EMS-SD: Efficient Multi-sample Speculative Decoding
for Accelerating Large Language Models

Yunsheng Ni Chuanjian Liu Yehui Tang Kai Han*

Yunhe Wang*

Huawei Noah’s Ark Lab
{niyunsheng,kai.han, yunhe.wang}@huawei.com

Abstract

Speculative decoding emerges as a pivotal
technique for enhancing the inference speed
of Large Language Models (LLMs). Despite
recent research aiming to improve prediction
efficiency, multi-sample speculative decoding
has been overlooked due to varying numbers
of accepted tokens within a batch in the veri-
fication phase. Vanilla method adds padding
tokens in order to ensure that the number of
new tokens remains consistent across samples.
However, this increases the computational and
memory access overhead, thereby reducing the
speedup ratio. We propose a novel method
that can resolve the issue of inconsistent to-
kens accepted by different samples without
necessitating an increase in memory or com-
puting overhead. Furthermore, our proposed
method can handle the situation where the pre-
diction tokens of different samples are incon-
sistent without the need to add padding to-
kens. Sufficient experiments demonstrate the
efficacy of our method. Our code is available
at https://github.com/niyunsheng/EMS-SD.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Achiam et al., 2023; Touvron et al., 2023;
Wang et al., 2023) have demonstrated considerable
capabilities, particularly in the realm of natural lan-
guage processing. Autoregressive Large Language
Models generate a token in a single pass, whereas
speculative decoding allows large models to gener-
ate multiple tokens in a single pass, thereby greatly
improving inference speed. It is crucial to high-
light that the inference time of LLMs on a single
token and multiple tokens is approximate. Con-
sequently, reducing the number of inference steps
can significantly reduce the inference time.

A plethora of efficient speculative decoding
methods have been proposed recently. However,
none of these methods provide a comprehensive

"Corresponding author

4.0 3.94

EEm Greedy Decoding
I Vanilla Method
s Our Method

12 16 20 24
Batch Size

Figure 1: Speedup ratio of Opt-6.7b on the CNN/Daily
Mail Dataset for greedy settings when batch size > 1,
utilizing LLMA (Yang et al., 2023b) as the basic spec-
ulative decoding method. Our method demonstrates su-
perior performance to the vanilla method under varying
batch sizes. The larger the batch size, the more pro-
nounced the advantage of our method.

study of speculative decoding in multi-sample sce-
narios. To the best of our knowledge, only EA-
GLE (Li et al., 2024) presents results for batch
sizes < 4 but doesn’t discuss larger batch sizes.

The primary challenge in multi-sample specula-
tive decoding is the inconsistency in the number
of accepted tokens across samples following a sin-
gle inference. Vanilla solution is to add padding
tokens in order to achieve uniformity. This ap-
proach is also employed by EAGLE. Nevertheless,
these padding tokens increase the computational
and memory access overhead, which becomes sig-
nificant as batch size increases, thereby reducing
speedup ratio.

Can we perform multi-sample specula-
tive decoding without increasing compu-
tational and memory access overhead?

We proposed a novel and efficient method to
resolve this issue. Specifically, we proposed unpad
Key-Value (KV) cache in the verification phase,
which specifies the start locations of the KV cache
for different samples, thus eliminating the need for

9307

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 9307-9320
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/niyunsheng/EMS-SD

padding tokens. Furthermore, in anticipation of the
potential discrepancy in the number of predicted
tokens across different samples, we proposed the
unpad input tokens method as a solution in the
prediction phase. This method concatenates all
input tokens prior to inference and expands these
tokens during the calculation of attention.

The main contributions are as follows:

1. We proposed an Efficient Multi-sample Spec-
ulative Decoding method (EMS-SD), which
takes full account of the inhomogeneity be-
tween different samples. Even if the new
generated token numbers of different samples
vary, the KV cache is continuous without the
addition of padding tokens. Similarly, when
the prediction token numbers of different sam-
ples vary, all input tokens are spliced without
the addition of padding tokens.

2. Sufficient experiments have proven that our
proposed method achieves a much higher
speedup than vanilla methods in multi-sample
speculative decoding.

3. We are the first to study speculative decod-
ing in the context of multi-sample situations,
and we have proposed an effective method for
addressing this issue. Our method can be eas-
ily integrated into almost all basic speculative
decoding methods.

2 Related Works

Large Language Models. Since the advent of the
GPT (Radford et al., 2019) series of models, par-
ticularly after the emergence of ChatGPT (Achiam
et al.,, 2023), there has been a proliferation of
large language models, including Llama (Touvron
et al., 2023), Vicuna (Chiang et al., 2023), Chat-
GLM (Zeng et al., 2022), QWen (Bai et al., 2023),
Baichuan (Yang et al., 2023a), Gemini (Team et al.,
2023), Pangu-7 (Wang et al., 2023), Mistral (Jiang
et al., 2023, 2024), etc.

Speculative decoding. Speculative decoding can
be divided into two stages in general: prediction
and verification. Some studies have proposed effi-
cient prediction methods. These prediction meth-
ods can be broadly classified into two categories:
those that require training and those that do not. For
example, methods that do not require training in-
clude LLMA (Yang et al., 2023b), REST (He et al.,
2023), Lookahead (Fu et al., 2023), PLD (Saxena,
2023), etc. In contrast, methods that require train-
ing include draft model prediction (Leviathan et al.,

2023), Medusa (Cali et al., 2024), Hydra (Ankner
et al., 2024), kangaroo (Liu et al., 2024), EA-
GLE (Li et al., 2024), etc.

