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Abstract

We investigate in-context temporal biases in
attention heads and transformer outputs. Us-
ing cognitive science methodologies, we ana-
lyze attention scores and outputs of the GPT-
2 models of varying sizes. Across attention
heads, we observe effects characteristic of hu-
man episodic memory, including temporal con-
tiguity, primacy and recency. Transformer out-
puts demonstrate a tendency toward in-context
serial recall. Importantly, this effect is elimi-
nated after the ablation of the induction heads,
which are the driving force behind the contigu-
ity effect. Our findings offer insights into how
transformers organize information temporally
during in-context learning, shedding light on
their similarities and differences with human
memory and learning.

1 Introduction

Large language models (LLMs) have demonstrated
aremarkable capacity for in-context learning. They
are capable of adapting to new tasks using exam-
ples provided within the input prompt, without
any parameter updates (Brown, 2020). The tem-
poral position of tokens plays an important role in
in-context learning. For instance, simply asking
the model to repeat a sequence of words from the
prompt requires the model to use the information
about the temporal position of tokens. This resem-
bles human learning, where the temporal organi-
zation of memory plays a critical role in recalling
specific past episodes.

Previous work has demonstrated that some at-
tention heads show a temporal induction property.
These induction heads search the input prompt for
the prior occurrence of the current token. If a match
is found, they attend to the token that followed the
previous presentation of the current token. This
mechanism allows induction heads to effectively
learn and reproduce sequences of tokens and it has
been argued to contribute to the model’s ability

to perform tasks based on contextual information
(Olsson et al., 2022; Elhage et al., 2021; Singh
et al., 2024; Ji-An et al., 2024; Pink et al., 2024).
The induction property is related to human
episodic memory. Numerous studies have demon-
strated that episodic memory exhibits contiguity
effect, where items or events that occur close to-
gether in time are more likely to be remembered
together in memory recall (Kahana, 1996; Howard
and Kahana, 2002; Lohnas and Healy, 2021; Polyn
et al., 2009; Jenkins and Ranganath, 2010). For ex-
ample, if a person experiences a sequence of events
within a short time span, they are more likely to
recall these events together than if they were spread
out over a longer period. This effect was system-
atically studied through free recall, a task where
participants are presented with a list of items (e.g.,
words, pictures) and then asked to recall them in
any order they choose. Participants tend to recall
items that were presented close together in the orig-
inal list in clusters, indicating that the temporal
proximity during encoding influences the retrieval
process. This supports the idea that our memories
are organized not just by the content of a stimu-
lus but also by its temporal context (Howard and
Kahana, 2002; Polyn et al., 2009). Neuroscience
studies have demonstrated that neural activity in
the brain during recall reinstates the neural activity
observed during encoding, indicating the retrieval
of temporal context or a mental “jump back in time’
(Howard et al., 2012; Folkerts et al., 2018). The
contiguity effect has been recently studied in deep
neural networks, including recurrent neural net-
works (Li et al., 2024) and pretrained transformer
models (Ji-An et al., 2024) where it was found
that pretrained transformers contain attention heads
that recover temporal context in a manner consis-
tent with human episodic memory. Furthermore,
human-like episodic memory is found to improve
performance in tasks that require processing over
extended temporal context (Fountas et al., 2024).
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In addition to temporal induction, transformers
exhibit serial position effects, specifically recency
and primacy (Janik, 2023; Peysakhovich and Lerer,
2023; Wang et al., 2023; Guo and Vosoughi, 2024;
Angne et al., 2023). Recency implies that tokens
that are more recent in the prompt (closer to the
present token) are going to be more important in
generating the subsequent token. Conversely, pri-
macy implies the same property but for the tokens
that are presented at the beginning of the prompt.
The emergence of these effects in transformers can
be shaped by positional encoding (Janik, 2023;
Peysakhovich and Lerer, 2023). Positional encod-
ing embeddings can be learned (Devlin et al., 2019)
or fixed to vectors that convey positional informa-
tion, such as Rotformer, which uses rotary posi-
tional embeddings (Su et al., 2024) or early trans-
former models that used sinusoidal embeddings
(Vaswani, 2017). These positional embeddings
capture translation invariance, monotonicity and
symmetry through distance metrics in their vector
embeddings (Wang et al., 2021).

