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Abstract

Large Language Models (LLMs), exemplified
by Claude and LLama, have exhibited impres-
sive proficiency in tackling a myriad of Natu-
ral Language Processing (NLP) tasks. Yet, in
pursuit of the ambitious goal of attaining Artifi-
cial General Intelligence (AGI), there remains
ample room for enhancing LLM capabilities.
Chief among these is the pressing need to bol-
ster long-context comprehension. Numerous
real-world scenarios demand LLMs to adeptly
reason across extended contexts, such as multi-
turn dialogues or agent workflow. Hence,
recent advancements have been dedicated to
stretching the upper bounds of long-context
comprehension, with models like Claude 3 ac-
commodating up to 200k tokens, employing
various techniques to achieve this feat. Aligned
with this progression, we propose a leaderboard
LongLeader that seeks to comprehensively as-
sess different long-context comprehension abil-
ities of diverse LLMs and context length ex-
tension strategies across meticulously selected
benchmarks. Specifically, we aim to address
the following questions: 1) Do LLMs gen-
uinely deliver the long-context proficiency they
purport? 2) Which benchmarks offer reliable
metrics for evaluating long-context comprehen-
sion? 3) What technical strategies prove effec-
tive in extending the understanding of longer
contexts? We streamline the evaluation process
for LLMs on the benchmarks, offering open-
source access to the benchmarks and maintain-
ing a dedicated website for leaderboards. We
will continuously curate new datasets and up-
date models to the leaderboards.

1 Introduction

Long-context Large Language Models (LLMs) re-
fer to those LLMs that can handle very long input

or output lengths, by understanding and generating,
retrieving and reasoning over long text sequences.
As LLMs have stronger capabilities and wider ap-
plications (Yang et al., 2024), its long-context ca-
pability becomes a vital bottleneck for various use
cases (e.g. in-context learning, retrieval augmented
generation, agent workflow etc.) (Agarwal et al.,
2024; Xu et al., 2023; Weng, 2023).

Prior work regarding long-context LLMs has pro-
posed various training- or inference-stage methods
that can extend LLM’s contexts (Xiong et al., 2023;
Jin et al., 2024), which shows reasonable and im-
proved performance on long-context benchmarks
(Bai et al., 2023; Zhang et al., 2024b). However,
different benchmarks focus on different perspec-
tives of long context capabilities of LLMs, and
different methods report fluctuated benchmark per-
formances, because there is no gold standard for
reporting unified benchmark scores regarding var-
ious long context capabilities, leading to unclear
understanding the effectiveness of various long con-
text extending methods.

To this end, we propose LongLeader, a standard
and unified long-context LLM benchmark which
covers various dimensions, where various LLMs
and long-context extending methods can be fairly
and comprehensively compared. We also continu-
ally pretrained LLMs with various context extend-
ing methods, and reported performances of these
methods on our unified benchmark, shedding lights
on the effectiveness of those methods.

Specifically, although there are many long-
context benchmarks proposed and frequently used
for evaluating long-context LLMs, the reliability
of each datasets is unclear. Also, one benchmark
typically focus on sepecific dimensions of long con-
text capability. Meanwhile, metrics and evaluation
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Figure 1: The Leaderboards for both the 32K set and the 128K set. Models in the legends are ranked by their
averaged performance.

details are typically not unified for different mod-
els, even on the same benchmark, leading to un-
fair comparison of models, and even over-claimed
effectiveness of some methods. To address this,
we carefully select some representative datasets to
compose a new reliable and comprehensive bench-
mark, covering 6 dimensions of long-context ca-
pabilities (i.e. Multi-choice and Freeform QA, In
Context Learning, Summarization, Logical Rea-
soning and Synthetic Retrieval). To ensure a fair
comparison of a model’s long-context capability
across various context lengths, we define the long
context capability for both 0-32k and 0-128k token
ranges. We then evaluate LLMs under each setting,
with the 128k setting encompassing the 32k subset.

With our proposed benchmark, we re-evaluated
several off-the-shelf leading open and closed
LLMs, in order to have a fair comparison of those
models, assessing whether each of them achieve
the long context capability they claimed. For open
models, we selected Llama 2 (Touvron et al., 2023)
and Mistral&Mixtral (Jiang et al., 2023) etc. as
the representative models. For closed models, we
chose the Claude family models, because they are
well-recognized models with leading performance.

With a pretrained base LLM, it is still unclear
with which continual pretraining methods, we can
extend the limited context length to our desired
context length. Thus, we also continually pretrain
Open LLMs with various context-length extension
methods, and evaluate them on our proposed bench-
marks, which enables us to demystifying which
methods can most effectively extend long contexts
of LLMs during continual pretraining.

According to the results of off-the-self LLMs
and our continually pretrained LLMs on our bench-
mark, our major findings are summarized as fol-

lows:
• Stronger models typically have better long con-

text capabilities, with larger gaps between the
best closed and open models on more difficult
tasks, like logical reasoning and in-context learn-
ing.

• YaRN (Peng et al., 2023) is a generally better
choice for continual pretraining to extend context
windows, while Amplified Base Frequenc (ABF)-
based (Xiong et al., 2023) models enables long-
context capability beyond the training window.

• Long context is still challenging for LLMs, espe-
cially when it comes to consistent generation and
noisy retrieval.

2 Benchmark Selection

To fortify the robustness and ensure the reliabil-
ity of our analytical processes, we instituted a de-
tailed and systematic selection protocol for assess-
ing existing long-context evaluation benchmarks.
A benchmark of high calibre should:
• Reflect the capabilities that are required in han-

dling long-context tasks in real-world applica-
tions;

• Effectively differentiate the performance capabil-
ities of various reader models when processing
inputs of varying lengths.

