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Abstract

While LLMs have exhibited strong perfor-
mance on various NLP tasks, it is notewor-
thy that most of these tasks rely on utiliz-
ing the vast amount of knowledge encoded
in LLMs’ parameters, rather than solving new
problems without prior knowledge. In cogni-
tive research, the latter ability is referred to as
fluid intelligence, which is considered to be crit-
ical for assessing human intelligence. Recent
research on fluid intelligence assessments has
highlighted significant deficiencies in LLMs’
abilities. In this paper, we analyze the chal-
lenges LLMs face in demonstrating fluid in-
telligence through controlled experiments, us-
ing the most representative ARC task as an
example. Our study revealed three major lim-
itations in existing LLMs: limited ability for
skill composition, unfamiliarity with abstract
input formats, and the intrinsic deficiency of
left-to-right decoding. Our data and code can
be found in https://wujunjie1998.github.
io/araoc-benchmark.github.io/.

1 Introduction

Large language models (LLMs) have demonstrated
impressive performance on a range of challenging
NLP tasks (Davis, 2023; Zhao et al., 2024; Wang
et al., 2024; Yang et al., 2024; Frieder et al., 2024),
which naturally leads to the question: how close
are LLMs to achieving human-level intelligence?

To explore this question, it is useful to draw on
established research in human intelligence (Cattell,
1963, 1971), which categorizes intelligence into
two major types: crystallized intelligence, the abil-
ity to apply prior knowledge to solve problems, and
fluid intelligence, the ability to tackle new prob-
lems without relying on pre-existing knowledge.
Of the two, fluid intelligence is often viewed as
more indicative of general cognitive ability (Jaeggi

*Co-corresponding authors.

et al., 2008; Chollet, 2019; Barak and Loewen-
stein, 2024), as it captures the capability to solve
novel problems. Moreover, evaluating fluid intelli-
gence is essential for assessing the reasoning abil-
ities of LLMs since LLMs have been exposed to
and memorized vast amounts of knowledge during
pre-training (Kaplan et al., 2020; Biderman et al.,
2024), potentially blurring the line between their
reasoning ability and memorization capacity.

Drawing from both cognitive (Jensen, 1998) and
AI research (Chollet, 2019; Barak and Loewenstein,
2024), an ideal approach to evaluate fluid intelli-
gence in LLMs involves evaluating their ability to
perform abstract inductive reasoning, i.e., induct a
general pattern solely from given input-output ex-
amples and apply this pattern to deduce the correct
outputs for new inputs. The Abstraction and Rea-
soning Challenge (ARC) (Chollet, 2019), which re-
quires models to induct transformation rules from
input-output grid pairs (as shown in Table 1), is a
benchmark well-suited for this purpose. Due to the
abstract nature of ARC tasks, LLMs cannot rely
on memorization or external knowledge to solve
them. In contrast, many existing inductive reason-
ing tasks (Honovich et al., 2023; Yang et al., 2024;
Qiu et al.) fail to prevent the use of memorization
shortcuts, making those tasks easier for LLMs to
solve, as shown in Table 1.

Therefore, the ARC task has become the de facto
standard for measuring machine fluid intelligence,
sparking a wave of recent studies aimed at im-
proving LLM performance on it (Acquaviva et al.,
2022; Xu et al.; Wang et al., 2024; Wang et al.).
Despite these efforts, LLMs continue to struggle
with the ARC task. For example, even the state-
of-the-art GPT-4o with careful prompting can only
correctly solve 19% of tasks (see Table 3), which
falls far short of the average human performance
of ∼75% (LeGris et al., 2024). These observations
lead us to explore a fundamental question: why is
the ARC task so challenging for LLMs?
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Table 1: Examples of different inductive reasoning tasks with GPT-4o and human’s scores. Check Appendix A for
details of score calculation on the first three tasks. The transformation rule of the ARC example can be decomposed
into two atomic operations in the dotted box :1) move down the blue subgrid for one step; 2) change its color to red.

Input Format Output Format Correct Num↑
Visual Visual 0
Visual Textual 1
Visual + Textual Visual 0
Visual + Textual Textual 16
Textual Textual 19

Table 2: Evaluation results of GPT-4o on the 100 ARC
tasks using different input/output formats.

To this end, this paper proposes to investigate
the answers to the above question from multiple
perspectives. Our first intuition is inspired by an ob-
servation that the transformation rule of each ARC
task can be regarded as a composition of atomic op-
erations (e.g., the transformation rule in Table 1 can
be split into two atomic operations). This motivates
us to study the ARC tasks through task decom-
position. Hence, we first decompose ARC tasks
into atomic operations as transformation rules to
construct a benchmark Abstraction and Reasoning
on Atom Operation Corpus (ARAOC). However,
LLMs perform poorly on some atomic operations
on ARAOC, while this task is trivial to humans
(§3), which indicates that their fluid intelligences
are limited. Then, from a perspective of task de-
composition, we evaluate the composition ability
for LLMs on both ARAOC and ARC benchmarks.
Our finding reveals that the limited composition
ability for LLMs also contributes to their failures
on fluid intelligence evaluation tasks (§4).

Next, we explore the challenge from the abstract
representation format perspective. Our another in-
tuition is that LLMs may lack the ability to un-
derstand two-dimensional NumPy arrays (matri-
ces) that are commonly used to represent the 2D
pixel grid inputs in ARC and ARAOC tasks (Xu
et al.; Wang et al., 2024), which hinders their per-
formances. We thereby design experiments to in-
vestigate whether LLMs understand such matrices-
form inputs, and also convert matrices into natural
language to see whether it enhances LLM’s per-
formances (§5). Finally, we investigate the chal-
lenge from the modeling perspective. We conduct
experiments to analyze the effect of left-to-right
autoregressive decoding on model performances
and analyze whether LLMs could correctly utilize
important information on ARAOC tasks (§6). Ex-
tensive experimental results in §5 and §6 give us
several hints on why LLMs cannot perform ARC
and ARAOC tasks well, which further motivating
us to design strategies to enhance their correspond-
ing capabilities. Overall, the contributions of this
paper are summarized as follows:
1. This paper makes an initial attempt to study

fluid intelligence of LLMs using the ARC tasks
and conduct an in-depth study from multiple
perspectives.

2. We propose the ARAOC benchmark that as-
sesses the fluid intelligence over atomic opera-
tions from ARC, which is extremely simple to
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LLM Acc↑ Not M%↓
Mistral 2.00 48.00
Llama-3 5.00 33.00

Mistral-FTARC 3.00 34.00
Llama-3-FTARC 9.00 29.00

Mistral-8*7B 3.00 27.00
Llama-3-70B 9.00 24.00

GPT-3.5 6.00 35.00
GPT-4o 19.00 11.00

GPT-o1* 18.00 10.00

Table 3: Evaluation results on the 100 ARC tasks, where
Acc is represented as percentages. FTARC denotes fine-
tuning on ARC tasks. The best results in each column
are boldfaced. *GPT-o1 is evaluated on a partial subset,
where GPT-4o obtains 16.00 and 10.00 for both scores.

humans yet surprisingly challenging for LLMs.
3. We obtain several valuable findings through con-

trollable experiments on ARAOC and ARC, and
reveal the challenges of LLMs on internal fac-
tors, task composition, input format as well as
modeling with left-to-right Transformer.

