
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8751–8773

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Language Models Can Infer Action Semantics
for Symbolic Planners from Environment Feedback

Wang Bill Zhu Ishika Singh Robin Jia Jesse Thomason
Department of Computer Science
University of Southern California

{wangzhu@usc.edu, ishikasi@usc.edu, robinjia@usc.edu, jessetho@usc.edu}

Abstract

Symbolic planners can discover a sequence of
actions from initial to goal states given expert-
defined, domain-specific logical action seman-
tics. Large Language Models (LLMs) can di-
rectly generate such sequences, but limitations
in reasoning and state-tracking often result in
plans that are insufficient or unexecutable. We
propose Predicting Semantics of Actions with
Language Models (PSALM), which automat-
ically learns action semantics by leveraging
the strengths of both symbolic planners and
LLMs. PSALM repeatedly proposes and exe-
cutes plans, using the LLM to partially generate
plans and to infer domain-specific action se-
mantics based on execution outcomes. PSALM
maintains a belief over possible action seman-
tics that is iteratively updated until a goal state
is reached. Experiments on 7 environments
show that when learning just from one goal,
PSALM boosts plan success rate from 36.4%
(on Claude-3.5) to 100%, and explores the en-
vironment more efficiently than prior work to
infer ground truth domain action semantics.

1 Introduction

Symbolic planning requires extensive domain
knowledge to produce a sequence of actions that
achieve a specified goal. Domain knowledge com-
prises expert-annotated action semantics that gov-
ern the dynamics of the environment. For example,
traditional symbolic methods, like Planning Do-
main Description Language (PDDL; Ghallab et al.,
1998) solvers, take action semantics annotated in
a domain file as input (Figure 2). These symbolic
solvers systematically search the state space based
on actions that can be executed as per these se-
mantics and return a sequence expected to achieve
specified goal conditions, if possible. However, a
human expert must exhaustively define the action
semantics of domain to enable symbolic planning.

We propose a novel domain induction task in
which an agent must infer the action semantics of

Environment

Symbolic Planner

Sample action
semantics

from memory

①
Execution log/errors

to update memory

③

Proposed plan to
execute

②

LLM

Memory of Action Semantics

LLM

Figure 1: LLMs can propose plans and generate action
semantics, but struggle with state tracking. Symbolic
planners leverage specialized search algorithms, but
require predefined action semantics for the environment.
PSALM integrates the strengths of both.

an environment without manual annotation or er-
ror correction. In this setting, domain information
like object properties and action functions head-
ers are given to an agent in natural language. The
agent is then asked to infer the action semantics,
that is, symbolic pre- and post-conditions, through
interacting with the environment and learning from
resulting feedback (Figure 1). Our proposed setting
is motivated by the longer-term goal of building
real-world robots that can explore a new environ-
ment (e.g., an apartment) and learn to perform new
tasks in the environment (e.g., tidying) by building
a symbolic, interpretable world representation.

We draw inspiration from prior work that
prompts Large Language Models (LLMs) to per-
form robotics planning tasks. These methods rely
on LLMs’ ability to infer world knowledge from
natural language input for generating unseen plans,
rather than leveraging expert domain knowledge.
For instance, ProgPrompt (Singh et al., 2023) gen-
erates program-like high-level plans from LLMs.

LLMs struggle with long-horizon planning and
often generate plans that include invalid actions,

8751

such as filling a cup before the lid is removed.
Instead of using the LLM directly as a planner,
we propose Predicting Semantics of Actions with
Language Models (PSALM), a novel method that
combines language models with symbolic solvers
to iteratively explore the environment and predict
the action semantics based on environment feed-
back. PSALM maintains a probabilistic memory
of learned action semantics, which iteratively im-
proves by interacting with the environment. We use
LLMs to sample possible incorrect or incomplete
candidate action trajectories conditioned on initial
proposed action sequences from a symbolic plan-
ner, then infer action semantics based on the result
of executing those trajectories. PSALM leverages
LLMs’ strong commonsense reasoning abilities, as
well as their ability to generate syntactically valid
formal semantics, while using a symbolic solver to
search for ways to achieve the final goal state based
on our current belief about the action semantics.

We demonstrate the effectiveness and effi-
ciency of PSALM for domain induction in
7 symbolic reasoning environments. PSALM
can achieve 100% success rate with the FAST-
DOWNWARD (Helmert, 2006) solver, while the best
LLMs, O1-preview (OpenAI, 2024) and Claude-
3.5-Sonnet (Anthropic, 2024) perform less than
40% on average. Additionally, PSALM consis-
tently induces correct domain files, and does so
with substantially fewer total execution steps and
environment resets than other approaches. The inte-
gration of LLMs and symbolic solvers is a promis-
ing avenue for domain induction in robotics and
general reasoning agent workflows.

2 Background and Related Works

We first introduce symbolic planning, and then
compare PSALM’s domain induction setup with
previous LLM or LLM-Modulo planning methods,
as listed in Table 1.

2.1 Classical and Symbolic Planning

Classical planning algorithms have been widely
applied in autonomous spacecrafts, military logis-
tics, manufacturing, games, and robotics. The au-
tomated STRIPS planner was the first algorithm
that operated the Shakey robot (Fikes and Nilsson,
1971). Classical planners require finite, determin-
istic, and full state information to generate guaran-
teed plans when a path from the initial to the goal
state is possible. Some other frameworks were also

shown to be useful for robot planning (Carbonell
et al., 1991; Nau et al., 2003). Symbolic planning
languages, such as Planning Domain Description
Language (PDDL; Ghallab et al., 1998) and An-
swer Set Programming (ASP; Brewka et al., 2011;
Lifschitz, 2002), provide a more structured and
flexible way to represent problems.

We use PDDL for symbolic planning (Fig-
ure 2). We define a planning problem P as a tuple
⟨D,O, si,Sg⟩, for D the domain, O a set of objects
in the domain, si the initial state, and Sg the goal
specification, i.e., a set of goal states satisfying the
goal conditions. A plan solution to P is a T -step
sequence of actions a1..T , which once executed at
si would lead to a state in Sg.

The PDDL domain file also defines the symbolic
action set A in the environment and predicates
representing objects properties. Each action has
a string name (e.g., Put-down), parameters (e.g.,
?ob), and semantics. The action semantics Φa of
an action a ∈ A include the preconditions when a
is valid to execute, and the postconditions (effects)
describing what changes when an a is executed.
Unlike LLM+P (Liu et al., 2023), which generates
PDDL problem files from in-context examples, we
infer action semantics in domain files.

2.2 LLMs for Task Planning
Several works utilize LLMs to generate plans di-
rectly given initial and goal states (Huang et al.,
2022; Ichter et al., 2022), but such stochastic, gen-
erative approaches lose the success guarantees of
symbolic planners. To improve the correctness of
the plans, learned latent spaces (Trivedi et al., 2021)
or LLMs (Singh et al., 2023; Liang et al., 2023; Hu
et al., 2024) are used to generate executable pro-
grams, which introduce some symbolic structure
and constraints, reaching up to 90% plan success
on some simple domains, such as GRIPPERS, but
these still do not guarantee plan success (Silver
et al., 2023).

Recently, Kambhampati et al. (2024) proposed
the LLM-Modulo network, combining LLM plan
generation with symbolic planner verifiers. Using
an LLM for final plan generation cannot achieve
high success rate in complex domains, such as
BARMAN and TERMES (Zhao et al., 2023; Hazra
et al., 2024). Guan et al. (2023) have compared
LLMs and symbolic planners, finding the latter is
consistently better over 3 domains.

In this paper, we consider planning domain in-
duction. We use LLMs to propose partial plans

8752

(define (problem BW-3)
(:domain BW)
(:objects b1 b2 b3)
(:init (arm-empty)
 (on-table b2)
 (on b1 b3)
 (on b3 b2)
 (clear b1))
(:goal (and
 (on b2 b3)
 (on b3 b1))))

(define (domain BW)
(:predicates (clear ?x) (on-table ?x)
(arm-empty) (holding ?x) (on ?x ?y))

(:action Put-down
 :parameters (?ob)
 :precondition (and [[Put-down_pre]])
 :effect (and [[Put-down_post]])

(:action Unstack
...

Problem FileDomain File

(Unstack b1 b3)
(Put-down b1)
(Unstack b3 b2)
(Stack b3 b1)
(Pickup b2)
(Stack b2 b3)
; cost = 6

PlanInit State Goal State

Figure 2: An example of symbolic planning information from the BLOCKSW domain, from left to right: PDDL
domain file, PDDL problem file, visualization of initial and goal state for block stacking, and a potential plan.

