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Abstract
The lottery ticket hypothesis posits the exis-
tence of “winning tickets” within a randomly
initialized neural network. Do winning tickets
exist for LLMs in fine-tuning scenarios? How
can we find such winning tickets? In this paper,
we propose KS-Lottery, a method to identify
a small subset of LLM parameters highly ef-
fective in multilingual fine-tuning. Our key
idea is to use Kolmogorov-Smirnov Test to an-
alyze the distribution shift of parameters before
and after fine-tuning. We further theoretically
prove that KS-Lottery can find the certified
winning tickets in the embedding layer, fine-
tuning on the found parameters is guaranteed
to perform as well as full fine-tuning. Compar-
ing KS-Lottery with other tuning algorithms
on translation tasks, the experimental results
show that KS-Lottery finds a much smaller set
of parameters for fine-tuning while achieving
the comparable performance as full fine-tuning
LLM. Surprisingly, we find that fine-tuning 18
tokens’ embedding of LLaMA suffices to reach
the fine-tuning translation performance 1.

1 Introduction

Can we find an ultra-small subset of a well-trained
Large Language Model (LLM; Touvron et al.,
2023a,b; OpenAI, 2023; Chowdhery et al., 2022)
such that fine-tuning these few parameters suffices
to achieve the same performance as full tuning?
The lottery tickets hypothesis (Frankle and Carbin,
2019) states that a small subnetwork (less than 10-
20% of the whole model size), referred to as “win-
ning tickets”, in a large, randomly initialized neu-
ral network can achieve comparable performance
to the original network with the same amount of
training. Yet, the existence of winning tickets is
not investigated for fine-tuning scenarios. Prior
work (Aghajanyan et al., 2021) presents evidence
that there are a small number of additional param-
eters corresponding to an intrinsic dimension (Li

1https://github.com/CONE-MT/KS-Lottery.git
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Figure 1: Existence of “winning tickets”. KS-Lottery
identifies a small subset of embedding parameters of
LLaMA-7B to maintain the translation performance of
en→ca on Flores-101.

et al., 2018) on which fine-tuning leads to good per-
formance. However, it remains an unsolved chal-
lenge to uncover such a small subset of fine-tuning
efficient parameters within the original model.

In this paper, we show that there exist key pa-
rameters - winning tickets, for transferring LLM
to multiple new languages. As shown in Fig-
ure 1 (KS-Lottery), we found that as tuning as few
as 18 (18/32000 = 0.0006) token embeddings of
a well-trained LLM could achieve test performance
comparable to full tuning on machine translation
tasks. Based on the observation, we state the lottery
ticket hypothesis for multilingual fine-tuning.

Generally, the fine-tuning process can be rep-
resented by a transition in M parameters from
θ = [θ0, θ1, · · · , θM ] to θ̃ = [θ̃0, θ̃1, · · · , θ̃M ],
where θ and θ̃ denote the sets of parameters that
characterize the LLM f(·,θ) before and after the
fine-tuning process, respectively. Typically, the
entire set of parameters θ is adjusted during fine-
tuning to enhance the model’s ability to represent
and learn the new tasks more effectively.
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The Fine-Tuning Lottery Ticket Hypothe-
sis. nA pre-trained neural network contains
a small subset of parameters (θ̃

D
= [θ̃0, θ̃1,

· · · , θ̃D, θD+1, · · · , θM ], where D ≪ M ) that
is initialized such that—when fine-tuned in isola-
tion—it can match the performance of full tuning.

In this work, we examine the fine-tuning lottery
ticket hypothesis on LLMs in a multilingual trans-
fer scenario, and explore the following inquiries:

• Existence of Winning Tickets: Is it certain that
every LLM in multilingual transfer encompasses
a compact subset of winning tickets? And how
to quickly identify the winning tickets?

• Efficiency of Winning Tickets: How minimal
can this subset be in terms of size?

• Interpretability of Winning Tickets: Do these
winning tickets reflect the unique architectural
characteristics of the multilingual LLM?

Identifying Winning Tickets. We propose KS-
Lottery, a method to identify a winning ticket by
merely fine-tuning the embedding layer of an LLM.
And then fine-tune these identified tickets, keeping
the remaining parameters frozen. The whole KS-
Lottery consists of three steps:

1. Fine-tuning the embedding layer of an LLM
f(·,θ) to obtain f(·, θ̃D

).

2. Run Kolmogorov-Smirnov Test between θ and
θ̃
D

to select the winning ticket θ̃
D

a .

3. Tuning the θ̃
D

a within θ on downstream tasks.

The core idea of our method is to heuristi-
cally identify parameters with large distribution
changes before and after fine-tuning. Here we use
Kolmogorov-Smirnov Test to determine whether
two sample variables stem from the same underly-
ing distribution. Also, we simplify and accelerate
the Kolmogorov-Smirnov Test process by focusing
on the embedding layer, which constitutes the ma-
jor change in parameters, due to the inductive bias
of multilingual tasks. To this end, our approach,
KS-Lottery, is a surprisingly straightforward yet
effective technique for pinpointing winning tickets
in LLMs. The Kolmogorov-Smirnov Test has the
advantage of not assume the distribution, which is
particularly useful when the data dows not conform
to a normal distribution. Furthermore, a theoretical
framework is developed to certify the effectiveness

of our method. Inspired by randomized smooth-
ing techniques (Zhao et al., 2021, 2022), we illus-
trate that parameters with Kolmogorov-Smirnov
distance bounded by a small value before and after
fine-tuning do not impact prediction. This provides
a way for giving a certified lower bound for the
performance of partial tuning on winning tickets.
Our analysis also proves that KS-Lottery can find a
small set of winning tickets when the original pre-
diction model shows little uncertainty. This gives
us a strong foundation for asserting that KS-Lottery
can be an effective tool for finding winning tickets.