Recency and primacy are also characteristic of
human memory, where we often exhibit better re-
call for items presented at the beginning (primacy
effect) and end (recency effect) of a list (Atkinson
and Shiffrin, 1968; Glanzer and Cunitz, 1966; Mur-
dock, 1962). This parallel suggests that LLMs, like
humans, may be sensitive to the temporal context
of information, with recent and initial tokens play-
ing a more significant role in shaping the model’s
internal representations and influencing its output.

Here we investigate the temporal aspects of at-
tention heads and transfromer outputs during learn-
ing. We train two transformer models of differ-
ent sizes (GPT-2 small and GPT-2 medium) on
three datasets: Wikitext-103 (Merity et al., 2016)
and two sampled datasets of FineWeb (Hugging-
FaceFW, 2024) (with 1B tokens and 10B tokens).
We adopt tools used in cognitive science to char-
acterize temporal aspects of human memory and
use them to examine attention heads and outputs
of transformer models. Specifically, we use Lag-
Conditional Recall Probability (Lag-CRP) analysis
which measures the probability of recalling an item
a certain number of positions away (called lag)
from the previously recalled item. We apply this
analysis to transformer outputs and attention heads
to understand how temporal relationships shape
attention scores and token predictions. We charac-
terize the impact of trainable positional encoding,
model size, and number of training interactions on

the emergence of contiguity effect and serial po-
sition effects. We also ablate induction heads to
examine their role in shaping temporal properties
of transformer outputs. Our findings provide novel
insights into similarities and differences between
human memory and transformers, improving our
understanding of in-context learning.

2 Methods

2.1 Models and training

We used models based on the GPT-2 small and
GPT-2 medium architectures (Radford et al., 2019).
GPT-2 small has approximately 124 million param-
eters, consisting of 12 attention heads, 12 trans-
former layers, an embedding size of 768 dimen-
sions, and an MLP with 3,072 neurons. GPT-2
medium has approximately 353 million parameters
and consists of 16 attention heads, 24 transformer
layers, an embedding size of 1024 dimensions and
an MLP with 4096 neurons. The vocabulary con-
sists of 50,257 tokens and we used the GPT-2 byte-
pair encoder.

We trained GPT-2 small and medium on
Wikitext-103 (Merity et al., 2016) for 4000 iter-
ations. The dataset contains 117M tokens in the
training set, 0.24M tokens in the validation set and
0.28M tokens in the test set. We also trained GPT-2
small on two larger datasets sampled from FineWeb
(HuggingFaceFW, 2024) that included 1B tokens
and 10B tokens. 1B dataset had 996M tokens in the
training set and 4M in the validation set and 10B
dataset had 10.3B tokens in the training set and
51.4M in the validation set. In our experiments,
we used the nanoGPT codebase (Karpathy, 2022).
We trained all the configurations of GPT-2 small
and GPT-2 medium with the same hyperparame-
ters, including learning rate, number of warm-up
iterations, and weight decay. During training, all
models had a maximum learning rate of 10~* and
a learning rate warm-up period of 450 iterations.
The training was done on four 40GB A100 GPUs.

2.2 Calculation of lag-CRP curves for
attention heads

To compute lag-CRP curves for attention heads, we
prompt the models with a 1000 tokens long prompt
composed of source and destination sequences (the
maximum length of the prompt for both GPT-2
small and GPT-2 medium is 1024 tokens). The
source sequence consisted of 500 most frequent
tokens in a given dataset. The tokens were pre-
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sented in a random order. The source sequence
was followed by 500 tokens long destination se-
quence. The tokens in the destination sequence
were the exact repetition of the source sequence.
We computed the attention scores between each
token in the destination sequence and the source
sequence to calculate the lag-CRP curve. Given
a single sequence of tokens, the lag-CRP score
for lag at position zero was calculated as the av-
erage attention score between the same tokens in
the source and destination sequences. Similarly,
the lag-CRP score for lag [ was calculated as the
average attention score between the tokens in the
destination sequence, and a different token placed
[ positions away from the corresponding token in
the source sequence. When [ is positive, the lag-
CRP score is calculated for the tokens following the
corresponding token in the source sequence, and
when [ is negative, the score is calculated for the
tokens that occur before the corresponding token.
To reduce the impact of semantic similarity, we
averaged the lag-CRP scores for a given lag across
ten randomly permuted sequences. We produce the
lag-CRP curves for all heads. Mathematically, the
lag-CRP score for an individual head is computed
as follows (Ji-An et al., 2024):

1
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Here S refers to the score for lag [, NV is the size
of the source (or) destination sequence, M is the set
of example sequences generated by permuting the
source tokens along with similarly permuted desti-
nation tokens. a; ; is the attention score calculated
between the token at position ¢ in the destination
sequence and position j in source sequence. In all
our experiments, M contains 10 sequences. We
note that since we used attention scores to compute
the lag-CRP curve, it is no longer restricted to re-
sponse probabilities, therefore it can take any range
of values.