Goal Independent of Leveraging Guaranteed

Partial AS Valid plans Human eval Env feedback Plan success

Liu et al. (2023) Problem File ✗ ✓ ✓ ✗ ✗

Hazra et al. (2024) Plan ✓ ✓ ✓ ✗ ✗

Silver et al. (2023) Program ✗ ✓ ✓ ✗ ✗

Arora et al. (2018) AS ✓ ✗ ✓ ✗ ✗

Wong et al. (2023) AS ✗ ✓ ✓ ✗ ✗

Guan et al. (2023) AS ✓ ✓ ✗ ✗ ✗

Oswald et al. (2024) AS ✓ ✓ ✓ ✗ ✗

PSALM AS ✓ ✓ ✓ ✓ ✓

Table 1: Comparing the PSALM domain induction task setup to representative related works in LLM and LLM-
Modulo planning; here, “AS” is short for action semantics.

and predict domain knowledge based on execution
feedback. Once we uncover the domain action se-
mantics, plan success from a symbolic solver is
guaranteed, provided the goal is reachable.

2.3 Domain Induction

The domain induction problem has been studied un-
der different setups (Appendix Table 4). Arora et al.
(2018) introduced several setups, including pre-
dicting pre- and post-conditions from valid plans
or reusable plan fragments. Wong et al. (2023)
and Chen et al. (2024) filled in missing pre- and
post-conditions in the domain file given other ac-
tion semantics in the same or similar domain. Guan
et al. (2023) generated domain predicates and ac-
tion semantics using LLMs given detailed text ac-
tion descriptions. Because the generated predicates
were not aligned with the problem file, human feed-
back was required for error correction and evalua-
tion.

Closest to our paper, Oswald et al. (2024) ex-
tended Guan et al. (2023)’s work by providing
predicates and enabling automatic evaluation. They
performed a single-round action semantics genera-
tion from LLMs and evaluated the accuracy of the

generation. Using environment feedback, PSALM
effectively solves their domain induction problem,
achieving 100% accuracy over 7 domains. We
advocate for an additional evaluation relevant for
downstream, real-world deployment: the efficiency
of the environment exploration.

3 Problem Formulation

Symbolic planning in PDDL requires a domain file
characterizing the environment. Human experts
must carefully annotate the action semantics to
enable the symbolic solver to find correct solutions.
We propose a novel domain induction task, where
AI agents must find the action semantics for a new
domain without human annotation or correction.

In the domain induction task, the agent knows
D \⋃a∈AΦa, including the predicates and the ac-
tion names, but not the action semantics. In ad-
dition, the agent has access to one problem file
⟨O, si,Sg⟩. The goal of the agent is to learn the
correct action semantics Φa for each action a. Dur-
ing the learning process, the agent interacts with
the environment initialized to state si with an open-
loop execution of a planned trajectory τ = a1:T ,
after which the environment is reset back to si. Af-

8753

Derived Info

Provided Info

4. Sample preconditions
and postconditions

1. Sample
trajectories

2. Execute actions 3. Generate action semantics

Domain
Info

- Domain desp
- Type
- Predicate
- Action desp

Problem
Info

- Task desp
- Problem file

Solver
Info

- Candidate
trajs

Memory
Info

- Failed trajs
- Sampled
dynamics
model

Trajectory
Sampler

Environ-
ment

Symbolic
Planner

Action
Semantic
Generator

Sampled domain file

Trajectory Valid actions
State transitions

Error msg forNo

Yes

Learned action semantics

Put-down Preconditions: [
 (holding ?ob): 1.0
 (not (on-table ?ob)): 0.3
]

Put-down Postconditions: [
 (arm-empty): 1.0
 (on-table ?ob): 0.8
 (clear ?ob): 0.6
]

Unstack Preconditions: [
 …

Solution Environ-
ment Success

Yes

Find
Solution!

No

Update memory

Pre- and
post-conditions
for each action

Solver
Info

Domain
Info

Problem
Info

Memory
Info

Domain
Info

Problem
Info

Memory
Info

(Unstack b3 b2)
(Put-down xqb2)
(Unstack b2 b5)
(Put-down b3)
(Stack b5 b2)
…

Time step 1: (Unstack b3 b2)
Adding (holding b3)
Deleting (on b3 b2)

Time step 2: (Put-down b2)
Plan failed: unsatisfied
precondition
Plan repair: (Set (holding
b2) to true)

Preconditions of “Put-down ?ob”:
(holding ?ob), (not (on-table
?ob))

Postconditions of “Put-down ?ob”:
(on-table ?ob), (clear ?ob),
(arm-empty)
…

Put-down Preconditions:
(holding ?ob)

Put-down Postconditions:
(on-table ?ob)
(arm-empty)

Unstack Preconditions:
…

Figure 3: The pipeline of PSALM in four steps: (1) sample trajectories from a trajectory sampler; (2) execute the
trajectories in the environment to get feedbacks (3) generate action semantics for each action with environment
feedback, and update the memory based on the prediction; (4) sample action semantics from the memory to construct
the domain file for the symbolic solver to check the success.

ter learning action semantics, the agent should be
able to leverage a symbolic solver for efficient and
robust task solving in the domain to achieve a state
in Sg.

We evaluate the domain induction learning pro-
cess on three measures. (1) Accuracy (Acc):∑

a∈A |Φ̂a∩Φa|/
∑

a∈A |Φa|, where Φ̂a is the pre-
dicted action semantics for action a. Finding a path
to Sg is not sufficient to imply correct action seman-
tics, but recovering ground truth action semantics
is sufficient to reach Sg via the symbolic solver.
(2) The number of resets (NR): how many times
the environment returns to si because planned ac-
tions did not reach Sg. (3) The number of executed
steps (NES): how many total actions were executed
during learning, including those causing failure.

4 Proposed Approach: PSALM

We propose the Predicting Semantics of Ac-
tions with Language Models (PSALM) framework,
which leverages LLM commonsense, formal plan-
ning, and environment feedback.

4.1 Overview

Given a goal Sg, we first use an LLM as a trajec-
tory sampler, and execute the trajectories in the

environment to get feedback (Figure 3). We use the
LLM again, together with a rule-based parser, as
the action semantics generator to predict action se-
mantics, i.e., preconditions and postconditions, for
each action based on that feedback. We update the
memory of the learned action semantics, ten sam-
ple that memory for hypothesized action semantics
used as input to the symbolic solver. Finally, the
symbolic solver tries to generate a plan from the
goal and hypothesized action semantics.

If the symbolic solver finds a solution, we exe-
cute the plan in the environment. If the plan reaches
the goal, we finish the loop; otherwise, we will pass
the result of the failed plan to the LLM to predict
the action semantics again. If the symbolic solver
does not find a solution, we will provide some par-
tial candidate trajectories from the symbolic solver
to the trajectory sampler as a prefix sequence of
actions for the plan to be generated.

4.2 Trajectory sampler

We prompt an LLM with domain and problem infor-
mation (as described in §2.1), memory information
representing our current beliefs about action pre-
and post-conditions, and partial trajectories gener-
ated by the solver. We use templates to convert

8754

Model BARMAN BLOCKSW FLOORTILE GRIPPERS STORAGE TERMES TYREWORLD

Direct plan generation
O1-preview 0 30 0 90 5 0 30
GPT-4-Turbo 0 20 0 55 5 0 70
Claude 3.5 Sonnet 0 60 0 90 5 0 100

Domain induction + Symbolic planner
GPT-4-Turbo 0 0 0 0 5 0 0
Oswald et al. (2024) 0 0 0 0 5 0 0
PSALM 100 100 100 100 100 100 100

Table 2: Plan success rate over 20 examples, comparing PSALM with LLM and domain induction baselines.

these into a natural language prompt. For example,
the postconditions (on-table ?ob) (arm-empty)
of the action put-down are converted to natural lan-
guage The effects are (on-table ?ob), (arm-empty).
Because the symbolic solver we use, i.e., FAST-
DOWNWARD, is performing a search algorithm
given a time-limit of W , if the solver finds any can-
didate trajectories, i.e., not a complete solution but
a partial solution stopped by the timer or a dead
end, we include the k longest candidate trajectories
as additional input to the trajectory sampler. We
filter out invalid candidate trajectories that failed in
previous iterations. The trajectory sampler prompt
finally specifies to pick one of the candidate trajec-
tories and generate a trajectory starting from that.
We execute l trajectories sampled in this way from
the trajectory sampler. When l > 1, we predict ac-
tion semantics for each trajectory separately (§4.3).
After execution, we update the semantic hypothesis
memory (§4.4).

