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Abstract

Chain-of-thought (CoT) has proven to improve
the reasoning capability of large language mod-
els (LLMs). However, due to the complex-
ity of multimodal scenarios and the difficulty
in collecting high-quality CoT data, CoT rea-
soning in multimodal LLMs has been largely
overlooked. To this end, we propose a sim-
ple yet effective self-training framework, R3V ,
which iteratively enhances the model’s Vision-
language Reasoning by Reflecting on CoT
Rationales. Our framework consists of two
interleaved parts: (1) iteratively bootstrapping
positive and negative solutions for reasoning
datasets, and (2) reflection on rationale for
learning from mistakes. Specifically, we in-
troduce the self-refine and self-select losses,
enabling the model to refine flawed rationale
and derive the correct answer by comparing
rationale candidates. Experiments on a wide
range of vision-language tasks show that R3V
consistently improves multimodal LLM rea-
soning, achieving a relative improvement of
23% to 60% over GPT-distilled baselines. Ad-
ditionally, our approach supports self-reflection
on generated solutions, further boosting perfor-
mance through test-time computation. §

1 Introduction

Humans often rely on intuitive Chain-of-Thought
(CoT) to perform complex reasoning (Ericsson and
Simon, 1980). Previous studies have shown that
this CoT capacity also emerges in Large Language
Models (LLMs) (Wei et al., 2022). Through sim-
ple prompting or fine-tuning (Cobbe et al., 2021;
Kojima et al., 2022; Hsieh et al., 2023), CoT en-
hances the reasoning performance of LLMs while
providing insights into their decision-making pro-
cess. Recently, OpenAI o1 further advances rea-

*Correspondence to: Jianbing Zhang
†Equal contribution.
§Our code is available at https://github.com/
njucckevin/MM-Self-Improve.

Figure 1: Results of Qwen-VL on TabMWP, a visual
mathematical reasoning dataset. Qwen-VL exhibits
weak zero-shot CoT reasoning performance, while
our R3V iteratively self-improves, surpassing the GPT-
distilled baseline by a large margin.

soning by producing long internal CoT sequences,
taking LLMs intelligence to a new level.

While CoT reasoning has significantly advanced
LLMs in textual domains, extending CoT to multi-
modal settings remains an open problem. Unlike
the abundant, unsupervised text-based CoT in pre-
training corpora (Kojima et al., 2022; Wei et al.,
2022), multimodal CoT resources are scarce in
the text-dominated internet collections (Dai et al.,
2023), hindering the full realization of Multimodal
LLMs’ (MLLMs) reasoning potential.

Recent studies show that open-sourced MLLMs
struggle to integrate visual cues into their reason-
ing process, resulting in weak CoT performance
(Zhang et al., 2024a; Shi et al., 2024). Consistent
with our observations in Figure 1, CoT prompt-
ing provides minimal gains over direct prediction
(Chen et al., 2024a) and falls far behind GPT-4o.
One potential solution is to construct multimodal
CoT annotations for post-training; however, man-
ual annotation is prohibitively expensive and hard
to scale. This raises our first research question:
can MLLMs self-improve the reasoning capabili-
ties through bootstrapping on CoT samples?

Orthogonal to fine-tuning on curated CoT an-
notations, relying solely on positive samples can
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lead to suboptimal policy due to insufficient explo-
ration of reasoning paths. Inspired by human think-
ing, another promising direction involves learning
from trial-and-errors (Yuan et al., 2024; Song et al.,
2024), where mistakes are not failures but key op-
portunities to enhance reasoning. A few multi-
modal approaches use corrupted prompts to create
negative samples for preference learning, aiming to
improve image comprehension (Wang et al., 2023;
Deng et al., 2024). However, these methods fail to
generate reasoning-aligned positive and negative
CoT solutions, making them unsuitable for com-
plex multimodal reasoning tasks. Thus, it remains
unaddressed: how can MLLMs efficiently learn
from mistakes to improve their reasoning skills?

To address the above two questions, this pa-
per proposes R3V , a self-training framework that
enables the model to Reflect on bootstrapped
CoT Rationales, thereby strengthening its Vision-
Language Reasoning. Firstly, we leverage
MLLM’s pre-existing but weak CoT ability to boot-
strap both rationales and answers for a given ques-
tion, enabling the collection of a large number of
positive and negative solutions based on answer
correctness. Secondly, we introduce a reflection
mechanism on negative solutions to help the model
learn from mistakes. Specifically, we design self-
refine and self-select losses that guide the model
to correct flawed rationales and derive the correct
answer by comparing rationale candidates, respec-
tively. The above synergistic process can be re-
peated, with improved samples boosting MLLM’s
reasoning and the enhanced model further improv-
ing rationale generation. Additionally, through self-
select training, our model can derive the superior
solution from multiple samples, further boosting
performance via test-time computation.

We conduct experiments across a wide range
of multimodal reasoning benchmarks, including
charts, geometry, commonsense, science, mathe-
matics, etc. R3V progressively enhances the reason-
ing ability of MLLMs, delivering a 23%-60% rela-
tive accuracy improvement compared to GPT dis-
tillation, and consistently outperforming the strong
self-training baseline, STaR (Zelikman et al., 2022).
Moreover, our test-time selection is robust and ef-
fective, consistently surpassing Pass@1 and major-
ity voting, even in OOD scenarios.

Our main contributions are as follows:

• We introduce an iterative self-training framework
R3V that leverages CoT bootstrapped by MLLM

itself for self-improvement. To our knowledge,
this is the first attempt to apply self-training in
vision-language reasoning.

• We propose learning from mistakes through self-
reflection, with support for test-time computation
to further improve reasoning performance.

• We perform extensive evaluations across 6 differ-
ent multimodal domains to validate the effective-
ness of R3V . Our analysis reveals the key factors
driving the success of multimodal self-training.