Dynamic Tree decoding. SpecInfer (Miao et al.,
2023) introduces tree decoding mechanism, which
predicts multiple tokens at the same position to
improve the acceptance rate. The tree structure is
manually designed, and so is Medusa, EAGLE, etc.
Some recent studies have focused on the problem
of dynamic tree decoding. Sequoia (Chen et al.,
2024) introduces a hardware-aware tree optimizer.
RSD (Jeon et al., 2024) dynamically modifies the
tree structure within fixed computational budgets.
And EAGLE?2 (Li et al., 2024) generates the predic-
tion tree dynamically based on confidence scores
from the draft model.

3 Approach

3.1 Rethinking Vanilla Multi-sample
Speculative Decoding

Restrictions on memory access. It should be
noted that mainstream Al frameworks such as Py-
Torch (Paszke et al., 2019) only support aligned
key-value cache access. Consequently, two key
requirements must be met for LLMs inference: (1)
the number of tokens across different samples with
in a batch must be equal prior to inference, and (2)
the input token count must remain consistent for
all samples during inference. To ensure uniformity,
padding tokens are added to samples with varying
token lengths. Additionally, attention masks are
used to prevent the computation of padding tokens.
Add padding tokens to align the output lengths
of different samples. The primary issue is that
the number of accept tokens during the verification
phase varies considerably between samples within
a batch. To illustrate, if k tokens are predicted in the
prediction stage, then the number of accept tokens
can be varied from 1 to k£ + 1. Vanilla method adds
padding tokens to ensure that the number of new to-
kens is the same for each sample within in a batch.
Nevertheless, this approach leads to a considerable
increase in the computational and memory access
overhead, which in turn results in a significant re-
duction in the speedup. In Appendix B, we present
a theoretical analysis of the impact of padding to-
kens on speedup.

Add padding tokens to align the input lengths
of different samples. A further issue is that the
number of predicted tokens for different samples
in the prediction stage may vary. In this case,

9308

Context Decoding Decoding Step 1

iy b (RN
% RIS

Decoding Step 2

v X B
AV AL A A FV %

t [Verlfyln Parallel J

Verify in Parallel

AN A A A A A

LA AA A A

Context X
Decoding v 2 7 5K N S S S
[Efficiently Draft Efficiently Draft
Sample 0 * *
Sample 1
| un m ﬁ Vanilla Method
,_S_""_“?E’l‘? o _S_a_’l‘_"_"?_1_ Sample0 Samplel1 Our Method
it P Y ﬁ KA GAK 2k S
Verify in Parallel Verify in Parallel draft token
A a e Blte Al AT A AAT | [pad token

7 useless token

Context 00O 0o oo v O=
Decoding % L X O#
[Efficiently Draft Efficiently Draft } Il context KV cache
Sample 0 L A Il step 1 KV cache
Sample 1 Il step 2 KV cache

ﬁ unpad KV cache ‘ unpad KV cache 4 start locations

[]pad KV cache

Figure 2: Our Method v.s. Vanilla Method. We specify the location of the KV cache for each sample individually,
thus eliminating the necessity for the addition of padding to the KV cache. And we concatenate all input tokens of
each sample into a single sequence without padding tokens when the number of prediction tokens differs between
samples. Our method demonstrates superior performance than the vanilla method, without the need for additional

computational and memory access overhead.

padding token also needs to be added to align
the input lengths. This issue does not arise in all
circumstances, and is most commonly observed
in retrieval-based prediction scenarios, including
LLMA (Yang et al., 2023b) and REST (He et al.,
2023). This is due to the fact that the retrieval-
based prediction method employs a text matching
process, whereby different samples may not be
able to match the predicted text simultaneously. In
more general methods, such as draft model predic-
tion (Leviathan et al., 2023), generate same number
of prediction tokens for different samples. Some
recent studies have focused on the problem of dy-
namic tree decoding (Chen et al., 2024; Jeon et al.,
2024). It is possible that in the future, there may be
different optimal prediction trees or optimal num-
bers of tokens for different samples.

Case analysis. As illustrated in Figure 2 and Ta-
ble 1, we construct two samples within a batch as
an example. In the decoding step 1, sample 1 have
to add 3 padding tokens in order to ensure that
the input lengths are identical to those of sample

0. Subsequently, following the verification phase,
sample 1 must add 3 padding tokens in the KV
cache in order to ensure that the output lengths are
identical to those of sample 0. In the decoding step
2, sample 0 have to add 3 padding tokens during
the predication phase and 4 padding tokens in the
KV cache subsequent to the verification phase.

3.2 Efficient Multi-sample Speculative
Decoding

Vanilla Method tends to result in elevated compu-
tational and memory access overheads. In con-
trast, our approach does not entail such drawbacks,
thereby conferring a higher speedup ratio. In this
section, we first point out that aligned KV cache
access is not immutable, and then present two key
components of our approach: unpad KV cache and
unpad input tokens.