Prospection. Although the LLM’s prompt in-
cludes the current beliefs about action precondi-
tions, the LLM can still generate trajectories that
violate these preconditions. We add trajectory
prospection, enabling the system to do forward
prediction in an open-loop fashion before actually
invoking the simulator based on its symbolic under-
standing of the world. For a generated trajectory
τ = a1:T , we check if is aligned with the current
belief of the environment action semantics for v
steps. For v ≤ T , if any action in a1:v does not
satisfy the preconditions in the sampled action se-
mantics, starting from that action, we will keep
randomly sampling one action until the sampled
action is valid in the hypothesized action semantics,
repeated to v total actions. Otherwise, if a1:v are
all valid, we execute the original a1:T .

Random sampler. We create an ablated PSALM
that randomly samples v actions per trajectory from
the longest candidate trajectory, if available, from
the symbolic solver during each iteration. This
random sampler ablation can also take advantage
of the prospection module.

4.3 Action semantics generator
We combine LLM-based and rule-based action se-
mantics generation given environment feedback.

LLM-based generator. We prompt the LLM to
generate the action semantics of each action sepa-
rately. The prompt contains information about the
domain, problem, memory information, and envi-
ronment feedback. For a trajectory τ = a1:T failed
at step t+1, environment feedback for the LLM ac-
tion semantics generator takes the form of valid ac-
tions a1:t, state transitions sj+1 − sj , j = 1, . . . , t,
where s1 is the initial state si, and the environment
error message string for action at+1. Note that each
state is a set of predicate assignments, so we can
compute the difference of state transition as the dif-
ference of two sets. We assume the error message
is provided by the environment. In the tested envi-
ronments, when an action fails the error message
specifies an unsatisfied precondition. When no ac-
tion fails, the error message either states that the the
goal is not reached, or the goal is reached and the
PSALM inference loop exits. For each action, we
prompt the LLM once to predict the preconditions
and once for the postconditions.

Rule-based generator. We also write a rule-
based parser for the output from the environment
feedback to infer one or more missing precondi-
tions suggested by error messages. Rule-based
parser also scan state transition descriptions to de-
rive postconditions. For each iteration, we update
the action semantics hypothesis memory with both

8755

Model BARMAN BLOCKSW FLOORTILE GRIPPERS STORAGE TERMES TYREWORLD

GPT-4-Turbo 53 61 58 70 45 41 67
Oswald et al. (2024) 65 67 58 75 58 59 80
PSALM 100 100 100 100 100 100 100

Table 3: Action semantics accuracy over 20 examples, comparing PSALM with LLM to baselines.

LLM-generated pre- and post-conditions and those
from this rule-based generator. Unlike the LLM
action semantics generator, the rule-based genera-
tor relies solely on the feedback at the current time
step, making it less efficient.

4.4 Memory of action semantics

We keep a memory of the hypothesized action se-
mantics. For each action’s action semantics, we
store two lists of predicted statements for precondi-
tions and postconditions. Each statement ϕ is asso-
ciated with a belief p(ϕ ∈ Φa|a), in short p(ϕ|a).
We use this belief as a binary probability for each
statement to sample, at each iteration, the concrete
action semantics input to the symbolic solver.

The first time a statement ϕ is predicted as part
of the action semantics for a, the belief will be as-
signed to 1. Afterwards, this belief will be updated
following an exponential forgetting rule. Suppose
at time step t, the predicted action semantics of a
is Φ̂a,t, the belief update rule of statement ϕ is

pt+1(ϕ|a) ={
1[ϕ ∈ Φ̂a,t+1] if pt(ϕ|a) = 0

γϕpt(ϕ|a) + (1− γϕ)1[ϕ ∈ Φ̂a,t+1] else

where γϕ is the forgetting factor. If a statement
ϕ has only been predicted by the LLM. Once a
statement ϕ is predicted by rule-based generator,
γϕ = 1, which does not decay. Notice that all the
statements predicted in the current time step and in
the memory ϕ ∈ ⋃

t′∈{1..t+1} Φ̂a,t′ will be updated
following the rule.

5 Experiments

We show that PSALM can recover 100% the ac-
tion semantics in 7 symbolic domains, resulting in
100% planning success rate as well. The critical
advantage the LLM component of PSALM is to
greatly reduce the cost, i.e., the number of resets
and the number of executed steps, for achieving the
iterative recovery of these domain semantics.

5.1 Experimental setups

We experiment on 7 symbolic domains from In-
ternational Planning Competitions (Seipp et al.,
2022); each defines 20 tasks that vary in number of
environment objects and optimal plan length. (1)
BARMAN: The robot is a bartender with 2 hands
preparing cocktails for a customer’s order, using
the specified ingredients and appropriate tools; (2)
BLOCKSW: The robot reorganizes a collection
of block piles arranged on a table, into a spec-
ified configuration while adhering to the simple
physics principles; (3) FLOORTILE: A set of
robots painting color patterns on floor tiles, allowed
to move around but not to step on painted tiles; (4)
GRIPPERS: A set of robots with 2 grippers each
are given a task to move objects among different
rooms; (5) STORAGE: The robot lifts and drops
crates initially stored in different areas, into a de-
pot, using a given set of hoists; (6) TERMES: The
robot constructs complex structures by transport-
ing and positioning blocks, as well as using them
as a means to move adjacent blocks; (7) TYRE-
WORLD: The robot is assigned with changing flat
tires, which involves tasks such as removing flat
tires, inflating the intact tires, tightening nuts, and
returning tools to the boot.

In each domain, we choose the first task that re-
quires using all actions to reach the goal, learn
action semantics from that task, then test on
all 20 tasks. All experiments use the FAST-
DOWNWARD (Helmert, 2006) planner, with a
search time limit of W = 30 seconds during the
PSALM loop, and unlimited search time during
testing (Table 2). We use VAL1 as simulation envi-
ronment for plan validation, calculating state con-
dition changes, and obtaining error messages. We
set the maximum number of PSALM induction it-
erations to 1k for pure random baselines and to 100
for any method involving LLMs. We report the
average over 3 runs for all the methods.

For the main results, we use GPT-4-Turbo (Ope-
nAI, 2023) as the language model agent, with tem-

1https://github.com/KCL-Planning/VAL

8756

0

200

400

600

800

of

 e
xe

cu
te

d
st

ep
s

Barman

0

10

20

30
Blocksworld

0

100

200

300

Floortile

0

20

40

60
Grippers

0

10

20

30

of

 e
xe

cu
te

d
st

ep
s

Storage

0

200

400

600

Termes

0

200

400

600

Tyreworld

0.0

0.5

1.0

1.5

2.0
Avg. Relative Steps

PSALM w/o rule-ASG w/o LLM-ASG w/o prospect. w/o LLM-TS

Figure 4: We compare PSALM with multiple variations over 7 domains. We report on NES and the results suggest
(1) LLM as a trajectory sampler greatly reduces the execution steps; (2) LLM and rule-based action semantics
generators have complementary benefits; and (3) Prospection to reject trajectories based on current action semantics
hypotheses is helpful overall. TS is short for trajectory sampler and ASG is short for action semantics generator.

perature 0 and one-shot prompting following Liu
et al. (2023). We detail prompts in Appendix C.
We use v = 10 prospection steps, l = 1 sampled
trajectory, k = 3 candidate trajectories, g = 5
failed trajectories per iteration, γϕ = 0.8 mem-
ory forgetting factor. We perform ablation studies
over these hyperparameters in the analysis. More
experimental details are in Appendix B.

5.2 Comparison with baselines

As shown in Table 2, PSALM achieve 100% plan-
ning success rate, outperforming multiple LLM
direct plan generation baselines. Other domain in-
duction baselines using LLMs, such as Guan et al.
(2023), are unable induce correct action semantics
because they do not leverage environment feedback.
Direct prompting for the plan of the task, even with
powerful LLM models, O1-preview and Claude-
3.5 Sonnet, cannot solve any task in the complex
domains such as BARMAN or TERMES.

Table 3 shows that without environment feed-
back, GPT-4 and Guan et al. (2023) can predict
part of the action semantics of the environment, but
cannot recover the full action semantics correctly.
Given only partially correct action semantics, the
solver will either fail to find a plan, or generate
a plan that fails when executed. We provide the
prompt templates for plan generation and domain
induction as in Appendix C.

5.3 Ablations on using LLM and prospection

Figure 4 compares PSALM with multiple baselines
over 7 domains, including no rule-based action se-
mantics generator (w/o rule-ASG), no LLM action
semantics generator (w/o LLM-ASG), no prospec-
tion (w/o prospect.) and use random trajectory
sampler (w/o LLM-TS). Each achieves 100% Acc,
so we focus on number of executed steps (NES).