2 Related Work

Vision-Language Reasoning Beyond the exten-
sively studied unimodal reasoning (Cobbe et al.,
2021; Sun et al., 2023), multimodal reasoning has
recently attracted significant interest as an essen-
tial part of human intelligence (Yue et al., 2024;
Lu et al., 2023). Although MLLMs perform well
on general vision-language tasks (Liu et al., 2024;
Chen et al., 2024b), integrating visual cues into the
reasoning process poses unique challenges, espe-
cially for open-source models (Zhang et al., 2024a;
Chen et al., 2024a; Sun et al., 2024b). Several
studies have explored using rationale datasets to
fine-tune models and enhance multimodal reason-
ing capabilities. Gao et al. (2023); Zhang et al.
(2024b) augmented existing mathematical datasets
with rationales using GPT distillation, while (Yang
et al., 2024) enhanced performance through man-
ually collected CoT annotations. In this work, we
advocate for MLLMs to self-improve, reducing
reliance on resource-heavy rationale annotations.
Self-Training Methods Self-training helps the
model learn from its own generated outputs, re-
ducing the need for labor-intensive human annota-
tions (Yuan et al., 2024; Chen et al., 2024c). Prior
works have focused on enhancing the reasoning
capacity of LLM. The typical approach involves
sampling multiple rationales and filtering positive
and negative solutions based on the answers. The
LLM is then fine-tuned on the positive samples
(Zelikman et al., 2022; Hosseini et al., 2024; Yuan
et al., 2023) or improved using preference learning
(Wang et al., 2024b; Mitra et al., 2024), such as
DPO (Rafailov et al., 2024). Recent advances have
also extended self-training to agents (Song et al.,
2024) and neural symbolic (Xu et al., 2024) sce-
narios. Video-STaR (Zohar et al., 2024) is a recent
video instruction tuning method that synthesizes
question-answer pairs from labeled video datasets.
In this paper, we pioneer the exploration of self-
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training in vision-language reasoning, investigate
the failure of DPO in multimodal settings, and ad-
dress these challenges with our R3V framework.

3 Methodology

Our self-training framework consists of two al-
ternating components: (1) bootstrapping a large
number of positive and negative CoT solutions for
multimodal questions (Section 3.1); (2) using the
above-sampled solutions to reflect on rationales
and learn from mistakes (Section 3.2). This itera-
tive process turns the MLLM from weak to strong.
The overall framework is illustrated in Figure 2.

3.1 Preliminaries

In visual-language reasoning, given an image I
and a question x, a multimodal large language
model is required to integrate information from
both the image and the question for reasoning, gen-
erating a CoT rationale r and then deriving the
final answer a. However, due to the difficulty in
collecting high-quality rationale data, construct-
ing large-scale (I, x, r, a) pairs presents signifi-
cant challenges. This hinders the enhancement
of MLLM reasoning capacities through fine-tuning.
To overcome this limitation, we propose leveraging
the MLLM’s pre-existing but weak CoT capabil-
ity to iteratively augment (I, x, r, a) pairs from the
widely available vision question answering data
(I, x, a), enabling the model to self-improve.

Following STaR (Zelikman et al., 2022), the
MLLM self-training process involves iteratively
fine-tuning on its self-generated rationale data. In
each iteration t, given a question x from training
set D = {(I, x, â)}, the MLLMM first generate
a CoT rationale r along with an answer a , formu-
lated as {(ri, ai)}|D|

i=1. These intermediate outputs
are then combined with the original training set,
resulting in an augmented dataset that includes ra-
tionales:

Dr = {(Ii, xi, ri, ai)}|D|
i=1 (1)

Assuming that rationales leading to correct answers
are of higher quality compared to those that do not,
we can divide Dr into positive and negative sample
sets based on the correctness of the answers:

D+
r = {(Ii, xi, ri, ai) | ai = âi}|D|

i=1 (2)

D−
r = {(Ii, xi, ri, ai) | ai ̸= âi}|D|

i=1 (3)

We then fine-tune model M on the filtered posi-
tive CoT samples D+

r using supervised fine-tuning
(SFT) with a negative log-likelihood objective:

LSFT = −
∑

(I,x,y)∼Dt

logM(y | x, I), (4)

where the y = (r, a) is the solution generated by
the model. We continue repeating the above pro-
cess, generating new rationales with the newly fine-
tuned model, until performance plateaus.

3.2 R3V: Reflection on Rationales

The above self-improvement process strengthens
the model using positive solutions, while negative
ones are typically discarded. However, negative
samples comprise a large portion of the sampled
solutions and offer valuable insights for further
model enhancement (An et al., 2023; Hosseini
et al., 2024). In our preliminary experiments, we
found that the noisy nature of CoT in multimodal
scenarios leads to suboptimal performance when
using DPO (Rafailov et al., 2024). Inspired by the
error-driven learning of humans, we introduce re-
flection on rationales, teaching the model to correct
its own mistakes and reflect on multiple reasoning
paths to identify the correct solution. Specifically,
we propose additional self-refine (Section 3.2.1)
and self-select (Section 3.2.2) losses for multitask
learning. Our framework harnesses the continuous
production of positive and negative samples in self-
training, offering a robust and effective solution
for learning from mistakes. Appendix E provides
examples of different components in R3V .

3.2.1 Self-Refine
Upon failing to solve a problem, human students
will analyze the errors in their solutions and reflect
on how to correct them. Inspired by this, we de-
signed the self-refine mechanism to encourage the
model to correct flaws in its generated solutions.
Multiple positive and negative solutions sampled
during self-training can be viewed as the model’s
repeated reasoning on the same problem, making
them well-suited for self-refine training. Specifi-
cally, we construct dataset for self-refine as follows:

DREF = {(Ii, xi, y+i , y−i ) | ∃ y+i , y−i }
|D|
i=1, (5)

where y+i and y−i are positive and negative sam-
ples obtained from preceding iterations. Next, the
self-refine loss is employed to guide the model in
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Solution 𝒚!:
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Figure 2: Overview of our multimodal self-training framework of R3V . It boosts vision-language reasoning by
iteratively reflecting on bootstrapped CoT rationales and enables self-reflection through test-time computing.

correcting errors in its self-generated answers:

LREF = −
∑

(I,x,y+,y−)∼DREF

logM(y+ | y−, x, I) (6)

Throughout the self-training iterations, samples for
self-refine are continuously updated to incorporate
higher-quality positive solutions and harder nega-
tive solutions.

