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Abstract

Humans are efficient language learners and in-
herently social creatures. Our language devel-
opment is largely shaped by our social interac-
tions, for example, the demonstration and feed-
back from caregivers. Contrary to human lan-
guage learning, recent advancements in large
language models have primarily adopted a non-
interactive training paradigm, and refined pre-
trained models through feedback afterward. In
this work, we explore how corrective feed-
back from interactions influences neural lan-
guage acquisition from scratch through sys-
tematically controlled experiments, assessing
whether it contributes to word learning effi-
ciency in language models. We introduce a
trial-and-demonstration (TnD) learning frame-
work that incorporates three distinct compo-
nents: student trials, teacher demonstrations,
and a reward conditioned on language com-
petence at various developmental stages. Our
experiments reveal that the TnD approach ac-
celerates word acquisition for student models
of equal and smaller numbers of parameters,
and we highlight the significance of both tri-
als and demonstrations. We further show that
the teacher’s choices of words influence stu-
dents’ word-specific learning efficiency, and a
practice-makes-perfect effect is evident by a
strong correlation between the frequency of
words in trials and their respective learning
curves. Our findings suggest that interactive
language learning, with teacher demonstrations
and active trials, can facilitate efficient word
learning in language models.

1 Introduction

Humans are social beings and we learn language
from interactions (Vygotsky, 1934; Bruner, 1985;
Palincsar, 1986; Kuhl, 2004; Tomasello, 2005).
Long before children’s linguistic skills are ma-
ture, they could engage in early forms of con-
versational exchange with others (Halliday, 1975;
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Clark, 2018). A critical component of social in-
teractions that language grounds to is the feed-
back provided by the caregivers (Warlaumont et al.,
2014). This, for example, includes the commu-
nicative feedback (Bates et al., 1975; Nikolaus and
Fourtassi, 2023) that highlights the success and
failure of communication, and the corrective feed-
back (Farrar, 1992; Chouinard and Clark, 2003;
Saxton et al., 2005; Hiller, 2016) that is more di-
rect and emphasizes the responses from caregivers,
which offer corrections to possible errors in chil-
dren’s speech, encompassing variants like negative
evidence, reformulations, or recasts. Unlike human
learners who acquire language skills through feed-
back during interactions, most language models
differ in terms of their inductive biases and data
sources (Warstadt and Bowman, 2022). These mod-
els typically learn from massive text corpora using
cross-entropy loss for self-supervised learning.

Recently, several lines of cognitively motivated
language modeling research have looked into
the learnability and learning efficiency of lan-
guage (Portelance et al., 2020; Chang and Bergen,
2022; Evanson et al., 2023). By incorporating non-
linguistic inputs such as multimodal stimuli (Shi
et al., 2019; Ma et al., 2023; Portelance et al.,
2024) and/or communicative feedback (Nikolaus
and Fourtassi, 2021; Zhu et al., 2022; Liu et al.,
2022), recent studies have explored potential mech-
anisms that contribute to efficient language learning
in (vision-)language models. Through controlled
ablation studies (Warstadt and Bowman, 2022),
these models can serve as proof of concept to verify
mechanisms that are practically effective for ma-
chines, and generate hypotheses that are possible
for cognitive learners (Portelance, 2022; Portelance
and Jasbi, 2023). In a similar spirit, we seek to in-
vestigate the role of explicit corrective feedback in
neural language learning through controlled com-
putational experiments. Rather than making direct
comparisons to human learning, our goal is to ex-
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Figure 1: The learning by trial-and-demonstration (TnD) framework. In stage 1, we start by training a language
model with the causal language modeling objective. In stage 2, we prompt the models along the learning trajectory
for (text, step) pairs and train a neural age predictor to predict the training step given a text. In stage 3, we use the
final model in stage 1 as the teacher model. In an interactive step, the student model is prompted to complete a
trial, and the teacher model is prompted to provide a demonstration. The trials and demonstrations are scored by an
age-conditioned reward function (Eq. 1), and the student model updates the policy with reinforcement learning. The
student alternates between interactive and non-interactive steps.

amine if student trials and teacher demonstrations
promote efficient word learning in language model
training, and if so, which words benefit the most.

We introduce Trial-and-Demonstration (TnD),
an interactive learning framework that incorporates
corrective feedback with three components: stu-
dent model trials, teacher model demonstrations,
and a reward conditioned on the training trajectory
of the model (Figure 1). Our experiments reveal
that the TnD approach accelerates word acquisi-
tion, highlighting the significance of both trials and
demonstrations. From the teacher’s perspective,
their word choices affect students’ word-specific
learning efficiency. From the student’s side, the
word frequency in trials closely aligns with the
learning curve, supporting the idea that learning by
language production accelerates word proficiency.
Our findings highlight that trials and demonstra-
tions can facilitate word learning in language mod-
els, and further, suggest an efficient alternative to
building language models interactively.

2 Interactive Language Learning by
Trials-and-Demonstrations (TnD)

Modeling corrective feedback in computational lan-
guage learning presents significant challenges, as
recruiting human subjects to supervise the develop-
ment of a language model from the ground up over
numerous iterations is impractical. Consequently,
we present a human-free Trial-and-Demonstration
(TnD) learning framework that streamlines the pro-
cess (Figure 1). In a scenario of corrective feed-

back, the student model engages in production-
based learning: to produce an initial utterance, fol-
lowed by the teacher model generating its version
of the text as a demonstration. For the student
model to recognize the teacher’s response as prefer-
able and to facilitate learning, these language out-
puts are evaluated by a reward function, which
is based on the competence of the student’s lan-
guage use that is expected for its developmental
stage (i.e., training steps). The TnD framework
thus includes three components: a student model’s
trials, a teacher model’s demonstrations, and re-
wards. This framework allows us to incorporate
massive corpora to study modern generative lan-
guage models, offering a general and unrestricted
approach to simulate interactive language learning
with corrective feedback on massive corpora.

2.1 The student model and trials
We employ randomly initialized GPT-2 (Radford
et al., 2019) as the student model for our investiga-
tion into language acquisition, leveraging its causal
language modeling (CLM) objective and inherent
generative capabilities for production-based learn-
ing. To encourage the student model to attempt text
production, it is essential to provide an appropriate
context. In each trial, we prompt the student with
the first 5 tokens from a natural sentence, asking it
to generate the continuation as a trial.