Aligned KV cache access is not mandatory. In
autoregressive models, each token is conditioned
only on preceding tokens during the attention com-
putation. Theoretically, given the location of the

9309

Table 1: The two constructed samples demonstrate in Figure 2. During the two decoding steps, the number of
tokens predicted and accepted by the two samples differs. If the vanilla method is employed, it’s necessary to
incorporate padding tokens in both predication and verification phases of speculative decoding.

Decoding Step 1 Decoding Step 2
Sample | Predication Phase | Verification Phase | Predication Phase | Verification Phase
Predict Padding | Accept Padding | Predict Padding | Accept Padding
5 0 4 0 2 3 2 4
1 2 3 1 3 5 0 6 0

input token and access to the KV cache, we can
calculate the attention output. These operations
can be encapsulated within CUDA kernels, as evi-
denced by implementations in frameworks such as
FasterTransformer (NVIDIA, 2021), FlashAtten-
tion (Dao et al., 2022), and PyTorch (Paszke et al.,
2019) '. When invoking these kernels, we can com-
pute attention output for different tokens, even if
these different tokens are in different samples and
rely on different numbers of preceding tokens.
Unpad KV cache. Firstly, we introduce the first
major component: unpad KV cache. This elimi-
nates the need to add padding tokens when different
samples accept different lengths in the verification
phase. In particular, we specify the start location of
the KV cache for each sample individually, rather
than aligning writes in a manner similar to Pytorch.
It should be noted that the varying start locations of
samples lead to slight discrepancies in the compu-
tational workload for the attention CUDA kernels.
Nevertheless, since all tokens across varying posi-
tions and samples compute their attention outputs
in parallel, the overall speed is dictated by the to-
ken necessitating the greatest computational load,
typically the one with the highest number of pre-
ceding tokens. As illustrated in the lower part of
Figure 2, the start locations of KV cache of the
two samples is distinct. For each input token, we
initially compute its KV cache and subsequently
write it to memory based on the specified position
for each sample. Thereafter, the attention outputs
for all tokens, across various samples and positions,
are calculated in parallel.

By employing unique KV cache start positions
for each sample, we can independently determine
the subsequent start location during verification,
regardless of varying acceptance lengths across
samples. Consequently, this approach negates the

'These frameworks provide the basic CUDA kernel for
computing attention output. We need to modify these kernels
to implement our method for supporting speculative decoding
in multi-sample situations.

need for extra padding tokens, thereby preventing
memory waste and computational overhead. As
shown in Figure 2, sample O accepted 4 tokens,
advancing the KV cache start location by 4. While
sample 1 accepted 1 token, advancing it by 1.

Unpad input tokens. Secondly, in order to ad-
dress the issue of differing numbers of input tokens
across different samples, we proposed the "unpad
input tokens" method as a solution. In general,
prior to inputting into the Transformer network,
all input tokens are concatenated together, and the
number of input tokens for each sample is recorded.
Additionally, during the attention result calcula-
tions, the CUDA kernel reconstructs the original
batch indices and sequence positions for each to-
ken. This reconstruction enables us to identify the
specific KV cache that each token needs to rely on.
Figure 3 shows the general processing flow. Refer
to Appendix D for specific processing procedures.

input tokens of sample 0 sample 1

L]
lconcat input tokens prior inference

-

irestore the sample/sequence:index

lololo o/o/0o[1[1]1 sampleid
{15,667 8/9(10 3|4 |5 sequenceid :

depends on the first
U ---5 KV caches in sample 1

Sample 0
Sample 1

accept token

[l context KV cache []pad KV cache
draft token

M step 1 KV cache 4 start locations

Figure 3: The detailed processing of unpad input to-
kens of decoding step 1 in Figure 2. Sample O pre-
dicted 5 tokens, while sample 1 predicted 2 tokens. All
tokens are concatenated before inference, and the sam-
ple/sequence index is restored when attention is com-
puted within the CUDA kernels. Consequently, each
token is aware of the specific KV caches to which it
can utilize for parallel computation.

9310

Table 2: Ablation study using LLMA were conducted on two key methods: unpad KV cache and unpad input
tokens. Under different batch sizes, our method demonstrated a significantly higher acceleration ratio than vanilla
method. The method "unpad KV cache" played a more prominent role. TPS stands for tokens per second.

. Unpad Unpad
Batch Size Inference Method KV (Ij)ache Input E‘okens TPS Speed up
Greedy Decoding 137.49
Vanilla Method 441.64 3.21
2 v 439.40 3.20
Our Method v 477.72 3.47
v v 480.59 3.50
Greedy Decoding 257.37
Vanilla Method 581.54 2.26
4 v 610.41 2.37
Our Method v 728.86 2.83
v v 729.17 2.83
Greedy Decoding 468.89
Vanilla Method 640.58 1.37
8 v 687.11 1.47
Our Method v 948.71 2.02
v v 1017.75 2.17
Greedy Decoding 774.59
Vanilla Method 640.94 0.83
16 v 734.86 0.95
Our Method v 1134.25 1.46
v v 1264.07 1.63
Greedy Decoding 936.45
Vanilla Method 616.19 0.66
24 v 708.53 0.76
Our Method v 1150.16 1.23
v v 1321.45 1.41

4 Experiments

4.1 Implementation details

Base Speculative Decoding Methods. The effi-
cacy of our approach is evaluated through two fun-
damental speculative decoding methods. These
include LLMA (Yang et al., 2023b), a retrieval-
based method, and the draft model prediction
method (Leviathan et al., 2023), which employs
draft models to predict. In the LLMA method, the
match length is set to 2 and the copy length to 7. In
the draft model prediction method, the draft model
is employed to predict 4 tokens.