2 Evaluating Fluid Intelligence on ARC

2.1 ARC Benchmark

We start by evaluating the fluid intelligences of
existing LLMs using the ARC benchmark, which
comprises 400 training and 400 evaluation tasks.
As shown in Table 1, each ARC task includes sev-
eral 2D input-output grid pairs that define a unique
transformation rule, with each grid ranging from
1× 1 to 30× 30 pixels, and each pixel being one
of ten colors (see Figure 2 for the names of the ten
colors). An LLM must induct the transformation
rule from the given input-output grid pairs and use
it to predict the output grid for a testing input grid.
Due to the high cost of closed-source LLMs, we
follow Wang et al. (2024) and use a subset of 100
training tasks in ARC for evaluation 1.

2.2 Comparing Text- and Visual-Based LLMs

Since ARC tasks are presented in a 2D visual grid
format, we can employ both visual-based LLMs
(Visual) and text-based LLMs through convert-
ing input-output grids into matrices represented by
NumPy arrays following existing works (Xu et al.;
Wang et al., 2024) (Textual). Therefore, we first
investigate the performances of these two types of

1Additionally, we evaluated GPT-4o on all 400 training tasks, where it
achieved an Acc score of 18.50. This result aligns with the score reported
in Table 3, further supporting the representativeness of the subset.

LLMs on ARC by prompting GPT-4o with 5 differ-
ent input-output formats (check Appendix B for the
prompts). As shown in Table 2, prompting GPT-
4o solely with textual input-output format yielding
the best performance on the 100 ARC tasks. On
the other hand, it seems extremely challenging for
visual-based LLMs to finish ARC tasks, where we
provide detailed analysis in Appendix C. Based
on the results, we apply the textual only input-
output format and refer “LLMs” to text-based
LLMs in the rest of the paper.

2.3 Comparing Different LLMs on ARC
Evaluated LLMs. We evaluate both closed-
source and open-source LLMs. For closed-
source models, we use GPT-4o and GPT-
3.5. For open-source LLMs, we select Mistral
(Mistral-7B-Instruct-v0.2) (Jiang et al., 2023)
and Llama-3 (Llama-3-8B-Instruct) (MetaAI,
2024). Additionally, we include the recently re-
leased GPT-o1 (o1-preview) model, known for its
strong reasoning abilities, for comparison. Due to
the slow inference speed and limited quota of GPT-
o1, we evaluate it on a subset of 50 tasks and report
the performance of both GPT-4o and GPT-o1 on
this subset. Check Appendix D for details on the
inference configurations.

Evaluation Metrics. The primary metric we use
to evaluate the performance of LLMs is the accu-
racy of their predictions (Acc). Additionally, since
we observe that the shape of the LLMs’ predicted
output grids does not always align with the ground
truth, we report the percentage of mismatched pre-
dictions for each LLM (Not M%), where lower
scores indicate better performance.

Results. The evaluation results are presented
in Table 3. We observe that, although GPT-4o
significantly outperforms other LLMs, its perfor-
mance remains far from ideal. Moreover, GPT-o1
shows almost no improvement over GPT-4o on the
evaluated subset. Hence, due to its low speed and
limited quota, we do not include GPT-o1 in the
following experiments.

For the other LLMs, handling ARC tasks seems
extremely challenging, with more than one-third
of their predictions failing to match the shape
of the corresponding ground truth. To exam-
ine the impact of model size on ARC perfor-
mance, we further experiment with Mistral-8*7B
(Mixtral-8x7B-Instruct-v0.1) and Llama-3-
70B (Llama-3-70B-Instruct). As shown in Ta-
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Name Description/Transformation Rule Example

Move Move a subgrid in the input grid for several steps towards
a single direction in one of {Up, Down, Left, Right,
Up-left, Up-right, Down-left, Down-right} to form the
output grid. Note that the moved subgrid could not
surpass the boundary of the input grid.

Change Color Change the color of a subgrid in the input grid to another
color other than black to form the output grid.

Copy Copy a subgrid in the input grid and move it with Move
to form the output grid, while making sure that the
copied subgrid could neither surpass the boundary of
the input grid, nor overlap with the original subgrid.

Mirror Mirror the input grid towards a single direction in one of
{Up, Down, Left, Right} to form the output grid.

Fill Internal The input grid has a closed subgrid whose internal is
black. Fill the internal black part of this subgrid with
another color to form the output grid.

Scale Some pixels in the input grid are colored with a specific
color. Let the number of rows and columns of the input
grid be a and b, respectively. First, the input grid will be
copied a× b times. These copies will then be arranged
in an output grid with a × a rows and b × b columns,
placed from top to bottom and left to right. Finally, if
the position (i, j) in the input grid is black, the i× j-th
copy in the output grid will be converted to black.

Table 4: Descriptions and examples of the six atomic operations we use in this paper.

LLM Move Change Color Copy Mirror Fill Internal Scale
Acc↑ Not M%↓ Acc↑ Not M%↓ Acc↑ Not M%↓ Acc↑ Not M%↓ Acc↑ Not M%↓ Acc↑ Not M%↓

Mistral 2.00 36.00 15.00 30.00 2.00 43.00 1.00 97.00 9.00 31.00 0.00 98.00
Llama-3 1.00 19.00 39.00 17.00 4.00 13.00 2.00 96.00 63.00 6.00 1.00 89.00

Mistral-8*7B 2.00 10.00 57.00 5.00 2.00 7.00 5.00 95.00 50.00 3.00 3.00 81.00
Llama-3-70B 8.00 15.00 92.00 1.00 4.00 11.00 7.00 75.00 64.00 3.00 3.00 80.00

GPT-3.5 4.00 27.00 48.00 13.00 4.00 29.00 6.00 89.00 58.00 12.00 1.00 80.00
GPT-4o 13.00 0.00 98.00 0.00 15.00 0.00 12.00 48.00 96.00 0.00 2.00 72.00

Table 5: Results on ARAOC. Acc is shown in percentage. The best results under each column are boldfaced.

ble 3, larger LLMs consistently outperform smaller
ones across all tasks, indicating that models with
more parameters exhibit stronger fluid intelligence
on ARC tasks. However, their overall performance
remains poor. We hypothesize that this poor per-
formance is due to the LLMs’ unfamiliarity with
the style of these tasks. Consequently, we further
fine-tuned Mistral and Llama-3 on a separate ARC
evaluation set that do not overlap with the 100 ARC
tasks used in Table 3 using LoRA (Hu et al., 2022),
and evaluated them on the 100 ARC tasks (check
fine-tuning details in Appendix E). However, as
shown in Table 3, even though fine-tuning on ARC
tasks improves the LLMs’ performance, the results
remain suboptimal, with Acc scores below 10%.