• Ensure that the tasks presented incorporate high-
quality data to facilitate insightful and substantial
evaluations and are balanced—not overly ardu-
ous nor unduly simplistic1.

1For example, nearly all models, including GPT-4, have
nearly zero performance on the Math.Calc task of In-
finiteBench and the Discovery task of LongICLBench.
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Benchmark Data Source Task Diversity Length Granularity

Synthetic Realistic SYR F-QA MC-QA ICL SUM LGR 0-32K >32K

PasskeyRetrieval ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
NeedleInAHaystack ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
LongBench ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗
InfiniteBench ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓
LooGLE ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗
RULER ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓
LongEval ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
LongICLBench ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with Prior Benchmarks.
The first criterion underscores the necessity for

language models to possess a range of capabilities
to function effectively in real-world long-context
applications. Different benchmarks necessitate var-
ied capabilities from these models beyond merely
handling long-context tasks. Consequently, our dis-
cussion of the models’ long-context performance
includes a deliberate focus on additional required
capabilities specific to each benchmark. This ap-
proach enables us to distinctly analyze and identify
failures attributable to deficiencies in dimensions
of capabilities other than long-context processing.
As a result, we meticulously categorize the bench-
marks into six distinct sections: Synthetic Retrieval
(SYR), Free-form QA (F-QA), Multi-choice QA
(MC-QA), In Context Learning (ICL), Summariza-
tion (SUM), and Logical Reasoning (LGR).

Synthetic Retrieval (SYR). SYR sec-
tion includes 5 sub-tasks: SYT-PASSKEY

5/100/10002 (Mohtashami and Jaggi, 2024),
SYR-RETRIEVE.KV (Zhang et al., 2024b), and
SYR-NEEDLE (Liu et al., 2023). These datasets
are constructed using synthetic data and evaluate
the model’s ability of retrieving a specific type of
information from a long context.

Free-form Question Answering (F-QA).
In this category, we select four datasets:
FQA-MUSIQUE (Trivedi et al., 2022), FQA-
NARRATIVEQA (Kočiskỳ et al., 2018), FQA-
HOTPOTQA (Yang et al., 2018), and FQA-
EN.QA (Zhang et al., 2024b). MUSIQUE and
HOTPOT-QA are multi-hop QA, which evaluate
the model’s capability to conduct multihop rea-
soning based on a long context. NARRATIVEQA
contains question-answer pairs that require the
model to answer questions about stories by reading
entire books or movie scripts. EN.QA, which

2The number means the length of passkey in digits.

is a novel-based QA benchmark that requires
the model to locate and process information
within the novel and perform reasoning through
aggregation or filtering to derive answers. These
datasets evaluate the capability of the model to
locate, aggregate, and reason over the information
extracted from the long passages.

Multi-choice QA (MC-QA). MC-QA can be
considered as a simplified version of F-QA, which
only requires the model to choose a correct answer
from the given choices. This category is helpful in
distinguishing the capabilities of less capable mod-
els. We choose MC-QA-BESTCHOICE (Wang
et al., 2024a) and MC-QA-EN.MC (Zhang et al.,
2024b) in this category.

In Context Learning (ICL). This category in-
cludes 3 tasks in a few-shot form that evaluate the
model’s in-context learning ability: ICL-DIALOG-
RE (Yu et al., 2020), ICL-FEWNERD (Ding et al.,
2021), and ICL-TRIVIAQA (Joshi et al., 2017).

Summarization (SUM). This category requires
the model to summarize the given long passage. It
contains 3 datasets: SUM-QMSUM (Zhong et al.,
2021), SUM-GOVREPORT (Huang et al., 2021),
and SUM-EN.SUM (Zhang et al., 2024b).

Logical Reasoning (LGR). LGR contains math,
code and reasoning domains, which requires the
model to be capable of doing logical reasoning
based on a long context. We include LGR-
CODE.DEBUG (Zhang et al., 2024b) and LGR-
MATH.FIND (Zhang et al., 2024b) in this category.
LGR-Code.Debug is a multi-choice task requiring
the model to find the bug injected to a repository.
In LGR-Math.Find, the model receives a array of
numbers and is required to locate the largest, the
smallest, and the median numbers.

Among the selected tasks, some tasks use real-
world context (e.g., En.MC, Code.Debug) which
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are closer to real-world applications, while other
tasks that use curated synthetic contexts (e.g., SYR-
Passkey, SYR-Retrieve.KV) are suitable for testing
certain capabilities of long-context LLMs without
entangling complex capabilities that are unrelated
to the long-context ability. More details can be
found in Appendix B.

Additionally, to adequately address varying
depths of context comprehension and aggregate
the benchmarks for easy interpretation, we divide
the benchmarks into two primary sets based on the
length of contexts they are designed to evaluate:
32K Set and 128K Set, which evaluate the model’s
ability to handle context length up to 32k tokens
and 128k tokens, respectively. The segmentation
of the datasets into the two sets, along with the
specifics of each dataset, is detailed in Table 3. Our
structured approach ensures a holistic and detailed
evaluation of different context lengths, serving as
the foundation of our benchmark. Note that we
define the long context capability of the two sets
as 0-32k and 0-128k token ranges, with the 128k
setting encompassing the 32k subset. A compari-
son of our benchmark with prior works is shown in
Table 1.

3 Leaderboards

In this section, we present the leaderboards for
our selected benchmarks. We feature two primary
leaderboards, comparing 10 widely-used and pop-
ular public models across the two sets of bench-
marks, each with context lengths of 32k/128k. Ad-
ditionally, we include an auxiliary leaderboard to
assess various context extension techniques using
the same continuing pretraining recipe.