• We propose KS-Lottery, a method to identify
winning tickets – an ultra-small subset of param-
eters that are sufficient to fine-tune on to achieve
that of Full Tuning.

• Theoretically, we prove that KS-Lottery finds
certified winning tickets.

• Empirically, we demonstrate that fine-tuning as
few as 18 identified winning tickets (the token
embedding) of LLaMA-7B using en→ca data
achieves surprisingly good performance in trans-
lation tasks. This will result in a new standard in
multilingual transfer of LLMs.

2 Related Work

Lottey Tickets Hypothesis. The Lottery Tick-
ets Hypothesis suggests the presence of ‘win-
ning tickets’ or beneficial subnetworks within a
model(Frankle and Carbin, 2018; Malach et al.,
2020). These subnetworks, discovered during prun-
ing, are believed to be specifically suited to the
learning task (Frankle and Carbin, 2018). In re-
lation to this, Zheng et al. (2022) fins that these
‘winning tickets’ are more sparse in the later layers
of the BERT model on GLUE tasks (Wang et al.,
2018). While much research focuses on model
pruning, there’s also work on efficient parameter
tuning (Ding et al., 2023). For example, it’s shown
that the performance of fine-tuned parameters can
indicate both the task’s inductive biases and the
model’s inherent structure (Ding et al., 2023).

Certified Methods for Transfer Learning. Cer-
tification is crucial in transfer learning, aiming
to measure a model’s generalization and capabil-
ities (Raghunathan et al., 2018; Jia et al., 2019).
Research has introduced certified robustness accu-
racy as a defense against adversarial attack (Raghu-
nathan et al., 2018; Jia et al., 2019; Muravev
and Petiushko, 2021; Zhao et al., 2022; Lecuyer
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et al., 2019). Randomized smoothing, a model-
independent certification technique, assesses how
input changes affect predictions (Lecuyer et al.,
2019; Muravev and Petiushko, 2021). Our ap-
proach focuses on model parameter variations.
Other studies have certified fairness in models (Ru-
oss et al., 2020; Peychev et al., 2021) and robust-
ness against data selection (Wang et al., 2023).

Multilingual Large Language Model. Large
Language Models (LLMs; OpenAI, 2023; Zhang
et al., 2022; Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023a,b, inter alia) excel in
English but underperform in other language. Stud-
ies have fine-tuned LLMs using monolingual or
multilingual data to enhance their multilingual ca-
pabilities (Zhu et al., 2023; Li et al., 2023; Jiao
et al., 2023; Cui et al., 2023; Yang et al., 2023).
Embedding Tuning can activate multilingual abil-
ities in certain languages, suggesting that the in-
trinsic dimension of these abilities may lie within
the embedding layer (Li et al., 2018; Yuan et al.,
2023b). The intrinsic dimension, the minimum pa-
rameters needed for a specific objective function, is
estimated using heuristic methods and random sub-
space training due to computational constraints (Li
et al., 2018; Aghajanyan et al., 2021).

3 Certified Winning Tickets via
KS-Lottery

In this section, we first introduce KS-
Lottery (Fasano and Franceschini, 1987) (§ 3.1).
Then we apply KS-Lottery to find certifiable
winning tickets in a multilingual transfer sce-
nario (§ 3.2). Finally, the theoretical result of § 3.2,
as well as the experimental result (§ 3.3), validate
the effectiveness of KS-Lottery.

3.1 KS-Lottery

Guided by the hypothesis that parameters under-
going substantial changes during fine-tuning are
crucial for making predictions (Levin et al., 2022),
we exam the distribution pi of each parameter θi

(with the parameter θij of token j drawn from pi)
before and after the fine-tuning. Although vari-
ous metrics exist for pinpointing essential param-
eters (Li et al., 2016; Dalvi et al., 2019; Meng
et al., 2022), these often depend on specific cutoff
values, and determining the necessary number of
parameters in advance is challenging. We advocate
for a new approach: actively seeking out "lottery
tickets" that are guaranteed to achieve similar fine-

tuning outcomes with a high level of confidence.
This calls for a more principled approach and the
Kolmogorov-Smirnov Test stands out. In this sec-
tion, we introduce the test and then theoretically
explain its effectivenes in the following section.

We propose a probing strategy that employs the
Kolmogorov-Smirnov Test, which is a statistical
method used to compare two sample distributions
and determine whether they are drawn from the
same underlying distribution. The Kolmogorov-
Smirnov Test is an exact test, meaning that distri-
bution does not depend on the underlying cumu-
lative distribution function being tested. Specif-
ically, we view the embedding of each LLM to-
ken j as a distribution i.e. θEij ∼ pi. The cu-
mulative distribution function (CDF) of θEi and
θ̃Ei could be denoted by Φi(θ) and Φ̃i(θ). The
Kolmogorov-Smirnov distance between the two
CDFs is Di = supθ |Φ̃i(θ)− Φi(θ)|.

Now we wish to determine whether a token
embedding before and after fine-tuning comes
from the same distribution. Formally, we state
Kolmogorov-Smirnov Test as:
Theorem 1. (Kolmogorov-Smirnov Test, Fasano
and Franceschini (1987)) The test statistic for this
Kolmogorov-Smirnov Test can be defined in terms
of two hypotheses:
H0: θi and θ̃i come from the same distribution.
H1: two samples aren’t from the same distribution.