2.2 The teacher model and demonstrations
Inspired by recent work (Bai et al., 2022; Lee et al.,
2023; Saha et al., 2023), we utilize pre-trained lan-
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(a) BookCorpus dataset.
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(b) BabyLM dataset.

Figure 2: We sample reward model predictions at differ-
ent steps and compare them to ground truth logarithm.
The reward models are satisfactory as the model pre-
dicted age/step highly overlaps with the true age/step.

guage models as proxies for human language teach-
ers. Employing language models as “caregivers”
for language models offers two advantages. Firstly,
it eliminates the need for recruiting human par-
ticipants to engage with a language model across
thousands of iterations. Secondly, we can consis-
tently control the behavior of the teacher model
across experiments, and adjust the teacher’s lan-
guage behaviors by modifying its decoding strate-
gies for language generation. The process of de-
veloping a teacher model is identical to the typi-
cal language model pre-training, as shown in Fig-
ure 1(a). We adopted the same GPT-2 architecture
and pre-trained the model with the CLM objective
for 100k steps, with all hyper-parameters following
the default setup. To generate a natural language
demonstration for the student’s trial, we prompt
the pre-trained teacher model with the same 5 to-
kens used for the student model, thereby obtaining
the teacher’s completion of the sentence.

2.3 The reward and reward model

Defining an effective reward in our context is
challenging due to the absence of communication
games and the lack of access to large-scale human
preference annotations. Heuristic reward metrics
do not consider the developmental trajectory of lan-
guage models, which is critical for simulating lan-
guage acquisition. It’s akin to human development
where early words are celebrated as milestones, but
prolonged reliance on initial language abilities can
become a concern. We treat the number of train-
ing steps as the neural model’s “age” (Chang and
Bergen, 2022). A language model that generates
fluent text at 500 steps, which typically emerges
around 5,000 steps, should be rewarded for its ac-
celerated learning. Conversely, if the language pro-
duction quality in the student remains the same at
50,000 steps, it should be penalized. This process

Algorithm 1 TRIAL-AND-DEMONSTRATION

1: Input: student model πθ , teacher model π̂φ, reward
model Rϕ, alternating schedule (c, r), training corpus C.

2: for n,S in enumerate (C) do
3: t1, · · · , tl = TOKENIZE(S)
4: if n%(c+ r) ≤ c then
5: // Non-interactive learning
6: Gradient descent∇θ Lclm

θ ([t1, · · · , tl]) (Eq. 2)
7: else
8: // Interactive learning
9: Strial ← PROMPT

(
πθ, [t1, t2, · · · , t5]

)
10: rtrial = Rϕ(Strial)− logn
11: Sdemo ← PROMPT

(
π̂φ, [t1, t2, · · · , t5]

)
12: rdemo = Rϕ(Sdemo)− logn
13: Train batch B = (Strial, rtrial) ∪ (Sdemo, rdemo)
14: Policy update∇θ Lppo

θ (B) (See A.3)
15: end if
16: end for
17: Output: πθ

is illustrated in Figure 1(c).
To train a neural age predictor, we utilize the

developmental trajectory of the teacher model by
saving over 100 checkpoints at various training
steps. For each checkpoint, we select 25,000 con-
texts (each consisting of 5 tokens) from the test set
and prompt the model to generate continuations for
each context. This process generates a dataset com-
prising over 2.5 million (text, step) pairs. We then
use this dataset to fine-tune a LLaMA-2-7B lan-
guage model (Touvron et al., 2023), incorporating
a 1-layer linear head for regression. At step n, the
student model πθ parameterized by θ produces a
sentence S of l tokens t1, · · · , tl. We use the neural
age predictor Rϕ to estimate the logarithm of the
expected training step n̂ where this sentence typi-
cally emerges. Hence, the age-conditioned reward
r(S, n) is given by:

r := log(n̂/n) = Rϕ(S)− log n (1)

2.4 Alternating interactive and
non-interactive language learning

As shown in Figure 1(c-d), our TnD framework
alternates between two forms of language learn-
ing: (1) interactive learning, in which corrective
feedback is taken through reinforcement learning,
utilizing rewards derived from both the student’s
trials and the teacher’s demonstrations, and (2) non-
interactive learning, which emulates the natural
language exposure experienced by learners and is
facilitated through causal language modeling as
adopted by generative language models.
2.4.1 Interactive language learning setup.
Reinforcement learning has been applied to
language models, such as the success of
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games (Narasimhan et al., 2015; He et al., 2016),
heuristic scores (Ranzato et al., 2016; Nikolaus
and Fourtassi, 2021), and models of human pref-
erences (Ziegler et al., 2019; Ouyang et al., 2022).
The key is to view the language production in
language models as actions within a vocabulary-
defined action space. Formally, the model πθ is
given a context of 5 tokens (i.e., the initial state
s0 = {t1, · · · , t5}) to produce the next token (i.e.,
the next action a1 = t6). It lands in the next state
s1 = {t1 · · · t6}, and this process repeats until
the sentence concludes. Following this, rewards
can be computed according to Eq. 1 for the stu-
dent’s trials and the teacher’s demonstrations. The
goal is to maximize the expected return (i.e., the
expected cumulative future reward) following πθ
along the interaction, with the trials and demonstra-
tions both in the training batch. Inspired and taking
the computational infrastructure in recent advances
in reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), we use Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
algorithm with a clipped surrogate objective Lppo

θ ,
which is the primary variant in modern large lan-
guage models.1 We applied two modifications in
the implementation of the RLHF algorithm, which
include the involvement of demonstration in policy
update, and the removal of KL-divergence. We
refer to Appendix A.3 for mathematical details.

Demonstration in policy update. The original
PPO algorithm only learns from the agent’s own
trials, i.e., the sentences it generated before. We
expand the training batch to add teacher’s demon-
strations: At each step, we sample the sentences
generated by the latest student model and also col-
lect those from the teacher model with the same
prompts. Subsequently, we regard both of them as
the training batch, and apply the policy update to
improve the student model. Intuitively, our goal
is to encourage the student model to imitate and
repeat the teacher’s demonstration during training.
As there is a reward disparity between the student’s
trial and the teacher’s demonstration, we motivate
the student model to learn a better language gener-
ation policy.