3.1 Settings

Counting Tokenizer Selection: Different tokeniz-
ers may yield varying token counts for the same
text. To ensure a fair comparison across all mod-
els, we adopt the Llama 2 (Touvron et al., 2023)
tokenizer as the standard for token counting. Our
choice is primarily based on its relatively lower
compression rate. This ensures that the token
length counted by Llama 2 does not exceed that
counted by many other tokenizers. This approach
mitigates potential discrepancies that could impact
the fairness of the leaderboard comparison.

Model Selections We carefully select 10 models
for evaluation based on three principles: 1) cover-
ing various context window lengths, 2) including

widely used open and closed models, and 3) rep-
resenting a range of model sizes. For the closed
models, we select Claude 2.1/3-Sonnet, primarily
because of their demonstrated performance and
long-context capabilities. For the open models, we
choose Mistral/Mixtral (Jiang et al., 2023, 2024)
due to their outstanding performance compared to
many similar size LLMs. We select the Llama-2
series (7B, 13B) (Touvron et al., 2023) because it
is one of the most widely used model family. More
Details about the context window and the version
of the selected models are shown in Appendix B
Table 4.

Context Extension Recipe: We study posi-
tion extension techniques based on RoPE (Su
et al., 2024), which is one of the most widely
adopted position embedding methods. Recently
released LLMs predominantly use RoPE for po-
sition embedding. More technical details about
RoPE can be found in Appendix A. To assess
the efficacy of cutting-edge long-context extension
techniques with our selected 32k benchmark, we
continue pretraining Llama 2 models using Linear
Position Interpolation (PoI) (Chen et al., 2023b),
YaRN (Peng et al., 2023), and Amplified Base Fre-
quency (ABF) (Xiong et al., 2023). These tech-
niques were chosen based on the following criteria:
(a) They are among the most widely adopted meth-
ods for extending context window lengths, forming
the foundation of many long-context LLMs; (b)
They require minimal modifications and can be
easily applied to any RoPE-based models.

We opt for Llama 2 7b/13b as the base mod-
els due to their fixed pretrained context window
of 4k (in contrast to Mistral/Mxitral (Jiang et al.,
2023, 2024) models, which have already undergone
continued pretraining for context window exten-
sion). By extending the context window to 32k,
we evaluate its performance against our 32k bench-
mark. We select the 5B tokens curated by (Fu
et al., 2024) for training due to their high data qual-
ity and manageable training overheads. In order
to enable the instruction following ability of the
models for conveniently evaluation, we utilize the
LongAlpaca (Chen et al., 2024) dataset with its
12k samples, chosen for its data quality and a con-
text window size of 32k, aligning well with our
evaluation parameters.

We choose the RoPE Scaling Factor as 8.0 for
both the PoI and YaRN continued pretraining, since
we extend the models from 4k to 32k with 8× ex-
tensions. As for ABF, we adopt the default am-
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plified factor as 50.0, which means, we amplify
the RoPE theta from 10000.0 to 500000.0. More
detailed settings can be found in Table 8, 10, 9, 11.

Evaluation Protocols: To ensure a fair com-
parison, we standardize the evaluation metrics
for all datasets, as shown in Appendix B Ta-
ble 3. We adopt Exact Match to calcu-
late the correctness rate with each test sam-
ple for the SYR-PASSKEY5/100/1000, SYR-
RETRIEVE.KV, MC-QA (BESTCHOICE and
EN.MC), LGR (CODE.DEBUG and MATH.FIND)
datasets. For all the F-QA and ICL tasks, we adopt
the F1 score of the generated tokens in compari-
son to the golden answers. For all the SUM tasks,
we adopt the ROUGE-L-Sum metric (Lin, 2004)
as in the previous work. Specially, for the SYR-
NEEDLE task, we also adopt a third LLM as a judge
to score the answers, and the score is normalized
from (1,10) to (0, 1). Clause 3 Sonnet is utilized as
the judge.

As for the models, we set the temperature as 0
with greedy decoding for all models in the evalua-
tions.

3.2 Main Results

To calculate the leaderboard rankings, we average
all task scores for each type across both the 32k Set
and the 128k Set. For the overall average score of
each model, we use the average across task types
to prevent over-weighting any type with more sub-
tasks. Furthermore, please note that for the 128k
benchmark (able 2), we directly average the scores
from the 32k (Appendix C Table 5) set and the
32-128k (Appendix C Table 6) set to avoid over-
weighting the 32k benchmarks, which contain more
sub-tasks. As shown in Figure 1, Figure 2 we can
conclude the following observations:

• Claude 3-Sonnet outperforms the competition in
both the 32k and 128k benchmarks, demonstrat-
ing consistently excellent performance across var-
ious task dimensions.

• LLama2 7b/13b consistently rank lower, pri-
marily because of their relatively short context
length.

• Surprisingly, Mistral and Mixtral perform excel-
lently in the 32k set, surpassing Claude 2.1/3-
Sonnet in this context length range.

• Claude 2.1/3-Sonnet can handle longer contexts
than the Mistral/Mixtral models, and their perfor-
mance in the 128k set is superior.

• Overall, YaRN-based models perform better than
the PoI and ABF models consistently across dif-
ferent model sizes. However, their performance
varies when it comes to different long-context
abilities.