2.3 Calculation of induction matching score

Following previous work on in-context learning
(Olsson et al., 2022; Elhage et al., 2021) we com-
puted induction scores for each attention head. The
induction score expresses the degree to which the
head attends to the token following the previous
occurrence of the current token in the sequence.
Given a sequence of tokens to compute the in-
duction matching score for an attention head, we

first extract the attention pattern from the model for
the corresponding layer and head. This attention
pattern provides the weights indicating how much
each token in the sequence attends to every other to-
ken. We then construct a target matrix that records
matches based on the induction rule: if the token at
a destination position matches the token before a
particular source position, the corresponding entry
in the target matrix is set to 1. Next, we compute
the element-wise product of the attention pattern
and the target matrix to isolate attention values cor-
responding to induction matches. The numerator
is the sum of these matched attention values, while
the denominator is the sum of all attention values
between the source and destination positions. The
induction matching score is obtained by dividing
the numerator by the denominator.

More formally, let IV be the sequence length, a; ;
denote the attention value from token ¢ (destination
position) to token j (source position), and ¢; ; be
the target matrix entry, where ¢; ; = 1 if the token
at position ¢ matches the token before position j,
and t; ; = 0 otherwise. The induction matching
score is given by:

Do) Qi tig
2 (i) Firg

where the summation Z(L ;) is taken over all valid
pairs of (i, 7) within the sequence.

I == ) (2)

2.4 Computing the temporal extent of the
contiguity effect and strength of recency
effect

While the induction matching score quantifies the
tendency to attend to the token that follows the
previous occurrence of the current token, human
episodic memory is characterized by a lag-CRP
curve that has a strong contiguity effect. This im-
plies a gradual falloff of the lag-CRP curve as a
function of positive and negative lags. In our exper-
iments, we choose a subset of heads that have the
highest lag-CRP score at [ = 1 when the lag-CRP
curve is computed between [ = —10 to [ = 10.
This enabled the identification of temporal contigu-
ity even in the presence of high recency or primacy
(i.e., high values of the lag-CRP curve for large
values of /).

To quantify the recency effect, we computed the
lag-CRP curves for the chosen heads. To isolate
the recency effect and to ensure that the contiguity
effect does not superimpose with the recency effect,
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we remove the lag-CRP scores between the lags
-50 and +50. We then fit a linear regression model
to the rest of the lag-CRP scores and compute the
average slope of the linear fits across selected at-
tention heads. This expresses the recency bias in
the attention heads.

In our experiments, while exploring the conti-
guity effect in the selected attention heads, we ob-
served a gradual falloff of lag-CRP scores as a
function of positive but not negative lags. To quan-
tify this falloff, we first subtract the linear fit from
the lag-CRP scores in order to remove the recency
effect. We then fit an exponential function to the
positive lags of the lag-CRP curve (exponential fit
is commonly applied in human episodic memory
models (Howard and Kahana, 2002; Polyn et al.,
2009)). We used Levenberg-Marquardt algorithm
(Marquardt, 1963; Levenberg, 1944) and optimized
the following function: ae~*/™ where a and 7 (time
constant) are parameters and ¢ is the lag (Tab. 2).

2.5 Positional encoding with different
magnitudes

We trained five variants of the GPT-2 small model
with five different magnitudes of positional encod-
ing: 0, 0.5, 1, 1.5, and 2. These factors multiplied
positional embeddings before positional embed-
dings were added to word embeddings. Positional
embeddings were learnable, and they used the same
weight initialization.

3 Results

We trained GPT-2 small and GPT-2 medium trans-
former models. On the Wikitext-103 dataset GPT-
2 small converged after around 4000 iterations,
and the larger GPT-2 medium model converged
after around 2000 iterations. The convergence
was determined by monitoring the validation loss.
The models converged to perplexities similar to
those of models with comparable size, includ-
ing Transformer-XL Standard (Dai et al., 2019)
LaMemo (Ji et al., 2022), Hybrid H3 (Fu et al.,
2023) and TrimeLLM Long (Zhong et al., 2022), all
of which have perplexity above 20 (Tab. 1). Impor-
tantly, regardless of the magnitude of the positional
encoding, the models converged to similar values
of perplexity, consistent with results in Haviv et al.
(2022). We also trained GPT-2 small on FineWeb-
1B and 10B. Both models converged after around
10000 iterations.