3.2.2 Self-Select
Our early explorations reveal a key challenge in
MLLM reasoning: current MLLMs frequently
make simple errors such as misreading chart num-
bers or calculation mistakes, however, the autore-
gressive model has no mechanism to correct them,
leading to suboptimal performance. In contrast, hu-
man reasoners implicitly simulate multiple reason-
ing paths, check for errors, and select the best one.
Inspired by this, we introduce the self-selection
mechanism, guiding MLLMs to derive the correct
answer from multiple candidate solutions.

Given a set of sampled rationales, the model
is required to analyze their differences and finally
select the correct answer. Specifically, we construct
the self-select dataset as follows:

DSEL = {(Ii, xi, âi, Ci) | ∃ Ci }|D|
i=1, (7)

where â is the ground truth and Ci =
(y1i , y

2
i , ..., y

N
i ) is a set of N sampled rationale-

answer pair. In our experiments, N is set to 3
by default. We ensure that the candidate set C con-
tains at least one positive solution y+, allowing the
model to select the final correct answer. Then, the

self-select loss is defined as:

LSEL = −
∑

(I,x,â,C)∼DSEL

logM(â|x, I, C) (8)

Finally, our framework combines three loss func-
tions in a multi-task training setup to enhance
MLLM reasoning (see algorithm in Appendix D):

LR3V = LSFT + LREF + LSEL (9)

From another perspective, we argue that this multi-
task training enables MLLMs to learn reasoning
from easy to hard: selecting the correct solution
from multiple candidates, refining existing ratio-
nales, and eventually generating solutions directly.

3.2.3 Test-Time Selection
Through self-select training, our framework en-
ables MLLMs to reflect on their self-generated
solutions and select the final answer from mul-
tiple reasoning paths. During inference, given a
question x and corresponding image I , we first
sample multiple reasoning solutions to form the
candidate set C. Next, the MLLM is prompted to
select the best answer from these candidate solu-
tions: a =M(x, I, C).

Test-time selection offers a novel approach for
MLLMs to tackle complex multimodal reasoning.
Instead of directly generating an answer, the model
applies an elimination method by comparing differ-
ent reasoning paths and checking for errors (e.g.,
visual recognition, calculation, or reasoning mis-
takes) to identify the most likely correct solution.
In this way, our approach further boosts reasoning
performance through test-time computation.
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Logical and Numerical reasoning Agentic Geometry Multi-DomainMethods Is CoT? TabMWP ChartQA CLEVR-Math MiniWob GeoQA M3CoT Avg

GPT-4o ✓ 94.47 67.00 70.60 98.50 55.17 65.85 70.62

Qwen-VL

Zero-shot QA ✗ 29.50 38.56 17.32 - 15.14 31.28 26.36
Zero-shot CoT ✓ 31.50 37.59 12.61 - 16.58 30.73 25.80

SFT Based
QA ✗ 66.00 46.64 65.20 - 33.03 48.96 51.97
GPT Distill ✓ 62.30 46.72 51.83 51.11 31.43 47.41 48.47

Self-Train Based
STaR ✓ 77.84 53.60 61.45 78.22 34.08 50.47 59.28
R3V ✓ 83.27 57.36 68.81 82.89 39.25 54.66 64.37

LLaVA-1.5

Zero-shot QA ✗ 17.66 13.04 19.04 - 26.92 36.63 22.66
Zero-shot CoT ✓ 15.33 8.39 13.87 - 23.47 35.81 19.37

SFT Based
QA ✗ 48.06 27.20 75.08 - 42.17 52.63 49.03
GPT Distill ✓ 44.63 28.48 56.52 60.44 33.81 47.54 45.24

Self-Train Based
STaR ✓ 56.67 33.44 73.46 76.00 41.25 54.06 55.81
R3V ✓ 59.30 33.92 79.01 80.11 45.76 56.08 59.03

Table 1: Main results on six vision-language reasoning benchmarks. Is CoT? column indicates whether a CoT or a
direct answer was generated. Avg. column reports the average performance across all tasks (- indicates MiniWob is
not applicable to this setting and is excluded from the average). R3V significantly improves upon the GPT-distilled
baseline without additional annotation costs, and surpasses the strong baseline STaR by a large margin.

4 Experiments

In our experiments, we focus on a diverse and com-
prehensive set of vision-language reasoning tasks
to demonstrate the effectiveness of R3V . We be-
gin by outlining the benchmarks (Section 4.1) and
experimental setup (Section 4.2), followed by the
main results of R3V on six widely used datasets
(Section 4.3). We also evaluated the improvements
achieved by our framework in out-of-distribution
(OOD) scenarios (Section 4.4).

4.1 Datasets

We validate our framework’s self-improvement on
six vision-language reasoning benchmarks, which
require integrating visual information into complex,
multi-step reasoning. Refer to Appendix B for
detailed information of these benchmarks.
TabMWP (Lu et al., 2022): A dataset for table-
based math word problems requiring reasoning and
numerical calculation.
ChartQA (Masry et al., 2022): Focuses on reason-
ing and calculations within real-world charts.
CLEVR-Math (Lindström and Abraham, 2022):
Compositional reasoning over abstract figures.
MiniWob (Shi et al., 2017): A widely-used multi-
modal web navigation benchmark requiring models
to generate multi-step actions.

GeoQA (Chen et al., 2021): A geometry problem
benchmark requiring complex reasoning.
M3CoT (Chen et al., 2024a): A recently introduced
dataset featuring multi-domain, multi-step multi-
modal reasoning problems.