4 Analysis and Insights

To extend the context window by continue pre-
training, YaRN is better. From Table 7, the
overall performance of YaRN is better than ABF
and PoI. It’s mainly because they interpolate lower
dimensions and higher dimensions with different
strategies:
• PoI uniformly interpolates all dimensions in a

LLM using RoPE. However, RoPE’s design im-
plies that lower dimensions do not require in-
terpolation and training them to accommodate
manipulations is challenging as noted by (Peng
et al., 2023). Additionally, the scale factor for PoI
typically matches the extension factor, leading
to the utilization of some under-trained positions
during the extension of the context window. For
instance, in Llama-2, which has a pretraining
context window of 4096, for a input with 4096
tokens, the relative position 4095 appears only
once, while position 2047 appears 2048 times,
and position 0 appears 4096 times. Consequently,
larger positions like 4095 are significantly under-
trained compared to smaller positions such as
2047 and 0. Supporting this observation, the
performance disparity between PoI and YaRN
becomes more pronounced on tasks with many
instances close to 32k, such as ICL-Dialog-RE
and SYR-Passkey, but diminishes on tasks with
instances around 16k, like F-QA-Musique and
F-QA-HotpotQA.

• With ABF, higher dimensions are more interpo-
lated while lower dimensions receive less inter-
polation. Theoretically, ABF should surpass PoI
as it has no excessive interpolation of lower di-
mensions (Xiong et al., 2023). Contrary to ex-
pectations and previous findings such as those
by (Xiong et al., 2023), ABF is the worst one
in our benchmark. We hypothesize that this dis-
crepancy arises because, unlike PoI, ABF typi-
cally employs a much larger theta scaling factor
relative to its extension scale in common prac-
tice, as was the case in our experiments. The
much larger scale factor will need more training
to fit the much closer new positions compared
to PoI’s smaller scale factor. It should be noted
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Task Type Claude 3 Claude 2.1 Llama 2 13b-chat Llama 2 7b-chat Mixtral Mistral v0.2-inst

SYR 98.28 82.76 7.59 7.32 74.96 74.20
F-QA 34.25 17.11 12.00 9.81 16.95 14.85

MC-QA 56.20 48.64 3.43 1.57 13.35 8.42
ICL 12.31 9.09 29.23 27.89 53.13 50.44

SUM 24.44 22.00 11.83 11.68 14.91 14.29
LGR 20.78 21.01 N/A N/A N/A N/A

AVG 41.04 33.44 10.68 9.71 28.88 27.03

Table 2: Test Results for the Whole 128K Benchmark (%)
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Figure 2: Leaderboard for the Position Extension Techniques on the 32K Set Benchmark.

that (Xiong et al., 2023) utilized considerably
more training data (400B) and computational re-
sources than our experiments. While we specu-
late that ABF’s increased data and computation
demands might explain the divergence in results,
it is important to acknowledge that this is merely
a conjecture without concrete evidence. Thus,
our findings suggest that under the same con-
ditions of 5B tokens, ABF may not perform as
expected due to its potential data-intensive na-
ture.

• YaRN does not interpolate in lower dimensions.
For higher dimensions it adapts the strategy of
ABF. In a short range, relative positions are heav-
ily relied on those lower dimensions, which is
crucial to next token prediction. Hence YaRN can
better modeling the position relations in a short
range. With un-interpolated lower dimensions,
Yarn can directly leverage those well trained
short-range relative positions from the pretrain-
ing stage. Meanwhile, different from PoI and
ABF, YaRN incorporates a scaling factor in the
softmax function of self-attention. This adjust-
ment helps the attention be more focused on im-
portant tokens. This potentially contributing to
YaRN’s advantage over PoI and ABF.

A strong base model means strong long context
abilities. Long context capability is nothing dif-
ferent from other perspectives of LLMs. It’s mainly
from the base model. We can clearly see that, with
the same fine-tuning data and same extension meth-
ods, larger models perform much better than small
models. Most long context tasks have a bunch
of noisy or useless information. Generally, larger
models are more capable of focusing on and ex-
tracting useful information from the input texts.
We argue that this is one of the major reasons of
larger models’ superiority on long context tasks.
Also, with similar size, stronger base models im-
plicitly have stronger long context abilities. To fur-
ther illustrate this, we conduct more experiments
for Llama-2-7b, Llama-2-70b and Llama-3-8b on
the Needle-in-a-Haystack task. We use SelfEx-
tend (Jin et al., 2024) to extend the three models’
context window. We suppose SelfExtend, as a fine-
tuning free method, will not change models’ abili-
ties. From Appendix E Table 12. We can see the
ranking of the three models are nearly the same
as the ranking of their performance on standard
short tasks (AI@Meta, 2024). We also suppose
that, larger models have more obvious superiority
to small models on longer context tasks than on
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similar tasks but with short contexts.
In a short summary, all extension methods pri-

marily handle the out-of-distribution problem in
long context extension. This means with the same
extension method and the same data, the effective-
ness of the long-context model relies on the quality
of the base model. Good base models have strong
abilities to ignore noisy information, which is re-
quired by most long-context tasks.

Consistent long context generation is challeng-
ing. The original passkey retrieval task (Mo-
htashami and Jaggi, 2024) uses a 5-digit passkey.
It can be perfectly (i.e. 100% accuracy) solved
by many existing long context handling meth-
ods (Peng et al., 2023; Xiong et al., 2023; Chen
et al., 2024; Jin et al., 2024; Xiao et al., 2024). But
it becomes different with the introduction of longer
passkeys. Our findings indicate a decline in per-
formance as the length of the passkey increases,
as in Appendix C Table 5 and 6. While all mod-
els demonstrate proficiency with shorter passkeys,
their effectiveness varies significantly with longer
sequences.