In summary, these experiments demonstrate the

significant challenge LLMs face in successfully
completing ARC tasks, motivating us to further in-
vestigate the underlying reasons for this difficulty.

3 Breaking ARC into Atomic Operations

As mentioned in §1, the transformation rule of each
ARC task can be decomposed into several atomic
operations (e.g., the rule in Table 1 can be broken
into moving the subgrid and changing its color),
which motivates us to analyze the challenges of
LLMs from a task decomposition perspective. To
this end, we first decompose the ARC tasks into
simplified tasks and form the ARAOC benchmark
that consists of various atomic operations, then use
ARAOC to evaluate the fluid intelligence of LLMs.
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3.1 ARAOC Benchmark

To evaluate LLMs’ fluid intelligence with atomic
operations, we first manually go through all the
tasks in ARC’s training and evaluation sets, then
conclude six atomic operations that can compose
the transformation rules for most of the ARC tasks.
Check Table 4 for atomic operations’ descriptions.

For each atomic operation, we use it as the trans-
formation rule to build 100 tasks with 3 input-
output training pairs and 1 testing pair, which fol-
lows the standard ARC setting (check Appendix G
for the crafting details). This finally leads to a
benchmark named Abstraction and Reasoning on
Atom Operation Corpus (ARAOC) with 600 dis-
tinct tasks. We evaluate all LLMs in §2.3 on
ARAOC and additionally include Mistral-8*7B and
Llama-3-70B to study the impact of model size.

Results. As shown in Table 5, GPT-4o largely
outperforms other LLMs across almost all tasks in
the ARAOC benchmark, achieving nearly 100%
Acc scores on the Change Color and Fill Inter-
nal tasks, demonstrating its high fluid intelligence.
Additionally, Llama-3/Llama-3-70B outperforms
Mistral/Mistral-8*7B, suggesting that pre-training
with a greater number of parameters can enhance
the fluid intelligence of LLMs. Also, similar to Ta-
ble 3, larger LLMs continue to outperform smaller
ones across tasks, further illustrating the above
point. However, all LLMs still encounter substan-
tial difficulties with tasks related to Move, Copy,
Mirror, and Scale, failing to predict the correct
shapes of output grids for the latter two atomic
operations on more than ~50 tasks.

3.2 Further Analysis

Analysis I: Internal Factors. As concluded
from §3.1, all the LLMs exhibit poor performances
on Move and Copy tasks in ARAOC. To analyze
whether this is caused by the internal complexity
of Move and Copy, we investigate factors that may
affect the complexity of Move and Copy, and their
influences on LLMs’ performances. Given that
Copy can actually be viewed as first copying the
original subgrid, then moving the copied subgrid
several steps in specific directions, we intuitively
consider two factors in this study: 1) the number of
steps the subgrid/copied subgrid moves; 2) the di-
rection in which the subgrid/copied subgrid moves.

Setup. Specifically, we choose Up, Up-right and
1 step, 2 steps, 3 steps as our candidate moving di-

COMB Llama-3 GPT-4o

Move

Up 1 12.00 24.00
Up 2 6.00 26.00
Up 3 4.00 17.00

Up-right 1 2.00 9.00
Up-right 2 0.00 2.00
Up-right 3 2.00 1.00

Copy

Up 1 16.00 46.00
Up 2 10.00 38.00
Up 3 12.00 27.00

Up-right 1 8.00 11.00
Up-right 2 4.00 6.00
Up-right 3 4.00 10.00

Table 6: Analysis I’s Acc scores. COMB refers to
combination. See Table 16 for the Not M% scores.

rections and steps, respectively. We then generate
50 input grids for each atomic operation, ensur-
ing that these grids can be transformed into valid
output grids based on any combination of the two
candidate sets (e.g., Up for 1 step). For each input
grid, we create 6 tasks corresponding to all 6 com-
binations of the candidate sets, and evaluate the
closed-source (GPT-4o) and open-source (Llama-
3) LLMs, which performed better in Table 5, as
representatives on these tasks.

Results. Results are shown in Table 6. We ob-
serve that for both Move and Copy, a larger number
of steps would lead to lower Acc scores. This could
be because as the number of steps increases, LLMs
need to focus on a longer context to induce the
atomic operation, which leads to more challenges.
Additionally, LLMs appear to be more adept with
subgrids that move in a straight direction, as their
performance on "Up"-related tasks is significantly
higher than on "Up-right"-related tasks. Even when
considering "Up-right 1" as a two-step move (one
step "Up" and one step "Right"), LLMs’ Acc scores
on "Up-right 1" are still lower than those on "Up
2", further supporting our previous assertion.

Analysis II: Effect on Input Size. We evaluate
LLMs on 100 Move and Copy tasks with smaller
sizes (crafting details are included in Appendix H).
The evaluation results on these tasks are listed in
Table 7, where LLMs perform significantly better
on Move and Copy tasks with smaller input sizes.
This indicates that the size of matrix-format input
does affect LLMs’ understanding of ARAOC tasks
and thus influences their performance on ARAOC.

Overall, this section shows that the perfor-
mances of LLMs is largely affected by the super-
ficial properties of the input grids, and LLMs
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fail to grasp the underlying concept of the oper-
ations. This result further suggests that LLMs
rely more on pattern recognition and memo-
rization, akin to crystallized intelligence, rather
than reasoning through abstract, novel relation-
ships (fluid intelligence). In the following, we
provide further insights into LLMs’ deficiencies
through the lens of three challenges on ARC and
ARAOC: task composition (§4), LLMs’ under-
standing of task inputs (§5), and LLMs’ modeling
strategies (§6).

4 Challenge on Task Composition

In this section, we assess the deficiency of LLM’s
fluid intelligence from a task composition perspec-
tive. First, we consider a simple composition exper-
iment that controllably evaluates the composition
for Move and Copy in ARAOC (§4.1). Moreover,
we design a complex composition experiment uti-
lizing ARC tasks to evaluate LLMs’ abilities to
compose all atomic operations (§4.2).

4.1 Evaluation on Simple Composition
We start from evaluating LLMs’ compositional abil-
ity on a simple composition task. To be specific,
we compose Move and Copy to create 100 new
tasks for evaluation. Since Mistral and Llama-3
are facing severe challenges on inducting these two
atomic operations, we fine-tune them on three types
of data: 1) 3,000 Move tasks; 2) 3,000 Copy tasks ;
3) 1,500 Move tasks and 1,500 Copy tasks, while
making sure that these tasks do not overlap with
those in ARAOC. We evaluate these fine-tuned
LLMs and the GPT models on the newly crafted
Move and Copy tasks and list the results in Table 8.

As can be seen, fine-tuning on single atomic
operation’s data can boost LLMs’ performances
on corresponding tasks, while fine-tuning on both
atomic operations can achieve enhancement on
both tasks. However, all the fine-tuned LLMs as
well as GPT models face severe challenges when
dealing with the composition tasks, which is not a
complex composition, indicating that the composi-
tion abilities of LLMs are limited.