If test T: Di > τ(α) is passed, then H1 holds
with confidence 1− α, where Di = supθ |Φ̃i(θ)−
Φi(θ)|, τ(α) = c(α)

√
2
d , the value of c(α) is given

in the reference table (Karson, 1968), and d is the
parameter dimension.

Based on the Kolmogorov-Smirnov Test, we
came to propose our method, KS-Lottery.
KS-Lottery. A parameter is designated as a “win-
ning ticket" if it meets the criterion of rejecting the
null hypothesis (no difference in the distribution of
the embedding before and after fine-tuning) and the
alternative hypothesis H1 (indicating a significant
distributional change) is accepted. Kolmogorov-
Smirnov Test ensures that if the distribution of pa-
rameter θ does not change after fine-tuning, then
P [Di > τ(α)] < α, ensuring the majority of cru-
cial token embeddings would be chosen by the test.

3.2 Finding 1: KS-Lottery finds certifiable
winning tickets in multilingual transfer.

There exists a set of winning tickets θE
a within the

token embeddings θE = [θ0, θ1, · · · , θ|V |], where
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Finetune ✔ 
Va = {that, the, of, and, with …} 

Vb = {кої, Among, ческих, pseudo...} 
Finetune ✘ 

Figure 2: Illustration of f(·,θE
a ,θ

E
b ) in 2 dimensions. Left: The concentric circles are the density contours of

embedding parameters before and after tuning, and the colored landscape is the decision boundaries of f(·). Right:
the distribution P

[
f(x, θEa , θ̃

E
b )

]
and P

[
f(x, θ̃Ea , θ

E
b )

]
. pA is the probability P

[
f(x, θ̃Ea , θ̃

E
b )

]
predicts x to be

token cA (color blue), and pB as the probability of second most likely prediction (color red). Dks denotes the
Kolmogrov-Smirnov distance between distributions before and after tuning. We choose the set of token embeddings
for tuning as those with little distribution overlap before and after fine-tuning, which may be critical to prediction.

θE = [θE
a ,θ

E
b ], θ̃

E
= [θ̃

E

a ,θ
E
b ] is the parameters

of embedding layer before and after tuning. If
tuning on parameters θE

a would achieve similar
performance to full tuning on θE downstream tasks,
then we refer to θE as the winning tickets. For
convenience, we discuss the downstream task as
a next-token prediction problem, which is central
to text generation, such that for an LLM f(·,θE),
given input context x, generate the most probable
token in vocabulary set Y .

g(x, θ̃
E

a ,θ
E
b ) = g(x, θ̃

E

a , θ̃
E

b ),

where g(x,θE
a ,θ

E
b ) = argmax

c∈Y
P
[
f(x,θE

a ,θ
E
b ) = c

]

(1)

Suppose that when the LLM f(·,θE
a ,θ

E
b ) pre-

dicts any given input x, the most probable token cA
is returned with probability pA. Given that small
changes to parameters in a smooth subspace do not
affect decision boundary (Muravev and Petiushko,
2021; Zhao et al., 2022), we could probably guar-
antee that training on KS-Lottery selected token
embeddings could achieve the same performance
as full layer Embed Tuning at high confidence. The
intuition of the theory is illustrated in Figure 2. Our
main theoretical results are as follows, the proofs
can be found in Appendix B:

Theorem 2. (Certified Winning Tickets) Let
f(·,θa,θb) : Rd → Y be any random or determin-
istic function, and let g be defined as in Equation
1. For any input x, suppose cA ∈ Y , the bounds of
prediction based on random variable parameters
θ̃a, θ̃b, pA, pB ∈ [0, 1] satisfies

P
(
f(x, θ̃a, θ̃b) = cA

)

≥ pA ≥ pB ≥ max
c̸=cA

P
(
f(x, θ̃a, θ̃b = c)

) (2)

If the set of parameters θb satisfies

D(θ̃ib, θ
i
b) < τ(α) <

pA − pB

2
, (3)

for all i ∈ Vb, the generator partial-tuned
on parameters θa always return token cA, i.e.
g(x, θ̃

E

a ,θ
E
b ) = cA.

Remark 3. (About θa) Theorem 2 immediately
holds for Partial Transfer setting as specified in
§ 3.3. As for Partial Tuning setting, we need to use
the hypothesis that the value of θ̃a in the Embed
Tuning setting and partial-tuning setting are the
same for Theorem 2 to hold. This is due to θa

taking major effect during Embed Tuning despite
small changes in θb. We also show with empirical
analysis in § 4.2 that θ̃a in two tuning settings share
the same distribution.

Remark 4. (About α) Practically, τ(α) is small. In
the case of fully embedding tuned LLM that has
optimal performance and produces confident pre-
diction, 1 > pA ≫ pB > 0, we can choose small
α = τ−1(pA−pB

2 ) while maintaining performance.
In this case, the Kolmogorov-Smirnov Test samples
fewer token embeddings for fine-tuning.

Remark 5. (About Applicability) This theorem
could be used for certifying fine-tuning lottery tick-
ets for any black-box model and input. Note that
KS-Lottery could be applied to the entire model,
though we only perform testing on the embedding
layer for convenience and training stability.

3.3 Finding 2: 18 identified winning tickets
(18 tokens) achieves remarkable
performance.

There are two different ways to verify the effective-
ness of winning tickets: Partial Tuning (sufficient
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Figure 3: Overview of Partial Training, one application of KS-Lottery. It consists of two steps: (1) finding the
winning tickets in the embedding layer by Kolmogorov-Smirnov Test; (2) one way to use these winning tickets is
partial tuning these tokens ensuring other parameters keep frozen.

Table 1: Empirical verification of winning tickets with Partial Tuning and Partial Transfer with bilingual
translation data. * denotes that the random results from three distinct seeds.