LLM as a sampler greatly reduces the execution
steps. We find that the LLM trajectory sampler
reduces the execution steps over all domains. The
random sampler, even with prospection, lacks the
commonsense reasoning knowledge for choosing
trajectories likely to be solutions to the problem.

LLM and rule-based action semantics predic-
tions have complementary benefits. Comparing
the purple bars (w/o rule-ASG) and the magenta
bars (w/o LLM-ASG), rule-based action seman-
tics generator is more important in FLOORTILE,
STORAGE and TYREWORLD, while LLM action
semantics generator is more important in the other
four domains. With the commonsense prior knowl-
edge provided by the LLM, and the exactness of the
information from the rule-based parser, combining
both predictions is always a better solution.

Prospection induces redundant actions some-
times, but is necessary overall. For certain do-

8757

GPT-4 GPT-3.5 Mistral-7B
20

25

30

35

40

45

N
R

w/o prosp. NR
w/ prosp. NR

NR NES
0

10

20

30

40

50

60

70

>1k

N
R

Acc: 76.6

rand w/o prosp.
prior + rand w/o prosp.
rand w/ prosp.
prior + rand w/ prosp.
PSALM
prior + PSALM

NR NES
0

20

40

60

80

100

N
R

Acc: 76.6; 80.9

Termes LLM
Termes LLM w/ prosp.
Grippers LLM
Grippers LLM w/ prosp.

360

380

400

420

440

460

480

500

N
E

S

w/o prosp. NES
w/ prosp. NES

0

200

400

600

800

1000

N
E

S

0

200

400

600

800

1000

N
E

S

Figure 5: Additional analysis for PSALM. (Left) We vary the type of LLM and show that PSALM works with
GPT-3.5 and Mistral-7B on the TERMES domain. (Middle) Using the LLM prior before trajectory sampling (darker
bars) enables the random baselines to work better compared to not having the prior (lighter bars), though it can
adversely affect the full PSALM method. (Right) Experiments where we remove the error message from input
to the LLM action semantics generator. Without error messages, PSALM works only on easy domains. For the
experiments that fail to find a solution of the problem, we show the action semantics accuracy on top of the bar.

mains with a small number of actions |A|, such
as GRIPPERS (|A| = 3) and TERMES (|A| = 7),
a large number of prospection steps slows search.
However, prospection is overall helpful. The w/o
prospect. bar shows around 1.4 times execution
steps on average vs. PSALM. Especially, in the
BARMAN domain, prospection reduces more than
a half of the execution steps.

5.4 Analysis

PSALM can work on less powerful and public
LLMs. Figure 5 left shows PSALM can work
with 100% plan success rate on GPT-3.5 and
Mistral-7B, though with more resets (NR) and num-
ber of execution steps (NES). Prospection reduces
the gap between the different LLMs.

LLM prior enables random baselines. We ex-
periment with using the LLM to predict the action
semantics Φ̂0,a for each action a, before having any
sampled trajectory, and then start the iteration with
the memory of the dynamics model initialized from
Φ̂0,a. This prediction is solely based on the name
of the action and its parameter. Figure 5 middle
shows on the TERMES domain the LLM prior can
enable the random baseline without prospection
to work within 1k resets, and greatly reduce NR
and NES for the random baseline with prospection.
However, on more complex domains such as BAR-
MAN, the LLM prior does not enable the random
baselines, i.e., failing to find a solution within 1k

resets, with and without prospection. The finding
implies we can perform domain induction on some
easier domains with limited access, or even one
call, of language models. On the other hand, this
naive LLM prior is harmful to PSALM, because it
inserts noisy predictions of action semantics which
requires additional resets to erase.

Error messages are crucial for domain induc-
tion. Error messages are obtainable from simula-
tion environments, or in real world deployment if
human operators are available to describe failure.
We study whether PSALM can succeed without
receiving error messages about failed actions. Note
that without the error message, the action seman-
tics generator can only be LLM-based and cannot
utilize rule-based inference. Figure 5 right shows
that on slightly complex domains like TERMES,
PSALM cannot predict the correct dynamics model,
i.e., the accuracy is not 100. PSALM works on very
simple domains like GRIPPERS, but it requires 7x
more NES to learn. Moreover, prospection is es-
sential when we have no error message.

5.5 Sensitivity tests

We perform ablation studies on the sensitivity of
prospection steps, number of sampled trajectories,
number of candidate trajectories, and number of
failed trajectories per run, to show their influence
on the PSALM framework.

8758

0 1 5 10
Prospect. Steps

0

500

1000

1500

2000

2500

3000
N

E
S

Random w/ prospect.
LLM w/ prospect.

(a)

1 3 5
Sampled Trajs

0

500

1000

1500

2000

2500

3000

N
E

S

Random w/ prospect.
LLM w/ prospect.

(b)

0 1 3
Candidate Trajs

360

380

400

420

440

460

480

500

N
E

S

LLM
LLM w/ prospect.

(c)

0 1 5
Failed Trajs

360

380

400

420

440

460

480

500

N
E

S

LLM
LLM w/ prospect.

(d)

Figure 6: Ablation studies for PSALM. (a). Varying the number of prospection steps v. Few prospection steps is
enough for PSALM. (b). Varying the number of sampled trajectories l. One sampled trajectory per run is enough.
(c). Varying the number of candidate trajectories k passed from the symbolic solver to the LLM trajectory sampler.
More candidate trajectories help when prospection is used. (d). Varying the number of failed trajectories g shown to
the LLM trajectory sampler. A certain amount of failed trajectories is required for the LLM.

Few prospection steps is enough for PSALM.
We vary prospection steps v from 0, 1, 5, 10 in Fig-
ure 6a. Notice the random baseline does not find
a solution when v = 0, 1, 5, and reaches an Acc
of 78.5. We conclude the number of prospection
steps matters more when the trajectory sampler is
random, while a small number of prospection is
enough for language model trajectory sampler.

One sampled trajectory per run is enough. We
vary the number of sampled trajectories l from
1, 3, 5 in Figure 6b. For both LLM and random
samplers, We see the total number of steps grows
linearly with number of sampled trajectory, which
means LLMs are hard to learn more information
from just sampling more each run, and one sampled
trajectory per run is enough.

More candidate trajectories help on prospection.
We vary the number of candidate trajectories k
from 0, 1, 3 in the LLM prompt. The results in
Figure 6c suggest including candidate trajectory
in the prompt is beneficial, while one candidate
trajectory is enough for pure LLM prediction, more
candidate trajectories help LLM with prospection.
On the other hand, as the candidate trajectories
can be very long for certain domain like BARMAN,
and thus result in a very long prompt, we do not
experiment with more than 3 candidate trajectories
in the prompt.

Choose the number of failed trajectories with
care. We vary the number of failed trajectories g
from 0, 1, 5 in the LLM prompt. To select g failed
trajectories, we first filter trajectories with no less
than 3 steps, and then sample g trajectories from
the filtered ones for the LLM prompt to avoid gen-

erating those trajectories as prefix. The results in
Figure 6d suggest that multiple failed trajectories
help LLM action semantics prediction, but only
one failed trajectory could be harmful. We hypoth-
esize the one failed trajectory in the input might
distract the model from following the candidate
trajectories.

6 Conclusion

In conclusion, we propose a novel domain induc-
tion problem in PDDL, where agents automatically
infer the action semantics for a new domain with-
out human annotation. We introduce a simple but
strong framework PSALM, which combines the
commonsense reasoning ability of large language
models with the precision of symbolic solvers for
domain induction. To update the action semantics
in a memory, PSALM uses LLMs as agents for tra-
jectory sampling and action semantics prediction.
We demonstrate the effectiveness and efficiency of
leveraging LLMs with environment feedback for
domain induction over 7 domains.

Limitations

Though PSALM shows to be relatively robust
across multiple LLMs, we do not claim that
PSALM can work with any LLM. Additionally,
the error message, which might be hard to get
from some real-world environment, is crucial in
the PSALM framework given current LLM reason-
ing abilities. Future works may explore methods
without the error message as the input. To apply
the domain induction setup to the real world, the
environment predicates and object types have to be
annotated or derived from the environment. The

8759

domain induction problem without these annota-
tions is more challenging, but expert definitions of
these domain components represent substantially
less effort than fully specifying action pre- and
post-conditions. We will leave this extension for
future studies.

Acknowledgments and Disclosure of
Funding

WZ and RJ were supported in part by a grant from
Open Philanthropy. RJ was supported in part by the
National Science Foundation under Grant No. IIS-
2403436. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation.
IS and JT were supported in part by a grant from
the Army Research Lab (ARL) Army AI Innova-
tions Institute (A2I2), award number W911NF-23-
2-0010.