4.2 Evaluation on Complex Composition
Furthermore, we examine the LLMs’ abilities to
compose atomic operations in complex ways. As
mentioned in §3, the ARC tasks can be decom-
posed into atomic operations listed in Table 4.
Therefore, we regard ARC tasks as complex com-
positions of atomic operations for evaluation. Here

Setting Mistral Llama-3 GPT-3.5 GPT-4o

Move Ori 2.00 1.00 4.00 13.00
Small 12.00 12.00 20.00 28.00

Copy Ori 2.00 4.00 4.00 15.00
Small 12.00 9.00 14.00 34.00

Table 7: Acc (in percentage) of LLMs with different
input sizes. See Table 17 for the Not M% scores.

we evaluate Llama-3 and GPT-4o since they are
the better open-sourced and close-sourced LLMs
in Table 8. In addition, we fine-tune Llama-3 on
tasks built upon atomic operations (check fine-tune
details in Appendix E) to see if this leads to im-
provement on ARC (FT-atomic). In addition, we
apply three more strategies to fine-tune Llama-3
for comparison: 1) using both the aforementioned
operation data and 400 ARC tasks that do not over-
lap with the 100 evaluation tasks (FT-atomic-arc);
2) using only the 400 ARC tasks (FT-arc).

Results are show in Table 9. We observe that
fine-tuning on atomic operation data largely im-
proves the performance of Llama-3 on ARAOC 2.
In particular, both fine-tuned LLMs achieve high
accuracy on Color, Fill Internal, and Scale tasks,
which Llama-3 struggles with. However, Llama-3-
FT-atomic performs even worse than Llama-3 on
ARC tasks. This could be due to the loss of com-
positional ability after solely fine-tuning on atomic
operations, an issue that Llama-3-FT-atomic-arc
does not encounter. On the other hand, fine-tuning
on ARC tasks enhances LLMs’ performance on
ARC, but the improvement on ARAOC tasks is rel-
atively limited compared to fine-tuning on ARAOC
tasks. This is likely because the transformation
rules in ARC are highly complex, and LLMs strug-
gle to decompose these rules into atomic opera-
tions. Nonetheless, all LLMs still perform poorly
on ARC tasks, which is unsurprising given their
difficulties with even the simple compositions pre-
sented in Table 8.

Overall, while fine-tuning on atomic opera-
tions may assist LLMs in understanding these
operations, it does not enable them to infer such
operations from in-context examples. This lim-
itation explains LLMs’ poor performance on
compositional tasks and further highlights their
lack of intrinsic mechanisms for abstract reason-
ing, a core characteristic of fluid intelligence.

2We perform an additional experiment in Appendix F to further support
this point.
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LLM Move Copy Comp

Mistral-FTMove 19.00 4.00 0.00
Mistral-FTCopy 11.00 32.00 2.00
Mistral-FTMove+Copy 25.00 32.00 4.00

Llama-3-FTMove 21.00 4.00 0.00
Llama-3-FTCopy 12.00 33.00 3.00
Llama-3-FTMove+Copy 26.00 27.00 5.00

GPT-3.5 4.00 4.00 0.00
GPT-4o 13.00 15.00 2.00

Table 8: Acc (in percentage) on tasks composing Move
and Copy (Comp). See Table 18 for the Not M% scores.

5 Challenge on Input Format

Since LLMs cannot process visual inputs, we fol-
low Wang et al. (2024) to convert the 2D visual
input-output grids in ARAOC tasks into matrix-
format before feeding them to the LLMs (§2.1).
However, it remains uncertain that whether this con-
version affects LLMs’ performances on ARAOC,
since LLMs are mostly trained on natural language
data, and may not understand such matrix-format
inputs well. In this section, we first try to answer
this question (§5.1), then investigate a strategy to
remedy its potential challenges (§5.2).

5.1 Matrix-format Understanding

We first investigate whether LLMs understand the
input matrices well. Specifically, we select the test-
ing input matrices from the 100 ARAOC Move
tasks, and ask LLMs to output the size, transpose,
and subgrid’s corner elements’ locations of each
matrix (see the input prompt in Figure 6). Our
intuition is that if LLMs correctly answer these
questions, they should have understood the matrix-
format input. Results are shown in Table 10, where
GPT-4o answers these questions with high accu-
racy, indicating that it comprehends such matrix-
format inputs well. However, other LLMs perform
poorly on these tasks, which may further affect
their results on ARAOC.

To further investigate the impact of matrix-
format input, we re-evaluate Llama-3-FTMove+Copy
from Table 8 and GPT-4o on the Move and Copy
tasks without using the location information of sub-
grids, as detailed in Appendix I. The results in
Appendix I show that prohibiting the use of loca-
tion information do reduce LLMs’ performances
on both tasks, indicating that a fundamental un-
derstanding of matrices is crucial for completing
ARAOC and ARC tasks. However, as the com-
bined results from Table 5 and Table 10 suggest,
possessing matrix understanding alone does not

guarantee good performance on these tasks.

5.2 Switching Matrix into Natural Language

Since LLMs are predominantly trained on natural
language rather than matrix-format data, we further
propose to convert the matrix-format input-output
grids into natural language with the aid of a coordi-
nate system-based prompt (listed in Figure 8). We
evaluate LLMs using this new prompt on ARAOC,
and the results are presented in Table 11.

Notably, we find that on tasks that LLMs origi-
nally cannot answer well (Move, Copy, Mirror, and
Scale), using natural language inputs can largely
boost their performances. As for tasks that are rel-
atively easy for LLMs, converting matrix-format
input to natural language still keep the good perfor-
mances. One exception appears to be the Mistral
model, whose performance decreases with the natu-
ral language prompt. This is probably because this
model is not strong enough to encode the natural
language input that can be handled by other LLMs,
which makes its results not indicative.

Overall, we conclude that LLMs’ failure on
fluid intelligence tests is not mainly due to their
understanding of the specific matrix-format in-
puts, but their limitations on encoding such in-
puts for obtaining global representations of the
input tasks.

6 Modeling Challenge

In this section, we examine whether LLMs’ mod-
eling features affect their fluid intelligence from
both the model architecture perspective and the
information encoding perspective.

6.1 The Bias of Model Architecture

When predicting output tokens given an input
prompt, existing LLMs use the autoregressive de-
coding strategy (Bahdanau et al., 2015), which pre-
dicts the next token based solely on previous tokens.
However, in some ARAOC tasks like Mirror, the
newly generated part in the testing output grid may
locate before the original part. This prevents LLMs
from using information in the testing input grid
to generate the new part, thus lowering their per-
formances. For example, if the Mirror example
in Table 4 is a testing input-output grid pair, LLMs
cannot reference the bottom two green grids (the
original subgrid) while generating the upper two
green grids (the new subgrid), which makes the
generation process more challenging.
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LLM Individual Atomic Operation Composition

Move Change Color Copy Mirror Fill Internal Scale ARC

Llama-3 1.00 39.00 4.00 2.00 63.00 1.00 5.00
Llama-3-FT-arc 2.00 73.00 5.00 3.00 88.00 0.00 9.00
Llama-3-FT-atomic 13.00 98.00 14.00 27.00 97.00 78.00 2.00
Llama-3-FT-atomic-arc 12.00 97.00 17.00 28.00 98.00 79.00 6.00

GPT-4o 13.00 98.00 15.00 12.00 96.00 2.00 19.00

Table 9: Results of LLMs on individual and composition of atomic operations. See Table 19 for the Not M% scores.