Method LLaMA-7B Mistral-7B
# Token en→ro en→es en→de en→ca Avg. # Token en→ro en→es en→de en→ca Avg.

Original Model
-

3.5 4.8 4.8 5.7 4.6
-

13.4 11.7 14.2 16.8 14.0
Full Tuning 28.3 23.5 22.5 34.9 27.3 33.4 25.1 29.1 37.8 31.4
Embed Tuning 28.7 25.5 25.8 36.1 29.0 34.2 28.3 33.2 40.2 34.0

Random Tuning*
<18 0.1 0.1 0.1 0.1 0.1

<169 16.2 13.9 15.3 20.3 16.4
Partial Tuning 20.7 26.7 26.4 37.7 27.9 23.7 26.3 27.2 34.2 27.9
Partial Transfer (p-value < 0.05) 23.4 22.6 16.1 31.1 23.4 (p-value < 0.05) 26.7 27.3 30.5 37.5 30.5

Random Tuning*
<100 0.1 0.1 0.1 0.1 0.1

<170 17.3 13.9 15.3 20.4 16.7
Partial Tuning 26.9 27.3 27.2 37.4 29.7 23.7 26.3 27.2 34.2 27.9
Partial Transfer (p-value < 0.25) 25.1 26.5 30.4 34.4 29.1 (p-value < 0.25) 26.7 27.3 30.5 37.5 30.5

Random Tuning*
≤800

5.8 8.7 5.2 11.8 7.9
≤180

16.3 13.9 15.4 20.3 16.5
Partial Tuning 29.4 27.3 30.1 37.7 31.1 30.7 28.2 29.5 39.2 31.9
Partial Transfer 30.2 26.7 30.4 37.6 31.2 33.7 27.9 32.6 40.3 33.6

condition) and Partial Transfer (necessary condi-
tion). Partial Tuning. As shown in Figure 3, only
train winning tickets, keeping the remaining pa-
rameters frozen. Partial Transfer. Given a model
trained by Embed Tuning, we select the winning
tickets from the embedding layer and use them to
replace the corresponding parameters in the origi-
nal model, thus curating a new model.

As shown in Table 1, just tuning winning tick-
ets can achieve results on par with Embed Tuning.
Meanwhile, by only modifying the winning tickets,
it manages to retain 86.9%(31.3/36.1) of the per-
formance. The experimental result demonstrates
that a low-dimensional subspace exists, guided by
the winning tickets, that can achieve comparable
performance as optimizing all parameters in the
embedding-tuned model. The result empirically
verifies the effectiveness of winning tickets.

4 Analysis

KS-Lottery . There are three different ways to
use the winning tickets. Partial Tuning, Partial
Transfer and Frequency Tuning, which only train
the high-frequency tokens in the corpus.

Algorithm 1: Next Token Prediction Certification
Input: Sequence x, ground truth output token is y.
LLM f(x,θ) that maps sequence to the probability of
the next token class, with pre-trained parameters θ.
Multilingual training set D. KS-Lottery parameter α.
Output: Whether g(x, θ̃

E

a ,θ
E
b ) = y

fine-tune LLM f(x,θ) on D with parameters θ̃.
θE
a ,θ

E
b = KS-Lottery(θ, θ̃, τ(α))

pA, pB = Top-2
(
f(x,θE

a ,θ
E
b )

)

if g(x, θ̃
E

a , θ̃
E

b ) = y and pA−pB
2

> τ(α) then
return True // Certification can be provided.

else
return False // Certification cannot be provided.

end

Other Baselines. Original Model Directly us-
ing the LLaMA-7B (Touvron et al., 2023a)/Mistral-
7B (Jiang et al., 2023) weight on test data, with-
out any tuning. Random Tuning Only the to-
kens randomly selected in the embedding layer
are fine-tuned, while the remaining parameters
are kept frozen. Full Tuning is an approach
to transfer learning where the weights of a pre-
trained entire model are trained on new data. Em-
bed Tuning Merely fine-tuning the embedding
layer of a model keeping the remaining param-
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B. en-bs Partial Tuning SettingA. D.C. en-da Partial Tuning Setting en-no Partial Tuning SettingEstimation of τ(α)

Figure 4: Certified experiment under Partial Tuning setting. A: Estimation of τ(α) w.r.t different α by running
Kolmogorov-Smirnov Test between the distribution of LLaMA-7B embedding and fine-tuned embedding on
different datasets. B C D: Comparison between Certified Accuracy and Empirical Prediction Accuracy w.r.t.
different α on 3 datasets. More results are shown in Appendix C.

Table 2: Partial Tuning of the winning ticket is a
parameter-efficient method. Its performance is demon-
strated by comparing it with other parameter-efficient
methods on the Flores-101 devtest.

Method # Param en→ro en→es en→ca en→no Avg.

LLaMA w/o Tuning 7B 3.5 4.8 5.7 3.2 4.3
Full Fine-Tuning 7B 28.3 23.5 34.9 21.2 27.0

QLoRA 17M 25.8 23.5 33.5 17.2 25.0
LoRA 4.2M 29.8 26.4 37.3 19.6 28.3

Prefix Tuning 0.04M 17.6 20.4 20.8 11.0 17.4
Embed Tuning 131M 28.7 25.5 36.1 19.5 27.5

Partial Tuning 3.2M 27.3 30.1 39.3 22.1 29.7

eters frozen. LoRA (Hu et al., 2022) utilizes
low-rank matrices for approximating parameter
updates. QLoRA (Dettmers et al., 2023) re-
duces memory usage enough to efficiently fine-
tune. Prefix-Tuning (Li and Liang, 2021) intro-
duce a lightweight prefix module into the input
layer and each transformer layer, enabling efficient
training over these modules.