Super long passkey challenges LLMs’ abilities
to precisely memorize useful information and gen-
erate consistent prediction according to it. Com-
pared to standard short context tasks, usually, long
context tasks have lower information density. The
model just needs a small part of the context to make
predictions. If the required information is short,
it’s easy for a model to memorize the information.
As the required information lengthens, the task of
accurately memorizing and regenerating every de-
tail becomes increasingly complex. Moreover, the
prediction of longer passkeys demands a higher
tolerance for error accumulation during inference.

Supporting this observation, nearly all failure
cases still successfully identify the location of the
passkey, but they cannot precisely repeat the whole
passkey sequence, such as missing parts of the
passkey or wrongly repeating several digits. This
inconsistency underscores the challenges faced by
LLMs in generation of long sequences.

With high noise level, retrieval tasks can be dif-
ficult. Retrieval is one of the most fundamental
tasks in machine learning. Typically, these tasks do
not require complex reasoning abilities; however,
they can become significantly challenging with in-
creased noise levels. All models generally perform
well within their pretraining context windows on
passkey retrieval tasks. Conversely, their perfor-

mance tends to diverge during key-value (KV) re-
trieval tasks. Both tasks require the large language
model (LLM) to retrieve a simple message from the
context according to a specified ‘key’. The primary
distinction between the two is that KV retrieval
involves a noisier context compared to passkey re-
trieval. Specifically, the context in KV retrieval
comprises other ‘key-message’ pairs, whereas the
context in passkey retrieval consistently repeats a
single, irrelevant sentence multiple times, which
bears no relation to the target ‘key-message’ pair.
This results in differents failure patterns of the two
tasks: KV retrieval failures often occur when the
model is distracted by competing pairs and extracts
the incorrect pair, whereas passkey retrieval fail-
ures typically involve the model’s inability to gen-
erate the complete sequence as described earlier.
Similar findings are reported by RULER (Hsieh
et al., 2024), which designed several ‘Needle-in-
a-Haystack’ variants by adjusting noise levels. In
these studies, LLMs consistently exhibited poorer
performance on variants with higher noise levels.

Nevertheless, simple retrieval tasks like passkey
retrieval remain valuable as they serve as touch-
stone for assessing whether a model can access
all information in an input sequence. Existing re-
search (Jin et al., 2024; Arora et al., 2024, 2023)
indicates that some linear-time models or attention
mechanism, despite abilities comparable to vanilla
transformers, have a limited receptive field to the
input sequence, leading to their failure in these sim-
ple retrieval tasks. We plan to test such models in
the near future.

ABF-based models can somewhat work beyond
their pre-training windows. Despite the con-
text window being only 8k for Mixtral and 32k for
Mistral, these models effectively handle informa-
tion retrieval tasks involving up to 128k contexts.
What happens here is similar to what is observed in
LongLora (Chen et al., 2024): after interpolation,
although continuously trained on short sequences,
LLMs are able to generalize to longer sequences.
More details about the connection between this phe-
nomenon and existing works are in Appendix F.

5 Related Work

Long Context Benchmarks. Our work is closely
related to other works on benchmarking long-
context language models. LongEval (Dacheng Li*,
2023) is one of the pioneer work which in-
cludes various long context retrieval tasks. Long-
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Bench (Bai et al., 2023) contains various long-
context tasks in a bilingual setting. It includes vari-
able task types such as question answering, coding,
summarization, and others. InfiniteBench (Zhang
et al., 2024b) is similar to LongBench, but its tasks
have a greater than 100K token length, while most
data in LongBench is less than 20K tokens. Some
tasks in InfiniteBench are so difficult that nearly
no models can handle them. Ada-LEval (Wang
et al., 2024b) introduces novel segment sorting
and many-choice selection tasks. It has a more
fine-grained length distribution ranging from 1K
to 128K tokens. LongICLBench (Li et al., 2024a)
targets challenging the in-context learning abilities
of large language models (LLMs). For each task,
it constructs the data in rounds. A round means a
complete set of all candidate labels. Each task in-
cludes settings of 1 to 5 rounds, varying the context
to investigate the influence of the number of exam-
ples in in-context learning. RULER (Hsieh et al.,
2024) is designed to challenge the true context win-
dow length of long-context LLMs. To control the
task complexity and data length, it is composed
entirely of synthetic data such as variants of needle-
in-a-haystack by adjusting the number of needles
and the contents of the contexts. LooGLE (Li et al.,
2023) tries to test LLMs’ abilities to extract and
understand long-range dependencies over the entire
sequence. The data in LooGLE is mainly around
32K tokens.

Context Window Extension Methods. Several
methods extend the context window for LLMs:
Retrieval-Based Approaches: These use an exter-
nal memory module to store past context and fetch
related documents during inference, necessitating
modifications to LLM architectures. Examples
include Activation Beacon (Zhang et al., 2024a)
and Landmark Attention (Mohtashami and Jaggi,
2024). Fine-Tuning Based Approaches: One line of
these methods interpolates long context positions
into the original LLM context window, optimiz-
ing pre-trained models with large base values for
position embeddings. Notable implementations
are CodeLLaMA (Roziere et al., 2023) and Lla-
maLong (Xiong et al., 2023). LongLoRA (Chen
et al., 2024) and CLEX (Chen et al., 2023a) re-
duce GPU resource demands by fine-tuning on se-
quences shorter than the target length. Another
line uses short sequences to mimic long sequences
during fine-tuning such as PoSE (Zhu et al., 2023).
Attention-Based Methods: Beyond position em-

bedding interpolation, these methods adapt atten-
tion mechanisms to manage input context with-
out requiring fine-tuning. Sliding Window At-
tention limits attention to nearby tokens but fails
to retain distant token information (Jiang et al.,
2023). StreamLM (Xiao et al., 2023) and LLM-
Infinite (Han et al., 2023) apply similar strate-
gies, focusing on head and neighboring tokens
while masking intermediates. SelfExtend (Jin et al.,
2024) maintains all input tokens but only retains
accurate positional information for tokens within a
close range, simplifying distant positions to those
seen during pre-training. KV Cache Utilization:
Techniques such as Heavy-Hitter Oracle (Zhang
et al., 2024c), Snap-KV (Li et al., 2024b) and In-
fLLM (Xiao et al., 2024) develop KV cache evic-
tion policies that optimize token retention based on
attention scores or token window relevance during
generation, thereby efficiently managing memory
constraints.