LLM Size Location Transpose

Mistral 0.32 0.00 0.02
Llama-3 0.63 0.04 0.04

GPT-3.5 0.93 0.43 0.34
GPT-4o 1.00 0.91 0.91

Table 10: LLMs’ accuracy on matrix-related questions.
The best results under each column are boldfaced.

Method Mistral Llama-3 GPT-3.5 GPT-4o

Move w/o NL 2.00 1.00 4.00 13.00
NL 5.00 12.00 23.00 53.00

Color w/o NL 15.00 39.00 48.00 98.00
NL 3.00 83.00 59.00 99.00

Copy w/o NL 2.00 4.00 4.00 15.00
NL 2.00 6.00 14.00 40.00

Mirror w/o NL 1.00 2.00 6.00 12.00
NL 2.00 8.00 21.00 30.00

Fill Internal w/o NL 9.00 63.00 58.00 96.00
NL 0.00 10.00 35.00 72.00

Scale w/o NL 0.00 1.00 1.00 2.00
NL 0.00 2.00 0.00 4.00

Table 11: Acc (in percentage) of LLMs with natural
language inputs (NL). See Not M % scores in Table 21.

To investigate this hypothesis, we conduct an ex-
periment using the Mirror operation. Specifically,
we first randomly generate 100 new input grids for
Mirror, while lowering the number of rows and
columns of input grids within [3, 7] to get more
significant results. We then mirror each input grid
towards left and right to create two individual tasks
and overall leads to 100 tasks for left and right,
respectively. We evaluate all the LLMs on these
tasks and perform a binomial significance test to
examine the differences in their performance across
both directions.

Results are shown in Table 12. Noting that
stronger models (the GPT models) perform sig-
nificantly better when the mirroring direction is
to the right, i.e., when the original subgrid is pre-
dicted before the mirrored one. This supports our
hypothesis that the autoregressive nature of LLMs
hinders their performance, as it prevents the simul-

Direction Mistral Llama-3 GPT-3.5 GPT-4o

Left 4.00 2.00 11.00 13.00
Right 4.00 6.00 20.00** 28.00**

Table 12: Acc (in percentage) of LLMs with two mir-
roring directions. “**” means the bottom result is sig-
nificant better than the upper one with p < 0.05. See Ta-
ble 22 for the Not M% scores.

taneous back and forth processing required by fluid
intelligence. For weaker models, their relatively
low scores render their results less conclusive, al-
though Llama-3 still achieves higher Acc scores
when the mirroring direction is to the right, which
aligns with our hypothesis. Additionally, to further
explore whether the above findings hold for LLMs
of different sizes, we evaluate Mistral-8*7B and
Llama-3-70B on these tasks and provide a detailed
analysis in Appendix J.

6.2 Challenge on Information Usage

Since each task in ARAOC includes 3 in-context
examples, the ability of LLMs to identify useful in-
formation from the in-context examples may affect
their performances on ARAOC. We investigate this
claim by calculating the saliency score (Simonyan
et al., 2013) of one of Mistral’s incorrect predic-
tions with respect to the in-context examples, with
higher scores indicating a larger impact.

As shown in Figure 1, Mistral should move "6"
two steps to the right, yet it incorrectly keeps "6"
fixed in the output grid. With the saliency scores,
we find that Mistral does not focus much on the
moved parts in the in-context examples (e.g., all
the "7"s in the first example). Instead, it focuses
more on the unchanged parts, which leads it mis-
takenly assume that "6" should also be fixed. These
observations illustrate that the inability to identify
relevant information in in-context examples also
explains why LLMs struggle with ARAOC tasks.
In addition, we provide a saliency analysis exam-
ple where Mistral makes a correct prediction in
Appendix K for comparison.
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Figure 1: A saliency analysis example, where darker
means higher saliency corresponds to the boxed token.

Overall, we conclude that LLMs’ internal
architecture also limits their ability to access
global information, which is important for illus-
trating fluid intelligence. While the findings on
LLMs’ fluid intelligence in previous sections are
drawn from ARC and ARAOC tasks, they can be
generalized to other real-world tasks and a further
discussion on the applicability of our findings can
be found in Appendix L.

7 Related Works

Evaluating fluid intelligence of LLMs. As an
essential aspect of intelligence (Cattell, 1963, 1971;
Jaeggi et al., 2008), studying the fluid intelligence
of LLMs offers deeper insights into their over-
all intelligence. Chollet (2019) and Barak and
Loewenstein (2024) suggest that abstract induc-
tive reasoning is an ideal method for evaluating
LLMs’ fluid intelligence. However, most existing
benchmarks (Honovich et al., 2023; Yang et al.,
2024; Qiu et al.) fail to prevent memorization
shortcuts, making them easier for LLMs to solve.
In contrast, the ARC corpus (Chollet, 2019) that
challenges models to identify transformation rules
between input-output grids, poses significant diffi-
culty for LLMs, making it suitable for fluid intelli-
gence assessment. Previous works have primarily
focused on improving LLM performance on ARC
tasks (Min, 2023; Tan and Motani, 2023; Xu et al.;
Mirchandani et al., 2023; Wang et al.; Huang et al.,
2024; Wang et al., 2024), but the results remain
far from optimal. This motivates us to explore the
underlying reasons behind LLMs’ limited fluid in-
telligence.

Matrix operations with LLMs. It has been
shown that LLMs have abilities to understand ma-
trix operations (Charton, 2021; Collins et al., 2024;
Azerbayev et al.; Shao et al., 2024). However, §5.1
indicates that understanding the properties of ma-

trix may not the key factor of LLMs’ success on
ARC and ARAOC, leading to further analyses.

8 Conclusion

This paper presents an in-depth study of LLMs’
fluid intelligence deficiencies using the ARC tasks,
with a series of controlled experiments from mul-
tiple perspectives. Through task decomposition,
we introduce the atomic ARAOC benchmark, re-
vealing that LLMs struggle with atomic operations
despite their simplicity for humans. We further
demonstrate that LLMs’ task composition abilities
are limited, as improvements on the decomposed
ARAOC tasks via fine-tuning do not lead to better
performance on ARC tasks. Additionally, our study
shows that LLMs’ difficulty in encoding abstract in-
put formats is a major obstacle in addressing ARC
tasks. Lastly, it shows an intrinsic limitation in
the left-to-right paradigm of LLMs, which hinders
their ability to achieve advanced fluid intelligence.