4.2 Experimental Setings
We primarily compare our framework with three
categories of methods to comprehensively assess its
effectiveness. All experiments are conducted under
the same parameters to ensure a fair comparison.
Zero-shot Methods. We evaluated the MLLMs’
zero-shot performance under the direct prompt
(where the model tends to provide an immediate an-
swer (Liu et al., 2024)) and the CoT prompt using
"Let’s think step by step." GPT-4o was also chosen
as a strong baseline for comparison.
Supervised Fine-tuning Baselines. Since the self-
training requires existing (I, x, a) datasets, we pro-
vide the results of fine-tuning MLLMs using direct
prompts on these question-answer pairs. We also
include a GPT distillation baseline, where GPT-
4o annotates CoT rationales for a small subset of
each dataset, and then the open-source MLLMs are
fine-tuned for CoT reasoning.
Self-Training Methods. We employ the aforemen-
tioned GPT-distilled, warmed-up MLLM as the
starting point for self-training, iteratively sampling
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Figure 3: Comparison of the iterative self-training process between R3V and STaR on Qwen-VL across four
benchmarks. Full results are provided in Appendix F. R3V demonstrates higher efficiency in evolution and superior
final performance.

positive and negative rationales from training sam-
ples for continuous self-improvement. We then
compare R3V with the well-known self-training
baselines STaR (Zelikman et al., 2022), which it-
eratively fine-tunes on self-generated positive solu-
tions for model improvement.

We use two established MLLMs, Qwen-VL (Bai
et al., 2023) and LLaVA-1.5 (Liu et al., 2024), as
base models for self-training. We sample three
solutions per sample in each iteration by default.
The total number of iterations for these tasks is
set to 4-5, depending on the convergence speed.
Further details can be found in Appendix C.

4.3 Main Results

Table 1 presents the evaluation results of R3V on
various multimodal reasoning tasks, including logi-
cal and numerical reasoning, agentic tasks, geom-
etry, and multi-domain scenarios. The evolution
progress of self-training is illustrated in Figure 3.

Self-training effectively converts MLLMs from
weak to strong. Open-source MLLMs strug-
gle with complex vision-language reasoning tasks.
CoT reasoning with the "Let’s think step by step"
prompt (Zero-shot CoT) proves ineffective, with
performance even worse than direct prompting
(Zero-shot QA). In this situation, the self-training
method leverages MLLMs’ pre-existing but weak
CoT capabilities to bootstrap multimodal CoT data
for self-improvement. This process progressively
elevates MLLMs’ CoT reasoning, as shown in Fig-
ure 3, taking it to the next level on top of the GPT-
distilled baseline. As an example with Qwen-VL,
our self-training framework R3V delivers an av-
erage 32.8% relative performance improvement
over the GPT-distilled baseline (48.47 → 64.37).
This result highlights the remarkable potential of
MLLMs to enhance their reasoning capabilities

Methods MMMU MathVista VCR

Qwen-VL 30.44 29.1 34.02
+ GPT-distilled 33.67 32.7 45.39
+ Ours 35.63 35.10 50.23
+ Ours (TTS) 38.48 35.80 51.78

Table 2: Evaluation results on OOD benchmarks. Ours
(TTS) denotes Test-time Selection, a new feature intro-
duced by our framework. The self-generated CoT data
in R3V contributes to improving performance in more
challenging scenarios. Test-time selection is also capa-
ble of generalizing to OOD settings.

through self-training on synthetic data.

R3V further enhances self-training efficiency by
learning from mistakes. Instead of discarding
valuable negative samples, our R3V framework
leverages carefully designed self-refine and self-
select mechanisms to learn from negative solu-
tions, surpassing the strong self-training baseline
STaR by a large margin (average 59.28→ 64.37
on Qwen-VL). As shown in Figure 3, R3V demon-
strates swift adaptation across different multimodal
scenarios, achieving notably higher gains in the
first iteration compared to the STaR baseline, high-
lighting the efficiency of our method. These results
underscore the value of learning from mistakes in
multimodal reasoning and demonstrate the effec-
tiveness of our reflection-based methodology.

4.4 Out-of-Distribution Evaluation
Beyond the success of the R3V framework on
in-domain benchmarks, we are curious whether
its reasoning improvements can generalize to out-
of-distribution (OOD) and more difficult vision-
language tasks. To this end, we aggregated the CoT
rationales self-generated by R3V across in-domain
benchmarks and constructed positive and negative
pairs for continual training on Qwen-VL. For a fair
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Logical and Numerical reasoning Agentic Geometry Multi-DomainMethods TabMWP ChartQA CLEVR-Math MiniWob GeoQA M3CoT Avg

R3V 83.27 57.36 68.81 82.89 39.25 54.66 64.37
w/o self-refine 80.87 56.32 64.51 80.67 38.33 54.31 62.50
w/o self-select 79.72 55.36 64.00 79.11 35.81 50.69 60.78
w/o iteration 78.53 54.72 64.56 76.87 36.07 53.11 60.64

Table 3: Ablation study of key components. w/o iteration refers to the ablation of iterative training, where we
sample num_sample_per_iter ∗ num_iter samples in a single pass.
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Figure 4: Performance comparison of different test-time methods. Our test-time selection is robust and effective,
consistently outperforming Test@1 and majority voting.

comparison, we also included a baseline that uses
only GPT-distilled positive CoT annotations. We
conducted evaluations on three challenging bench-
marks: (1) MMMU (Yue et al., 2024), a multi-
discipline dataset designed to evaluate various as-
pects of multimodal reasoning; (2) MathVista (Lu
et al., 2023), which focuses specifically on mathe-
matical reasoning in multimodal contexts; (3) VCR
(Zellers et al., 2019), a cognition-level visual under-
standing benchmark that requires reasoning based
on common sense and visual content.