References
Saeid Amiri, Sujay Bajracharya, Cihangir Goktolgal,

Jesse Thomason, and Shiqi Zhang. 2019. Aug-
menting knowledge through statistical, goal-oriented
human-robot dialog. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS).

Anthropic. 2024. Claude 3.5 sonnet.
https://www.anthropic.com/news/claude-3-5-
sonnet.

Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc
M ´ Etivier, and Sylvie Pesty. 2018. A Review of
Learning Planning Action Models. Knowledge Engi-
neering Review, 33.

Gerhard Brewka, Thomas Eiter, and Mirosław
Truszczyński. 2011. Answer set programming at
a glance. Commun. ACM.

Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert
Joseph, Craig Knoblock, Steve Minton, and Manuela
Veloso. 1991. Prodigy: An integrated architecture
for planning and learning. SIGART Bull.

Guanqi Chen, Lei Yang, Ruixing Jia, Zhe Hu, Yizhou
Chen, Wei Zhang, Wenping Wang, and Jia Pan. 2024.
Language-augmented symbolic planner for open-
world task planning. In Robotics: Science and Sys-
tems Conference (RSS).

Richard E. Fikes and Nils J. Nilsson. 1971. Strips: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew
McDermott, Ashwin Ram, Manuela Veloso, Daniel
Weld, and David Wilkins. 1998. PDDL - the planning
domain definition language. Technical Report, Tech.
Rep.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,
and Subbarao Kambhampati. 2023. Leveraging pre-
trained large language models to construct and uti-
lize world models for model-based task planning.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Muzhi Han, Yifeng Zhu, Song-Chun Zhu, Ying Nian
Wu, and Yuke Zhu. 2024. Interpret: Interactive pred-
icate learning from language feedback for generaliz-
able task planning. In Robotics: Science and Systems
(RSS).

Rishi Hazra, Pedro Zuidberg Dos Martires, and Luc
De Raedt. 2024. Saycanpay: Heuristic planning with
large language models using learnable domain knowl-
edge. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 38, pages 20123–20133.

Malte Helmert. 2006. The fast downward planning
system. J. Artif. Int. Res., 26(1):191–246.

Zichao Hu, Francesca Lucchetti, Claire Schlesinger,
Yash Saxena, Anders Freeman, Sadanand Modak,
Arjun Guha, and Joydeep Biswas. 2024. Deploying
and evaluating llms to program service mobile robots.
IEEE Robotics and Automation Letters, 9(3):2853–
2860.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-
shot planners: Extracting actionable knowledge for
embodied agents. In International Conference on
Machine Learning, ICML 2022, 17-23 July 2022,
Baltimore, Maryland, USA, Proceedings of Machine
Learning Research.

Brian Ichter, Anthony Brohan, Yevgen Chebotar,
Chelsea Finn, Karol Hausman, Alexander Herzog,
Daniel Ho, Julian Ibarz, Alex Irpan, Eric Jang, Ryan
Julian, Dmitry Kalashnikov, Sergey Levine, Yao Lu,
Carolina Parada, Kanishka Rao, Pierre Sermanet,
Alexander T Toshev, Vincent Vanhoucke, Fei Xia,
Ted Xiao, Peng Xu, Mengyuan Yan, Noah Brown,
Michael Ahn, Omar Cortes, Nicolas Sievers, Clay-
ton Tan, Sichun Xu, Diego Reyes, Jarek Retting-
house, Jornell Quiambao, Peter Pastor, Linda Luu,
Kuang-Huei Lee, Yuheng Kuang, Sally Jesmonth,
Kyle Jeffrey, Rosario Jauregui Ruano, Jasmine Hsu,
Keerthana Gopalakrishnan, Byron David, Andy Zeng,
and Chuyuan Kelly Fu. 2022. Do as i can, not as i
say: Grounding language in robotic affordances. In
6th Annual Conference on Robot Learning.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Paul Saldyt, and Anil B Murthy. 2024.
Position: LLMs can’t plan, but can help planning
in LLM-modulo frameworks. In Forty-first Interna-
tional Conference on Machine Learning.

8760

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.1017/S0269888918000188
https://doi.org/10.1017/S0269888918000188
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj
https://openreview.net/forum?id=zDbsSscmuj
https://doi.org/10.1109/LRA.2024.3360020
https://doi.org/10.1109/LRA.2024.3360020

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as policies: Language model
programs for embodied control. In 2023 IEEE In-
ternational Conference on Robotics and Automation
(ICRA).

Vladimir Lifschitz. 2002. Answer set programming and
plan generation. Artificial Intelligence.

Xinrui Lin, Yangfan Wu, Huanyu Yang, Yu Zhang,
Yanyong Zhang, and Jianmin Ji. 2024. CLMASP:
Coupling large language models with answer set pro-
gramming for robotic task planning. ArXiv.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.
LLM+P: Empowering large language models with
optimal planning proficiency. ArXiv preprint.

Angelos Mavrogiannis, Christoforos Mavrogiannis, and
Yiannis Aloimonos. 2023. Cook2ltl: Translating
cooking recipes to ltl formulae using large language
models. arXiv preprint arXiv:2310.00163.

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter,
J William Murdock, Dan Wu, and Fusun Yaman.
2003. Shop2: An htn planning system. J. Artif. Intell.
Res. (JAIR).

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang,
Armando Solar-Lezama, Joshua Tenenbaum, and
Roger Levy. 2023. LINC: A neurosymbolic approach
for logical reasoning by combining language models
with first-order logic provers. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5153–5176, Singapore.
Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. ArXiv preprint,
abs/2303.08774.

OpenAI. 2024. Introducing openai o1-preview.
https://openai.com/index/introducing-openai-o1-
preview.

James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu
Lee, Michael Katz, and Shirin Sohrabi. 2024. Large
language models as planning domain generators. In
Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 34, pages
423–431.

Vittorio Perera, Robin Soetens, Thomas Kollar, Mehdi
Samadi, Yichao Sun, Daniele Nardi, René van de
Molengraft, and Manuela Veloso. 2015. Learn-
ing task knowledge from dialog and web access.
Robotics.

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2024. ADaPT: As-needed decompo-
sition and planning with language models. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2024, pages 4226–4252, Mexico City,
Mexico. Association for Computational Linguistics.

Gabriel Sarch, Yue Wu, Michael Tarr, and Katerina
Fragkiadaki. 2023. Open-ended instructable embod-
ied agents with memory-augmented large language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023.

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann.
2022. PDDL generators.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B.
Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. 2023. Generalized planning in pddl domains
with pretrained large language models. In AAAI Con-
ference on Artificial Intelligence.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA).

Pavel Smirnov, Frank Joublin, Antonello Ceravola, and
Michael Gienger. 2024. Generating consistent pddl
domains with large language models. ArXiv preprint.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and
Joseph J. Lim. 2021. Learning to synthesize pro-
grams as interpretable and generalizable policies. In
Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models - a crit-
ical investigation. In Thirty-seventh Conference on
Neural Information Processing Systems.

Li Siang Wong, Jiayuan Mao, Pratyusha Sharma,
Zachary S. Siegel, Jiahai Feng, Noa Korneev,
Joshua B. Tenenbaum, and Jacob Andreas. 2023.
Learning adaptive planning representations with nat-
ural language guidance. In The International Confer-
ence on Learning Representations (ICLR).

Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark,
Chris Callison-Burch, and Niket Tandon. 2024.
PDDLEGO: Iterative planning in textual environ-
ments. In Proceedings of the 13th Joint Conference
on Lexical and Computational Semantics (*SEM
2024), pages 212–221, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning. In Advances in Neural
Information Processing Systems, volume 36, pages
31967–31987. Curran Associates, Inc.

Wang Zhu, Jesse Thomason, and Robin Jia. 2023.
Chain-of-questions training with latent answers for
robust multistep question answering. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, Singapore. Association
for Computational Linguistics.

8761

https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://doi.org/10.18653/v1/2023.emnlp-main.313
https://arxiv.org/abs/2303.08774
https://openai.com/index/introducing-openai-o1-preview
https://openai.com/index/introducing-openai-o1-preview
https://openai.com/index/introducing-openai-o1-preview
http://arxiv.org/abs/2404.07751
http://arxiv.org/abs/2404.07751
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2024.starsem-1.17
https://doi.org/10.18653/v1/2023.emnlp-main.547
https://doi.org/10.18653/v1/2023.emnlp-main.547

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,
Michael L. Littman, and Stephen H. Bach. 2024.
Planetarium: A rigorous benchmark for translating
text to structured planning languages. arXiv.