Limitations

Due to the experiment budget, on all the ARC re-
lated experiments, we only evaluate LLMs on 100
tasks rather than the whole corpus following Wang
et al. (2024), which may lead to potential bias in the
evaluation results. Also, although most of the ARC
tasks can be composed by the six atomic operations
proposed by our work, there may still exist very
few tasks that cannot be composed by our atomic
operations, which may also introducing few bias
to Table 9. We will try to provide more compre-
hensive results in future works once we get more
experimental budgets, and propose more atomic
operations that could be used to cover more ARC
tasks.
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A Further details regarding the
experiments in Table 1

In Table 1, we also measure GPT-4o and human’s
performances on the first three inductive reasoning
tasks. The details are as follows:

1. II refers to Instruction Induction. We conduct
experiment on the “Synonyms” task in Hon-
ovich et al. (2023), since models in (Honovich
et al., 2023) obtain the worst performance on
this subtask. After GPT-4o has generated all
the responses, instead of using BERT-Score
to evaluate the responses, we ask a human an-
notator to give 0/1 (incorrect/correct) points
to each response based on the ground truths.
Then we calculate GPT-4o’s average score as
the final performance. Human’s performance
is extracted from Honovich et al. (2023).

2. As for Deer, since it does not provide human
performance, we invite an annotator to man-
ually finish the first 50 tasks in its test set,
and ask another annotator to give 0/1 (incor-
rect/correct) points to each human response
based on the ground truths. We also ask GPT-
4o to finish the first 50 tasks and do the same.
Then we calculate GPT-4o and human’s aver-
age score as the final performance.

3. As for Mini Scan, the results are extracted
from (Qiu et al.).

II refers to Instruction Induction. We experiment
on its “Synonyms” task, where models obtain the
worst performance. As for Deer, we evaluate on
the first 50 tasks of its test set

B The Prompts We Use in this Paper

All the prompt templates we use in this paper are
listed in Figure 2, Figure 3, Figure 4, Figure 5,
Figure 6, Figure 7, and Figure 8.

C Detailed analysis regarding the failure
of visual-based LLMs on ARC

In Table 2 we find that it is extremely for visual-
based LLMs to finish ARC tasks. After manually
checking the model responses, we conlcude that it
is because when answering ARC tasks, the visual-
based LLMs needs to generate every small pixel
(grid) correctly to form a totally correct output grid,
which is extremely challenging for visual-based
LLMs like GPT-4o.

To take a deeper look at how visual-based GPT-
4o fails on ARC, we sample a few grids from ARC
instances where each grid has a size ≤ 10 × 10.
We then take steps to ask GPT-4o to recognize the
grid from the image and convert it to the textual
matrix format. GPT-4o manages to recognize the
sizes with around 50% accuracy (considering each
instance consists of more than 6 grids, this would
result in large error propagation). Additionally,
GPT-4o fails to correctly convert any grid to the
matrix format. This study further illustrates that
GPT-4o lacks the ability to ground the figures of
grids to the symbolic space, consequently limiting
its reasoning performance.

D Inference Configurations of LLMs

For GPT models, we use their default
inference configurations mentioned in
https://platform.openai.com/docs/guides/
text-generation/completions-api. As for
Mistral and Llama, we set the maximum output
length to be 3000 tokens, and follow their default
settings for other configurations. During inference,
for all the models, we maintain their official
prompt templates unchanged.

E Fine-tuning Details

For all the fine-tuning experiments, we do not fine-
tune all the LLM’s parameters, and use LoRA in-
stead, as mentioned in §2.3. We fine-tune each
model for 3 epochs with a batch size of 4. The
dimension of LoRA’s attention layer is set to 64,
and the α and dropout rates are set to 16 and 0.1,
respectively. The learning rate and weight decay
are set to 2e-4 and 0.001, respectively.

For the fine-tuning data used in §4.2, we gener-
ated an additional 500 tasks for each atomic opera-
tion beyond the 100 tasks in ARAOC, resulting in
a total of 3000 tasks for the FT-atomic fine-tuning.

F Analysis on whether LLMs Learn
Atomic Operations During Fine-tuning

In Table 9, we observe that fine-tuning on atomic
operations enhances LLM performance on ARAOC
tasks. However, it is possible that these improve-
ments come from the LLMs learning the new ma-
trix format of the input/output, rather than truly
learning the atomic operations. To further inves-
tigate this, we conducted additional experiments.
For Llama-3-FT-atomic in Table 9, we fine-tuned
Llama-3 on all six atomic operations, using 500
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SYSTEM:
You are a helpful assistant.

USER:
You will be playing a game that need to find common patterns from input examples and apply the
pattern for prediction on new examples.
Lets play a game where you are transforming an input grid of numbers into an output grid of
numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:
Example input grid:
{INPUT GRID 1}
Example output grid:
{OUTPUT GRID 1}

Example input grid:
{INPUT GRID 2}
Example output grid:
{OUTPUT GRID 2}

Example input grid:
{INPUT GRID 3}
Example output grid:
{OUTPUT GRID 3}

The input grid is:
{TESTING INPUT GRID}

What is the output grid? Please only output your answer without analysis in the following format:
Output grid:

Figure 2: The standard prompt we use in this paper that converts ARC/ARAOC tasks into matrix-format inputs.
Also the prompt for the textual input/textual output setting in Table 2.
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SYSTEM:
You are a helpful assistant.

USER:
You will be playing a game that need to find common patterns from input examples and apply the
pattern for prediction on new examples.

{IMAGE}

In the given image, there are two columns of matrices with elements represented by different colors.
The left column contains the input matrices, and the right column contains the corresponding
output matrices. The last row includes only an input matrix, while the other rows include both
input and output matrices. Your task is to identify the pattern from the given input-output matrix
pairs and apply this pattern to predict the output matrix for the input matrix in the last row.

Please complete the task by generating an image that includes only the predicted output matrix.

Figure 3: The prompt for the visual input/visual output setting in Table 2.

LLM Individual Atomic Operation

Move Change Color Copy Mirror Fill Internal Scale

Llama-3 1.00 39.00 4.00 2.00 63.00 1.00
Llama-3-FT-atomic 13.00 98.00 14.00 27.00 97.00 78.00
Llama-3-FT-atomic w/o own 10.00 (17.00) 94.00 (4.00) 6.00 (22.00) 5.00 (81.00) 58.00 (0.00) 2.00 (96.00)

Table 13: Results of LLMs fine-tuned on different atomic operations. Not M% scores of Llama-3-FT-atomic w/o
own are shown in brackets. Not M% scores for other models are listed in Table 19.

tasks for each. In the new experiments, for each
atomic operation, we fine-tuned Llama-3 on the
other five atomic operations, using 600 tasks for
each, ensuring the total number of fine-tuning ex-
amples remained consistent. The resulting model
(Llama-3-FT-atomic w/o own) was then tested on
the excluded atomic operation. The rationale be-
hind this setup is that if the performance improve-
ment observed in Llama-3-FT-atomic was solely
due to the model learning the new matrix format of
the input and output, rather than the atomic opera-
tions, the performance of Llama-3-FT-atomic w/o
own should be similar to Llama-3-FT-atomic.