R3V also strengthens multimodal reasoning in
OOD scenarios. As shown in Table 2, after in-
corporating R3V’s self-generated CoT reasoning
data, Qwen-VL significantly outperforms both the
zero-shot and GPT-distilled baselines. This demon-
strates that the CoT annotations synthesized by our
framework not only enhance MLLM in-domain
reasoning but also generalize to OOD and more
challenging vision-language tasks.

Test-time selection generalizes to unseen tasks.
Somewhat surprisingly, we found that the test-time
selection ability does generalize to unseen tasks.
For example, on MMMU, sampling three times dur-
ing inference combined with our self-select mecha-
nism (see Section 3.2.3) led to further improvement
(35.63→ 38.48). This suggests that through our
self-select training, the MLLM has learned to com-
pare multiple reasoning paths, identify errors (e.g.,

recognition or calculation mistakes), and eliminate
incorrect options to arrive at the correct answer.

5 Analysis

This section analyzes the key factors behind the suc-
cess of the R3V , as well as the potential challenges
of self-training in multimodal reasoning tasks.

5.1 Ablation Studies

Reflection on self-generated CoT facilitates
learning from mistakes. To validate the effec-
tiveness of each part of our framework, we indepen-
dently ablated the self-refine and self-select losses,
denoted as w/o self-refine and w/o self-select. As
shown in Table 3, both self-refine and self-select
play a crucial role in improving performance. This
highlights the value of negative samples, while our
R3V framework’s reflection mechanism (i.e., self-
refine and self-select losses) serves as an effective
method for learning from mistakes.

Iterative training process is crucial for self-
improvement. Next, we ablated iterative training
as w/o iteration: instead of iteratively sampling and
training, we sampled a large batch at once. For ex-
ample, iterative self-training samples three times
per round over four rounds, while w/o iteration
samples 3 × 4 = 12 times in a single pass. This
approach is similar to Rejection Sampling Fine-
tuning (RFT; Yuan et al. (2023)), but includes our
self-refine and self-select losses. The results in

8882



Logical and Numerical reasoning Agentic Geometry Multi-DomainMethods TabMWP ChartQA CLEVR-Math MiniWob GeoQA M3CoT Avg

STaR 56.67 33.44 73.46 76.0 41.25 54.06 55.81
STaR+DPO 57.61 32.64 73.27 75.33 44.03 52.98 55.90
R3V 59.30 33.92 79.01 80.11 45.76 56.08 59.03

Table 4: Comparison between R3V and the reinforced baseline (DPO). Due to the noisy nature of CoT in multimodal
scenarios, the DPO method struggles to efficiently learn from mistakes and improve performance.

Test-Time Scaling for Majority Voting and Self-Select 

𝟑×

𝟏. 𝟖𝟓×

𝟑×

𝟒×

TabMWP CLEVR-Math

Figure 5: Comparison of scalability between test-time
selection and majority voting.

Table 3 demonstrate the importance of iteratation.
Although w/o iteration produces a large number of
positive and negative samples (comparable to R3V
by our statistics), the progressive training process
yields higher-quality, more diverse samples, which
boosts self-training performance.

5.2 Test-time Compute

Test-time self-selection boosts performance
through sampling. One key advantage of R3V
framework lies in its capacity to enhance perfor-
mance by scaling test-time computation: during
inference, we sample multiple candidate solutions
and apply self-select to choose the answer. Figure 4
compares self-selection with Test@1 and majority
voting with a sample size of 3. Our self-selection
method consistently outperforms Test@1 and ma-
jority voting across all tasks. While majority voting
reduces noise by aggregating results, self-selection
goes further by deeply comparing reasoning paths,
eliminating incorrect options, and ultimately ana-
lyzing to reach the correct answer.

R3V consistently benefits from the scaling of
sampling size. An open question is the scala-
bility of our test-time selection. We conducted
experiments with Qwen-VL on the TabMWP and
CLEVR-Math benchmarks, comparing the perfor-
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17%

Figure 6: Proportion of correct rationales in solutions
with correct answers. Multimodal CoT contains sub-
stantially more noise than text-based CoT.

mance of self-select and majority voting as the sam-
ple size increases. As shown in Figure 5, scaling
the sample size consistently improves the perfor-
mance of test-time selection, achieving both higher
efficiency and accuracy compared to majority vot-
ing. Due to limitations in input length and capabil-
ity of current MLLMs, performance plateaus with
excessive sample size, which we believe stronger
base models could address.

Our self-training framework requires no manual
annotation, instead synthesizing large-scale posi-
tive and negative CoT rationales through sampling,
equipping the model with the capacity for self-
reflection during reasoning. It also opens up new
opportunities for boosting MLLM reasoning per-
formance by scaling test-time computation.

5.3 The Noisy Nature of Multimodal CoT

In our preliminary study, we found that the widely-
used preference learning method DPO (Rafailov
et al., 2024) struggles to leverage positive and neg-
ative solutions for further improvement in multi-
modal settings. As shown in Table 4, equipping
STaR with DPO training yields minimal improve-
ment and falls short of our R3V .

To investigate DPO’s failure, we closely ex-
amined the positive and negative samples self-
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Methods Score

Zero-shot CoT 17.11
Self-Train R3V 51.72

+ Test-Time Selection (N=3) 57.96

(a) The effectiveness of our self-training framework R3V .

𝟐×

𝟐. 𝟏×

Test-Time Scaling for Majority Voting 
and Self-Select 

(b) Scalability between test-time selection and majority voting.