Models and Datasets. We adopt the Opt (Zhang
et al., 2022) Series models, including Opt-2.7b,
Opt-6.7b, and Opt-13b. ! For the draft model pre-
diction method, we utilized Opt-125m as the draft
model. The test data set comprised a total of 480

! As the FasterTransformer framework itself does not sup-
port the Llama model, we did not utilize the more popular
model like Llama for testing purposes.

pieces of data selected from the CNN/Daily Mail
Test subset (See et al., 2017). In our experiments,
we utilize a single A100 GPU for the Opt-2.7b
and 6.7b models, while employing two GPUs for
the Opt-13b model. All experimental results were
subjected to three independent tests and the mean
values were calculated. We also conducted exper-
iments on GSM8K (Cobbe et al., 2021) and MT-
bench (Zheng et al., 2023) datasets, the details of
which can be found in Appendix C.

Metrics. In order to ascertain the speed of a given
method, we employ the tokens per second as an
indicator. Furthermore, the speed up ratio repre-
sents the multiple between the use of the specu-
lative decoding method and its absence. Given
that the generation length of the CNN/Daily Mail
Dataset is relatively brief (less than 128), we limit
our consideration to the incremental decoding pro-
cess. In speculative decoding, the average accep-
tance length is a significant metric, with a larger av-

9311

Table 3: The efficacy of our method evaluated on two smaller models using LLMA. Our method demonstrates
superior performance on different batch sizes and models of varying sizes. When the batch size increases, the
speedup ratio of the original method declines rapidly, whereas our method exhibits a more gradual decline.

. Greedy Decodin Vanilla Method Our Method
Model Batch Size):FPS) TPS Speedup TPS Speed up

1 128.31 389.61 3.04

2 205.95 484.31 2.35 550.62 2.67

Opt-2.7b 4 362.88 545.67 1.50 707.25 1.95

8 643.38 527.27 0.82 885.83 1.38

12 881.70 521.42 0.59 973.53 1.10

16 1087.33 521.16 0.48 1072.35 0.99
1 59.51 219.82 3.69

2 95.33 295.37 3.10 325.79 3.42

4 160.31 374.24 2.34 441.02 2.75

Opt-13b 8 278.70 379.05 1.36 578.22 2.07

12 375.74 371.32 0.99 610.32 1.62

16 468.58 378.50 0.81 649.84 1.39

20 540.07 390.93 0.72 742.46 1.37

24 593.53 401.34 0.68 779.77 1.31

erage acceptance length often indicative of a higher
speedup ratio. Since some padding tokens need to
be added in the vanilla multi-sample speculative
decoding method, the average padding ratio is also
a significant metric.

Specific code implementation. Our proposed
method in question necessitates the alteration of the
CUDA kernel. And we implemented our method
on the FasterTransformer (NVIDIA, 2021) frame-
work, which is a widely used C++ acceleration
library that facilitates the implementation of our
method. The proposed methods were implemented
by modifying the Python calling interface and the
CUDA kernels. Further details are available in the
open-source repository.

4.2 Experiments using LLMA

In this section, LLMA is adopted as the basic
method of speculative decoding.

Ablation study on two Key components: unpad
KYV cache and unpad input tokens. As illustrated
in Table 2, the opt-6.7b model was employed to
conduct ablation experiments on two key methods.
Firstly, it can be observed that under varying batch
sizes, our method exhibits a superior speedup com-
pared to the vanilla method. When the batch size
was set to 8, our method achieved a speedup of 2.17
times, whereas the vanilla method only achieved a
speedup of 1.37 times. Secondly, both sub-methods
are of significance, with "unpad KV cache" playing
a particularly pivotal role.

Experiments on different model sizes. We con-
ducted experiments on two models of other sizes,
namely opt-2.7b and opt-13b. As illustrated in
Table 3, the two smaller models exhibit higher
speedup ratios when utilising our method in com-
parison to the vanilla method, regardless of the
varying batch sizes. With a batch size of 12, the
opt-13b model achieved a 1.62x speedup, whereas
the vanilla method exhibited no acceleration and
was outperformed by the greedy decoding method.
As Figure 4 shows, the average padding ratio here
exceeds 115%, highlighting the primary reason for
the vanilla method’s ineffectiveness.

LLMA Drat Model Prediction
S 1.25]
©
o
£
r}; 0.75+ P
& .
5 0.501 /7
(@)] 1
g 0.251 f pm =B = 0= @ =00
>] r
<(O.OOng N O
24 8 12162024 124 8 12162024
Batch Size
Opt-13b -e- Opt-6.7b Opt-2.7b

Figure 4: The average padding ratio utilizing the
vanilla multi-sample method. The average padding ra-
tio represents the amount of redundant computation,
and an increase in this ratio will result in a proportional
reduction in speedup.

9312

Table 4: Evaluating the effectiveness of our method on three models of different sizes using draft model prediction,
with opt-125m model as the draft model. In models of varying sizes, our method exhibits a greater speedup than

the vanilla method.