After training, most attention heads exhibited

some form of structured temporal modulation—
recency, primacy, contiguity, or a combination of
these effects. For Wikitext-103, heads in layers
closer to the input were characterized by recency
and primacy effects, while heads in layers closer
to the output had strong recency and contiguity ef-
fects. Attention scores of GPT-2 small as a function
of lag across all heads before and after training are
shown in Fig. A3 and Fig. 1 respectively. Atten-
tion scores across all heads after training of GPT-2
medium model are shown in Fig. A4. Fig. 2 shows
attention scores as a function of lags for two rep-
resentative attention heads from layers closer to
the output. The top row (Fig. 2A-B) illustrates
the raw values, while the middle and bottom rows
(Fig. 2C-F) show results after the recency effect has
been removed, highlighting the contiguity effect.
For FineWeb-1B and 10B attention scores across
all heads after training are shown in Fig. A8 and
Fig. A9 respectively. While similar to the results
on Wikitext-103, they often showed more complex,
non-linear patterns across a wide range of lags.

3.1 Temporal properties of attention heads
emerge gradually throughout training

We observed the increase in the average induction
score (averaged across all heads identified as induc-
tion heads as defined in the Methods section) and
the number of induction heads throughout training
(Tab. 2 for Wikitext-103, Tab. 3 for FineWeb-1B
and Tab. 4 for FineWeb-10B). For Wikitext-103
we also computed the average recency slope the
average time constant fitted to the lag-CRP curve.
(These were not computed for FineWeb-1B and
FineWeb-10B since their lag-CRP curves for in-
duction heads commonly had non-linear temporal
profiles across a wide range of tested lags, mak-
ing it more difficult to isolate and characterize the
recency effect.) For Wikitext-103, the average re-
cency slope increased and plateaued around itera-
tion 3000. Prior to training (iteration 0), the aver-
age recency slope was also 0. This is because we
used trained positional embeddings so prior to train-
ing the positional embedding vectors were random.
The average time constant fitted to the lag-CRP
curve (attention scores as a function of lag) did not
systematically change as training progressed but
rather converged to a relatively low value around
three tokens (note that /ag is in the units of tokens)
after around 3000 iterations.

To better understand the emergence of induc-
tion heads, we visualized the induction scores at
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Table 1: Lowest perplexity values for GPT-2 small and GPT-2 medium for different positional encoding magnitudes

after training on Wikitext-103 dataset.

GPT-2 small GPT-2 medium
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Figure 1: Attention scores as a function of lag for all attention heads in GPT-2 small after 4000 iterations on the

Wikitext-103 dataset (baseline positional encoding).

Table 2: Induction head properties as a function of training iteration for the Wikitext-103 dataset.

Training Iteration

Metric 0 100

500 1000 2000 3000 4000

Average Induction Score 0.0007 0.0007
Average Time Constant 0.7 0.5
Average Recency Slope 0 0
Number of Induction Heads 4 4

0.0006 0.0012 0.0019 0.0015 0.0024
6.43 5 6.4 3.2 3.1
0.0001 0.0015 0.0018 0.0032 0.0029
3 19 16 19 20

all heads at five different training steps on GPT-2
small for Wikitext-103 (Fig. 4). Early in training,
induction scores are very small in magnitude, and
they increase gradually, showing presence mainly
in layers six to nine. The locations and number

of induction heads did not change during training,
showing gradual shaping of the temporal properties.
In Fig. 3, we showed attention scores as a function
of lag for the same head at two different stages of
training — note the order of magnitude change on
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Table 3: Induction head properties as a function of training iteration for FineWeb-1B dataset.

Training Iteration

Metric 0 50 100 500 1000 5000 10000
Average Induction Score 0.0007 0.0007 0.0007 0.0002 0.008 0.011 0.016
Number of Induction Heads 4 4 1 3 25 36 25

Table 4: Induction head properties as a function of training iteration for FineWeb-10B dataset.