The results are presented in Table 13. As
shown, while Llama-3-FT-atomic w/o own im-
proves upon Llama-3, performance gaps remain
between Llama-3-FT-atomic w/o own and Llama-3-
FT-atomic. Based on these results and the analysis
in Table 13, we conclude that, to a large extent, the
fine-tuning process enhances the original LLM’s
understanding of atomic operations.

G Details on Crafting ARAOC

1. Move: for the Move tasks, the numbers of
rows and columns of the input and the out-
put grids are randomly initialized from [1,16],
where the numbers of rows and columns of
the subgrid is randomly initialized from [1,
min(a, b)+1]. The number of moving step is
sampled from [1, 8]

2. Change Colour: for the Change Color tasks,
the numbers of rows and columns of the input
and the output grids are randomly initialized
from [1,16], where the numbers of rows and
columns of the subgrid is randomly initialized
from [1, min(a, b)+1]. The new color is ran-
domly sampled from the ten colors, while not
overlapping with the original color.

3. Copy: for the Copy tasks, the numbers of
rows and columns of the input and the out-
put grids are randomly initialized from [1,16],
where the numbers of rows and columns of
the subgrid is randomly initialized from [1,
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SYSTEM:
You are a helpful assistant.

USER:
You will be playing a game that need to find common patterns from input examples and apply the
pattern for prediction on new examples.
Lets play a game where you are transforming an input grid of numbers into an output grid of
numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:
Example input grid:
{INPUT GRID 1}
Example output grid:
{OUTPUT GRID 1}

Example input grid:
{INPUT GRID 2}
Example output grid:
{OUTPUT GRID 2}

Example input grid:
{INPUT GRID 3}
Example output grid:
{OUTPUT GRID 3}

{IMAGE}

The 2D format of these input and output grids are also provided in the given image for your
reference.

The input grid is:
{TESTING INPUT GRID}

What is the output grid? Please generate an image of the output grid similar to those in the given
image, do not output any text.

Figure 4: The prompt for the visual+textual input/visual output setting in Table 2.
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SYSTEM:
You are a helpful assistant.

USER:
You will be playing a game that need to find common patterns from input examples and apply the
pattern for prediction on new examples.
Lets play a game where you are transforming an input grid of numbers into an output grid of
numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:
Example input grid:
{INPUT GRID 1}
Example output grid:
{OUTPUT GRID 1}

Example input grid:
{INPUT GRID 2}
Example output grid:
{OUTPUT GRID 2}

Example input grid:
{INPUT GRID 3}
Example output grid:
{OUTPUT GRID 3}

{IMAGE}

The 2D format of these input and output grids are also provided in the given image for your
reference.

The input grid is:
{TESTING INPUT GRID}

What is the output grid? Please only output your answer without analysis in the following format:
Output grid:

Figure 5: The prompt for the visual+textual input/textual output setting in Table 2.

8354



SYSTEM:
You are a helpful assistant.

USER:
Given a matrix in the format of numpy array, please answer the following questions:
1. What is the size of this matrix? Output in the format of (a,b).
2. What is the location of the non-zero subgrids. Please first find out all the corner elements of the
subgrids, then output their locations in the order of [top-left, top-right, bottom-left, bottom-right],
in the format of (which row, which col).
3. What is the transpose of this matrix? Output the transposed matrix in the format of a numpy
array with elements separated by commas and enclosed in square brackets for each row like "[[0,
0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]".
4. What is the rank of this matrix? Output the rank of the matrix.

Please only output your answer without analysis in the following format:
1.Size:
2.Location:
3.Transpose:
4.Rank:

Input Matrix:
{INPUT MATRIX}

Figure 6: The prompt for asking LLMs about matrix properties, which is used in §5.1.

min(a, b)+1]. The number of steps between
the copied subgrid and the original subgrid is
sampled from [1, 8].

4. Mirror: for the Mirror tasks, the numbers of
rows and columns of the input and the out-
put grids are randomly initialized from [1,16],
where the numbers of rows and columns of
the subgrid is randomly initialized from [1,
min(a, b)+1].

5. Fill Internal: for the Fill Internal tasks, the
numbers of rows and columns of the input
and the output grids are randomly initialized
from [3,16], where the numbers of rows and
columns of the subgrid is randomly initial-
ized from [1, min(a, b)+1]. The filled color is
randomly sampled from the ten colors.

6. Scale: for the Scale tasks, the numbers of
rows and columns of the input and the out-
put grids are randomly initialized from [2,5],
where the numbers of rows and columns of
the subgrid is randomly initialized from [1,
min(a, b)+1].

LLM Move Copy

Llama-3-FTMove+Copy 26.00 27.00
w/o Location 18.00 22.00

GPT-4o 13.00 15.00
w/o Location 11.00 14.00

Table 14: Acc (in percentage) of LLMs without location
information. See Table 20 for Not M% scores.

H Details on crafting the small-size tasks
in Table 7

Specifically, we randomly initialized 100 tasks for
Move and Copy from a range that is half of the
original range listed in Appendix G. This results in
100 new tasks for both atomic operations, with an
average size of 4.96×4.89 and 4.81×4.80, respec-
tively. For comparison, the original average sizes
are 10.07× 10.16 and 9.72× 9.62, respectively.

I Additional Results on banning the
location information

To further study the effect of LLMs’ understanding
of matrix-format input, we evaluate two example
LLMs that have strong performances on Move and
Copy (Llama-3-FTMove+Copy in Table 8, and GPT-
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SYSTEM:
You are a helpful assistant.

USER:
You will be playing a game that need to find common patterns from input examples and apply the
pattern for prediction on new examples.
Lets play a game where you are transforming an input grid of numbers into an output grid of
numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:
Example input grid:
{INPUT GRID 1}
Example output grid:
{OUTPUT GRID 1}

Example input grid:
{INPUT GRID 2}
Example output grid:
{OUTPUT GRID 2}

Example input grid:
{INPUT GRID 3}
Example output grid:
{OUTPUT GRID 3}

The input grid is:
{TESTING INPUT GRID}

What is the output grid? When answering this question, please avoid using information about: 1)
the sizes of the input grids and the output grids; 2) the locations of different numbers in the input
grids and the output grids.

Please only output your answer without analysis in the following format:
Output grid:

Figure 7: Prompt that bans the use of location information.
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SYSTEM:
You are a helpful assistant.

USER:
You will be playing a game that need to find common patterns from input examples and apply the
pattern for prediction on new examples.
Lets play a game where you are transforming an input grid of numbers into an output grid of
numbers.

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:
Example input grid:
The matrix dimensions are {} columns by {} rows. Coordinates are based on a Cartesian
coordinate system with the origin (0,0) at the bottom-left corner. The coordinates of the non-zero
elements, listed from top to bottom and left to right, are: {}
Example output grid:
The matrix dimensions are {} columns by {} rows. Coordinates are based on a Cartesian
coordinate system with the origin (0,0) at the bottom-left corner. The coordinates of the non-zero
elements, listed from top to bottom and left to right, are: {}

...... (leave out input-output grid pairs 2 and 3)

The input grid is:
The matrix dimensions are {} columns by {} rows. Coordinates are based on a Cartesian
coordinate system with the origin (0,0) at the bottom-left corner. The coordinates of the non-zero
elements, listed from top to bottom and left to right, are: {}

What is the output grid?