Training and Evaluation. To ensure a fair com-
parison, we apply various parameter-efficient set-
tings on LLaMA-7B using Lego-MT (Yuan et al.,
2023a) 10k data. For full tuning, training with
LoRA, and Embed Tuning, we set the learning
rate to 2e− 5 and the number of epochs to 3. For
partial tuning, prefix-tuning, and KS-Lottery, we
set the learning rate to 1e − 2 and the number of
epochs to 5. All other parameters are kept con-
sistent across all settings. We test each model on
the Flores-101 (Goyal et al., 2022) devtest, which
offers human-written translation pairs across 101
languages. In alignment with Flores-101, we em-
ploy the same evaluation metric, sentence piece
BLEU (spBLEU) on beam size= 4, to assess mul-
tilingual capabilities.

4.1 KS-Lottery Certification
Certified Accuracy, when using certified winning
tickets Embed Tuning, is measured as the pro-

portion of correct predictions from an embedding
tuned model (reference model) that is certified to
be correct at a significance level of α. The certi-
fication process follows Theorem 2 and is stated
in Algorithm 1, where for each prediction based
on input sequence x, we compare the probabil-
ity gap between two most-likely tokens by the
original LLaMA, i.e.

pA−pB
2 and τ(α). τ(α) is

a static value that could be obtained through the
equation, though we use the value estimated with
Scipy Kolmogorov-Smirnov test to be precise.

To check the validity of our certification method
and test the empirical tightness of the certification
bound, we experiment on Flores-101 devtest. A
model, developed using partial tuning, and Em-
bed Tuning, utilizes both the instruction and a par-
tial sequence of reference tokens as input. Tem-
porarily both settings of certification only use the
first twenty token prediction results for calcula-
tion for a fair comparison and don’t let overlong
sentences dominate the results. It subsequently
predicts the next token in the partial reference sen-
tence. The “prediction accuracy” is ascertained by
comparing the predicted token, generated by the
partially tuned model, with the reference token.

Our theoretical discovery provides certification
for the lottery tickets hypothesis. In Figure 4
that plots certified accuracy as a function of α, the
certified accuracy always increases gradually until
reaching the same value as the prediction accuracy.
This is due to the decrease in τ(α) as α increases
and reaches 0 when α = 1. At any α, the empirical
estimation of certified accuracy is a lower bound
of prediction accuracy, providing a performance
guarantee for tuning on the lottery tickets.

Certification lower bound is tighter for larger
α . When pA ≫ pB , there must exist a α that
satisfies the certification constraint. Since pA and
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Table 3: The efficiency and interpretability of KS-
Lottery. Given an en→ca Embed Tuning bilingual
model, KS-Lottery is denoted by the p-value, whereas
the metrics from other evaluation methods are normal-
ized for comparability by calculating the importance #
rank/32000.

Idx Str Freq. KS-Lottery Cos Absolute Relative Ratio KL

13 \n 5 0.0000 0.0001 0.9972 0.0004 0.0004 0.0154
263 a 10 0.0000 0.0016 0.9964 0.1376 0.1376 0.0071
278 the 569.5 0.0000 0.0003 0.9508 0.0546 0.0546 0.0018
297 in 286 0.0000 0.0034 0.8807 0.9885 0.9885 0.0353
304 to 146 0.0000 0.0016 0.8860 0.9032 0.9032 0.0155
310 of 264 0.0000 0.0009 0.1571 0.9955 0.9955 0.0171
322 and 680 0.0000 0.0004 0.9913 0.0060 0.0060 0.0077
338 is 1356 0.0214 0.0005 0.1557 0.0201 0.0201 0.0023
376 " 174 0.0163 0.0000 0.0375 0.9796 0.9796 0.0001
393 that 2965 0.0175 0.0007 0.9922 0.0086 0.0086 0.0035
411 with 2102 0.0459 0.0013 0.1553 0.1493 0.1493 0.0054

29871 ˜ 6 0.0000 0.0005 0.9936 0.9908 0.9908 0.0026
29889 . 4 0.0000 0.0002 0.9962 0.8387 0.8387 0.0068
29892 , 3 0.0000 0.0002 0.9976 0.9950 0.9950 0.0048
29896 1 9 0.0000 0.0023 0.0440 0.0500 0.0500 0.0139
29900 0 8 0.0008 0.0045 0.0728 0.9743 0.9743 0.0254
29901 : 30 0.0069 0.0003 0.9791 0.9950 0.9950 0.0008
29949 O 294 0.0406 0.0028 0.9336 0.0359 0.0359 0.0201

pB are input and model dependent, we empirically
assessed the tightness of our bound by compar-
ing the estimated value of certified accuracy with
prediction accuracy. As shown in Figure 4, the
bound is tighter when α → 1, and the gap is larger
when α → 0. This is due to when fewer token em-
beddings are chosen, the certification expects the
performance to be worse, though in actual tuning
even zero-shot performance is quite good due to
pre-training. The gap is quite small in practical
cases, the gap is about 2% on average for α = 0.05
and around 1.5% on average for α = 0.5. There-
fore, we recommend using α ≥ 0.05 significance
rate for guaranteed.

4.2 KS-Lottery Efficiency and Interpretability
Partial Tuning can serve as a parameter-efficient
tuning method. We proceed to evaluate it as a
method that optimizes parameter usage, in compar-
ison with another similar method. As illustrated
in Table 2, in contrast to other methods such as
LoRA (Hu et al., 2022), QLoRA (Dettmers et al.,
2023) and Prefix-tuning (Li and Liang, 2021), Par-
tial Tuning eliminates the need for an additional
model structure. Remarkably, our method not only
matches but frequently surpasses the performance
of these alternate approaches.