8762

http://arxiv.org/abs/2407.03321
http://arxiv.org/abs/2407.03321

A More Related Works

As shown in Table 1, the previous works have not
leveraged environment feedback and guaranteed
plan success as PSALM. To discuss the related
works comprehensively in using LLM in planning
and PDDL generation over many setups, we extend
the related work as in Table 4.

A.1 LLM as an Idea Generator in Planning

LLMs are widely used as idea generators, not
only in planning, but also in other reasoning ar-
eas, such as first-order logic (Olausson et al.,
2023), multistep reasoning (Zhu et al., 2023), de-
composition (Prasad et al., 2024) and formal lan-
guage (Mavrogiannis et al., 2023).

The major difference between LLM idea gener-
ators in planning is whether LLMs generate ideas
on the plan itself or on the action semantics. Previ-
ous works explore different ways of using LLMs
to generate the plan itself, such as Monte Carlo
tree search over possible plans (Hazra et al., 2024),
or applying other verifier or postprocessor after
the plan generation (Lin et al., 2024). These ap-
proaches are better than the direct prompting using
LLM, while they still cannot guarantee plan suc-
cess.

Alternatively, using LLMs to generate action
semantics followed by a symbolic planner often re-
sults in an all-or-nothing issue during plan genera-
tion. Either the action semantics are fully captured,
leading to a successful plan, or the planner fails to
produce a correct plan for the domain at all. Most
previous works focus on error analysis. For in-
stance, Smirnov et al. (2024) attempts to generate
syntactically correct but not semantically guaran-
teed PDDL domain using LLMs, by exhaustively
listing syntax errors in the prompt to correct the
generated domains. Oswald et al. (2024) utilizes
LLM to generate PDDL actions given detailed text
action descriptions and analysis of the errors. Other
works like InterPreT (Han et al., 2024) leverages
language feedback from human during embodied
interaction for domain predicates and action se-
mantics prediction. They explore complex visual
environments and show how to accomplish certain
human specified goal with robots, such as “stack
red block on coaster”. Unlike all previous works,
PSALM shows how we can achieve 100% success
rate on a certain type of task in the domain, by us-
ing LLMs to learn the action semantics from one
example.

A.2 LLM for PDDL Generation

There are two types of PDDL generation for LLM,
generating the PDDL problem file or the domain
file.

Generating the problem file requires to get ac-
cess to the domain file, recent works such as
LLM+P (Liu et al., 2023), PDDLEGO (Zhang
et al., 2024) demonstrate the effectiveness of LLM
to generate problem file for simple domains. The
Planetarium (Zuo et al., 2024) benchmark provides
large-scale study of the LLM capability in generat-
ing PDDL problem files.

Unlike the success on generating problem file,
LLMs, even the most powerful ones, performs
badly on generating domain file (Smirnov et al.,
2024; Oswald et al., 2024). We formally define the
domain induction problem, its evaluation measures,
and provide a first-step solution PSALM to predict-
ing the action semantics in the domain file in the
text-based environments.

A.3 LLM-based Memory Augmentation

Knowledge acquisition for task planning through
dialog and web access has been studied in the past.
Previous works (Perera et al., 2015; Amiri et al.,
2019) construct a knowledge base in an open do-
main to refer to for grounding user utterance. Re-
cent works have shown LLM based memory aug-
mentation to be effective. Sarch et al. (2023) builds
a memory of language instruction and correspond-
ing plan to retrieve from for prompting the LLM
with a new instruction, where the retrieved interac-
tion might inform planning. PSALM build proba-
bilistic memory storing the belief for domain action
semantics prediction.

B Experiment Details

B.1 Task Selection and Domain Continual
Learning

For learning action semantics, we choose the first
task that requires using all actions to reach the goal.
Specifically, for FLOORTILE, BARMAN, TERMES

and TYREWORLD domains, we choose task #1. For
GRIPPERS and BLOCKSW domains, we choose
task #2. For STORAGE domain, we choose task #3,
out of the 20 tasks.

If PSALM learns from a task that only requires
partial actions to reach the goal. The planner may
be able to generate successful plans for that tasks
without knowing the entire domain. To overcome
this issue, we also experiment on a setup where

8763

Goal Independent of Role of LLM Final planner

Partial AS Valid plans Human eval

Liu et al. (2023) PF ✗ ✓ ✓ PF generator -
Zhang et al. (2024) PF ✓ ✓ ✓ PF generator -
Hazra et al. (2024) Plan ✓ ✓ ✓ Plan sampler Symbolic + LLM
Valmeekam et al. (2023) Plan ✓ ✓ ✗ Plan sampler LLM
Lin et al. (2024) Plan ✓ ✓ ✗ Plan sampler Symbolic + LLM
Silver et al. (2023) Program ✗ ✓ ✓ Code generator LLM

Arora et al. (2018) AS ✓ ✗ ✓ - -
Wong et al. (2023) AS ✗ ✓ ✓ AS generator Symbolic + LLM
Guan et al. (2023) AS ✓ ✓ ✗ AS generator Symbolic / LLM
Oswald et al. (2024) AS ✓ ✓ ✓ AS generator Symbolic

Han et al. (2024) AS ✓ ✓ ✗
PF generator +

Symbolic
AS generator

PSALM AS ✓ ✓ ✓
Plan sampler +

Symbolic
AS generator

Table 4: Comparing the PSALM domain induction task setup to representative related works in LLM and LLM-
Modulo planning; here, “PF” is short for problem file and “AS” is short for action semantics. We consider the final
planner using tree or heuristic search as symbolic.

PSALM learns from task #1 for all domains and
perform a continual learning setup. We report the
learning process as below. Instead of directly learn-
ing the entire STORAGE domain from task #3 with
14 executed steps, we start the learning from task
#1 with 13 executed steps, and recover 78.9% of
the action semantics conditions. Then, based on
what we learned from task #1, it takes 10 steps
to recover 81.6% of the action semantics condi-
tions learning from task #2, and 11 more steps to
recover the entire domain from task #3. The con-
tinual learning process can be applied to real world
exploration of certain domain as well. Thus, the
“success without learning the entire domain” effect
is not a limitation but a benefit of PSALM.

B.2 Task Example Initial and Goal States

We provide the visualization of the initial and goal
state for the selected training example per domain.
The natural language description of the actions are
from Liu et al. (2023).

BARMAN. Figure 7 shows the initial and goal
state for task #1. The domain allows 12 actions:
grasp a container, leave a container on the table, fill
a shot glass with an ingredient, refill a shot glass
with an ingredient, empty a shot glass, clean a shot
glass, pour an ingredient from a shot glass to a
clean shaker, pour an ingredient from a shot glass
to a used shaker, empty a shaker, clean a shaker,
shake a cocktail in a shaker, and pour from a shaker
to a shot glass.

BLOCKSW. Figure 8 shows the initial and goal
state for task #2. The domain allows 4 actions:
pick up a block from the table, put down a block
on the table, stack a block on top of another block,
unstack a block from on top of another block.

FLOORTILE. Figure 9 shows the initial and goal
state for task #1. The domain allows 7 actions:
change the spray gun color paint the tile that is up
from the robot, paint the tile that is down from the
robot, move up, move down, move right, move left.

GRIPPERS. Figure 10 shows the initial and goal
state for task #2. The domain allows 3 actions:
move from one room to another, pick up an object
using the gripper, drop an object that it is carrying.

STORAGE. Figure 11 shows the initial state for
task #3. The goal state is to move the crate to any
location in the hoist store areas. The domain allows
5 actions: lift a crate using a hoist from a store area
to an area, drop a crate from the hoist onto a surface
in a store area, move a hoist from one store area
to another connected store area, move a hoist from
a store area to a transit area, move a hoist from a
transit area to a store area.

TERMES. Figure 11 shows the initial and goal
state for task #1. The goal state shows the height
of the blocks in each position. The domain allows
7 actions: move from a position to another, move
up from a position to another, move down from a
position to another, place a block at a neighboring
position from the robot’s current position, remove
a block at a neighboring position from the robot’s

8764

current position, create a block at the depot, destroy
a block at the depot.

TYREWORLD. Figure 13 shows the initial and
goal state description for task #1. The domain al-
lows 13 actions: open a container, close a container,
fetch an object inside a container, put an object into
a container, loosen a nut on a hub, tighten a nut on
a hub, jack-up a hub, jack-down a hub, unfasten a
nut on a hub, fasten a nut on a hub, remove a wheel
from a hub, put a wheel onto a hub, inflate a wheel
using a pump.