Training Iteration

Metric 0 50 100 500 1000 5000 10000
Average Induction Score 0.0007 0.0007 0.0007 0.0003 0.03 0.05 0.05
Number of Induction Heads 4 7 3 4 24 29 39
A A B
6.00 6.00
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W 4.67 $4w gOA 4]
) 3.33 —— mzm w/ﬂjwﬁ/wﬂw WMWWW WWM“wJLMMNMJ
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v 1o — 72 Lo e during different stages of training. A. After 300 itera-
5 o £ .. tions. B. After 4000 iterations.
’ 0.20 et ’ -0.20 st
A Lagf 4 A Lagf 4 is consistent with the hypothesis that vector sim-
L I ilarity induced by positional encoding creates a

| —— L8H4

<o
o

Lags Lags

Figure 2: Two induction heads before (top row) and after
(middle row) adjusting for recency effect. The bottom
row shows zoomed-in version of the middle row.

the y-axis from iteration 300 (Fig. 3A) to iteration
4000 (Fig. 3B). Fig A3 shows attention scores of all
heads before training, Fig A7 after 1000 iterations
and Fig 1 after 4000 iterations. These figures fur-
ther illustrate the gradual emergence of temporal
profiles, including both induction and recency.

3.2 Positional encoding magnitude shapes
recency and contiguity effects

Increasing the magnitude of positional encoding
increased the average induction score (Tab. 5). This

temporal link needed for the induction heads to
identify the token that followed the current token in
the previous sequence. To further test this hypothe-
sis, we plotted the Pearson correlation coefficient
between the positional embeddings for different
magnitudes of positional encoding and different
training iterations (Fig. 5). The plot reveals an in-
teresting trade-off in the magnitude of positional
encoding and training iteration: for example, the
correlation profile after 1000 iterations and a mag-
nitude of 0.5 is similar to the correlation profile
after 2000 iterations and a magnitude of 1. This re-
lationship is visible across the diagonals of Fig. 5,
except for the magnitude of positional encoding
equal to 2. For a magnitude of 2, we see more
complex temporal patterns that include oscillatory
dynamics in the amount of temporal correlations.
Overall, the profiles indicate an increase in tempo-
ral correlations with training and magnitude of po-
sitional encoding, supporting the observed increase
in the average induction score shown in Tab. 5. The
number of induction heads decreased with the mag-
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Figure 4: Induction scores for five checkpoints throughout the training of GPT-2 small on Wikitext-103 dataset. A.
Random initialization. B. 1000 iterations. C. 2000 iterations. D. 3000 iterations. E. 4000 iterations.

Table 5: Impact of positional encoding on temporal properties of attention heads (GPT-2 small trained on Wikitext-

103 dataset).

Positional encoding magnitude

Metric 0 0.5 1 1.5 2
Average Induction Score 0.0010 0.0006 0.0024 0.0038 0.0055
Average Time Constant 29.1 2.0 3.1 3.8 34.1
Average Recency Slope 0 0.0034 0.0029 0.0045 0.0053
Number of induction heads 6 25 20 15 13

Iteration

1000 2000 3000 4000

.
rava

Correlation Coefficient

| | S
o o o
PO

Positional Encoding Magnitude
-

0 QQQ

2
oo

Figure 5: Correlation in positional encoding vectors
scales with training iterations and positional encoding
magnitude during training of GPT-2 small on Wikitext-
103 dataset.

nitude of positional encoding (Tab. 5). This is also
visible in Fig. 7, where the scores of some induc-
tion heads increase, while for others, the scores
decrease, so they no longer fit the criteria set for
induction heads.

The impact of the magnitude of the positional
encoding on the average time constant was mixed.
Some heads showed long time constants, including
heads in models without positional encoding and
in models with double the amount of positional
encoding. However, heads with a magnitude of
positional encoding equal to 0.5, 1 and 1.5 all had
relatively short time constants in the range of 2 to 4
lags. Thus models with these balanced magnitudes
of positional encoding did not retrieve extended

temporal context. Fig 6 shows scores of a single at-
tention head for different magnitudes of positional
encoding illustrating relatively short time constants.
The average recency slope increased with the mag-
nitude of the positional encoding, as expected, due
to increased temporal similarity induced by the po-
sitional encoding.

Tab. 5 indicates that with no positional encoding,
the slope at the six induction heads was 0. A closer
look at all of the attention heads with no positional
encoding (Fig. AS) reveals several heads that ex-
hibited weak recency effect (note that the range
of magnitudes of the heads that show the recency
effect was typically small without positional encod-
ing). Previous work has argued that causal masking
could have similar effects as positional encoding
because it introduces sequential dependencies (Ha-
viv et al., 2022). These dependencies can result in
the encoding of the input order and could explain
the weak recency effect.