Comparing with other selection methods, KS-
Lottery is parameter-efficient. There are other
ways (more details in Appendix C) to select critical
parameters, such as Cos, Absolute, Relative, Ratio,
and KL. In Table 3, we selected only 18 selective
tokens by KS-Lottery on en→ca bilingual data with
extremely stringent requirements (p-value < 0.05).
At this time, we used other evaluation methods to

Table 4: The best result from Frequency Tuning, Partial
Tuning, and the result of Embed Tuning.

Setting en→ca en→da en→de en→es en→no Avg.

Embedding Tuning 36.1 32.7 25.8 25.5 19.5 27.9
Partial Tuning 37.7 33.3 30.1 27.3 19.8 29.6

Frequency Tuning 37.7 30.0 30.7 26.1 19.6 28.8

Figure 5: When selective tokens are restricted from be-
ing updated, the model’s fine-tuning process for down-
stream tasks loses its effectiveness.

measure the importance of these tokens separately:
the evaluation results of these tokens based on dis-
tribution changes (such as Cos, KL) are highly
consistent with KS-Lottery; those evaluation meth-
ods based on value changes (Absolute, Relative,
and Ratio) tend to give these tokens very low im-
portance evaluation results. If we use different
methods to select the top 18 important tokens for
Partial Transfer experiments, the performance of
different selective methods is 31.3 (KS-Lottery),
28.7 (Cos), 5.8 (Absolute), 5.8 (Relative), 5.8 (Ra-
tio) and 1.6 (KL). Based on the experimatl results,
we find that except for the results of Cos, which are
close to the performance of KS-Lottery (but still
-2.6 points), the translation performance of other
methods is very poor.

Winning tickets are high-frequency tokens in
the corpus. In the embedding layer, each dimen-
sion is associated with a meaningful token index.
By referencing the vocabulary, we can decode the
text representation corresponding to this index, as
illustrated in Table 3 (Str). To examine the distinct
characteristics of these tokens, we retrieve 50k sen-
tences in ca language from the MC4 (Raffel et al.,
2019) dataset, then employ LLaMA’s tokenizer to
segment all sentences, tallying the occurrence of
each token within the corpus. Table 3 (Freq.) in-
dicates winning tickets commonly associated with
the most frequently occurring tokens in the cor-
pus. Based on this finding, we start the training
only with the high-frequency tokens in the corpus.
The summary of different tuning setting, as shown
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Table 5: Impact of Different α on the en→ca. For α val-
ues greater than 0.05, the verification percentage reaches
94.3%, indicating substantial but not complete verifica-
tion. The empirical accuracy under these conditions is
also satisfactory.

pvalue<α Verified Percentage Original Certified Empirical
(% Di > τ(α)) Accuracy Accuracy Accuracy

0.05 94.3 75.86 65.77 78.87
0.10 95.1 75.86 65.98 78.85
0.20 95.6 75.86 66.15 78.93
0.30 95.8 75.86 66.19 78.98
0.50 96.5 75.86 66.35 78.97
0.70 96.8 75.86 66.48 79.03
0.90 97.5 75.86 66.66 79.09
1.00 100.0 75.86 67.23 78.46

in Table 4, suggests the training is sufficient with
frequency token tuning.

Sensitivity in the siginificance level Selection (α).
Our theoretical framework provides a way for
heuristically finding an effective α, as mentioned
in Remark5. Since the original fully-tuned pre-
diction model is available, we could directly pre-
dict the range of pA−pB

2 as [smin, smax] for all
predictions in the dataset. An ideal α would sat-
isfy τ(α) < smin, under this condition, every data
point in the dataset is guaranteed to make the same
prediction as the original prediction model.

In practice, we don’t need a full certification
of the dataset to make the KS-Lottery work, as
this would result in quite large α values. As we
can see in the en→ca example below: for α larger
than 0.05, the verified percentage is an acceptable
94.3%, though not fully verified, and the empirical
accuracy proves acceptable. In practice, the accept-
able range of α varies between datasets, though
usually α within 0.05-0.4 guarantees a verified per-
centage 95%.

The distribution of winning tickets under both
Partial Tuning and Partial Transfer is largely
identical. By conducting KS-Lottery with vary-
ing α values, we obtain different winning tick-
ets (denoted as θa). Furthermore, we perform a
Kolmogorov-Smirnov Test on the winning tickets
tuned with partial tuning and Embed Tuning, and
compute the number of tokens that exhibit a sig-
nificant difference (θ̃

′
a). The ratio of unchanged

tokens is calculated using the formula 1− θ̃
′
a/θ̃a.

As shown in Table 6, the distribution of winning
tickets before and after tuning (Partial Transfer vs
Partial Tuning) remains largely consistent.

Keeping the parameters of winning tickets
frozen while tuning the remaining parameters

Table 6: With varying values of α, the distribution of
winning tickets remains largely consistent across both
Partial Tuning and Partial Transfer.

