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Abstract

We introduce GLiREL (Generalist Lightweight
model for zero-shot Relation Extraction), an
efficient architecture and training paradigm for
zero-shot relation classification. Inspired by
recent advancements in zero-shot named en-
tity recognition, this work presents an approach
to efficiently and accurately predict zero-shot
relationship labels between multiple entities
in a single forward pass. Experiments using
the FewRel and WikiZSL benchmarks demon-
strate that our approach achieves state-of-the-
art results on the zero-shot relation classifica-
tion task. In addition, we contribute a protocol
for synthetically-generating datasets with di-
verse relation labels.

1 Introduction

Recent advances in zero-shot NLP models for en-
tity recognition have been enabled by large-scale
synthetic training data generation using state-of-
the-art (SoTA) Large Language Models (LLMs)
(Zhou et al., 2024). An ongoing line of work
achieves drastic improvements in accuracy and us-
ability over previous approaches by using efficient
architectures targeted at various NLP tasks (Bog-
danov et al., 2024; Stepanov and Shtopko, 2024;
Zaratiana et al., 2023). Zero-shot named entity
recognition (NER) models such as GLiNER (Zara-
tiana et al., 2023) do not operate on a fixed label
set, only requiring textual labels to be specified at
inference time, and can directly perform span clas-
sification using labels that are not observed during
training.

In contrast to generative models, targeted archi-
tectures for zero-shot span classification jointly pre-
dict all labels simultaneously, making them much
more efficient than auto-regressive models (Zara-
tiana et al., 2023). Existing SoTA zero-shot relation
classification' (ZSRC) models achieve strong per-
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Figure 1: Example inputs and outputs for GLiREL.

formance, but are inefficient because every entity
pair and candidate label combination is treated as
a separate input. Existing methods do not scale
to real-world use cases, where a large number of
entity pairs are extracted from text, each of which
must be classified against many candidate labels.
GLIiREL takes inspiration from recent successes
in zero-shot NER and text classification, adapting
these approaches to enable ZSRC that is both effi-
cient and accurate.

While SoTA LLMs excel at information extrac-
tion (IE) tasks (Li et al., 2024a; Zhou et al., 2024),
there are major limitations to their scale and de-
ployment patterns, including:

* Auto-regressive decoding is unable to take
advantage of task-specific parallelism,

* Specific, expensive hardware requirements,

* Output is not sufficiently constrained unless
guided by heuristic decoding methods,

* Unpredictable behavior, for example when
asked to identify all relationships between en-
tities in a document of arbitrary length.

The ability of LLMs to perform zero-shot infer-
ence with unconstrained output makes them very
flexible, but for many tasks, their auto-regressive
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Figure 2: Our proposed approach to zero-shot relation extraction. Firstly, m relation labels and n entities are
encoded using a bidirectional transformer. The n entity embeddings will be concatenated to form n? pairs in the
relation representation layer. The relation labels are fed through a feed-forward network to obtain relation type
embeddings. A scoring layer then computes the similarity between every label and every entity pair. Diagram

adapted from Zaratiana et al. (2023).

factorization raises issues around reliability. For
information extraction tasks in particular, the as-
signment of relationships between all entities found
in a text is a requirement that cannot be reliably
achieved with LLMs without auxiliary models (Li
et al., 2024b) and/or at-runtime data augmentation
mechanisms (Jiang et al., 2024; Ma et al., 2023b).

In contrast to the disadvantages above, LLMs
excel at unconstrained classification and label-
ing tasks, and can be effectively utilized to pro-
duce large-scale, diverse datasets for training down-
stream models with task-specific inductive biases.
Synthetic dataset generation using general-purpose
LLMs is a critical component in the recent suc-
cess of zero-shot NLP models (Zaratiana et al.,
2023; Bogdanov et al., 2024). This paper includes
a protocol for generating a large-scale dataset for
relationship classification which enables training
zero-shot models. The key contributions of our
work are:

¢ A novel zero-shot relation extraction architec-
ture, GLiREL.

* A training dataset construction policy that re-
sults in a high-quality synthetic dataset for
training zero-shot relation classification mod-
els.

* A training paradigm producing SoTA results
on zero-shot relation extraction benchmarks.

The paper is organized as follows: section 2 dis-
cusses important related work, section 3 discusses
the GLiREL model architecture, section 4 presents
our experimental results, and sections 5, 6 and 7
provide discussion, analysis, and examinations of
the limitations of this work. All code is publicly
available.?