. Greedy Decodin, Vanilla Method Our Method
Model Batch Size):FPS) TPS Speedup TPS Speed up
1 128.31 213.08 1.66
2 205.95 306.42 1.49 318.34 1.55
Opt-2.7b 4 362.88 452.65 1.25 502.58 1.38
8 643.38 611.80 0.95 777.10 1.21
12 881.70 685.64 0.78 944.82 1.07
1 79.44 177.69 2.24
2 137.49 273.53 1.99 285.82 2.08
4 257.37 432.38 1.68 485.98 1.89
Opt-6.7b 8 468.89 582.28 1.24 782.75 1.67
12 644.47 635.49 0.99 945.47 1.47
16 774.59 675.88 0.87 1063.31 1.37
20 863.32 709.52 0.82 1161.78 1.35
24 936.45 728.04 0.78 1258.50 1.34
1 59.51 137.62 2.31
2 95.33 201.51 2.11 223.16 2.34
4 160.13 305.09 191 359.14 2.24
Opt-13b 8 278.70 452.15 1.62 576.97 2.07
12 375.74 494.12 1.32 728.86 1.94
16 468.58 532.73 1.14 846.73 1.81
20 540.07 578.33 1.07 913.09 1.69
24 593.53 612.64 1.03 974.63 1.64
Batch size=4 Batch size=16 the draft model prediction approach, the number
= of predictions for each sample is identical. Conse-
£25] i quently, only "unpad KV cache" are employed in
£ 0. e this section.
§ @___C/l As illustrated in Table 4, we utilize the opt-125m
3 e P el model as the draft model, and test three models
‘E 101 of varying sizes. Our method exhibits a superior
speedup compared to the vanilla method across di-

1 2 3 4 51 2 3 4 5
Input token numbers per sample

Opt-13b -e- Opt-6.7b Opt-2.7b

Figure 5: The inference time of different numbers of in-
put tokens per sample under different batch sizes. We
set the number of existing tokens in each sample to 512.
When the number of input tokens per sample is varied
with a batch size of 4, the inference time remains essen-
tially unchanged. However, when the batch size is in-
creased to 16, the inference time changes significantly.

4.3 Experiments using Draft Model
Prediction

In this section, the draft model prediction method
is adopted as the basic method of speculative de-
coding. It is important to note that when utilizing

verse models and varying batch sizes. As illustrated
in Figure 4, The opt-6.7b model, with batch size set
to 8, exhibits a significant increase in the number of
padding tokens, exceeding 60% using LLMA and
exceeding 20% using draft model prediction. This
explains why vanilla method have serious speedup
degradation in multi-sample cases.

4.4 Analysis of Speedup Decrease with
Multi-sample

As illustrated in Table 2, it is evident that the
speedup ratio exhibits a decline in the context of
multiple samples. When the batch size is set to
4, the speedup ratio is 2.83, while when the batch
size is set to 16, the speedup ratio is 1.63. Similar

9313

<= Opt-2.7b
Opt-6.7b
Opt-13b

0.30] — opt270 a5
Opt-6.7b

0.25 Opt-13b 4.01 1
o Mean 3.5] |

0.20 /"\\ =1
o~e \ 3.01 |

0.15 /—77—7/ e \ :
25 \

2.0 NS

15 AN
N\ R -

0.10
\
0.05 \

0.00 - 1.0 i et :

0.81 — opt-2.7b 4.0

Opt-6.7b 1
Opt-13b 357\
o Mean A

74 \\\ 3.0

<= Opt-2.7b
0Opt-6.7b
Opt-13b

1 2 3 4 5 6 7 8 12 4 8 12 16 20 24

Average Acceptance length Batch Size

(a) Probability density
tance length

(b) Minimum average accep-

1 2 3 4 5 6 12 4 8 12 16 20 24
Average Acceptance length Batch Size

(c) Probability density (d) Minimum average accep-

tance length

Figure 6: The average acceptance length in sigle-sample and multi-sample scenarios. Figure (a)(b) employ LLMA
as the basic speculative decoding method, while Figure (c)(d) utilize the draft model prediction method, utilising
opt-125m as the draft model. Figure (a)(c) illustrates the probability density function of the average acceptance
length of distinct samples, with batch size set to 1. It is evident that the average acceptance length of different
samples exhibits considerable variability. Figure (b)(d) illustrates the reduction in the minimum average acceptance
length within a batch. Given that the average acceptance length of different samples within a batch are disparate,
the minimum value better represents the overall batch’s acceleration effect.

conclusions can be drawn from Table 4.

We have identified two factors contributing to
the reduction in the speedup ratio. Firstly, when
the batch size is sufficiently large and multiple to-
kens are processed simultaneously, the individual
inference time for LLLMs escalates considerably.
As illustrated in Figure 5, the inference time for
the opt-6.7b model with a batch size of 16 is 22.6
milliseconds for the processing of five tokens per
sample, whereas for a single token, it is 16.6 mil-
liseconds, which is 1.36 times slower.

Secondly, the principal reason for this decline
in performance is the considerable disparity in the
speedup across different samples. The average ac-
ceptance length is positively correlated with the
speedup ratio. As illustrated in Figure 6(a), the av-
erage acceptance length difference of opt-2.7b/13b
on different samples is greater than that of opt-6.7b
when the LLMA method is employed. Figure 6(c)
shows that the discrepancies in the average accep-
tance length across models were relatively modest
when utilising a draft model to predict.