B.3 Other Hyperparameters and Details
The total cost of the API calls of PSALM over 7
domains is around $80 for 1 run. We do not put the
pure random baselines in Figure 4, because none
of the pure random baselines complete any task
within 1k iterations.

Besides, we only use the cheapest config-
uration of FAST-DOWNWARD, i.e., we are
not using very smart symbolic solver. FAST-
DOWNWARD has various advanced search
configurations including using A* search
(seq-opt-lmcut), using heuristics plus hill
climbing algorithms (seq-sat-fd-autotune-1).
We use the lama-first configuration, which
is close to lazy greedy search designed to find
solutions quickly without much regard for plan
cost.

The IPC domains and tasks (Seipp et al., 2022)
are licensed under the MIT License. The FAST-
DOWNWARD planner is distributed under the GNU
GPLv2 license, while the VAL validator is licensed
under the BSD 3-Clause, with copyright held by the
University of Strathclyde, King’s College London,
and Schlumberger Ltd. Our use of the dataset and
software complies with the terms of their respective
licenses.

C LLM Prompts

We list the prompt template for LLM trajectory
sampler (Figure 14) and LLM action semantics
predictor (Figure 15), and provide one complete
example for each. Figure 16, 17 is the example for
trajectory sampler, and Figure 18, 19 is the example
for action semantics predictor.

8765

(a) (b)

Figure 7: BARMAN task #1 initial state (a) and goal state (b).

(a) (b)

Figure 8: BLOCKSW task #2 initial state (a) and goal state (b).

(a) (b)

Figure 9: FLOORTILE task #1 initial state (a) and goal state (b).

8766

(a)

(b)

Figure 10: GRIPPERS task #2 initial state (a) and goal state (b).

Figure 11: STORAGE task #3 initial state.

(a) (b)

Figure 12: TERMES task #1 initial state (a) and goal state (b).

8767

Figure 13: TYREWORLD task #1 initial state and goal state description.

[[domain_nl]]

The environment is defined with the Planning Domain Definition Language (PDDL) as
[[domain_type_pred]]
Here are the actions you can perform in the environment:
[[action_description]]

An example planning problem is:
[[context_nl]]

which means the initial state is:
[[context_init]]

A plan for the example problem is:
[[context_sol]]

Now I have a new planning problem and its description. Can you provide a executable plan, in the way of a
sequence of behaviors, to solve the problem?

The new planning problem is:
[[task_nl]]

which means the initial state is:
[[task_init]]

[[cand_action_list]][[failed_traj]]Please provide the list of actions in the format as described in the example.
Feel free to use try other actions not in the example when their preconditions are satisfied.
Please output a clean, complete list of actions, including the option and the starting actions you choose, to solve
the problem.
Don't use the word repeat in the response.

A plan for the new planning problem is:

Figure 14: LLM trajectory sampler prompt template

8768

[[domain_nl]]

The current guess of the preconditions and effects for actions are:
[[action_description]]

Please infer missing or correct wrong [[postfix]] for action [[action]] in CNF, given the PDDL types and predicates:
[[domain_type_pred]]

To help you predict the [[postfix]], we provide a running example in this domain. For the problem:
[[task_nl]]

The initial state of the task in PDDL is:
[[task_init]]

A plan (list of actions) runs in the simulator like:
[[trajectory]]

Please use the information from the simulator output carefully, and output the CNF in a clean format of "(and (...)
(...))", where each parentheses contains some predicates.
Note that you should not specify types, e.g., "- object", in preconditions and effects.

The [[postfix]] for [[action]] are:

Figure 15: LLM action semantics predictor prompt template

8769

You are a robot with a gripper that can move objects between different rooms.

The environment is defined with the Planning Domain Definition Language (PDDL) as
PDDL Types:
room object robot gripper
PDDL Predicates:
(at-robby ?r - robot ?x - room)
(at ?o - object ?x - room)
(free ?r - robot ?g - gripper)
(carry ?r - robot ?o - object ?g - gripper)

Here are the actions you can perform in the environment:
Move from one room to another: move (?r - robot ?from ?to - room). The effects are (at-robby ?r ?to), (not (at-robby ?r ?from)).
Pick up an object using the gripper: pick (?r - robot ?obj - object ?room - room ?g - gripper). The preconditions are (at-robby ?r ?room), (at ?obj ?room), (free ?r
?g). The effects are (not (free ?r ?g)), (not (at ?obj ?room)), (carry ?r ?obj ?g).
Drop an object that it is carrying: drop (?r - robot ?obj - object ?room - room ?g - gripper). The preconditions are (carry ?r ?obj ?g). The effects are (at ?obj ?room),
(free ?r ?g), (not (carry ?r ?obj ?g)).

An example planning problem is:
You control 2 robots, each robot has a left gripper and a right gripper.
There are 4 rooms and 6 balls.
robot2 is in room3. robot1 is in room2.
ball1 is in room3. ball2 is in room1. ball3 is in room3. ball4 is in room2. ball5 is in room4. ball6 is in room4.
The robots' grippers are free.
Your goal is to transport the balls to their destinations.
ball1 should be in room4.
ball2 should be in room1.
ball3 should be in room1.
ball4 should be in room2.
ball5 should be in room1.
ball6 should be in room1.

which means the initial state is:
((at-robby robot1 room2)
(free robot1 rgripper1)
(free robot1 lgripper1)
(at-robby robot2 room3)
(free robot2 rgripper2)
(free robot2 lgripper2)
(at ball1 room3)
(at ball2 room1)
(at ball3 room3)
(at ball4 room2)
(at ball5 room4)
(at ball6 room4))

A plan for the example problem is:
(pick robot2 ball1 room3 lgripper2)
(pick robot2 ball3 room3 rgripper2)
(move robot2 room3 room1)
(drop robot2 ball3 room1 rgripper2)
(move robot2 room1 room4)
(pick robot2 ball5 room4 rgripper2)
(drop robot2 ball1 room4 lgripper2)
(pick robot2 ball6 room4 lgripper2)
(move robot2 room4 room1)
(drop robot2 ball6 room1 lgripper2)
(drop robot2 ball5 room1 rgripper2)

Now I have a new planning problem and its description. Can you provide a executable plan, in the way of a sequence of behaviors, to solve the problem?

The new planning problem is:
You control 2 robots, each robot has a left gripper and a right gripper.
There are 3 rooms and 4 balls.
robot2 is in room3. robot1 is in room2.
ball1 is in room3. ball2 is in room1. ball4 is in room3. ball3 is in room1.
The robots' grippers are free.
Your goal is to transport the balls to their destinations.
ball1 should be in room2.
ball2 should be in room2.
ball3 should be in room3.
ball4 should be in room3.

which means the initial state is:
((at-robby robot1 room2)
(free robot1 rgripper1)
(free robot1 lgripper1)
(at-robby robot2 room3)
(free robot2 rgripper2)
(free robot2 lgripper2)
(at ball1 room3)
(at ball2 room1)
(at ball3 room1)
(at ball4 room3))

Figure 16: LLM trajectory sampler prompt example

8770

We provide some options of actions to start from.
Please choose ONLY one option, and continue the list of actions to solve the task.
Option 0:
(move robot2 room3 room1)
(pick robot2 ball2 room1 lgripper2)
(pick robot2 ball3 room1 rgripper2)
(move robot2 room1 room3)
Option 1:
(move robot2 room3 room1)
(pick robot2 ball2 room1 lgripper2)
(pick robot2 ball3 room1 rgripper2)

Here we listed the previous explored but failed trajectories. Please AVOID generating the same trajectories.
Failed traj 0:
(pick robot2 ball1 room3 rgripper2)
(move robot2 room3 room2)
(drop robot2 ball1 room2 rgripper2)
(move robot2 room2 room3

(pick robot2 ball4 room3 lgripper2)
(move robot2 room3 room2)
(drop robot2 ball4 room2 lgripper2)
(move robot1 room2 room1)
(pick robot1 ball2 room1 rgripper1)
(move robot1 room1 room2)
(drop robot1 ball2 room2 rgripper1)
(move robot1 room2 room1)
(pick robot1 ball3 room1 lgripper1)
(move robot1 room1 room3)
(drop robot1 ball3 room3 lgripper1)
Plan Repair Advice: The goal is not satisfied
(Set (at ball4 room3) to true)
Failed traj 1:
(pick robot2 ball1 room3 rgripper2)
(pick robot2 ball4 room3 lgripper2)
(move robot2 room3 room2)
(drop robot2 ball1 room2 rgripper2)
(drop robot2 ball4 room2 lgripper2)
(move robot1 room2 room1)
(pick robot1 ball2 room1 rgripper1)
(pick robot1 ball3 room1 lgripper1)
(move robot1 room1 room3)
(drop robot1 ball3 room3 lgripper1)
(move robot1 room3 room2)
(drop robot1 ball2 room2 rgripper1)
Plan Repair Advice: The goal is not satisfied
(Set (at ball4 room3) to true)

Please provide the list of actions in the format as described in the example.
Feel free to use try other actions not in the example when their preconditions are satisfied.
Please output a clean, complete list of actions, including the option and the starting actions you choose, to solve the problem.
Don't use the word repeat in the response.