Removal of KL-divergence objective. The loss
function in the conventional RLHF algorithm in-
volves a KL-divergence term between the updated
student model and a reference model, which is

1We use the TRL library to train language models with
reinforcement learning.

usually a fine-tuned language model or the initial
student model before gradient updates. The goal
is to penalize the learned policy that largely devi-
ates from the referenced policy. Different from the
conventional approach, this penalty is not preferred
in the TnD setting. This change encourages the
student model to explore unfamiliar words during
the training, which enables relatively significant
updates, as well as eliminates biases from over-
adherence to a reference model.

2.4.2 Non-interactive language learning setup.
While our interactive language learning replicates
active engagement with language through correc-
tive feedback, it’s also crucial to simulate human’s
passive exposure to language, as emphasized in
prior psychological (Smith and Yu, 2008) and com-
putational (Nikolaus and Fourtassi, 2021) studies.
We implement this with the causal language model-
ing objective, which is adopted by most generative
language models. Consider a sentence t1, · · · , tl
in the corpus with l tokens. The causal language
modeling objective is to predict the next token ti+1

given the previous context t≤i by minimizing:

Lclm
θ = −

l−1∑

i=1

logP (ti+1|t≤i; θ) (2)

2.4.3 Alternating interactive and
non-interactive learning.

Following the setup of Nikolaus and Fourtassi
(2021), we adopt an alternating learning sched-
ule over interactive and non-interactive language
learning, i.e., perform c steps of causal language
modeling, followed by r steps of reinforcement
learning, in a continuous cycle (Algorithm 1). We
select c = 3 and r = 1, respectively, leading to 1
PPO update following every 3 CLM updates. We
justify this design choice and present experiments
on other hyper-parameters in Appendix B.6.

3 Experiment and Evaluations
3.1 Experiment setup
Training corpora. We repeat our study on two
training corpora: (1) the BookCorpus (Zhu et al.,
2015), which is commonly used for training neural
language models; and (2) the BabyLM Corpus, a
more developmentally plausible dataset provided
by the BabyLM Challenge (Round 1) (Warstadt
et al., 2023). Notably, the BabyLM dataset has
less than 100M words and contains a higher pro-
portion of transcribed speech, e.g., the CHILDES
corpus (MacWhinney, 2000). For each corpus, we
keep 80% for training and 20% for evaluation.
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Figure 3: On 2 training corpora and 2 test vocabulary, we aggregate 5 random seeds and present the fitted learning
curves of mean surprisal over log10 training steps, with nAoA@0.5 of each curve indicated by a vertical dashed line.
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(b) nAoA of CDI words on
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(c) nAoA of CMN words on
BabyLM.
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Figure 4: On 2 training corpora and 2 test vocabulary, we aggregate 5 random seeds and present the neural age of
acquisition (nAoA) at different surprisal thresholds from 0.5 to 0.95 with a step of 0.05.
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Figure 5: On 2 training corpora and 2 test vocabulary, we aggregate 5 random seeds and evaluate the effective
vocabulary size over log10 training steps. The dashed lines mark the tested vocabulary size.

Baselines and ablation variants. To reliably as-
sess the importance or impact of a mechanism in
a language learning system, computational exper-
iments should be conducted under controlled ab-
lation studies (Warstadt and Bowman, 2022). We
describe our baselines below and study other possi-
ble setups in Appendix B.5.
• The CLM model, which adheres to the original

GPT-2 pre-training with only CLM objective;
• The TnD model, which implements the trial-and-

demonstration framework described in Section 2;
• The Trial model, which is the TnD framework

with only student trials (no demonstrations);
• The Demo model, which is the TnD framework

with only teacher demonstrations (no trials);
These baselines are designed in a controlled man-
ner to ensure fair ablations. For each combination
of corpus and baseline, the training process is con-
ducted on 5 random seeds for 10k steps. We discuss
more about other possible baseline setups and the
hyper-parameters in Appendix B.

3.2 Evaluation
Testing vocabulary. We specify two sets of vo-
cabulary for evaluation.
• The CMN set, consisting of common words that

appear frequently in both corpora, covering a
wide range of words and parts of speech.

• The CDI set, consisting of words from the
MacArthur-Bates Communicative Development
Inventories (CDIs) (Fenson et al., 2006). Fol-
lowing Portelance et al. (2020), we excluded any
items comprising multiple words (such as “choo-
choo”) from our dataset, as the tokenizer would
treat these as distinct items.

We select these two vocabulary sets as CMN offers
broader coverage while CDI is more frequency-
neutral and is used to assess children’s early vocab-
ulary development. Following Chang and Bergen
(2022), we remove words with less than 100 occur-
rences in the evaluation set of each corpus to ensure
reliable results, and keep at most 512 samples for
each word. This leads to 309 common words in
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Method nAoA↓ BabyLM Corpus BookCorpus
CMN CDI CMN CDI

CLM
@.5 2.94±0.01 2.93±0.01 2.90±0.01 3.00±0.01

@[.5:.95] 3.18±0.01 3.19±0.01 3.14±0.01 3.26±0.01

Trial
@.5 2.90±0.01 2.86±0.01 2.97±0.01 3.05±0.01

@[.5:.95] 3.20±0.01 3.17±0.01 3.21±0.01 3.30±0.01

Demo
@.5 2.60±0.02 2.47±0.03 2.51±0.02 2.66±0.02

@[.5:.95] 3.15±0.01 3.08±0.02 3.05±0.01 2.97±0.02

TnD
@.5 2.10±0.02 2.10±0.03 2.11±0.02 2.46±0.03

@[.5:.95] 2.95±0.02 2.87±0.03 2.90±0.02 3.11±0.02

Table 1: For each baseline and setup, we report the
neural age of acquisition (nAoA) with standard errors at
0.50 cutoff and averaged over surprisal thresholds from
0.50 to 0.95 with a step of 0.05.

CMN, as well as 345 words in CDI for BookCorpus
and 243 words in CDI for BabyLM Corpus.