3.3 Temporal effects are consistent across
models of different sizes

All previous results were discussed for GPT-2 small
model. We also trained GPT-2 medium but only
for the baseline magnitude of positional encoding
and on Wikitext-103. Overall, we observed similar
attention score profiles across the two models (com-
pare Fig. 1 and Fig. A4). We quantified these ob-
servations in Tab. 6. Fig 8 shows induction scores
in the two models, indicating that GPT-2 medium
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positional encoding. B. Positional encoding with magnitude 1 (baseline model). C. Positional encoding with
magnitude 1.5. D. Positional encoding with magnitude 2.
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Figure 7: Induction scores for five different magnitudes of positional encoding (GPT-2 small trained on Wikitext-103

dataset). A. No positional encoding, B. 0.5, C. 1, D. 1.5, E. 2.

Table 6: Impact of model size on temporal properties of attention heads.

Model type
Metric GPT-2 small GPT-2 medium
Average Induction Score 0.0024 0.0012
Average Time Constant 3.1 12.1
Average Recency Slope 0.003 0.007

Number of Induction Heads

20 (out of 144, 14%)

45 (out of 384, 12%)

had larger scores concentrated closer to the input

layer than GPT_2 small. E= GPT-2 medium: pos. enc. magnitude = 1.0
301 3 GPT-2 small: pos. enc. magnitude = 1.0
A B == GPT-2 small: zero pos. enc.
254 mEm GPT-2 small: pos. enc. magnitude = 1.5
0 0 3 GPT-2 small: pos. enc. magnitude = 2.0
2 0.02 5 0.02 20 == GPT-2 small: pos. enc. magnitude = 0.5
_— . i
g 810 .
3 . ™ 0.01 315 0.01
10 20
02 46 810 0.00 0 5 10 15 0.00
Head Head
Figure 8: Induction scores for two different models. A.

GPT-2 small, B. GPT-2 medium.

3.4 Characterizing the contiguity effect across
the attention heads

To better understand the span of temporal context
retrieval in transformers, we investigated the dis-
tribution of the time constants from fitting the at-
tention scores as a function of lag. We found that
the time constants are mainly concentrated in the
narrow range of 2-4 lags, with only a few heads cov-

40

60
T

80 100

Figure 9: Distributions of fitted time constants of in-
duction heads for different models and magnitudes of
positional encoding.

ering larger lags. This result holds for models with
different magnitudes of positional encoding and for
both model sizes. This suggests that when retriev-
ing in-context information given a repeated token,
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Figure 10: CRP during downstream evaluation

aside from primacy and recency effects, transform-
ers will primarily focus attention on the very local
(2-4 lags) neighborhood of that token.
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Figure 11: CRP as a function of training iteration in
downstream evaluation.

3.5 Downstream evaluation and impact of
induction heads ablation

To better understand the impact of temporal context
retrieval in attention heads on transformer outputs,
we conducted a downstream evaluation inspired
by the free recall memory task. After training the
models, we probed them with a sequence of 500
randomly ordered tokens (we selected 500 tokens
that were most frequently occurring in each dataset)
followed by a middle token (e.g., GRDBTHMB,
where each character corresponds to an individ-
ual token). We then quantified the probability of
the next token as a function of lag (distance from
the middle token). Temporal contiguity predicts
a larger probability for tokens that are temporally
adjacent to the middle token, while recency and
primacy effects predict a higher probability for to-
kens from the beginning (large negative lag) and
end (large positive lag) of the list.

During the training (after about 1000 iterations),
we observed a strong (around 10 times) increase in
the probability of recall for items at lag +1 (Fig. 11,
Fig. Al), indicating strong preference for serial

Lag Lag

showing impact of induction head ablation.

recall. To investigate the relationship between in-
duction heads and this effect, we ablated the heads
that had induction scores above 0.01 (the ablation
was done similarly to Crosbie and Shutova (2024)
by setting the attention scores for ablated heads to
—o00). Even though the number of ablated heads
was around 5% of the total number of heads, the
ablation of induction heads eliminated the conti-
guity effect (Fig. 10, Fig. A2). Ablating the same
number of non-induction heads in a layer-matched
fashion made much smaller impact on the output
probabilities, especially for FineWeb-1B and 10B.

4 Discussion

We quantified temporal properties of attention pat-
terns in transformer outputs using lag-CRP analy-
sis, commonly used for studying episodic memory
and serial position effects in human memory experi-
ments. By using multiple permutations of the input
sequences, we were able to reduce the semantic
effects of token similarity and isolate the temporal
effects making it possible to observe primacy, re-
cency and contiguity effects in the attention heads.