2 Background

Joint vs Independent NER and Relation Clas-
sification Joint entity and relationship classifi-
cation (Eberts and Ulges, 2019; Zaratiana et al.,
2024) can enhance performance through task trans-
fer and global optimization, but increases decoding
complexity and reduces flexibility, often requiring
bespoke architectures that may not generalize to
other tasks. In contrast, traditional IE pipelines use
independent models (e.g., spaCy (Honnibal et al.,
2020)), offering flexibility but making relationship
classification dependent on static upstream NER
components. Our work assumes entities are pro-
vided by an upstream component and focuses on

2https://github.com/jackboyla/GLiREL

8231


https://github.com/jackboyla/GLiREL

detecting relationships between these entities using
zero-shot relation labels, thus maintaining pipeline
flexibility and allowing classification between any
number of entities from diverse sources.

Zero-Shot Relation Extraction Zero-shot rela-
tion extraction is an appealing avenue of research
because of the flexibility and simplicity of the in-
ference and training paradigms. MC-BERT (Lan
et al., 2023) can use previously-unseen relation
type labels to classify entity pairs by treating the
task as a multiple-choice problem. TMC-BERT
(Moller and Usbeck, 2024) extends upon this by
incorporating entity types and relation label de-
scriptions. MC-BERT and TMC-BERT construct
a template for each entity pair for each candidate
label in an instance. This results in a large num-
ber of inputs from a relatively small sample size,
making it unsuitable for scaling. RelationPrompt
(Chia et al., 2022) generates synthetic training ex-
amples at inference time using GPT2, requiring a
large number (N = 250) of examples per label,
which is resource-intensive. DSP uses a discrimi-
native prompting strategy to classify both entities
and relations in a zero-shot setting. ZS-SKA (Gong
and Eldardiry, 2024) performs ZSRC by using tem-
plates to augment data and incorporating an exter-
nal knowledge graph. ZSRE (Tran et al., 2023)
encodes text and relation labels separately, comput-
ing semantic correlation for each entity pair and
label combination, leading to inefficiency in real-
world scenarios where many entities are present.

In contrast, GLiREL supports any relation labels
at inference time without lengthy descriptions or
entity type information (see Figure 1). Multiple
entity pairs can be classified in a single input, mak-
ing our approach more efficient than models that
require multiple rounds of inference or at-runtime
data generation. Additionally, GLiREL processes
relation labels and input text simultaneously, cap-
turing interactions between all labels and entity
pairs.

LLMs for Relation Classification LLMs have
been leveraged for relation classification, achiev-
ing strong zero- and few-shot performance using
meta in-context learning and synthetic data gen-
eration (Li et al., 2024a; Xu et al., 2023). Some
approaches reformulate zero-shot relation classi-
fication as a question-answering task (Li et al.,
2023). In document-level RE (DocRE), finetun-
ing LLaMA?2 with LoRA shows significant im-
provements, especially when a pretrained language

model first classifies whether an entity pair ex-
presses a relationship before passing it to the LLM
(Li et al., 2024b). GenRDK (Sun et al., 2024) uses
chain-of-retrieval prompts with ChatGPT to gen-
erate synthetic data for finetuning LLaMA2. Al-
ternatively, Xue et al. (2024) finetune an LLM to
propose head and tail entities given a document
and relation label, outperforming other LLM-based
baselines.

Zero-Shot Learning and Synthetic Training
Data Generation Zaratiana et al. (2023) and
Bogdanov et al. (2024) showed that a straightfor-
ward and efficient model architecture can achieve
excellent performance on the zero-shot NER task,
given high-quality, large scale training data. Open-
source LLMs have enabled the creation of this kind
of training data, through simple and scalable proto-
cols which prompt a model to label the entities in
a short text with any type label (Zhou et al., 2024).
Importantly, labels are not constrained to a partic-
ular taxonomy, and the generative model is free
to assign any representative label to entities in the
text. In the case of GLiNER (Zaratiana et al., 2023),
training on the Pile-NER dataset (created by Zhou
et al. (2024)) enabled a new SoTA in zero-shot
NER.

3 Method

The GLIiREL architecture has three main compo-
nents:

* A pre-trained bidirectional langage model
used as the text encoder, which jointly pro-
cesses candidate relations and input texts.