Surprisal and learning curves. In line with
previous work, we use the mean surprisal (log-
perplexity) of a word to quantify the quality of
the model’s predictions for this word. For each
occurrence of a word w, the surprisal is given
by − log2 P (w), and we average all occurrences.
To visualize word acquisition from high surprisal
to lower surprisal, we evaluate the student model
throughout training and plot the surprisal values
over logarithm training steps, leading to a learning
curve for individual words and the overall vocab-
ulary. We observe a similar pattern reported by
Chang and Bergen (2022) that learning curves tend
to level off at a local plateau, which aligns with the
unigram surprisal. This phenomenon renders the
single-sigmoid model unreliable for capturing the
complexity, and we adopt a double-sigmoid func-
tion to fit the learning curve. We justify this choice
and discuss more on the patterns in Appendix B.2.
Neural age of acquisition (nAoA). To evaluate
the speed at which the student model acquires a
word, we employ the neural age of acquisition
(nAoA). Prior research (Chang and Bergen, 2022;
Chang et al., 2023) has used a surprisal cutoff of
50% between the minimum and maximum surprisal
levels. This is akin to the method used to determine
children’s age of acquisition, where the cutoff is
set at the point when 50% of children are observed
to produce a word (Braginsky et al., 2016). To
further enhance the robustness of this metric, we
average nAoA over different surprisal thresholds
from 0.5 to 0.95 with a step of 0.05, denoted as
nAoA@[0.50:0.95]. It’s important to note that
nAoA serves as a metric to assess the speed at
which a model acquires a word, rather than the
quality of word learning. A model might learn a
word quickly, indicated by a low nAoA, yet not

master it effectively, indicated by a high surprisal.
Combining both metrics offers a thorough evalua-
tion of word learning.
Effective vocabulary size. Finally, we assess the
effective vocabulary size relative to a test set of
vocabulary. A word is deemed acquired at step n if
nAoA@0.50 ≤ n. This approach yields a monotoni-
cally increasing curve that illustrates the growth of
the effective vocabulary over time.

4 Main Results and Findings
4.1 Corrective feedback accelerates neural

word acquisition
To evaluate CMN and CDI words on two corpora, we
aggregate 5 random seeds and present the learning
curves in Figure 3, the neural age of acquisition
in Figure 4, and the effective vocabulary size in
Figure 5. Figure 3 reveals that the TnD learning
framework significantly accelerates word acqui-
sition in training, outperforming other baselines.
This acceleration is attributed to the critical roles of
both trials and demonstrations in the learning pro-
cess. With only teacher demonstrations, the student
model acquires words faster than with the plain CLM
baseline alone, though not as rapidly as when ac-
tive trials are incorporated in the TnD framework.
Conversely, without the teacher’s demonstrations,
the student’s trials in the wild do not yield a marked
improvement, resulting in performance comparable
to the CLM baseline. We refer to Figure 13 and 14
in the Appendix for the ridgeline and scatter plot
of words and their nAoA.

Figure 4 and Table 1 present nAoA at different
surprisal thresholds from 0.50 to 0.95 with a step
of 0.05. We find that the TnD learning framework is
particularly beneficial during the earlier stages of
word acquisition, as it significantly outperforms the
CLM baseline on nAoA@0.50, but is eventually on-
par with the CLM baseline on nAoA@0.95 towards
the end of training. As a result, it can be seen
from Figure 5 that students under the TnD frame-
work quickly picked up a large volume of effec-
tive vocabulary, but eventually their vocabulary
capacities have converged to the CLM baseline as
expected. We further evaluate the final model on
downstream natural language understanding (NLU)
tasks. The TnD model performs on par with the
CLM model (See Appendix B.4). Overall, our find-
ings show that corrective feedback accelerates the
student model’s neural word acquisition process,
yet the student eventually converges to the teacher
model’s performance. This contradicts the previ-
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Figure 6: We further present the fitted learning curves on smaller student models (TnDd=588/360/250) of mean
surprisal over log10 training steps, with nAoA@0.5 of each curve indicated by a vertical dashed line.
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word preferences in CDI
words on BookCorpus.

Figure 7: For the 40 words to be “masked out” from teacher demonstrations, we repeat the experiment with 5
random seeds and plot the learning curves of these words with those in CLM and TnD baselines.

Method nAoA↓ BabyLM Corpus BookCorpus
CMN CDI CMN CDI

CLM
@.5 3.01±0.03 3.02±0.07 3.02±0.02 2.86±0.01

@[.5:.95] 3.29±0.02 3.37±0.03 3.28±0.02 3.09±0.01

TnD
@.5 2.34±0.15 2.57±0.14 2.43±0.12 1.94±0.02

@[.5:.95] 3.18±0.07 3.22±0.08 3.22±0.05 2.76±0.04

TnD @.5 3.14±0.09 3.32±0.04 3.10±0.04 2.92±0.02
(Masked) @[.5:.95] 3.49±0.03 3.50±0.03 3.42±0.02 3.21±0.02

Table 2: For the 40 words to be “masked out” from
teacher demonstrations, we repeat the experiment with
5 random seeds and compared their nAoA with standard
errors to those observed in CLM and TnD baselines.

ous observations by Nikolaus and Fourtassi (2021)
that combining production and perception-based
language learning from the start will deteriorate
performance. We hypothesize that this discrepancy
may result from using the BLEU score as a proxy
for rewards from communicative feedback in their
work, while our setup incorporates a more explicit
form of corrective feedback.

4.2 Corrective feedback helps knowledge
distillation for smaller student models

The current age-based reward design assumes
that the student and teacher models are the same
size. This section investigates whether such a re-

ward function could distill linguistic knowledge to
smaller student models. The original student GPT-
2 model has a dimension of d = 768 (12 attention
heads each with a dimension of 64). We now keep
all experimental setups untouched but smaller stu-
dent models with dimensions of 588 (12×49), 360
(10× 36), and 250 (10× 25) respectively. Figure 6
shows that such efficient language learning can still
be observed, even when the setting is translated to
smaller models. Each TnD model outperforms the
CLM baseline of the same size and even surpasses
CLM baselines of large capacity in early steps.

4.3 Teacher’s word preferences in
demonstrations affect student

To explore how the teacher model’s word selection
impacts students’ language development, we repeat
the experiments where a chosen set of 40 words
for each test vocabulary is excluded from teacher
demonstrations. To ensure fluent generation, we
maintain the presence of essential functional words
so these words don’t appear in the 40 chosen words.
During the language generation process by the
teacher model, if a word from this set is to be de-
coded, we select the next best alternative, ensuring
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(b) The word “now.”

Figure 8: Examples of per-word learning curves and
cumulative word frequency in BookCorpus. The dashed
lines mark the log frequency of words (left y-axis) from
each source. The solid line and dots mark the word
surprisal (right y-axis).

these words were never presented in teacher demon-
strations. We show the learning curves for these
excluded words in Figure 7 and present the nAoA
in Table 2 (in Appendix). Our findings indicate
that the teacher model’s word choices significantly
influence the efficiency of word acquisition by the
student model. The absence of words from teacher
demonstrations leads to slower learning speed for
student models, as evidenced by a higher nAoA, al-
though the student models are ultimately able to
learn these words from the corpus and their trials.