Please only output your answer without analysis in the following format:
Output grid:

Figure 8: Prompt that converts matrix-format input to natural language.
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Direction Mistral-8*7B Llama-3-70B

Left 0.00 (73.00) 11.00 (55.00)
Right 7.00** (74.00) 17.00 (49.00)

Table 15: Acc (in percentage) of LLMs with two mirror-
ing directions. Not % scores are listed in brackets.“**”
means the bottom result is significant better than the
upper one with p < 0.05.

4o) tasks in ARAOC since they could provide more
reliable results. Specifically, we require them to
finish the Move and Copy tasks again without using
the location information of subgrids (the prompt is
listed in Figure 7), which should be important for
finishing such tasks.

As can be seen in Table 14, banning location
information do significantly decrease these LLMs’
performances on both tasks. These results again
indicate that a fundamental understanding of ma-
trices is crucial for completing ARAOC and ARC
tasks.

J Additional Results of Table 12

In this section, we present the results of Mistral-
8*7B and Llama-3-70B in Table 12. As shown,
both LLMs continue to perform better when the
mirroring direction is to the right, with a significant
difference observed for Mistral-8*7B. This further
reinforces the findings in Table 12.

K Additional Saliency Analysis Example

In this section, we present an additional saliency
analysis example in Figure 9, where Mistral cor-
rectly predicts a Change Color task. As shown,
Mistral not only accurately focuses on the "8" that
needs to be changed in the testing input grid but
also pays sufficient attention to the other modified
parts in the in-context examples. This allows it to
gather enough information about the task require-
ments, and finally leading to the correct prediction.

L Generalization of Our Findings

In sections §3, §4, §5, §6, we conclude several
findings on LLMs’ fluid intelligence. In this sec-
tion, we further discussing how can our findings
generalize to other real-world tasks.

1. LLMs is largely affected by the superficial
properties of the input, and fail to grasp
the underlying concept of the operations.
LLMs often focus on superficial input prop-
erties and fail to understand the underlying

concepts of operations. In real-world tasks
like code generation, this manifests as a ten-
dency to replicate syntax patterns from the
input without looking for deeper logical rela-
tionships. For example, LLMs might generate
syntactically correct but semantically incor-
rect code, similar to their reliance on superfi-
cial features in ARC and ARAOC tasks.

2. Fine-tuning does not teach LLMs how to
induct operations from the in-context exam-
ples. While fine-tuning can improve LLMs’
performance on specific tasks (e.g., complet-
ing function templates or implementing al-
gorithms in code generation), it does not en-
able LLMs to inductively generalize from in-
context examples to unseen scenarios. For
example, in code generation, after fine-tuning
on demands requiring the KMP algorithm, an
LLM might still struggle to apply the KMP
algorithm to novel demands, reflecting its
challenges with generalization in ARC and
ARAOC.

LLMs’ limitations on obtaining global rep-
resentations (also partly due to the auto-
regressive generation characteristic) of the
input tasks affect their fluid intelligence.
LLMs’ limitations in forming global repre-
sentations, partly due to their autoregressive
generation nature, also impact their perfor-
mance in real-world tasks. In real-world LLM
tasks especially when the input context is long,
LLMs often fail to maintain consistent nam-
ing (e.g., variable and function names in code
generation) or follow through on multi-step
logical dependencies when processing the in-
put. This is similar to their inability to com-
pose atomic operations into a holistic solution
in ARC and ARAOC tasks.

M Additional Not M% Results

For simplicity, we do not list the Not M% scores
for several tables. Here we list the Not M% scores
for these tables in Table 16, Table 17, Table 18,
Table 19, Table 20, Table 21, and Table 22.
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Figure 9: A saliency analysis example where Mistral makes a correct prediction. Darker means higher saliency
corresponds to the boxed token. As can be seen,

COMB Llama-3 GPT-4o

Move

Up 1 30.00 2.00
Up 2 24.00 1.00
Up 3 28.00 2.00

Up-right 1 16.00 3.00
Up-right 2 26.00 1.00
Up-right 3 28.00 0.00

Copy

Up 1 6.00 2.00
Up 2 14.00 1.00
Up 3 16.00 0.00

Up-right 1 12.00 0.00
Up-right 2 14.00 1.00
Up-right 3 20.00 1.00

Table 16: Not M% scores for Table 6.

Setting Mistral Llama-3 GPT-3.5 GPT-4o

Move Ori 36.00 19.00 27.00 0.00
Small 8.00 14.00 1.00 0.00

Copy Ori 43.00 13.00 29.00 0.00
Small 13.00 10.00 1.00 0.00

Table 17: Not M% scores for Table 7.

LLM Move Copy Comp

Mistral-FTMove 2.00 34.00 44.00
Mistral-FTCopy 6.00 12.00 7.00
Mistral-FTMove+Copy 6.00 6.00 15.00

Llama-3-FTMove 9.00 8.00 11.00
Llama-3-FTCopy 5.00 1.00 11.00
Llama-3-FTMove+Copy 6.00 1.00 3.00

GPT-3.5 27.00 29.00 42.00
GPT-4o 3.00 6.00 1.00

Table 18: Not M% scores for Table 8
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LLM Individual Atomic Operation Composition

Move Change Color Copy Mirror Fill Internal Scale ARC

Llama-3 19.00 17.00 13.00 96.00 6.00 89.00 33.00
Llama-3-FT-arc 20.00 14.00 7.00 92.00 1.00 95.00 29.00
Llama-3-FT-atomic 9.00 1.00 8.00 54.00 1.00 4.00 40.00
Llama-3-FT-atomic-arc 14.00 0.00 10.00 39.00 0.00 6.00 30.00

GPT-4o 0.00 0.00 0.00 48.00 0.00 72.00 11.00

Table 19: Not M% scores for Table 9.

LLM Move Copy

Llama-3-FTMove+Copy 6.00 1.00
w/o Location 6.00 0.00

GPT-4o 0.00 0.00
w/o Location 0.00 1.00

Table 20: Not M% scores for Table 14.

Method Mistral Llama-3 GPT-3.5 GPT-4o

Move w/o NL - - - -
NL 82.00 0.00 0.00 1.00

Color w/o NL - - - -
NL 83.00 0.00 1.00 0.00

Copy w/o NL - - - -
NL 83.00 4.00 2.00 0.00

Mirror w/o NL - - - -
NL 80.00 30.00 27.00 0.00

Fill Internal w/o NL - - - -
NL 84.00 1.00 0.00 0.00

Scale w/o NL - - - -
NL 98.00 75.00 63.00 41.00

Table 21: Not M% scores for Table 11. For scores under
“w/o NL”, please refer to Table 5.

Direction Mistral Llama-3 GPT-3.5 GPT-4o

Left 68.00 76.00 52.00 33.00
Right 71.00 74.00 49.00 22.00

Table 22: Not M% scores for Table 12.

8360