Figure 7: Evaluation result of Qwen2-VL on GeoQA.
(a) shows that our self-training approach significantly
enhances performance without GPT-distilled warmup.
(b) demonstrates the superior scalability of test-time
selection, which boosts performance through sampling.

generated by the MLLM (see details and case study
in Appendix G). For each task, we randomly se-
lected 100 positive solutions based on answer cor-
rectness and manually categorized their CoT fi-
delity as correct, partially correct, or incorrect. As
shown in Figure 6, unlike natural language rea-
soning tasks (e.g., Logic, Math), multimodal CoT
contains significant noise, with the proportion of
fully correct CoT ranging from 8% to 70%. This
stems from MLLM’s limited recognition capabili-
ties, leading to flawed CoT despite correct answers,
such as OCR errors. As a result, faulty reasoning
in noisy CoT is often misjudged as better solutions,
making it challenging for DPO to distinguish be-
tween correct and incorrect reasoning paths and ul-
timately reducing performance (Chowdhury et al.,
2024). In contrast, our reflection method avoids
encouraging the generation of faulty solutions, in-
stead guiding the model to select the correct an-
swer through elimination, demonstrating greater
efficiency in noisy multimodal CoT scenarios.

5.4 Generalization to Stronger Backbone

To demonstrate generalizability, we applied R3V
to the latest advanced MLLM, Qwen2-VL (Wang
et al., 2024a) , evaluating its ability to self-
improve in solving geometric problems (Chen

et al., 2021). As shown in Figure 7a, even
without GPT-distilled warmup, R3V achieves
significant self-improvement by leveraging the
model’s pre-existing CoT abilities, demonstrat-
ing the R3V’s generalizability across backbones.
More impressively, we found that test-time selec-
tion demonstrates superior scalability on Qwen2-
VL, markedly outperforming majority voting, as
illustrated in Figure 7b. We hypothesize that the
enhanced general capabilities of the base model fur-
ther amplify the effectiveness of self-select, which
we leave for future exploration.

6 Conclusion

The scarcity of multimodal CoT data limits the rea-
soning capabilities of current MLLMs. In this pa-
per, we take the first step toward enabling MLLMs
to self-improve for better vision-language reason-
ing. We propose an iterative self-training frame-
work, R3V , which continuously bootstraps posi-
tive and negative solutions and improves reasoning
through reflection on self-generated CoT rationales.
Meanwhile, R3V enables MLLMs to self-reflect
on their generated solutions, offering new opportu-
nities for boosting performance through test-time
computation. Extensive experiments and analyses
demonstrate the effectiveness of our framework
and the key factors behind its success.

Limitations

As discussed in Section 5.3, due to the limitations
of current MLLMs, the CoT annotations generated
by R3V often contain noise. While our framework
can self-improve performance on noisy multimodal
CoT, we believe that higher-quality CoT will fur-
ther enhance reasoning ability. Due to computa-
tional constraints, our main experiments were con-
ducted on two well-known MLLMs, LLaVA and
Qwen-VL. Expanding to larger and more advanced
MLLMs could yield interesting results, which we
plan to explore in future work.
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A Additional Related Work

Multimodal Large Language Models and Multi-
modal Reasoning Driven by the advancement of
Large Language Models (LLMs), the multimodal
research community has recently witnessed a do-
main shift from Vision-Language Models (VLMs)
(Radford et al., 2021; Li et al., 2022; Cheng et al.,
2023) to Multimodal Large Language Models
(MLLMs) (Achiam et al., 2023; Liu et al., 2023;
Chen et al., 2023; Cheng et al., 2024). Unimodal
reasoning has a strong research foundation, such as
in mathematics (Hendrycks et al., 2021) and code
generation (Sun et al., 2024a). Multimodal reason-
ing requires models to integrate visual cues into the
reasoning process (Zhang et al., 2023), presenting
new challenges. Recent studies have explored syn-
thesizing table or chart data and leveraging GPT to
annotate CoT, aiming to enhance MLLM reasoning
capabilities (Han et al., 2023; Jia et al., 2024). For
instance, Huang et al. (2024) utilizes GPT to gener-
ate chart code and render it to obtain diverse chart
reasoning samples. In this work, we do not rely
on stronger models to synthesize new reasoning
samples; instead, we enable MLLMs to achieve
self-improvement from self-generated CoT data.
Self-Training Methods Self-training, especially in-
tegrated with reinforcement learning from its own
outputs, offers a promising avenue for model self-
improvement (Huang et al., 2022; Gulcehre et al.,
2023). Recent studies have applied self-training to
MLLMs with the goal of enhancing image com-
prehension, particularly in mitigating hallucina-
tions (Zhou et al., 2024; Gunjal et al., 2024; Zhao
et al., 2023). Deng et al. (2024) proposes construct-
ing positive and negative sample pairs by perturb-
ing images and prompts, and enhances alignment
through DPO training. In contrast, this work fo-
cuses on complex reasoning in multimodal scenar-
ios, which requires integrating visual cues to gener-
ate step-by-step reasoning CoT. To our knowledge,
we are the first to explore self-training in the con-
text of vision-language reasoning.

B Vision-Language Reasoning
Benchmarks

TabMWP (Lu et al., 2022) Tabular Math Word
Problems (TabMWP) is benchmark containing
open-domain grade-level problems that require
mathematical reasoning and calculation on table
figures. We use the standard train/test split pro-
vided by the author.

Input:

Web action simulation code:

HTML Code:
<div id="wrap">\n  <div id="query">Select 129 
with the slider and hit Submit.</div>\n  <div 
id="area">\n    <div id="slider"  ><span 
tabindex="0"  ></span></div>\n    <div 
id="val">142</div>\n    <button id="subbtn" 
>Submit</button>\n  </div>\n</div>
Task:
Select 129 with the slider and hit Submit.
What's your actions?`

offset = 129 - 142
agent.click_xpath("//span[@tabindex='0’]”)
press_key = 'arrowleft' if offset < 0 else 'arrowright’
for _ in range(abs(offset)):  
 agent.press(press_key)
 agent.click_xpath("//*[@id='subbtn']")

Figure 8: Example for MiniWob.