As batch size increases, the minimum average
acceptance length within the batch decreases. As
illustrated in Figure 6, a comparison of the opt-6.7b
and opt-2.7b models reveals that the speedup ratio
of the latter is more uneven on the test samples.
As the batch size increases, the minimum average
acceptance length within the batch decreases at a
faster rate, although their speedup ratios are similar
when the batch size is equal to one.

In order to maintain the speedup ratio in the
multiple samples cases, the most straightforward
method is to ensure that the speedup ratios of differ-
ent samples are similar under the basic speculative

decoding method. However, the optimal solution
to this issue is dynamic batching (Yu et al., 2022),
which entails replacing a finished sample in the
batch with a new sample once it has been com-
pleted, rather than waiting for all samples in the
batch to be completed before proceeding to the next
inference. The implementation of dynamic batch-
ing is expected to enhance the efficiency of multi-
sample processing, with the potential for achieving
comparable speedup to that in single-sample cases.

5 Conclusions

In this paper, we present the first study of multi-
sample speculative decoding. we introduce an ef-
fective method, called EMS-SD. EMS-SD is an
effective solution to the inconsistency problem of
different samples in the prediction and verification
stages, without the need of padding tokens. The
proposed method is flexibly integrated with almost
any basic speculative decoding method. Extensive
comparisons show that EMS-SD exhibits superior
performance compared to the vanilla method in
multi-sample speculative decoding.

Limitations

This work has four limitations: 1) Theoretical evi-
dence indicates that dynamic batching may serve to
mitigate the performance degradation that occurs in
multi-sample speculative decoding. However, this
has not been empirically validated. Subsequent ex-
periments will assess the efficacy of multi-sample
speculative decoding in conjunction with dynamic
batching. 2) The potential negative impact of non-
contiguous memory accesses on performance was

9314

not considered. In batched greedy decoding, the
memory access between different samples is con-
tinuous. However, in the proposed method, due to
the varying lengths of different samples, the mem-
ory access is not continuous. This may have a
negative effect on acceleration. 3) Although our
method is independent of the inference framework,
we have not yet implemented our method on frame-
works such as PyTorch (Paszke et al., 2019) or
vLLM (Kwon et al., 2023). This undoubtedly lim-
its the ease of use of our method. In subsequent
work, we will consider implementing our method
in these frameworks. 4) Tree decoding will further
accelerate speculative decoding, which has been
widely verified in the single-sample speculative de-
coding (Miao et al., 2023; Cai et al., 2024; Liu et al.,
2024; Li et al., 2024). Nevertheless, the efficacy of
integrating tree decoding with multi-sample spec-
ulative reasoning has yet to be validated. Future
experiments will evaluate the effectiveness of the
multi-sample speculative decoding when integrated
with tree decoding.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Zachary Ankner, Rishab Parthasarathy, Aniruddha
Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. 2024. Hydra:
Sequentially-dependent draft heads for medusa de-
coding.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu
Peng, Jason D. Lee, Deming Chen, and Tri Dao.
2024. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774.

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, robust,
and hardware-aware speculative decoding. arXiv
preprint arXiv:2402.12374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing

gpt-4 with 90%* chatgpt quality. See https://vicuna.
Imsys. org (accessed 14 April 2023), 2(3):6.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems,

35:16344-16359.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2023. Breaking the sequential dependency of 1lm
inference using lookahead decoding.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee,
and Di He. 2023. Rest: Retrieval-based speculative
decoding.

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Juny-
oung Park, Mingu Lee, and Christopher Lott. 2024.
Recursive speculative decoding: Accelerating llm in-
ference via sampling without replacement. arXiv
preprint arXiv:2402.14160.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al.
2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Sys-
tems Principles.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via specu-
lative decoding. In International Conference on Ma-
chine Learning, pages 19274-19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling requires
rethinking feature uncertainty. In International Con-
ference on Machine Learning.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng
Ni, Kai Han, and Yunhe Wang. 2024. Kangaroo:
Lossless self-speculative decoding via double early
exiting. arXiv preprint arXiv:2404.18911.

9315

http://arxiv.org/abs/2402.05109
http://arxiv.org/abs/2402.05109
http://arxiv.org/abs/2402.05109
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
https://lmsys.org/blog/2023-11-21-lookahead-decoding/
http://arxiv.org/abs/2311.08252
http://arxiv.org/abs/2311.08252

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhi-
hao Jia. 2023. Specinfer: Accelerating generative
Ilm serving with speculative inference and token tree
verification. arXiv preprint arXiv:2305.09781.

NVIDIA. 2021. Fastertransformer. https://github.
com/NVIDIA/FasterTransformer.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in neural information processing systems, 32.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAl blog, 1(8):9.

Apoorv Saxena. 2023. Prompt lookup decoding.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yunhe Wang, Hanting Chen, Yehui Tang, Tianyu
Guo, Kai Han, Ying Nie, Xutao Wang, Hailin
Hu, Zheyuan Bai, Yun Wang, et al. 2023.
Pangu-pi: Enhancing language model architectures
via nonlinearity compensation. arXiv preprint
arXiv:2312.17276.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong
Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. 2023a. Baichuan 2:
Open large-scale language models. arXiv preprint
arXiv:2309.10305.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023b. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for { Transformer-Based }
generative models. In 16th USENIX Symposium

on Operating Systems Design and Implementation
(OSDI 22), pages 521-538.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. GIm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing

Systems, 36:46595-46623.