4.4 Practice makes perfect in trials

Finally, we conduct experiments to underscore the
significance of the student’s active trials in the pro-
cess of word learning. A student model can learn a
word from 3 sources: its own trials, teacher demon-
strations, and exposure to the corpus. To deter-
mine which source contributes most significantly
to learning, we begin by plotting the per-word learn-
ing curves alongside the cumulative frequency of
word encounters in trials, demonstrations, and the
corpus. We observe, interestingly, that the learning
curves for certain words exhibit a pronounced cor-
relation with the frequency of these words in trials,
as exampled in Figure 8 and 9.

We speculate that this pattern may be associated
with the part of speech (POS) of the word. Fol-
lowing Portelance et al. (2020), we delve into this
phenomenon by focusing on specific subsets of
words, including nouns, predicates, and functional
words, to explore the relationship further. To evalu-
ate the impact of each source of word acquisition,
we consider the cumulative word frequency as a
predictor of the word surprisal, and carry out linear
regressions complemented by likelihood ratio tests
to determine the beta weights for each predictor.
Upon analysis, we identify significant collinearity
between word frequency in teacher demonstrations

POS Freq.
BabyLM Corpus BookCorpus
CMN CDI CMN CDI

β r β r β r β r

noun
trial -0.36 -0.90 -0.25 -0.85 -0.38 -0.92 -0.31 -0.85

demo -0.67 -0.93 -0.73 -0.89 -0.56 -0.93 -0.67 -0.87
corpus -0.51 -0.93 -0.53 -0.88 -0.56 -0.93 -0.60 -0.87

pred
trial -0.70 -0.90 -0.72 -0.86 -0.49 -0.92 -0.54 -0.88

demo -0.33 -0.93 -0.30 -0.90 -0.49 -0.92 -0.45 -0.90
corpus -0.22 -0.93 -0.19 -0.90 -0.45 -0.93 -0.40 -0.87

func
trial -0.67 -0.93 -0.72 -0.92 -0.67 -0.94 -0.59 -0.93

demo -0.39 -0.92 -0.21 -0.90 -0.22 -0.91 -0.37 -0.87
corpus -0.17 -0.92 -0.25 -0.91 -0.35 -0.92 -0.35 -0.90

Table 3: For each POS category, we present the beta
weights β and Pearson correlation r between their mean
surprisal and cumulative word frequency over the course
of training. These metrics are evaluated based on the
student’s trials, teacher’s demonstrations, and the overall
corpus frequency up to the current training step.

and the corpus, as indicated by a high variance in-
flation factor (VIF), while the word frequency in
student trials is less intertwined, exhibiting a mod-
erate VIF below 10. We thus calculate the beta
weights separately for pairs (trial, demo) and (trial,
corpus), then compute the average beta weights for
trials. Together with the Pearson correlation, we
summarize the results in Table 3. Negative beta
weights signify a negative correlation, with a larger
absolute value denoting a stronger association and
contribution. Our analysis reveals that the cumula-
tive frequency of words encountered in trials plays
a significant role in the acquisition of functional
words and predicates. However, this significant
contribution does not extend to nouns, indicating
a potential impact of active trials on different POS
within the learning process. This finding is linguis-
tically intuitive, as function words and predicates
are words that require other dependent words to
fully express their meaning (Gleitman, 1990) and
thus require more practice. We posit that grounding
language in the non-linguistic world is essential for
acquiring the meanings of words, particularly for
concrete noun (Ma et al., 2023).

5 Related Work and Discussions
5.1 Interaction in neural language learning

Researchers have emphasized the role of interac-
tion in computational models of language (Bisk
et al., 2020; Tsuji et al., 2021). Preliminary efforts
have been conducted under specific constraints,
such as in domain-specific scenarios (Qu and Chai,
2010; Weston, 2016; Bianchi et al., 2021; Stein
et al., 2021; Madotto et al., 2021) or consider-
ing particular types of dialogue acts (Zhang et al.,
2018; Yuan et al., 2019). More recently, a se-
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ries of studies have approached language acqui-
sition through the lens of multimodal referential
games (Lazaridou et al., 2016; Zhu et al., 2022;
Liu et al., 2022), emphasizing the importance of
pragmatic inference and communicative feedback
in speaker-listener interactions. Early work investi-
gated scenarios where the teacher models actively
select training data to optimally assist a passive
student learner (ter Hoeve et al., 2022). Niko-
laus and Fourtassi (2021) adopted setups where
student models learn by producing language and
receive feedback of communicative success using
the BLEU score (Papineni et al., 2002). However,
these models do not receive teachers’ demonstra-
tions or corrections. Our work diverges from these
studies as we focus on symmetric teacher-student
interactions that require language production from
the student and explicit corrective feedback from
the teacher, which goes beyond the simple speaker-
listener roles. We also adopt massive corpora to
study modern transformer-based generative lan-
guage models, a general approach without domain
restrictions. Recent advancements in reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022) mark a breakthrough in interactive lan-
guage learning. This work leverages the implemen-
tation infrastructure of RLHF, but diverges in sig-
nificant ways. Whereas RLHF aims to align a pre-
trained language model with human preferences,
our objective is to “babysit” a language model from
scratch. We refer to existing surveys (Kaufmann
et al., 2023; Zheng et al., 2023) and discuss RLHF
further in Appendix A.2.

5.2 Psychologically motivated analysis of
language models

Although language models and human language
learners differ in their inductive biases and data
sources (Baroni, 2022; Warstadt and Bowman,
2022), several works have looked into the learn-
ability, proficiency, and efficiency of neural lan-
guage learning, for example, the relationships be-
tween word surprisal in language models to var-
ious psycholinguistic variables (Portelance et al.,
2020; Ma et al., 2023). Recent efforts have shifted
towards exploring the developmental trajectories
of language models, rather than their end perfor-
mance (Sellam et al., 2021; Blevins et al., 2022;
Biderman et al., 2023; Xia et al., 2023), sparkling
further investigations into the developmental as-
pects of psycholinguistics using computational ap-
proaches (Chang and Bergen, 2022; Chang et al.,

2023; Evanson et al., 2023). The scientific ratio-
nale behind this is that these models can serve as
hypothesis generators or proofs of concept, verify-
ing mechanisms that are practically effective for
machines and potentially feasible for human learn-
ers (Portelance, 2022; Portelance and Jasbi, 2023).
We echo that the benchmark outcomes of language
models themselves are insufficient (Baroni, 2022;
Portelance, 2022), and researchers need to control
the factors that may have contributed to the model’s
learning process, particularly through conducting
ablation studies (Warstadt and Bowman, 2022). In
this study, we follow this spirit and investigate the
role of trials and demonstrations through system-
atic computational experiments, assessing its role
in neural word acquisition.

