposition. 1. From
the definition of Wasserstein distance with p = 1
(Peyré and Cuturi, 2020; Villani, 2021a), we get
the following:

WD(πy,π̂ref(·|x)) =

min
{µi,j}i,j∈J

|Yref |∑

i=1

|Yref |∑

j=1

µi,jC(yi, yj), (11)

where J is a set of all couplings {µi,j}i,j (Villani,
2021a):

J =
{
{µi,j}i,j :

|Yref |∑

i=1

µi,j = π̂ref(yj |x),

|Yref |∑

j=1

µi,j = πy(yi),

µi,j ≥ 0
}
. (12)

Because πy(yi) = 0 for all yi ̸= y and µi,j ≥ 0,
we get µi,j = 0 for all yi ̸= y. Thus,

(11) = min
J

|Yref |∑

j=1

µy,jC(y, yj) (13)

Using µi,j = 0 for all i ̸= y and
∑|Yref |

i=1 µi,j =
π̂ref(yj |x), we get µy,j = π̂ref(yj |x). Thus,

(13) = min
J

|Yref |∑

j=1

π̂ref(yj |x)C(y, yj)

=

|Yref |∑

j=1

π̂ref(yj |x)C(y, yj). (14)

Because π̂ref(yj |x) is an empirical distribution
from the set of samples Yref , π̂ref(yj | x) =
1
N

∑
yi∈Yref

I[yj = yi]. Thus,

(14) =
∑

y′∈Yref

1

N
C(y, y′) (15)

= −
∑

y′∈Yref

1

N
U(y, y′). (16)

Thus, we get Proposition 1.

D Evaluation of KL-Regularized BoN

A naive implementation of proximity regularization
for BoN sampling is to introduce KL-regularization.
BoN with KL-regularization (RBoNKL) can be de-
rived from Eq. (1) as follows:

yRBoNKL
(x) =

argmax
y∈Yref

R(x, y)− βDKL[πy||πref(·|x)],

(17)

where πy represents a policy of choosing y with
a probability of 1, which is the policy it will
end up with if it chooses y as the output. Thus,
DKL[πy||πref(·|x)] represents the KL divergence
between the resulting policy and the reference pol-
icy. Intuitively, RBoNKL optimizes the same ob-
jective as Eq. (1) but with modifications to make
it available at decoding time. Eq. (17) is derived
from Eq. (1) by computing the optimal response for
a given x instead of computing the optimal policy.

The tradeoff between the reward and the prox-
imity to the reference model is controlled by the
hyperparameter β. With a small β, the output is
more aligned with the proxy reward model. With
β = 0, the vanilla BoN is restored. With larger β,
the output is closer to the behavior of the reference
model πref , where β = +∞ selects the response
with the highest model probability, recovering the
maximum a posteriori (MAP) decoding (Stahlberg
and Byrne, 2019; Eikema and Aziz, 2020; Holtz-
man et al., 2020).

Figure 7 shows the performance of RBoNKL.
Overall, its improvement over BoN is marginal.

E Evaluation using Reward Model
Trained on AlpacaFarm

Figure 8 shows the performance of MBR-BoN com-
pared to BoN using a reward model trained on the
AlpacaFarm training set. The reward model is the
gold reference reward model based on Pythia-2.8B
used in Appendix A. The improvement of MBR-
BoN over BoN is large when the number of samples
are large and also when the proxy reward model is
less algined with the gold reference reward model.
On the other hand, when the proxy reward model
is trained using noiseless (the same preference an-
notations as the gold reference model) and large
enough dataset (|D| = 4000), the performance of
MBR-BoN is on par with BoN.
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Figure 7: Evaluation of the RBoNKL using Mistral on
the AlpacaFarm dataset.

F Analysis on the Size of the Development
Set for Tuning Beta

We run a posthoc analysis to evaluate the effect of
the size of the development set to tune the hyper-
parameter β for MBR-BoN. Figure 9 shows the
performance of MBR-BoN with varying sizes of
development set to compute the β, from 10 to 1000.
We observe that the score is relatively consistent
and MBR-BoN outperforms BoN even with 10 ex-
amples for fine-tuning β.