6 Conclusion

In this work, we propose a comprehensive bench-
mark for evaluating long-context Large Language
Models, addressing the lack of a unified stan-
dard for consistent performance comparison. Our
benchmark covers various dimensions and context
lengths, enabling a fair comparison of different
LLMs and context-extending methods. This ap-
proach provides clearer insights into the effective-
ness of these models and methods.

7 Limitations

To evaluate the proposed six types of long-context
abilities across various context lengths, we con-
ducted a comprehensive literature review and care-
fully selected off-the-shelf datasets to cover dif-
ferent lengths and abilities. However, we could
not identify suitable logical reasoning tasks for
the 32k length, leaving this area open for future
research. Furthermore, it is important to acknowl-
edge that the format of the prompt can influence
the outcomes of the evaluation. To maintain con-
sistency, we implemented a standardized prompt
format across all models in our assessment. This
approach, however, may introduce a degree of bias,
as different models may perform optimally with
varying prompt formats. Addressing this potential
unfairness and exploring a more equitable setup
will be the focus of future research efforts.
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A Preliminary

RoPE. Modern LLMs typically use the relative positions of input tokens. One method to encode
this information is through Rotary Position Embedding (RoPE). Let’s consider a sequence of tokens
represented as w1, w2, · · · , wL, and their corresponding embeddings are denoted as x1, · · · , xL ∈ R|D|,
where |D| is the dimension of the embedding. The basic idea of RoPE is to incorporate the positional
information into the query q and the key vectors k, respectively. This integration ensures that their inner
product qTk will contain the relative positional embedding information inherently. To achieve this, RoPE
employs the following vector transformations: qm = fq(xm,m) ∈ R|L|, kn = fk(xn, n) ∈ R|L|, where
|L| is the hidden dimension of per head. The functions fq and fk responsible for injecting positional
information, are defined as fq(xm,m) = Wqxmeimθ, fk(xn, n) = Wkxneinθ, where θd = b−2d/|D|,
b = 10000 and projectors Wq,Wk : R|D| → R|L|. RoPE keeps the real part of the inner product
qTk, which is Re(q∗k). This operation ensures that the dot product of the query and key vectors
depends entirely on the relative distance between the tokens, represented by m − n of the tokens as
follows: ⟨fq(xm,m), fk(xn, n)⟩R = Re(⟨fq(xm,m), fk(xn, n)⟩C) = Re(x∗mW ∗

q Wkxneiθ(m−n)) =
g(xm, xn,m− n),where g(·) is an abstract mapping function.
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B Details of the Selected Benchmarks and Models

Table 3 shows the statistics of the selected benchmarks and Table 4 shows the details of the selected
models for evaluation.

Task
Type Dataset Length Average Length

# Tokens # Example Metric

SYR

Passkey 5 - 32k 32K 16986.50 160 EM (Exact Match)
Passkey 100 - 32k 32K 16985.50 160 EM (Exact Match)
Passkey 1000 - 32k 32K 17985.75 80 EM (Exact Match)
Needle - 32k 32K 16801.00 176 Claude Rating
Retrieve.KV - 32k 32K 31664.82 90 EM (Exact Match)
Passkey 5 - 128k 128K 64988.19 640 EM (Exact Match)
Passkey 100 - 128k 128K 64987.19 640 EM (Exact Match)
Passkey 1000 - 128k 128K 65986.63 320 EM (Exact Match)
Needle - 128k 128K 64801.00 704 Claude Rating
Retrieve.KV - 128k 128K 126441.36 360 EM (Exact Match)

F-QA

Musique 32K 18556.32 200 F1
NarrativeQA 32K 36083.33 200 F1
HotpotQA 32K 15330.78 200 F1
En.QA 128K 99337.86 92 F1

MC-QA BestChoice 32K 10320.51 4200 EM (Exact Match)
En.MC 128K 102713.44 63 EM (Exact Match)

ICL
Dialog-RE 32K 20270.88 354 F1
FewNerd 32K 14191.22 1500 F1
TriviaQA 32K 14099.07 200 F1

SUM
QMSUM 32K 15981.50 200 Rouge-L
GovReport 32K 12281.15 200 Rouge-L
En.Sum 128K 96854.84 37 Rouge-L

LGR Code.Debug 128K 113426.43 155 EM (Exact Match)
Math.Find 128K 117918.33 350 EM (Exact Match)

Table 3: Benchmark Statistics

Models Version Context Window

Claude claude-v2.1 200K
claude-3-sonnet-v1.0 200K

LLama 2 (Touvron et al., 2023) Llama-2-7b-chat 4K
Llama-2-13b-chat 4k

Mistral (Jiang et al., 2023) Mistral-7B-Instruct-v0.2 32K
Mixtral-8X7B-Instruct-v0.1 8k

Table 4: Model Selections
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C Details of the Evaluation Results

Here are the details results for the evaluations. Table 5 shows the results of the 32K Set benchmark and
Table 2 showcases the 128K Set benchmark. Note that the Table 6 shows the details of the benchmarks
that are ranged from 32K-128K, and it does not include the 32K benchmark. Table 7 shows the results of
different position extension techniques on the 32K Set benchmark.