ChartQA (Masry et al., 2022) We used the human-
written version as the self-train benchmark, which
contains more reasoning-intensive questions com-
pared to the augmented split. This subset contains
7,398 chart figures and question pairs, comprising
both free-text and multiple-choice questions.
CLEVR-Math (Lindström and Abraham, 2022)
The CLEVR-Math dataset consists of multimodal
math word problems that combine text and images,
where questions are posed about the state of the
scene after a sequence of actions (like addition
or subtraction of objects) have been applied. We
randomly sampled 10000 instances for training and
used the original test set.
MiniWob (Shi et al., 2017) MiniWob asks MLLM
to interact with a simulated Web environment. As
shown in Figure 8, the model is provided with an
image of the web interface along with the html as
input. It is then asked to generate Python code to
simulate keyboard and mouse actions and complete
the given task.
GeoQA (Chen et al., 2021) GeoQA contains 4,998
multiple-choice geometric problems from Chinese
middle school exams and annotated with solving
programs. We use human translated English ver-
sion provided by UniGeo (Chen et al., 2022).
M3CoT (Chen et al., 2024a) M3CoT is a manu-
ally verified multimodal, multi-domain, multi-step
visual-language reasoning dataset. We use the offi-
cial train/test splits in our R3V self-training process.

Evaluation For structured outputs like GPT-
distilled and self-train methods, we use the bench-
mark’s default evaluation script to calculate met-
rics. For free-form outputs like the zero-shot CoT
baseline, we employ GPT-4o-mini as the evaluator
to assess accuracy. For MiniWob, the simulated
web environment provides an automatic reward of
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Dataset Train/Test GPT Anno. Iter#

TabMWP 23059 / 7686 1000 4
CLEVR 10000 / 7955 1000 4
ChartQA 7398 / 1250 800 5
MiniWob – 550 4
M3CoT 7973 / 2359 936 4
GeoQA 3499 / 754 536 5

Table 5: Dataset Statistics

Hyperparameter Qwen-VL LLaVA-1.5

Batch Size 64
LR 3e-5
Epochs 3
LR Schedule Constant with warmup
LR Warmup Ratio 0.1
Weight Decay 0
LoRA Rank 64 128
LoRA alpha 16 256
LoRA Dropout 0.05
Optimizer AdamW

Table 6: Hyperparameter Settings

0 or 1, which we use to determine the solution’s
correctness.

C Training Details

We use the Qwen-VL and LLaVA-1.5 as the base
model and conducted experiments on an MLLM
training infrastructure *. We show the number of
training and testing samples for each dataset, along
with the amount of GPT annotations in Table 5. Our
self-training process begins with the GPT-distilled
warmup, where we fine-tune the base model using
the training dataset augmented with GPT-4o CoT
annotations. After this warm-up, the fine-tuned
MLLM is employed to sample from the training
dataset to build SFT, Self-Refine, and Self-Select
data for our training in the R3V framework. We per-
formed self-training in either four or five iterations,
depending on performance saturates.

The same training hyperparameters are used
across all experiments, as detailed in Table 6. We
employ DeepSpeed to train MLLM using the Zero2
strategy, maintaining a global batch size of 64.

D Algorithms

Algorithm 1 describes the overall process of R3V .
The inner for-loop describes how we sample in-
stances to build the proposed dataset, where we

*https://github.com/TideDra/VL-RLHF

always select the most recent data. It is important
to note that the sampled instances must be format-
ted as the data examples shown in Appendix E
later.

E Examples of R3V Multi-task Learning

We illustrate examples of SFT, Self-Refine, and
Self-Select in Figure 10. The input part in each sub-
figure shows the contexts such as question-choices
pair and prompts used to guide the MLLM, and
the output part shows the expected response from
the MLLM. CoT prompt "Let’s think step by step."
will always be appended to the question-choices
pairs. The prompts for self-refine and self-select
vary slightly between multiple-choice and short-
answer tasks. Note that only the self-select prompt
will be used for test-time reflection.

We add the sample generated by MLLM into
both self-refine and self-select contexts using
"Model Prediction" to divide with the question-
choices part. As illustrated in the figure, we use
a green checkmark to indicate the positive solu-
tions and a red cross to mark the negative ones. It
highlights that R3V successfully builds negative-
positive rationales pairs, from which the model can
learn from mistakes in negative demonstrations.
Additionally, R3V also builds diverse reasoning
paths, ranging from completely wrong to correct
rationales for the MLLM learning to choose from
like human.

F Evolution Progress

Figure 11 shows the evolution progress of our R3V
framework.

G Noisy Nature of Multimodal CoT

We manually reviewed the positive solutions gen-
erated by the Qwen-VL in our self-training pro-
cess and evaluated the quality of its CoT reason-
ing. The CoT error in multimodal setting is signifi-
cantly higher than samples from logical reasoning
datasets (Liu et al., 2020; Yu et al., 2020) and math
datasets(Cobbe et al., 2021; Hendrycks et al., 2021)
in natural language setting. Multimodal CoT has
considerable noise, such as visual perception error
and symbol misinterpretation. We highlight this
issue with case studies on the M3CoT and GeoQA
dataset in Figure 9.
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Algorithm 1 R3V

Require: Training QA datasets DQA, subset with
GPT-distilled CoT annotations Dw

SFT, model
M, number of iterations T

1: Initialize D0 = DQA ∪ Dw
SFT , Dpos = ∅,

Dneg = ∅
2: for each iteration t = 1, 2, . . . , T do
3: DSFT = DREF = DSEL = ∅
4: Mt ← SFT(M,Dt−1)

# sample 3 times on training set
5: S ← sample(Mt,DQA, n = 3)
6: Dpos ← Dpos ∪ eval_pos(S,DQA)
7: Dneg ← Dneg ∪ eval_neg(S,DQA)
8: for item index i = 1, 2, . . . , |DQA| do