G Effect of the Regularization Strength

Correlation Coefficient. To understand the ef-
fect of the regularization strength on the perfor-
mance of RBoN under different pairs of proxy and
gold reward models, we evaluate RBoN using SHP-
Large, SHP-XL, OASST, and PairRM (Jiang et al.,
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Figure 8: The average win rate of the MBR-BoN against
BoN using a reward model trained on the training set of
AlpacaFarm.

2023b) as gold reward models. Figure 10 reports
the average Spearman’s rank correlation coefficient
ρ of a pair of reward models (Spearman, 1904).
Note that SHP-Large and SHP-XL reward mod-
els are highly correlated as they are trained on the
same training procedure.

Tradeoff between Proxy Reward and Proxim-
ity Scores. Figure 11 shows the tradeoff of the
proxy reward score and the MBR objective score
with different values of β on MBR-BoN. The result
shows that the hyperparameter β effectively con-
trols the weights over the proxy reward model and
proximity to the reference policy.

Evaluation of MBR-BoN using Various Refer-
ence Reward Models. We perform the genera-
tion (BoN and MBR-BoN) using one of the reward
models as the proxy reward model and evaluate
the selected responses using the remaining reward
models as the gold reference rewards. We do not
use PairRM as a proxy reward model because it is
a pairwise reward model that estimates the prefer-
ence for a pair of responses rather than computing
an absolute preference for a response. The use of
a pairwise reward model as a proxy reward model
for RBoN is future work.

Figure 12 shows the performance of BoN and
MBR-BoN with varying β with N = 128 using
Mistral on the AlpacaFarm dataset. MBR-BoN
outperforms BoN in all settings except when the
proxy reward model is highly correlated with the
gold reward model (e.g., SHP-Large and SHP-XL).

The experiment shows that the optimal β de-
pends on various factors, but the strength of the
correlation between the proxy reward model and
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Figure 9: Evaluation of MBR-BoN with varying sizes
of development set to tune the optimal β.

the gold reference reward seems to be the key fac-
tor. For example, SHP-Large is strongly corre-
lated with SHP-XL (ρ = 0.66), so the optimal
β is close to 0. In this case, MBR-BoN has lit-
tle to no advantage over BoN. On the other hand,
SHP-Large is only weakly correlated with OASST
and PairRM (ρ = 0.29, 0.20), where the optimal
β for SHP-Large → OASST and PairRM is large
(β = 0.1− 1.0).

Figures 13 and 14 show the performance of BoN
(β = 0), MBR decoding (β = +∞), and MBR-
BoN with different number of samples N using
Mistral and Dolly on AlpacaFarm. We observe
qualitatively similar results with smaller N to the
result of N = 128 in Figure 2.
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Figure 10: Average Spearman’s rank correlation coef-
ficient of the reward models in the evaluation split of
the AlpacaFarm dataset for the responses generated by
Mistral. 128 responses are used to compute Spearman’s
rank correlation for each instruction, averaged over the
805 instructions.
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Figure 11: The tradeoff of the proxy reward score and proximity (MBR objective) with MBR-BoN using different
β strengths on AlpacaFarm. The responses are generated by Mistral. The number of samples N is 128. The line
shows the mean and the error bar shows the standard error of the estimation of the mean value.
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(h) OASST → SHP-XL
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Figure 12: The gold reward score and the proxy reward score of the MBR-BoN with different regularization
strengths and reward models. The captions of the subfigures show the proxy and the gold reward model (Proxy
→ Gold). The performance of BoN is shown in the horizontal lines. The responses are generated by Mistral. The
number of samples N is 128.
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(e) SHP-XL → OASST
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(g) OASST → SHP-Large
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(h) OASST → SHP-XL
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(i) OASST → PairRM