5.3 Interaction in human language learning
Social interactions are crucial in language acquisi-
tion, and the role of caregivers’ feedback has been
extensively explored in the field of developmen-
tal psychology (Bates et al., 1975; Saxton et al.,
2005; Warlaumont et al., 2014). While our findings
suggest that corrective feedback could enhance ef-
ficient neural word learning, these results should
not be generalized to human language learning. We
discuss more about the role of interaction in human
language learning in Appendix A.1.

6 Conclusion
This research introduces a trial-and-demonstration
(TnD) learning framework to examine the effective-
ness of corrective feedback in neural word acquisi-
tion through systematically controlled experiments,
assessing how the interplay between student trials
and teacher demonstrations contributes to learn-
ing efficiency in neural language models. We find
that (1) TnD learning accelerates neural word ac-
quisition across student models of different sizes;
(2) the teacher’s choices of words influence stu-
dents’ word-specific learning efficiency; and (3) a
practice-makes-perfect effect is evident by a strong
correlation between the frequency of words in trials
and their respective learning curves. Our findings
confirm the crucial role of interaction in efficient
word learning with language models.
Additional experiments. Due to the limited
space and primary research scope of this work, we
present experiments about other possible baselines
besides controllable ablation, downstream natural
language understanding task performances, and the
robustness of the findings under different hyper-
parameters in Appendix B.
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Limitations

Iterative setting. This experiment can be con-
ducted iteratively by replacing the teacher model
with the student model from previous iterations.
While this iterative approach is intriguing, it in-
troduces new complexities that require significant
modifications to the current controlled ablation
studies. We defer exploration of this approach to
future work, as the current study focuses on exam-
ining the roles of trials and demonstrations.
The reward. Our study is limited by the use of
a single reward model focused on corrective feed-
back. More realistic scenarios should also encom-
pass communicative feedback, with the success of
communication serving as a reward. Additionally,
Thorndike (1911) proposed the idea that a child
might instinctively feel satisfaction from producing
a sound that echoes a meaningful memory. The
design of such an intrinsic reward model is cogni-
tively intriguing, and could aid in scaling student
models without an external reward model, offering
potential benefits for engineering applications.
The reward model. We employ a robust lan-
guage model (LLaMA-2-7B) as a reward model
to concentrate on the roles of trials and demonstra-
tions without concerns about reward quality. Future
research should explore the impact of using less
accurate reward models.
The tokenizer. One limitation of our approach is
the reliance on the Byte Pair Encoding (BPE) tok-
enizer (Sennrich et al., 2016) inherited from GPT-2.
Ideally, the method should be tokenizer-free to fa-
cilitate the learning of early language elements such
as sound effects and animal sounds, e.g., “baa-baa”
in CDI (Fenson et al., 2006), which can be cru-
cial for a more natural and foundational language
acquisition process.
Other languages. The present study focuses on
English as the subject of investigation due to the
available corpus resources. Future research should
consider exploring other languages.
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A Trials-and-Demonstrations (TnD)
Details and Discussions

A.1 Interaction in human language learning
To unveil the role of social interactions in lan-
guage acquisition, a prominent body of research
has focused on pragmatic inference – that chil-
dren exhibit the ability to refine their linguistic
knowledge by inferring the communicative intents
of others (Senju and Csibra, 2008; Yurovsky and
Frank, 2017; Bohn and Frank, 2019). In addition,
other researchers have argued for the importance
of caregivers’ feedback to the language produced
by children (Warlaumont et al., 2014), in the form
of descriptions, explanations, corrections, etc, to
human language development. For example, ex-
tensive efforts have been made to examine the ef-
fects of communicative feedback on language ac-
quisition, both in developmental psychology (Bates
et al., 1975; Snow et al., 1996; Nikolaus and Four-
tassi, 2023) and computational modeling (Niko-
laus and Fourtassi, 2021; Liu et al., 2022). This
type of feedback emphasizes the explicit negoti-
ation of mutual understanding with the conversa-
tional partner to achieve and maintain common
ground (Clark, 1996). While communicative feed-
back emphasizes the success and failure of com-
munication, the feedback we study in this study
is more akin to corrective feedback. This type
of feedback involves responses from caregivers,
which offer corrections to possible errors in chil-
dren’s speech, including variants such as negative
evidence, reformulations, or recasts (Farrar, 1992;
Saxton, 2000; Chouinard and Clark, 2003; Saxton
et al., 2005; Hiller, 2016). Although corrective
feedback is shown to be helpful in second language
acquisition (El Tatawy, 2002; Ellis et al., 2006;
Bitchener and Ferris, 2011), researchers largely
dispute its availability and effectiveness in human
first language acquisition (Brown, 1970; Marcus,
1993). While our findings suggest that corrective
feedback through demonstrations can enhance effi-
cient neural language learning, these results should
not be generalized to human language learning,
where demonstrations are much less frequent in the
noisy feedback that children typically receive.

A.2 Relationship with RLHF
Reinforcement learning enables language systems
to learn from feedback in the form of rewards from
games (Narasimhan et al., 2015; He et al., 2016)
or heuristic scores (Ranzato et al., 2016; Nikolaus
and Fourtassi, 2021). Recent advancements in rein-

forcement learning from human feedback (RLHF)
have generated considerable excitement, especially
in its application to large language models such as
ChatGPT (OpenAI, 2022). Reinforcement learning
is employed to align the model’s policy with hu-
man preferences, utilizing human-annotated prefer-
ence data (Ziegler et al., 2019; Ouyang et al., 2022)
or AI models acting as proxies for human judg-
ment (Bai et al., 2022; Lee et al., 2023). We refer
to Kaufmann et al. (2023) and Zheng et al. (2023)
for more details. Our work leverages the imple-
mentation infrastructure of RLHF but diverges in
significant ways: whereas RLHF aims to align an
existing language model with human preferences,
our objective is to “babysit” a language model from
scratch using reinforcement learning, specifically
to model the process of receiving and integrating
corrective feedback.