Unlike human memory experiments, where the
contiguity effect is robust across a wide range of
scales (Howard et al., 2008), supporting power-
law decay of memory (Wixted and Ebbesen, 1991;
Rubin and Wenzel, 1996; Donkin and Nosofsky,
2012), we did not find evidence for retrieval of a
broad temporal context in transformers. In fact,
training typically had an impact of reducing the
time constants of lag-CRP to small values in the
range of 2 to 4 lags. Downstream analysis demon-
strated a strong preference towards a serial recall
that was eliminated after ablation of the induction
heads. Overall, we showed that tools from cogni-
tive science can be used to better understand learn-
ing in transformers, providing valuable insights
into the emergence of temporal structure during
in-context learning.
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5 Limitations

Our approach used relatively small models. Train-
ing larger, instruction fine-tuned language models
could provide additional insights into the tempo-
ral properties of in-context learning. While our
approach was inspired by studies of episodic mem-
ory in humans, a number of methodological dif-
ferences between the present analysis and human
experiments (such as the fact that humans receive
task instructions) prevent us from making direct
parallels with human memory and learning.

Acknowledgment

This research was supported in part by Lilly En-
dowment, Inc., through its support for the Indiana
University Pervasive Technology Institute.

References

Hemali Angne, Charlotte Cornell, and Qiong Zhang.
2023. Why two heads together are worse than apart:
A context-based account of collaborative inhibition
in memory search. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 46.

Richard C. Atkinson and Richard M. Shiffrin. 1968.
Human memory: A proposed system and its control
processes. 2:89-195.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Joy Crosbie and Ekaterina Shutova. 2024. Induc-
tion heads as an essential mechanism for pattern

matching in in-context learning. arXiv preprint
arXiv:2407.07011.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978-2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Chris Donkin and Robert M Nosofsky. 2012. A power-
law model of psychological memory strength in short-

and long-term recognition. Psychological science,
23(6):625-634.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12.

Sarah Folkerts, Ueli Rutishauser, and Marc W Howard.
2018. Human episodic memory retrieval is accompa-
nied by a neural contiguity effect. Journal of Neuro-
science, 38(17):4200-4211.

Zafeirios Fountas, Martin A Benfeghoul, Adnan Oomer-
jee, Fenia Christopoulou, Gerasimos Lampouras,
Haitham Bou-Ammar, and Jun Wang. 2024. Human-
like episodic memory for infinite context llms. arXiv
preprint arXiv:2407.09450.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W
Thomas, Atri Rudra, and Christopher Re. 2023. Hun-
gry hungry hippos: Towards language modeling with
state space models. In The Eleventh International
Conference on Learning Representations.

Murray Glanzer and Anita R. Cunitz. 1966. Two stor-
age mechanisms in free recall. Journal of Verbal
Learning and Verbal Behavior, 5(4):351-360.

Xiaobo Guo and Soroush Vosoughi. 2024. Serial posi-
tion effects of large language models. arXiv preprint
arXiv:2406.15981.

Adi Haviv, Ori Ram, Ofir Press, Peter I1zsak, and Omer
Levy. 2022. Transformer language models without
positional encodings still learn positional information.
arXiv preprint arXiv:2203.16634.

Marc W Howard and Michael J Kahana. 2002. Con-
textual variability and serial position effects in free
recall. Journal of Experimental Psychology: Learn-
ing, Memory, and Cognition, 28(4):923.

Marc W Howard, Indre V Viskontas, Karthik H Shankar,
and Itzhak Fried. 2012. Ensembles of human mtl
neurons “jump back in time” in response to a repeated
stimulus. Hippocampus, 22(9):1833-1847.

Marc W Howard, Tess E Youker, and Vijay S
Venkatadass. 2008. The persistence of memory: Con-
tiguity effects across hundreds of seconds. Psycho-
nomic Bulletin & Review, 15:58—63.

HuggingFaceFW. 2024. fineweb (revision af075be).

Romuald A Janik. 2023. Aspects of human mem-
ory and large language models. arXiv preprint
arXiv:2311.03839.

Lila J Jenkins and Charan Ranganath. 2010. Prefrontal
and medial temporal lobe activity at encoding pre-
dicts temporal context memory. Journal of Neuro-
science, 30(45):15596—-15603.

Haozhe Ji, Rongsheng Zhang, Zhenyu Yang, Zhipeng
Hu, and Minlie Huang. 2022. LaMemo: Language
modeling with look-ahead memory. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

8902


https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://doi.org/10.57967/hf/2493
https://doi.org/10.18653/v1/2022.naacl-main.422
https://doi.org/10.18653/v1/2022.naacl-main.422

Human Language Technologies, pages 5747-5762,
Seattle, United States. Association for Computational
Linguistics.