Figure 13: Evaluation of MBR-BoN using Mistral on AlpacaFarm. The gold reward score and the proxy reward
score of the MBR-BoN with different regularization strengths and reward models. The captions of the subfigures
show the proxy and the gold reward model (Proxy → Gold). The reward scores of the reference reward (right axis)
are shown in solid lines whereas the reward scores of the proxy reward (left axis) are shown in dashed lines. β =inf
corresponds to the MBR decoding.
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(a) SHP-Large → SHP-XL

0 25 50 75 100 125
Number of samples (N)

0.95

0.96

0.97

0.98
Pr

ox
y 

R
ew

ar
d 

(S
H

P-
La

rg
e)

1.4

1.3

1.2

1.1

1.0

G
ol

d 
R

ef
er

en
ce

 (O
AS

ST
)

0.0
0.001
0.01
0.1
1.0
inf

(b) SHP-Large → OASST

0 25 50 75 100 125
Number of samples (N)

0.95

0.96

0.97

0.98

Pr
ox

y 
R

ew
ar

d 
(S

H
P-

La
rg

e)

52

54

56

58

60

G
ol

d 
R

ef
er

en
ce

 (P
ai

rR
M

)

0.0
0.001
0.01
0.1
1.0
inf

(c) SHP-Large → PairRM
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(e) SHP-XL → OASST

0 25 50 75 100 125
Number of samples (N)

0.92

0.94

0.96

0.98

Pr
ox

y 
R

ew
ar

d 
(S

H
P-

XL
)

54

56

58

60

62

G
ol

d 
R

ef
er

en
ce

 (P
ai

rR
M

)

0.0
0.001
0.01
0.1
1.0
inf
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(g) OASST → SHP-Large
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(h) OASST → SHP-XL
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(i) OASST → PairRM

Figure 14: Evaluation of MBR-BoN using Dolly on AlpacaFarm. The gold reward score and the proxy reward score
of the MBR-BoN with different regularization strengths and reward models. The captions of the subfigures show
the proxy and the gold reward model (Proxy → Gold). The reward scores of the reference reward (right axis) are
shown in solid lines whereas the reward scores of the proxy reward (left axis) are shown in dashed lines. β =inf
corresponds to the MBR decoding.
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H GPT-4o Evaluation of the DPO

Figure 15 shows the average score of the models
trained by DPO in Section 5.2 using GPT-4o as a
judge (Zheng et al., 2023a; OpenAI et al., 2024).
We evaluate using the first 300 entries of the test
split of the datasets. We use the following prompt
to ask GPT-4o to evaluate the quality of the output.

Please act as an impartial judge and
evaluate the quality of the response
provided by an AI assistant to the
user question displayed below. Your
evaluation should consider factors such
as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of
the response. Begin your evaluation by
providing a short explanation. Be as
objective as possible. After providing
your explanation, you must rate the
response on a scale of 1 to 10 by strictly
following this format: “[[rating]]”, for
example: “Rating: [[5]]”.

[Question]
{question}
[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

The model name is gpt-4o and the model version
is 2024-05-13. We set the model temperature, fre-
quency penalty, and presence penalty to 0. Overall,
we observe the same qualitative result that mod-
els trained using the proposed method outperform
the model using the BoN sampling. For the gen-
erations of the fine-tuned models we evaluate, the
average agreement of GPT-4o evaluation with the
Eurus reward model is 0.708 for AlpacaFarm and
0.750 for hh-rlhf datasets.

I Walltime

We report the wall clock time of BoN and MBR-
BoN in Table 7. The batch size for generating
samples is set to 4. The code base is based on
Huggingface’s Transformers library (Wolf et al.,
2020) and is not based on a library optimized for
inference speed (e.g., vLLM; Kwon et al., 2023).
We use OASST reward model with the batch size
set to 8. We set the batch size for the computa-
tion of the similarity between sequences for the
MBR values to 64. In our code base, we store the
generated samples, computed reward values, and
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Figure 15: GPT-4o Evaluation of the fine-tuned models
trained using MBR-BoN.
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Table 7: Summary of wall clock time of BoN and MBR-
BoN with N = 128 for AlpacaFarm dataset. All ex-
periements are run on an NVIDIA T4 GPU.