Task Type Task Claude 3 Claude 2.1 Llama 2 13b-chat Llama 2 7b-chat Mixtral Mistral v0.2-inst

SYR

Passkey 5 97.50 96.25 12.50 11.25 100 100
Passkey 100 98.75 100 12.50 12.50 100 100
Passkey 1000 100 100 8.75 8.75 100 100
Needle 99.89 92.44 20.97 20.00 99.49 98.30
Retrieve.KV 100 37.78 0 0 0 80
AVG 99.23 85.29 10.94 10.50 79.90 95.66

F-QA

Musique 39.98 8.88 13.53 8.80 27.35 18.64
NarrativeQA 28.81 19.75 19.04 16.90 26.47 26.61
HotpotQA 61.19 32.44 39.44 33.17 47.87 43.84
AVG 43.33 20.36 24.00 19.62 33.90 29.70

MC-QA BestChoice 37.80 25.84 6.86 3.14 26.70 16.84
AVG 37.80 25.84 6.86 3.14 26.70 16.84

ICL
Dialog - RE 2.14 0 N/A N/A 29.82 19.31
Few Nerd 1.18 13.06 N/A N/A 38.84 46.21
TriviaQA 33.62 14.22 87.69 83.67 90.74 85.81
AVG 12.31 9.09 29.23 27.89 53.13 50.44

SUM QMSum 22.79 21.44 20.97 20.55 26.05 24.63
GovReport 34.21 30.03 26.35 26.17 33.59 32.52
AVG 28.50 25.74 23.66 23.36 29.82 28.58

AVG - 44.23 33.26 18.94 16.90 44.69 44.24

Table 5: Test Results for the 32K Benchmark (%)
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Task Type Task Claude 3 Claude 2.1 Llama 2 13b-chat Llama 2 7b-chat Mixtral Mistral v0.2-inst

SYR

Passkey 5 98.28 98.75 3.13 2.81 100 98.44
Passkey 100 99.69 100 3.13 3.13 96.41 65.63
Passkey 1000 92.50 100 2.19 2.19 79.69 46.88
Needle 96.76 94.89 12.74 12.50 73.98 52.68
Retrieve.KV 99.44 7.50 0 0 0 0
AVG 97.33 80.23 4.24 4.13 70.02 52.73

F-QA En.QA 25.17 13.86 N/A N/A N/A N/A
AVG 25.17 13.86 N/A N/A N/A N/A

MC-QA En.MC 74.60 71.43 N/A N/A N/A N/A
AVG 74.60 71.43 N/A N/A N/A N/A

SUM En.Sum 19.56 18.26 N/A N/A N/A N/A
AVG 19.56 18.26 N/A N/A N/A N/A

LGR
Code.Debug 13.55 2.58 N/A N/A N/A N/A
Math.Find 28.00 39.43 N/A N/A N/A N/A
AVG 20.78 21.01 N/A N/A N/A N/A

AVG - 47.49 40.96 0.85 0.83 14.00 10.55

Table 6: Test Results for the 128K Benchmark (%, NOT including the 32K benchmark here)

Task
Type Task Llama 2 7b

PoI
Llama 2 7b

YaRN
Llama 2 7b

ABF
Llama 2 13b

PoI
Llama 2 13b

YaRN
Llama 2 13b

ABF

SYR

Passkey 5 99.38 100 100 97.50 100 85.63
Passkey 100 48.13 92.50 62.50 32.50 91.88 27.50
Passkey 1000 0 55.00 0 1.25 81.25 0
Needle 84.09 71.65 35.00 98.47 93.98 99.88
Retrieve.KV 0 0 0 0 0 0
AVG 46.32 63.83 39.50 45.94 73.42 42.60

F-QA

Musique 8.27 7.84 8.17 12.78 12.41 12.36
NarrativeQA 6.00 6.00 5.71 14.38 15.58 15.04
HotpotQA 10.86 10.95 11.48 21.67 18.19 17.38
AVG 8.38 8.26 8.45 16.28 15.39 14.93

MC-QA BestChoice 2.28 3.72 5.80 7.44 4.16 4.44
AVG 2.28 3.72 5.80 7.44 4.16 4.44

ICL

Dialog - RE 6.78 7.20 5.72 11.46 12.16 14.10
Few Nerd 33.93 34.49 25.91 36.85 38.36 34.68
TriviaQA 78.88 71.34 78.37 82.09 77.35 80.63
AVG 39.86 37.68 36.67 43.47 42.62 43.14

SUM
QMSum 22.90 21.92 22.24 24.30 23.99 24.51
GovReport 29.17 27.03 28.64 30.05 30.80 29.55
AVG 26.03 24.48 25.44 27.18 27.40 27.03

AVG - 24.57 27.59 23.17 28.06 32.61 26.43

Table 7: Test Results for the 32K Benchmark w/ Different Position Extension Techniques
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D Details of Experimental Settings for the Position Extensions

Table 8 and Table 9 shows the hyper-parameter settings and the training cost for the continue-pretraining
with the three (PoI, YaRN, and ABF) positions extension strategies on the 5B tokens (Fu et al., 2024).
Table 10 and Table 11 showcase the hyper-parameter settings and the training cost for the long-context
instruction fine-tuning with LongAlpaca (Chen et al., 2024) dataset.