Li Ji-An, Corey Y Zhou, Marcus K Benna, and
Marcelo G Mattar. 2024. Linking in-context learning
in transformers to human episodic memory. arXiv
preprint arXiv:2405.14992.

Michael J Kahana. 1996. Associative retrieval processes
in free recall. Memory & Cognition, 24(1):103—-109.

Andrej Karpathy. 2022.
karpathy/nanoGPT.

https://github.com/

Kenneth Levenberg. 1944. A method for the solution of
certain non-linear problems in least squares. Quar-
terly of applied mathematics, 2(2):164—168.

Moufan Li, Kristopher T Jensen, Qihong Lu, Qiong
Zhang, and Marcelo G Mattar. 2024. Modeling mul-
tiplicity of strategies in free recall with neural net-
works.

Laura J Lohnas and Alice F Healy. 2021. The role of
context in episodic memory: Behavior and neuro-

physiology. Psychology of Learning and Motivation,
75:157-203.

Donald W Marquardt. 1963. An algorithm for least-
squares estimation of nonlinear parameters. Journal
of the society for Industrial and Applied Mathematics,
11(2):431-441.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Bennet B. Jr. Murdock. 1962. The serial position effect
of free recall. Journal of Experimental Psychology,
64(5):482-488.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Alexander Peysakhovich and Adam Lerer. 2023. At-
tention sorting combats recency bias in long context
language models. arXiv preprint arXiv:2310.01427.

Mathis Pink, Vy A. Vo, Qinyuan Wu, Jianing Mu,
Javier S. Turek, Uri Hasson, Kenneth A. Nor-
man, Sebastian Michelmann, Alexander Huth, and
Mariya Toneva. 2024. Assessing episodic memory
in llms with sequence order recall tasks. Preprint,
arXiv:2410.08133.

Sean M Polyn, Kenneth A Norman, and Michael J Ka-
hana. 2009. A context maintenance and retrieval
model of organizational processes in free recall. Psy-
chological review, 116(1):129.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

David C Rubin and Amy E Wenzel. 1996. One hun-
dred years of forgetting: A quantitative description
of retention. Psychological review, 103(4):734.

Aaditya K Singh, Ted Moskovitz, Felix Hill,
Stephanie CY Chan, and Andrew M Saxe. 2024.
What needs to go right for an induction head? a
mechanistic study of in-context learning circuits and
their formation. arXiv preprint arXiv:2404.07129.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Benyou Wang, Lifeng Shang, Christina Lioma, Xin
Jiang, Hao Yang, Qun Liu, and Jakob Grue Simon-
sen. 2021. On position embeddings in {bert}. In
International Conference on Learning Representa-
tions.

Yiwei Wang, Yujun Cai, Muhao Chen, Yuxuan Liang,
and Bryan Hooi. 2023. Primacy effect of chatgpt.
arXiv preprint arXiv:2310.13206.

John T Wixted and Ebbe B Ebbesen. 1991. On the form
of forgetting. Psychological science, 2(6):409—-415.

Zexuan Zhong, Tao Lei, and Dangi Chen. 2022. Train-
ing language models with memory augmentation.
In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
5657-5673, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

8903


https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2410.08133
https://arxiv.org/abs/2410.08133
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://openreview.net/forum?id=onxoVA9FxMw
https://doi.org/10.18653/v1/2022.emnlp-main.382
https://doi.org/10.18653/v1/2022.emnlp-main.382

A Appendix

Below we provide plots showing CRP for down-
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Figure AS: Attention scores as a function of lag for all heads of GPT-2 small after 4000 iterations for WikiText-103
dataset with no positional encoding.
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Figure A6: Attention scores as a function of lag for all heads of GPT-2 small after 4000 iterations for Wikitext-103
dataset with double amount of baseline positional encoding.
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Figure A7: Attention scores as a function of lag for all heads of GPT-2 small after 1000 iterations for Wikitext-103
dataset with baseline amount of positional encoding.
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Figure A8: Attention scores as a function of lag for all heads of GPT-2 small after 10000 iterations for FineWeb-1B
dataset with baseline amount of positional encoding.
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Figure A9: Attention scores as a function of lag for all heads of GPT-2 small after 10000 iterations for FineWeb-10B

dataset with baseline amount of positional encoding.
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