Run time (seconds)

BoN MBR-BoN

Generate samples 134 134
Compute the reward values 0.1 0.1
Compute the MBR values - 2

Table 8: Generation hyperparameters used in Section
5.1 and 5.2

Parameter Value

Max instruction length 256
Max new tokens 256

Temperature 1.0
Top-p 0.9

the MBR values to a cloud storage. The reported
wall clock time may also include the time for the
logging procedures. The wall clock time depends
on various factors including the code base and the
hardware. All the experiments are conducted using
an NVIDIA T4 GPU.

J Hyperparameters

Table 8 describes the hyperparameters used to gen-
erate responses from the πref . The parameters are
used for both Sections 5.1 and 5.2. Table 9 summa-
rizes the hyperparameters used for DPO in Section
5.2.

K Reproducibility Statement

All datasets and models used in the experiments
are publicly available except for GPT-4o (Table
11). The code is implemented using Huggingface’s
Transformers library (Wolf et al., 2020) and TRL

Table 9: DPO hyperparameters used in Section 5.2.

Parameter Value

Epochs 3
Learning rate 1e-5

Optimizer AdamW
Batch size 4

Regularization factor (β) 0.1
LoRA r 128
LoRA α 32

Table 10: Hyperparameters for training reward models
used in Appendix A. The values follow the defaults of
the TRL library.

Parameter Value

Epochs 3
Learning rate 5e-05

Optimizer AdamW
Batch size 8

library (von Werra et al., 2020). The PCA and
ICA are implemented using scikit-learn (Pedregosa
et al., 2011). Our code is available at https://gi
thub.com/CyberAgentAILab/regularized-b
on with an MIT license.
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Table 11: List of datasets and models used in the experiments.

Name Reference

AlpacaFarm (Dubois et al., 2023) https://huggingface.co/datasets/tatsu-l
ab/alpaca_farm

Anthropic’s hh-rlhf (Bai et al., 2022) https://huggingface.co/datasets/Anthropic/
hh-rlhf

WMT’21 De-En (Akhbardeh et al., 2021) https://github.com/wmt-conference/wm
t21-news-systems

mistral-7b-sft-beta (Mistral) (Jiang et al., 2023a; Tunstall et al., 2024) https://huggingface.co
/HuggingFaceH4/mistral-7b-sft-beta

dolly-v2-3b (Dolly) (Conover et al., 2023) https://huggingface.co/databricks/doll
y-v2-3b

Pythia-1B (Biderman et al., 2023) https://huggingface.co/EleutherAI/py
thia-1b

Pythia-2.8B (Biderman et al., 2023) https://huggingface.co/EleutherAI/py
thia-2.8b

wmt21-dense-24-wide (Tran et al., 2021) https://huggingface.co/facebook/wmt21-den
se-24-wide-x-en

SHP-Large (Ethayarajh et al., 2022) https://huggingface.co/stanfordnlp/S
teamSHP-flan-t5-large

SHP-XL (Ethayarajh et al., 2022) https://huggingface.co/stanfordnlp/S
teamSHP-flan-t5-xl

OASST (Köpf et al., 2023) https://huggingface.co/OpenAssistant/rew
ard-model-deberta-v3-large-v2

PairRM (Jiang et al., 2023b) https://huggingface.co/llm-blender/PairR
M

Eurus (Yuan et al., 2024a) https://huggingface.co/openbmb/Eurus-R
M-7b

MPNet (Song et al., 2020) https://huggingface.co/sentence-transform
ers/all-mpnet-base-v2

wmt20-comet-da (Rei et al., 2020a) https://huggingface.co/Unbabel/wmt20-com
et-da
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