α ro es de ca pt da no bs

0.05 0.56 0.67 0.81 0.78 0.82 0.33 0.64 0.82
0.1 0.75 0.78 0.72 0.80 0.85 0.71 0.79 0.81
0.2 0.78 0.75 0.68 0.73 0.75 0.79 0.83 0.81
0.3 0.69 0.82 0.85 0.77 0.86 0.76 0.81 0.80
0.4 0.75 0.92 0.89 0.83 0.83 0.78 0.82 0.84
0.5 0.83 0.87 0.82 0.80 0.85 0.86 0.84 0.90
0.6 0.83 0.90 0.88 0.85 0.86 0.86 0.85 0.92
0.7 0.83 0.91 0.88 0.86 0.90 0.86 0.89 0.88
0.8 0.82 0.90 0.87 0.87 0.90 0.87 0.88 0.88
0.9 0.82 0.86 0.84 0.85 0.88 0.84 0.86 0.85

could lead to the collapse of the Embed Tuning.
Our previous experiments have highlighted the sig-
nificance of winning tickets in training, while it’s
intriguing to consider whether such an important
function can be replaced by other tokens. To delve
into this problem, we freeze the winning tickets,
and fine-tune the reset parameters on bilingual data.
As shown in Figure 5, a small amount of disabled
winning tickets is acceptable for tuning. However,
as the number of disabled tokens increases, the en-
tire tuning process crashes. The process reveals a
remarkable finding: for a vocabulary size of 32k,
1k is a very small, yet fewer than 1k winning tickets
play a crucial role in Embed Tuning.

Applying KS-Lottery on the whole model. Af-
ter training all model parameters using en→ca
bilingual sentence pair from Lego-MT (Yuan et al.,
2023a), we utilize the KS-Lottery to identify a
small parameter set for multilingual transfer by
comparing the parameters before and after tuning.
Interestingly, no parameters exhibite significant
changes before and after tuning. Concurrently, the
study by Yuan et al. (2023b) revealed that fine-
tuning specific layers, including the embedding
layer, can yield results comparable to those of
full-tuning. Figure 6 reveals that following fine-
tuning on the Lego-MT (Yuan et al., 2023a) en→ca
bilingual dataset, a subset of token embeddings
exhibit significant changes in their parameters. Ad-
ditionally, a small number of parameters (fewer
than two for each layer with a significance level of
α < 0.05) demonstrate substantial changes within
LayerNorm. However, for multilingual transfer,
the impact of LayerNorm varies and is not uniform
across the lower and higher layers.

5 Conclusion

This work presents a novel method, KS-Lottery,
which applies the lottery ticket hypothesis to
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Figure 6: Applying KS-Lottery on whole LLaMA-7B
which is single-layer tuned on Lego-MT en→ca 10k
data. Each layer is trained in isolation and is analyzed
by KS-Lottery to identify the parameters with signifi-
cant changes (as indicated by scatter points above the
red line). We find that within each Transformer layer,
changes are primarily focused on LayerNorm, while
other notable changes occur in the embedding layer.

LLMs fine-tuning. By employing the Kolmogorov-
Smirnov Test, KS-Lottery first analyzes the shift
in the parameter distribution before and after fine-
tuning, and then identifies a small but effective
subset of LLM parameters. Theoretical evidence
confirms that KS-Lottery can pinpoint certified win-
ning tickets within the embedding layer, thereby
ensuring performance equivalent to full tuning.
Notably, KS-Lottery surpasses other parameter-
efficient tuning algorithms by identifying fewer
parameters for fine-tuning while maintaining simi-
lar performance levels.
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A Limitations and Broader Impacts

Limitations. In the scope of this research, our
proposed KS-Lottery mainly targets multilingual
research and has been thoroughly validated in bilin-
gual translation tasks. However, we believe that
our certified theoretical framework is generalizable
to other types of tasks, and we leave these explo-
rations for future work.

Broader Impacts. This paper presents work
whose goal is to advance the field of machine learn-
ing and multilingual research. We do not anticipate
it will cause negative societal impacts, such as po-
tential malicious or unintended uses.

B Proofs

Theorem 3. (Certified Winning Tickets) Let
f(·,θa,θb) : Rd → Y be any random or determin-
istic function, and let g be defined as in Equation 1.
For any input x, suppose cA ∈ Y, pA, pB ∈ [0, 1]
satisfies

P
(
f(x, θ̃

a
, θ̃

b
) = cA

)
≥ pA ≥ pB ≥ max

c ̸=cA
P(f(x+ ε) = c)

If the set of parameters θb satisfies

D(θ̃bi , θ
b
i ) < τ(α) <

pA − pB

2
,

for all i ∈ Vb, the classifier partial-tuned on parame-
ters θa always return class cA, i.e. g(x, θ̃

E

a ,θ
E
b ) =

cA.
Proof Sketch Fix an input x, we study the

change of prediction w.r.t. change in the distri-
bution of θb. Let A = {θ|g(X, θ̃

a
,θ) = cA},

B = {θ|g(x, θ̃a
,θ) ̸= cA}. Using definition,

P(θ̃
b ∈ A) ≥ pA, P(θ̃

b ∈ B) ≤ pB . Since

D(θ̃
b
,θb) = maxiD(θ̃bi , θ

b
i ) ≤ τ(α), the mini-

mum overlapping cumulative probability P(θ̃
b ∈

S ∩ θb ∈ S) ≥ 1− τ(α), where S is any contour
set S = {θ||θ − µ̃b| ≤ s, s ≥ 0}.

Now we compare the probability that
f(x, θ̃

a
,θb) predicts cA or other classes. The

probability that the partial-tuned f predicts cA is

P(θb ∈ A) ≥ P(θb ∈ A ∩ θb ∈ S)

≥ P
[
(θ̃

b ∈ S ∩ θb ∈ S)− (θ̃
b ∈ S ∩ θ̃

b ̸∈ A)
]

≥ (1− τ(α))− (1− pA) = pA − τ(α)

Similarly, we can prove that P(θb ∈ B) ≤ pB +

τ(α). Thus when τ(α) <
pA−pB

2 and we partial-
tune all parameters θa that fails to pass the KS-
test, then the partial-tuned model g(x, θ̃

E

a ,θ
E
b ) =

cA, i.e. always give the same prediction as the
embedding fully-tuned model.