Models Scaling
Factor

Learning
Rate

Warm-up
Ratio

Max
Epochs

Max
Sequence Length

Weight
Decay Optimizer

LLama 2 7b - PoI 8 4 million 2e-5 1 32K 0.1 Adam
LLama 2 7b - YaRN 8 4 million 2e-5 1 32K 0.1 Adam
LLama 2 7b - ABF 50 4 million 2e-5 1 32K 0.1 Adam
LLama 2 13b - PoI 8 4 million 2e-5 1 32K 0.1 Adam
LLama 2 13b - YaRN 8 4 million 2e-5 1 32K 0.1 Adam
LLama 2 13b - ABF 50 4 million 2e-5 1 32K 0.1 Adam

Table 8: Continue Pretraining Hyperparameters

Models GPUs Parallel Settings Accelerator Precision Training Time

LLama 2 7b - PoI 64 × NVIDIA A100 80G TP =8, PP=1, DP=8 DeepSpeed (ZeRO Stage 1) bf16 1.5 days
LLama 2 7b - YaRN 64 × NVIDIA A100 80G TP =8, PP=1, DP=8 DeepSpeed (ZeRO Stage 1) bf16 1.5 days
LLama 2 7b - ABF 64 × NVIDIA A100 80G TP =8, PP=1, DP=8 DeepSpeed (ZeRO Stage 1) bf16 1.5 days
LLama 2 13b - PoI 64 × NVIDIA A100 80G TP =8, PP=2, DP=8 DeepSpeed (ZeRO Stage 1) bf16 2.9 days
LLama 2 13b - YaRN 64 × NVIDIA A100 80G TP =8, PP=2, DP=8 DeepSpeed (ZeRO Stage 1) bf16 2.9 days
LLama 2 13b - ABF 64 × NVIDIA A100 80G TP =8, PP=2, DP=8 DeepSpeed (ZeRO Stage 1) bf16 2.9 days

Table 9: Continue Pretraining Cost (TP: Tensor Parallelism, PP: Pipeline Parallelism, DP: Data Parallelism)

Models Batch
Size

Learning
Rate

Warm-up
Steps

Max
Epochs

Weight
Decay Optimizer

LLama 2 7b - PoI 64 2e-5 20 5 0.0 Adam
LLama 2 7b - YaRN 64 2e-5 20 5 0.0 Adam
LLama 2 7b - ABF 64 2e-5 20 5 0.0 Adam
LLama 2 13b - PoI 64 2e-5 20 5 0.0 Adam
LLama 2 13b - YaRN 64 2e-5 20 5 0.0 Adam
LLama 2 13b - ABF 64 2e-5 20 5 0.0 Adam

Table 10: Long-context Instruction Fine-tuning Hyperparameters

8749



Models GPUs Accelerator Precision Training Time

LLama 2 7b - PoI 8 × NVIDIA A100 80G DeepSpeed (ZeRO Stage 2) bf16 ~3.0 hour / epoch
LLama 2 7b - YaRN 8 × NVIDIA A100 80G DeepSpeed (ZeRO Stage 2) bf16 ~3.0 hour / epoch
LLama 2 7b - ABF 8 × NVIDIA A100 80G DeepSpeed (ZeRO Stage 2) bf16 ~3.0 hour / epoch
LLama 2 13b - PoI 8 × NVIDIA A100 80G DeepSpeed (ZeRO Stage 2) bf16 ~5.2 hour / epoch
LLama 2 13b - YaRN 8 × NVIDIA A100 80G DeepSpeed (ZeRO Stage 2) bf16 ~5.2 hour / epoch
LLama 2 13b - ABF 8 × NVIDIA A100 80G DeepSpeed (ZeRO Stage 2) bf16 ~5.2 hour / epoch

Table 11: Long-context Instruction Fine-tuning Cost

E More Experiment Results

Task Llama-2-7b-chat Llama-2-70b-chat Llama-3-8b-Inst

Needle @32k 0.685 0.940 0.990
Needle @16k 0.940 0.993 0.995

Table 12: For Llama-2 family, 32k is 8× extension and 16k is 4× extension. For Llama-3, 32k is 4× extension and
16k is 2× extension. To make the comparison fairer, both 32k and 16k experiments are conducted for Llama-3-8b-
inst.

F More Explanation for Analysis

While we have no knowledge about training details of Mistral and Mistral, their abilities of generalizing
beyond their training window can be explained by the reconstruction of precise neighbor position
information during fine-tuning.

The term “neighbor” refers to those tokens near to the tokens being generated. This stems from
SelfExtend (Jin et al., 2024) and LongLoRA (Chen et al., 2024). Both papers emphasize the importance
of precise positions for neighbor tokens, while distant token positions can be less precise. For example, in
a 128k sequence, the nearest 8k tokens to the next generated tokens can be treated as the “neighbors”, and
their positions are most important.

To be more specific, the base models of Mixtral and Mistral have an 8k context window, with a RoPE
theta of 10,000. Mixtral and Mistral employ ABF and significantly increase the RoPE theta from 10,000
to 500,000, which is 50 times larger. After fine-tuning on short contexts (32k for Mistral and 8k for
Mixtral), for a 128k input, these models have reconstructed precise neighbor position information (the
nearest 32k tokens for Mistral and 8k tokens for Mixtral), while distant positions (32k&8k to 128k) are
just interpolated by ABF and not that precise. What happens here is very similar to LongLoRA. With
PoI, LongLoRA uses a local attention block of 8k to fine-tune a model from 4k to 32k. Essentially, using
8k local attention block is nearly equivalent to directly training the model on 8k sequences. In this way,
LongLoRA reconstructs the neighbor positions (8k), and it demonstrates pretty good performance.
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