A.3 Preliminaries

Inspired by recent work in RLHF, we use Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
to train the student model. Consider a model πθ
whose the current state si is a sequence of tokens
si = t1, · · · , ti, and receives a reward ri. We out-
line the key components and refer to Zheng et al.
(2023) for more details.

Clipped surrogate objective. The clipped surro-
gate objective is defined as:

Lpg
θ = Ei

[
min

(
Πi(θ), CLIP

(
Πi(θ), ϵ

))
Ai

]
(3)

where
Πi(θ) :=

πθ(ti+1 | si)
πθold(ti+1 | si)

(4)

The CLIP function clips the value within (1 −
ϵ, 1 + ϵ), which regularizes the policy from drastic
changes to ensure robustness.

Generalized advantage estimation. The advan-
tage function Ai at step i is estimated by the Gen-
eralized Advantage Estimation (GAE) algorithm
(Schulman et al., 2016) for a balanced bias-variance
trade-off:

Ai =
∞∑

k=0

(γλ)kδi+k (5)

where γ is the discount factor, λ is a hyperparame-
ter controlling the trade-off between bias and vari-
ance, and δi = ri+γV (si+1)−V (si) is the tempo-
ral difference (TD) error. The reward r is defined
in Section 2.3.
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Proximal policy optimization. During the same
time, PPO also estimates and optimizes its value
function Vθvh with MSE loss:

Lvalue
θvh

= Ei

[(
Vθvh(si)− V̂i

)2
]

(6)

where Vθvh(si) is the estimated value, and V̂i is
the target value from GAE. Differing from conven-
tional implementation, our approach didn’t employ
a reference model for the KL penalty. This devia-
tion emphasizes the language model’s evolutionary
nature during its training, enabling more signif-
icant updates and eliminating biases from over-
adherence to a reference model. The final rein-
forcement learning loss is a linear combination:

Lppo
θ = Lpg(θ) + c · Lvalue

θvh
(7)

where c ∈ [0, 1].

B Additional Experiments, Results, and
Discussions

B.1 Reproducibility
Test vocabulary. We include the list of words
and the evaluation datasets within the code.2

Training details. We randomly initialize the
GPT-2 student models. For each combination of
corpus and baseline, the training process is con-
ducted 5 times for 10k steps, each with a different
random seed. We utilize the top-k decoding strat-
egy for language generation, setting k = 20. The
learning rate for reinforcement learning is set to
2e−5. We follow the default setting for other PPO
hyper-parameters, such as a clip range (ϵ = 0.2)
from the TRL library. All other hyper-parameters
for causal language modeling, including the learn-
ing rate set at 1e−4 and a batch size of 128, re-
main consistent with the training setup of GPT-2
by Chang and Bergen (2022).

Checkpointing. We save the intermediate steps:
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110,
120, 130, 140, 150, 160, 170, 180, 190, 200, 210,
220, 230, 240, 250, 260, 270, 280, 290, 300, 310,
320, 330, 340, 350, 360, 370, 380, 390, 400, 410,
420, 430, 440, 450, 460, 470, 480, 490, 500, 550,
600, 650, 700, 750, 800, 850, 900, 950, 1000, 1500,
2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500,
6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500,
10000, 20000, 30000, 40000, 50000, 60000, 70000,
80000, 90000, 100000].

2Our code and data will be made publicly available upon
the acceptance of this work.

Computational resources. In TnD training, each
experiment to train a student model using TnD is
conducted on 2 A40 GPUs for 36 hours. In teacher
model pre-training, we distribute the computation
over 4 A40 GPUs with batch size 32 per device for
20 hours. To fine-tune the neural age predictor, we
use a LLaMA-2-7B model (Touvron et al., 2023)
with regression head on our developmental trajec-
tory (text and step pairs) dataset. To ensure the
prediction quality and save computation resources,
we fine-tune our model using mixed precision on
all parameters. The training is distributed over 8
A40 GPUs with batch size 8 per device with fully-
shared data parallel. The learning rate is 5e−5.

B.2 Additional Results

nAoA distributions. We present the ridgeline
and scatter plot of words and their neural age of
acquisition (nAoA) in BabyLM Corpus (Figure 13)
and BookCorpus (Figure 14).

Surprisal and learning curves. We observe a
similar pattern reported by Chang and Bergen
(2022) that learning curves tend to level off at
a local plateau, which aligns with the unigram
surprisal. This phenomenon renders the single-
sigmoid model unreliable for capturing the com-
plexity, and we adopt a double-sigmoid function
to fit the learning curve. We run regression be-
tween the plateau of double-sigmoid curves and
the unigram surprisals calculated from all sources
of word occurrences (Figure 10). We find a strong
correspondence between the plateau and unigram
frequency, suggesting that the double-sigmoid func-
tion is a better option than the single-sigmoid func-
tion to fit learning curves. To analyze longer
learning curves of up to 1M steps, more com-
plex functions such as linear GAMs have been
adopted (Chang et al., 2023). For our purposes,
a double-sigmoid function suffices.

B.3 Teacher’s word preferences in
demonstrations affect student

To explore how the teacher model’s word selec-
tion impacts students’ language development, we
repeat the experiments where a chosen set of 40
words for each test vocabulary is excluded from
teacher demonstrations. To ensure fluent genera-
tion, we maintain the presence of essential func-
tional words so these words don’t appear in the
40 chosen words. During the language generation
process by the teacher model, if a word from this
set is to be decoded, we select the next best alter-
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(b) The word “there.”
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(c) The word “go.”
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(d) The word “take.”
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(e) The word “if.”
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(f) The word “back.”
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(g) The word “light.”
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(h) The word “car.”
Figure 9: Examples of per-word learning curves and cumulative word frequency in BookCorpus.
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Figure 10: Sigmoid plateau v.s. unigram surprisal.

native, ensuring these words were never presented
in teacher demonstrations. We depict the learning
curves for these excluded words in Figure 7 and
present the nAoA in Table 2. Our findings indicate
that the teacher model’s word choices significantly
influence the efficiency of word acquisition by the
student model. The absence of words from teacher
demonstrations leads to slower learning speed for
the student models, as evidenced by a higher nAoA,
although the student models are ultimately able to
learn these words from the corpus and their trials.