A Preliminaries

Autoregressive Decoding. Autoregressive large
language models (LLMs) P generates a token at
each step. Let x be the sequence of tokens, with
x; denoting the token at position j. The probabil-
ity distribution of the the token at position ¢ over
vocabulary V', y;, is contingent upon the preced-
ing tokens. Consequently, y; can be expressed as
Equation 1.

Yi ~ P(ylzo))

For greedy decoding, the subsequent token is
selected according to the maximum value of the
probability distribution.

T; = arg max y;)
yev

Single-sample Speculative Decoding. With re-
gard to Speculative Decoding, the process can be
divided into two stages: prediction and verifica-
tion. In the prediction stage, a prediction method,
f, is employed to predict the subsequent k tokens
d;, .., d;1,—1 at each step.

dis s divk—1 = f(Z[0,)) (3)

In the verification stage, these k predicted tokens
are simultaneously input to the LLMs, together
with existing tokens. This enables the LLMs to
generate k + 1 tokens in a single decoding.

9316

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/apoorvumang/prompt-lookup-decoding/
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

,,,,,,,,,,,,,,,,,,,,,, 5 0.7
8 IX___ P e *- ¥ o L4 N P =)
7 ;{ 4 :‘,——‘—""'Q 0.6 F//:e—"
A e - o 0.5
61 4 - B 3 -7 &
5 oo e “ 04 i/
. A,/" 2 /)e—/’/j’%___'X"—77*7777)&777*7777*777% 0.3 ,1 Ymm = Hm =R S m S m = S m N e = X
- iy %
& g2 021 ¥
3 /. p=0.4 p=07 1 I 4 p=0.4 p=07 ! p=0.4 p=07
o -~ p=0.5 p=0.8 :,7{ -~ p=05 p=0.8 0.1y | -~ p=05 p=0.8
@, = -X= = = - = = -X= =
2 p=0.6 x- p=0.9 0 *" p=0.6 *- p=0.9 0.0 >('< p=0.6 *- p=0.9
12 4 8 12 16 20 24 28 32 12 4 8 12 20 24 28 32 12 4 8 12 16 20 24 28 32
Batch Size Batch Size Batch Size

(a) Maximum Acceptance Length

(b) Average Padding Length

(c) Average Padding Ratio

Figure 7: Numerical simulation of the expected value of three variables: the maximum acceptance length 7,4,
the average padding length ¢ and the average padding ratio 7.

Tj; =arg maXP(mx[O,i)ad[i,j)))
yeVv

i<j<it+k+1 4)

The output token x; is identical to the result gen-
erated by the Autoregressive method. Nevertheless,
it is essential to ascertain the remaining k tokens
(zj,7+1 < j < i+k+1)to ascertain their accept-
ability. The acceptance length 7 can be calculated
using the Equation 5. Since d;, is undefined, it
follows that z; 1 and d; are always unequal.

T =argmax{Titj_1 # ditj—1|
J

Titm—1 = dixm—1,1 <m < j},
1<j<k+1 5)

Consequently, the LLLMs is capable of accept-
ing 7 tokens simultaneously, rather than just one,
within a similar timeframe. It is important to
note that the average acceptance length 7 and the
speedup ratio are closely related. As the average
acceptance length increases, the speedup ratio also
rises.

B Theoretical Analysis of the Impact of
Padding Tokens in Vanilla
Multi-sample Speculative Decoding

As mentioned in Section 3.1, the introduction of
additional padding tokens in the vanilla method
will result in a reduction in speedup ratio in multi-
sample cases. We assume that &k tokens in the pre-
diction stage, and the prediction accuracy of the
next token is p, thus the accepted length 7 conforms
to the geometric distribution. The probability mass
function of 7 can be formulated as Equation 6. And

the expected value E(7) is formulated as Equa-
tion 7.

Pr=Fk) =p" 11 —-p),k=1,2,3,4,... (6)

1
=1

If b samples are inferred simultaneously (batch
size is set to b), the maximum acceptance length
Tmae and the average padding length & can be ex-
pressed as Equation 8 and 9. Furthermore, we
define the average padding ratio 7, which is the
ratio of & and 7,42, as shown in Formula 10. It can
be demonstrated that as the value of 7 increases,
the proportion of padding also increases, resulting
in a greater waste of computational and memory
access overhead. It can be observed that as the av-
erage padding ratio increases, the negative impact
on acceleration also increases.

E(7) ()

Tmax = max(TO; TLy ey bel) ®)

- 1
5:Tmax—g(7'o+7'1+...+7'b_1) 9)
7 =0/Tmaz

(10)

The probability mass function of 7,4, can be
expressed as Equation 11.

P(Tmaz = k) =

_ kb _ nk=1\b
{(1 O A L L B
(1—p)°, ifk=1

The expected value of 7,,,, and § are challeng-
ing to express in a concise manner. This is why
we employed numerical simulation method. As
shown in Figure 7, We show the expected value

9317

Table 5: Performance of vanilla method v.s. our EMS-SD method using GSMS8K (Cobbe et al., 2021) and MT-

Bench (Zheng et al., 2023) dataset.