# all solutions for sample i
9: di

+ = {si1, si2, . . . , sik|sik ∈ Di
pos}

10: di
− = {si1, si2, . . . , sik|sik ∈ Di

neg}
# the r-th latest pos/neg solution

11: s
+/−
r ← di

+/-[−r]
# SFT

12: if ∃ s+1 then
13: DSFT ← DSFT + s+1
14: end if

# self-refine
15: if ∃ (s+1 , s−1 ) then
16: DREF ← DREF + (s−1 , s

+
1 )

17: end if
# self-select

18: if ∃ (s+1 , s−1 , s−2 ) then
19: DSEL ← DSEL + (s+1 , s

−
1 , s

−
2 )

20: end if
21: if ∃ (s+1 , s+2 , s−1 ) then
22: DSEL ← DSEL + (s+1 , s

+
2 , s

−
1 )

23: end if
24: end for
25: Dt ← D0 ∪ DSFT ∪ DREF ∪ DSEL
26: end for

Compare	the	average	kinetic	energies	of	the	
particles	in	each	sample.	Which	sample	has	the	
higher	temperature?	
Choices:
(A)neither;	the	samples	have	the	same	

temperature
(B)sample	A
(C) sample	B
Let's	think	step	by	step.

Perceptual Mistake
Question:

Model Response:
1.	Kinetic	energy	depends	on	the	mass	and	speed	of	
particles.
2.	Sample	A	has	a	higher	mass	and	speed.
3.	Sample	B	has	a	lower	mass	and	speed.
Answer:	
(B)	sample	A

Calculation:	As	shown	in	the	figure	,	A	B	is	the	
chord	of	O	,	and	point	C	is	on	the	circle	.	It	is	known	
that	angle	O	B	A	=	40.0	,	then	angle	C	=	()	
Choices:
(A)40.0
(B)50.0
(C) 60.0
(D)80.0
Let's	think	step	by	step!

Symbol Misinterpretation
Question:

Model Response:

1.	Triangle	OAB	is	an	inscribed	triangle,	with	angle	
OBA	=	40	degrees.
2.	The	external	angle	C	of	the	same	triangle	equals	
the	sum	of	the	opposite	internal	angles	(angle	ABO	+	
angle	ABC).
3.	Since	angle	OBA	is	40	degrees,	angle	ABO	=	90	
degrees	(since	the	external	angle	is	equal	to	the	sum	
of	the	internal	angles).
4.	Angle	ABC	=	90	-	40	=	50	degrees.
Answer:
(B)	50.0

Figure 9: The noisy nature of multimodal CoT, where
positive solutions often contain flawed CoT steps.
The perceptual error and symbol misinterpretation are
marked in red.
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Calculation:	As	shown	in	the	figure	,	it	is	known	
that	angle	AOB	is	the	central	angle	of	circle	O	,	angle	
AOB	=	50.0	,	then	the	degree	of	angle	of	
circumference	angle	ACB	is	()	
Choices:
(A)50.0
(B)	25.0
(C)	100.0
(D)	30.0
Let's	think	step	by	step.

CoT for self-train
Input:

Output:
1.	Angle	AOB	is	the	central	angle,	and	angle	ACB	is	
an	inscribed	angle	subtended	by	the	same	arc	AB.
2.	The	measure	of	an	inscribed	angle	is	half	the	
measure	of	the	central	angle.
3.	Therefore,	angle	ACB	=	50	/	2	=	25	degrees.
Answer: (B)	25.0

Look	at	the	following	schedule.	Hayley	just	missed	
the	9.45	AM	boat	at	Sea	Town.	How	long	does	she	
have	to	wait	until	the	next	boat?	
Choices:	
(A)	1	hour	
(B)	15	minutes	
(C)	30	minutes
(D)	45	minutes
Let's	think	step	by	step.

Model	Prediction:
1. Hayley	missed	the	9:45	AM	boat	at	Sea	Town.
2.	The	next	boat	at	Sea	Town	is	scheduled	for	10:15	
AM.
3.	The	difference	between	missed	boat	and	next	
boat	is	15	minutes.
Answer: B

Judge	the	correctness	of	the	model's	prediction	
and	refine	it.

Self-Refine for self-train
Input:

Output:
1. The	next	available	boat	at	Sea	Town	is	at	
10:15	A.M.
2.	The	difference	in	time	is	10:15	A.M.	-	9:45	
A.M.	=	30	minutes.
3.	The	waiting	time	is	30	minutes.	
Answer: C

In	the	picture,	pinpoint	the	spot
	with	the	shallowest	depth.	
Choices:
(A) Point	C	in	the	image	
(B)	Point	A	in	the	image
(C)	Point	D	in	the	image
(D)	Point	B	in	the	image
Let's	think	step	by	step.

Model	Prediction	1:
1. The	color	scale	indicates	the	depth,	with	darker	colors	

representing	shallower	depths.
2. Point	C	is	in	the	darkest	blue	area,	which	corresponds	to	the	

shallowest	depth.
3. The	other	options	are	not	as	dark	as	Point	C.
Answer:	C

Model	Prediction	2
1. The	color	scale	indicates	depth,	with	darker	blue	

representing	deeper	water.
2. Point	C	is	at	the	darkest	blue,	indicating	the	shallowest	depth.
3. The	other	points	have	similar	depths	but	are	not	as	dark	as	

point	C.
Answer:	C

Model	Prediction	3:
1. The	color	scale	indicates	that	deeper	colors	represent	

shallower	depths.
2. Point	B	is	located	in	a	lighter	blue	area,	indicating	shallow	

depth.
3. The	other	points	(C,	A,	D)	are	in	deeper	blue	regions.
Answer:	D

Which	prediction	is	correct?	Give	the	final	answer	for	the	
beginning	question	by	selecting	the	correct	option.

Self-Select for self-train
Input:

Output:
Answer:	 D

Figure 10: Examples for generated data. The image displays examples of generated data for SFT, Self-Refine, and
Self-Select tasks. Positive samples are marked with a green checkmark, while negative samples are marked with a
red cross.
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Figure 11: The evolution progress of R3V .

8892