C More Analysis

Table 7: Certified experiment under Partial Tuning
setting w.r.t significance level α. When α = 1, all token
embeddings are chosen during tuning and thus certified
accuracy equals to prediction accuracy.

α Setting en→ca en→bs en→da en→no en→pt en→ro en→es en→de

0
Certified 0.5649 0.4592 0.5384 0.4083 0.5959 0.5416 0.5108 0.5505
Prediction 0.7765 0.7040 0.7544 0.6476 0.7912 0.7555 0.7191 0.7644

0.05
Certified 0.7722 0.7312 0.7679 0.6484 0.7999 0.7714 0.7177 0.7313
Prediction 0.7887 0.7494 0.7822 0.6700 0.8156 0.7852 0.7372 0.7537

0.1
Certified 0.7752 0.7325 0.7700 0.6504 0.8006 0.7736 0.7197 0.7347
Prediction 0.7885 0.7494 0.7836 0.6693 0.8143 0.7855 0.7375 0.7551

0.5
Certified 0.7797 0.7375 0.7770 0.6579 0.8042 0.7765 0.7240 0.7482
Prediction 0.7897 0.7492 0.7864 0.6715 0.8143 0.7847 0.7356 0.7619

1
Certified 0.7846 0.7491 0.7817 0.6685 0.8097 0.7795 0.7349 0.7525
Prediction 0.7846 0.7491 0.7817 0.6685 0.8097 0.7795 0.7349 0.7525

The observed trend in the value of α suggests
the presence of an optimal size for the set of
selective tokens. In Figure 8, we examined the
translation performance on the Flores-101 dataset
under varying thresholds. It’s important to note
that by default, the threshold creates an interval
that is closed on the left and open on the right. Our
observations indicate that even a minimal thresh-
old is capable of preserving approximately 80% of
the performance that is achieved through compre-
hensive embedding fine-tuning, as highlighted in
green. Interestingly, each plot exhibits the same
pattern characterized by an initial increase in per-
formance, followed by a subsequent decline. This
pattern suggests the existence of an optimal point
that maximizes performance.

Another Selective Methods There are five com-
monly used methods for determining parameters:
Cos-Similarity (cos), Absolute Value (absolute),
Related Value (relative), Related Ratio (ratio), and
KL Divergence (KL). Each method emphasizes dif-
ferent aspects and requires a heuristic value p for
selection.
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B. en-bs Partial Transfer SettingA. Estimation of τ(α) D.C. en-da Partial Transfer Setting en-no Partial Transfer Setting

Figure 7: Certified experiment under Partial Transfer setting. A: Estimation of τ(α) w.r.t different α values by
running KS-Test between the distribution of LLaMA-7b embedding and fine-tuned embedding on different datasets.
B C D: Comparison between Certified Accuracy and Empirical Prediction Accuracy w.r.t. different α values on
three datasets.

Figure 8: The translation performance of updated mod-
els with replacement method on Flores-101 with differ-
ent token numbers. We observe the minimal threshold
is sufficient to maintain approximately 80% of the per-
formance achieved through embedding tuning (marked
in orange). Meanwhile, for each plot, there exists a
trend of initial increase followed by a decline, with the
presence of an optimum point.

Cos-Similarity: This method determines the simi-
larity between θEi and θ̃Ei from the perspective of
vector dot product. A lower cos-similarity suggests
that it is the target of fine-tuning adjustment.
Absolute Value: This is calculate as |θ̃Ei − θEi |,
which is concerned with the magnitude of the
change. A larger value indicates that it is the target
of fine-tuning.
Related Value: This is calculated as θ̃Ei /θ

E
i , which

focuses on the rate of change before and after fine-
tuning. A larger ratio suggested that it is the target.
Related Ratio: This method considers the initial
value and calculates the result as (θ̃Ei − θEi )/θ

E
i . A

larger ratio indicates that it is the key adjustment
in fine-tuning.
KL Divergence: This is a statistical distance, mea-
suring the distance between θ̃Ei and θEi , with a
focus on the distribution itself.

en→ca en→es en→ro en→da en→de en→pt

13 13 13 13 13 13
263 262 278 263 263 263
278 263 297 278 278 278
297 278 304 297 297 297
304 297 310 304 304 304
310 304 322 310 310 310
322 310 338 322 322 322
338 313 366 29871 338 338
376 322 393 29889 363 363
393 363 29871 29892 29871 411
411 393 29889 29896 29889 29871

29871 411 29892 29900 29892 29889
29889 29871 29896 29896 29892
29892 29889 29900 29901 29896
29896 29892 29901 29915 29900
29900 29896 29901
29901 29897 29915
29949 29901

Table 8: Across various languages, the winning tickets
share some common pattern.

C.1 When Fine-tuning on different languages,
the winning tickets contain the same
tokens.

The winning tickets across various languages over-
lap with a subset of tokens, as shown in Ta-
ble 8, {index id = 13 (token="\n"), index id=278
(token=’the’), index id=29871 (token=’∼’), and so
on}, which are frequently used and common across
various languages.

D AI Assistants

We just use AI assistants for our sentence-level
polishing.

E Used Scientific Artifacts

Below lists scientific artifacts that are used in our
work. For the sake of ethic, our use of these arti-
facts is consistent with their intended use.

• Stanford Alpaca (Apache-2.0 license), a
project that aims to build and share an
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instruction-following LLaMA model.

• Lego-MT (MIT license), a dataset for machine
translation.

• Transformers (Apache-2.0 license), a frame-
work that provides thousands of pretrained
models to perform tasks on different modali-
ties such as text, vision, and audio.
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