A plan for the new planning problem is:

Figure 17: LLM trajectory sampler prompt example (cont’)

8771

You control a robot that can take the following actions to build complex structures.

The current guess of the preconditions and effects for actions are:
Move from a position to another.: move (?from - position ?to - position ?h - numb). The preconditions are (NEIGHBOR ?from ?to), (at ?from), (height ?from ?h).
The effects are (not (at ?from)), (at ?to).
Move up from a position to another.: move-up (?from - position ?hfrom - numb ?to - position ?hto - numb). The preconditions are (at ?from), (height ?from
?hfrom), (SUCC ?hfrom ?hto), (NEIGHBOR ?from ?to), (height ?to ?hto), (SUCC ?hto ?hfrom). The effects are (not (at ?from)), (not (height ?from ?hfrom)), (height ?to
?hto), (at ?to), (height ?from ?hfrom), (not (height ?to ?hfrom)), (not (height ?to ?hto)), (height ?to ?hfrom).
Move down from a position to another.: move-down (?from - position ?hfrom - numb ?to - position ?hto - numb). The preconditions are (height ?to ?hto), (at
?from), (height ?from ?hfrom), (SUCC ?hfrom ?hto), (NEIGHBOR ?from ?to), (SUCC ?hto ?hfrom). The effects are (not (at ?from)), (not (height ?from ?hfrom)),
(height ?from ?hto), (at ?to), (height ?from ?hfrom), (not (height ?from ?hto)), (not (height ?to ?hfrom)), (height ?to ?hto), (not (height ?to ?hto)), (height ?to ?hfrom).
Place a block at a neighboring position from the robot's current position.: place-block (?rpos - position ?bpos - position ?hbefore - numb ?hafter - numb). The
preconditions are (at ?rpos), (SUCC ?hafter ?hbefore), (NEIGHBOR ?rpos ?bpos), (has-block), (height ?bpos ?hbefore). The effects are (not (has-block)), (not (height
?rpos ?hbefore)), (height ?bpos ?hafter), (not (height ?bpos ?hbefore)), (height ?rpos ?hafter).
Remove a block at a neighboring position from the robot's current position.: remove-block (?rpos - position ?bpos - position ?hbefore - numb ?hafter - numb).
The preconditions are (at ?rpos), (SUCC ?hafter ?hbefore), (NEIGHBOR ?rpos ?bpos), (height ?bpos ?hbefore), (has-block), (SUCC ?hbefore ?hafter). The effects are
(not (has-block)), (height ?bpos ?hafter), (not (height ?bpos ?hbefore)), (has-block).
Create a block at the depot.: create-block (?p - position). The preconditions are (IS-DEPOT ?p), (at ?p). The effects are (has-block).
Destroy a block at the depot.: destroy-block (?p - position). The preconditions are (has-block), (at ?p), (IS-DEPOT ?p). The effects are (not (has-block)).

Please infer missing or correct wrong preconditions for action move in CNF, given the PDDL types and predicates:
(:types
 numb - object
 position - object
)
(:predicates
 (height ?p - position ?h - numb)
 (at ?p - position)
 (has-block)
 (SUCC ?n1 - numb ?n2 - numb)
 (NEIGHBOR ?p1 - position ?p2 - position)
 (IS-DEPOT ?p - position)
)

To help you predict the preconditions, we provide a running example in this domain. For the problem:
The robot is on a grid with 4 rows and 3 columns.
pos-0-0 pos-0-1 pos-0-2
pos-1-0 pos-1-1 pos-1-2
pos-2-0 pos-2-1 pos-2-2
pos-3-0 pos-3-1 pos-3-2
The robot is at pos-2-0.
The depot for new blocks is at pos-2-0.
The maximum height of blocks is 3.
Your goal is to build blocks so that the height at pos-1-2 is 3.
You cannot have an unplaced block at the end.

The initial state of the task in PDDL is:
(:init
 (height pos-0-0 n0)
 (height pos-0-1 n0)
 (height pos-0-2 n0)
 (height pos-1-0 n0)
 (height pos-1-1 n0)
 (height pos-1-2 n0)
 (height pos-2-0 n0)
 (height pos-2-1 n0)
 (height pos-2-2 n0)
 (height pos-3-0 n0)
 (height pos-3-1 n0)
 (height pos-3-2 n0)
 (at pos-2-0)
 (SUCC n1 n0)
 (SUCC n2 n1)
 (SUCC n3 n2)
 (NEIGHBOR pos-0-0 pos-1-0)
 (NEIGHBOR pos-0-0 pos-0-1)
 (NEIGHBOR pos-0-1 pos-1-1)
 (NEIGHBOR pos-0-1 pos-0-0)
 (NEIGHBOR pos-0-1 pos-0-2)
 (NEIGHBOR pos-0-2 pos-1-2)
 (NEIGHBOR pos-0-2 pos-0-1)
 (NEIGHBOR pos-1-0 pos-0-0)
 (NEIGHBOR pos-1-0 pos-2-0)
 (NEIGHBOR pos-1-0 pos-1-1)
 (NEIGHBOR pos-1-1 pos-0-1)
 (NEIGHBOR pos-1-1 pos-2-1)
 (NEIGHBOR pos-1-1 pos-1-0)
 (NEIGHBOR pos-1-1 pos-1-2)
 (NEIGHBOR pos-1-2 pos-0-2)
 (NEIGHBOR pos-1-2 pos-2-2)
 (NEIGHBOR pos-1-2 pos-1-1)
 (NEIGHBOR pos-2-0 pos-1-0)
 (NEIGHBOR pos-2-0 pos-3-0)
 (NEIGHBOR pos-2-0 pos-2-1)

Figure 18: LLM action semantics predictor prompt example

8772

 (NEIGHBOR pos-2-1 pos-1-1)
 (NEIGHBOR pos-2-1 pos-3-1)
 (NEIGHBOR pos-2-1 pos-2-0)
 (NEIGHBOR pos-2-1 pos-2-2)
 (NEIGHBOR pos-2-2 pos-1-2)
 (NEIGHBOR pos-2-2 pos-3-2)
 (NEIGHBOR pos-2-2 pos-2-1)
 (NEIGHBOR pos-3-0 pos-2-0)
 (NEIGHBOR pos-3-0 pos-3-1)
 (NEIGHBOR pos-3-1 pos-2-1)
 (NEIGHBOR pos-3-1 pos-3-0)
 (NEIGHBOR pos-3-1 pos-3-2)
 (NEIGHBOR pos-3-2 pos-2-2)
 (NEIGHBOR pos-3-2 pos-3-1)
 (IS-DEPOT pos-2-0)
)

A plan (list of actions) runs in the simulator like:
(create-block pos-2-0)
Checking next happening (time 1)
Adding (has-block)

(move pos-2-0 pos-3-0 n0)
Checking next happening (time 2)
Deleting (at pos-2-0)
Adding (at pos-3-0)

(move pos-3-0 pos-3-1 n0)
Checking next happening (time 3)
Deleting (at pos-3-0)
Adding (at pos-3-1)

(move pos-3-1 pos-3-2 n0)
Checking next happening (time 4)
Deleting (at pos-3-1)
Adding (at pos-3-2)

(move pos-3-2 pos-2-2 n0)
Checking next happening (time 5)
Deleting (at pos-3-2)
Adding (at pos-2-2)

(move pos-2-2 pos-1-2 n0)
Checking next happening (time 6)
Deleting (at pos-2-2)
Adding (at pos-1-2)

(place-block pos-1-2 pos-1-2 n0 n1)
Checking next happening (time 7)
Plan failed because of unsatisfied precondition in:
(place-block pos-1-2 pos-1-2 n0 n1)
Plan failed to execute
Plan Repair Advice:
(place-block pos-1-2 pos-1-2 n0 n1) has an unsatisfied precondition at time 7
(Set (neighbor pos-1-2 pos-1-2) to true)

Please use the information from the simulator output carefully, and output the CNF in a clean format of "(and (...) (...))", where each parentheses contains some
predicates.
Note that you should not specify types, e.g., "- object", in preconditions and effects.

The preconditions for move is:

Figure 19: LLM action semantics predictor prompt example (cont’)

8773