Datasets Batch Greedy Decoding Vanilla Method Our Method
Size TPS TPS Speed up TPS Speed up
1 79.11 186.64 2.36
2 89.24 99.96 1.12 156.77 1.76
4 163.54 183.14 1.12 273.70 1.67
8 310.15 318.07 1.03 467.35 1.51
GSMBK 12 436.10 389.36 0.89 593.25 1.36
16 554.62 413.12 0.74 631.31 1.14
20 646.97 470.98 0.73 720.56 1.12
24 722.49 514.06 0.71 798.40 1.11
1 59.59 151.72 2.55
2 112.83 257.65 2.28 300.03 2.66
4 202.57 442.06 2.18 531.44 2.62
8 374.14 642.18 1.72 931.24 245
MT-Bench) 519.41 699.02 1.35 117550 2.26
16 654.17 758.04 1.16 1310.58 2.00
20 77747 881.30 1.13 1494.98 1.92
24 856.29 848.97 0.99 1603.13 1.87

Table 6: Performance of vanilla method v.s. our EMS-SD method using three different datasets.

Datasets Average Max Vanilla Method Our Method
Input Length Output Length Padding Ratio Speed Up Speed Up
CNN/Daily Mail 744.94 128 30.82 1.62 2.07
GSMSK 1240.99 128 89.12 1.03 1.51
MT-Bench 220.84 1024 13.23 1.72 2.49

of Typaz, 0 and T as they vary with the prediction
accuracy of next token p and batch size b. In prac-
tical applications, the maximum acceptance length
is constrained by the limitations of the predicted
length. In this figure, we limited the maximum
acceptance length to 8.

Two conclusions can be drawn from Figure 7.
Firstly, the maximum acceptance length and the
average padding length both increase as the pre-
diction accuracy of next token and the batch size
increase. Secondly, when the maximum acceptance
length is limited, the higher the prediction accuracy
of next token, the lower the average padding ra-
tio. In particular, when the prediction accuracy
of next token is below 0.8 and the batch size is
greater than 8, the padding ratio increases rapidly
to exceed 50%. However, even if the prediction
accuracy reaches 90%, 30% of the computational
and memory access overhead are still wasted.

C Experiments on Other Datasets

As demonstrated in Rebuttal Table 5, the efficacy
of our multi-sample speculative decoding method
was evaluated on the GSM8K (Cobbe et al., 2021)
and MT-Bench (Zheng et al., 2023) datasets. The
basic single-sample speculative inference method
employed here is draft model prediction. In par-
ticular, opt-13b was utilized as the large language
model, while opt-125m were employed as small
models. It was observed that when the batch size
exceeded 8, the benefit of our method exceeded 45

As demonstrated in Table 6, we evaluate the im-
pact of three distinct datasets on our method when
the batch size was set to 8. It can be observed that
our EMS-SD method demonstrates enhanced per-
formance when applied to diverse datasets. The
magnitude of this improvement is contingent upon
the extent of reduction in the computational and
memory access overhead. The increased computa-
tional and memory access overhead during multi-
sample speculative decoding is influenced by three

9318

key factors: input length, output length, and the
prediction imbalance between samples, which is re-
flected in the padding ratio. It can be demonstrated
that the greater the computational and memory ac-
cess overhead, the more significant the gain of our
method.

D The Specific Process of Unpad Input
Tokens

Before being fed into the Transformer model, all
input tokens are merged into a single sequence, and
the quantity of input tokens for each sample is doc-
umented.This process is detailed in Algorithm 1.
Furthermore, when computing the attention out-
put, the original batch index and sequence position
of each token are restored in the CUDA kernel.
This process is detailed in Algorithm 2. In ad-
dition, modifications will be required to the grid
responsible for invoking the CUDA kernel during
the attention calculation process. Equation 12 illus-
trateds the specific alterations. In the context of the
CUDA kernel, the value of blockIdx.y represents
the index of the current token among all inputs.

grid(num_heads, batch_size) —

grid(num_heads, total_input_token_nums)

(12)

9319

Algorithm 1: Concatenate the input tokens of different samples

Data: list_of_input_tokens
Result: concatenated_input_tokens, token_nums_per_sample, total_input_token_nums

1 batch_size =len(list_of_input_tokens)

2 concatenated_input_tokens =[]

3 token_nums_per_sample = [0 for _ in range(batch_size)]

4 total_input_token_nums =0

s for ¢+ = 0 to batch_size — 1 do

6 total_input_token_nums +=len(list_of_input_tokensli])

7 token_nums_per_sample[i] = len(list_of_input_tokens]i])

8 concatenated_input_tokens.extend(list_of_input_tokensli])
9 end

Algorithm 2: Restore the original batch index and sequence position in CUDA kernels

Data: token_nums_per_sample, blockIdx
Result: original_batch_indezx, original_sequence_position
1 batch_size = len(token_nums_per_sample)
2 original_sequence_position = blockIdx.y
3 original_batch_index =0
4 for i = 0 to batch_size — 1 do

5 if original_sequence_position > token_nums_per_sample[i| then
6 original_batch_index += 1

7 original_sequence_position -= token_nums_per_sampleli]

8 else

9 ‘ break

10 end
1 end

9320