Additional per-word learning curves. We re-
port additional examples of per-word learning
curves and cumulative word frequency over time
in Figure 9. Predicates and function words, such as
“back” and “go”, have a high correlation between
surprisal and cumulative word frequency on the stu-
dent model’s trial, shown in Figure 9(a-f). Nouns
such as “light” and “car”, however, depict a less
correlation between the word’s learning curve and
trial’s frequency, shown in Figure 9(g-h).

B.4 Downstream evaluation on NLU tasks

We evaluate the final model on downstream natu-
ral language understanding (NLU) tasks. Specif-
ically, we fine-tune the final CLM and TnD mod-
els (from the BabyLM corpus) on the BabyLM
round 1 NLU evaluation set, which is based on
(Super)GLUE (Wang et al., 2018, 2019). Table 4
shows that the TnD model performs on par with
the CLM model, slightly better overall. We ob-
serve that the TnD model did significantly better on
the Recognizing Textual Entailment (RTE, which
requires determining inferential relationships be-
tween hypothesis and premise) task, but under-
performs on the Question-Answering NLI (QNLI,
which requires comprehending longer paragraphs).

B.5 Discussion and experiment on other
possible baselines

Causal language modeling using teacher-
generated text (naive content distillation). One
possible baseline is to re-run the CLM baseline using
teacher/student-generated texts, rather than the cor-
pus text, at a non-interactive step. This experiment
is controlled over the language input to the CLM and
TnD baselines, but is not a fair setting for CLM as
the student’s trials are usually of poor quality in
initial steps. We replace the PPO updates in TnD
with causal language modeling on both texts from
the student model’s trial and the teacher model’s
demonstration. We find that the resulting CLMTnD
baseline achieves an almost identical overall learn-
ing curve as CLM (Figure 11b).

Causal language modeling using teacher-
generated text (naive content distillation). Our
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Model Average CoLA SST-2 MRPC QQP MNLI MNLImm QNLI RTE BoolQ MultiRC WSC
CLM + BabyLM 67.2 69.8 84.4 76.2 79.1 67.2 68.0 68.5 48.5 63.6 52.0 61.4
TnD + BabyLM 67.5 66.6 82.5 75.4 79.0 67.4 69.0 61.0 60.6 64.9 54.5 61.4
CLM + BookCorpus 65.5 67.6 85.4 73.2 78.3 66.0 67.1 60.1 45.5 65.3 51.0 61.4
TnD + BookCorpus 65.8 67.5 83.3 77.3 77.5 66.7 67.4 66.4 45.5 67.5 51.2 53.0

Table 4: We present the NLU evaluation results based on the BabyLM Challenge, which consists of tasks selected
from (Super)GLUE. We fine-tune the final models developed on both BookCorpus and BabyLM datasets.
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Figure 11: Comparison between CLM on model pre-
dicted text, CLM on train corpus, and TnD. Evaluated
on CDI words on BabyLM.

main difference from the existing knowledge distil-
lation methods for LLMs is that we train a student
model from scratch, rather than requiring a pre-
trained but weaker student model. For example, Ko
et al. (2024) adopt the T5 language model as the
student. Closest to our work is Nikolaus and Four-
tassi (2021), which also adopts an ablation study
setup. We did not compare to their method as a
baseline as they noticed that combining production
and perception-based language learning does not
work from scratch. To the best of our knowledge,
our TnD method is the only interactive language
learning algorithm that functions well with a stu-
dent model from scratch.

Using the corpus sentences as demonstrations.
While it is possible to directly use the ground truth
sentences from the training corpus as demonstra-
tions (ter Hoeve et al., 2022), it can be very difficult
to adapt the teacher model’s behaviors for our con-
trolled studies. As a result, we use a pre-trained
language model as the proxy for demonstration
generation, rather than using the original text. In
our preliminary experiments, using ground truth
sentences from the training corpus as demonstra-
tions do not lead to a noticeable difference from
model-generated demonstrations.

B.6 The robustness of results and findings
over hyper-parameters

Learning rate To evaluate the robustness
of results over different PPO learning rates,
we run our experiment with learning rate =
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BabyLM.
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Figure 12: The robustness of the learning curve results
over other hyper-parameters, e.g., learning rates and
alternating schedules.

8e−6, 1e−5, 2e−5, 3e−5 (Figure 12a). We find that
a smaller learning rate results in a later age of ac-
quisition compared to a higher learning rate. Never-
theless, our findings remain robust across different
learning rates, although a higher learning rate can
lead to unstable training and poorer end perfor-
mance.

Alternating frequency We run our experiment
on different alternating frequencies to study its im-
pact on the TnD framework. To perform a system-
atic study, we group the alternating schedule [c, r]
by their PPO/CLM steps ratio. We experiment with
the settings when the ratio equals to 1 ([1, 1], [2, 2]),
2 ([2, 1], [4, 2]), 3 ([3, 1], [6, 2]), and 4 ([4, 1]), as
presented in Figure 12b. We find that the alternat-
ing frequencies under the same ratio lead to similar
performance. Our findings are robust over different
alternating frequencies, except the ratio = 1 lead-
ing to unstable training and poor end performance.

C Limitations, Licenses, and Risks

C.1 Artifacts and licenses

Our work largely relies on publicly available
datasets such as BookCorpus (Zhu et al., 2015) and
BabyLM (Warstadt et al., 2023), and pre-trained
models such as GPT-2 (Radford et al., 2019) and
LLaMA-2 (Touvron et al., 2023). We strictly fol-
low the LLaMA license and limit the scope of the
LLaMA model to academic research only. We re-
port a list of licenses for all datasets and models
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Dataset URL License

BookCorpus Link MIT License
BabyLM Link MIT License

Models URL License

GPT-2 Link MIT License
LLaMA-2 Link Llama License

Table 5: License information for the code base in our
experiment.
used in our experiment in Table 5.

C.2 Ethical concerns and risks
This work does not depend on human annotators
or human subjects for interactive experiments. We
leverage open datasets and model-generated con-
tent for training that could contain biases and sen-
sitive contents inherited, which may cause fairness
issues in the final model when applied to practi-
cal applications. Future research should be done
to look into these issues, potentially by designing
fairness-aware reward models.
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Figure 13: The ridgeline and scatter plot of words and their neural age of acquisition (nAoA) in BabyLM Corpus.
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Figure 14: The ridgeline and scatter plot of words and their neural age of acquisition (nAoA) in BookCorpus.
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