* An entity pair representation module which
extracts vector representations for all entities
in the text and creates a representation for
every pair of entities.

* A scorer module to compute the similarity be-
tween entity pair representations and relation
label representations.

The architecture encodes relation labels and en-
tity pair embeddings in the same latent space to
compute their similarity. The overall architecture
is illustrated in Figure 2. We choose DeBERTa
V3-large as the encoder model due to its excellent
performance on downstream tasks (He et al., 2023).

3.1 Input

The model input sequence is comprised of an or-
dered list of elements, where an element is a string
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containing one or more tokens. Concretely, inputs
are built from:

e a list of M zero-shot labels denoted as ¢,,,
each separated by a special [REL] token:
to, [REL1, t1, [RELD, ..., ta7—1. Both t,, and
[REL] are treated as elements,

* a special [SEP] token to indicate the end of
the labels prompt. [SEP] is treated as a single
element,

* the input text, denoted as a list of N tokens
xo,T1, ..., LN_1, Where each token is an ele-

ment.

The GLiREL model additionally expects indices
for E' known entities in the text, represented as
pairs of start and end positions. The input structure
is illustrated in Figure 3.

start; end;
starts  endy
NER Indices = .
start  end
[REL] [y [REL] /] ... [REL]lj;_| [SEP]| Xp»Xp, .. Xy_|

Figure 3: GLiREL input includes relation types
to, ..., tasr—1, text tokens xg, ..., £y _1, and the start and
end indices of all entities within the text.

Tokenization The special [REL] and [SEP] to-
kens are added to the encoder’s tokenizer vocab-
ulary. The input sequence from Figure 3 is tok-
enized accordingly, ensuring that relation type la-
bels and special tokens are properly handled. For
this study, we follow the pooling strategy described
in Zaratiana et al. (2022) by taking the first subto-
ken representation of each element. Details of the
tokenization process are provided in Appendix A.2.

3.2 Token Representation

The token encoder processes the input sequence
to compute interactions between all tokens (from
both the relationship labels and from the input text),
producing contextualized representations. Let p =
{pe 171 € RM*D represent the encoder’s output
for each relation type, corresponding to the first
subtoken representation of each relation type la-
bel. Similarly, h = {h;}"~* € RV* denotes
the representation of each word in the input text.
As already mentioned, for words tokenized into
multiple subwords we use the representation of the
first sub-word.

3.3 Label and Entity Pair Representation

We aim to encode relationship labels and entity
pair embeddings into a unified latent space. We fol-
low the methodology of GLiNER (Zaratiana et al.,
2023), with additional steps for entity pair repre-
sentation and refinement layers.

Relation Label Representation: After pooling,
each relationship label in the input sequence is
represented by a vector p;, Relation label represen-
tations are additionally transformed by a two-layer
feed-forward network (FFN) as shown in equation
1:

q=FFN(p) = {q:}12;t e R (1)

where M is the total number of relationship labels,
and D is the dimensionality of the model’s hidden
layers. q; thus represents the transformed vector
for the t*" relationship label.

Entity Representation: The entity indices given
as input to the model (see Figure 3) are used to ex-
tract entity representations from the word represen-
tations h. The representation of an entity starting
at position ¢ and ending at position j in the input
text, e;; € RP, is computed as

In equation 2, FFN denotes a two-layer feed-
forward network, and ® represents the concate-
nation operation.

Entity Pair Representation: Lete, = e;; rep-
resent the u!” entity representation computed in
Equation 2 using its start and end positions % and
j. For any distinct entity pair (u, v), where u # v,
the pair representation K., is computed as:

Kuy = FFN(e, ® €,), Yu # v 3)

where @ denotes the concatenation operation, and
self-pairs are explicitly excluded. The concatenated
entity pair representations are passed through a
FEN for projection into the model’s latent space.
The resulting representations K., € RP are either
further refined (Section 3.4), or used directly for
scoring (Section 3.5).

3.4 Refinement Layer

The refinement layer is used to further process both
the relation type representations q and the entity
pair representations K.,,,. Inspired by the filter and
refine module in joint entity and relation extraction
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Wiki-ZSL FewRel
m | Model P R Fl | P R FI
RelationPrompt (Chia et al., 2022) 70.66 83.75 76.63 | 90.15 88.50 89.30
DSP-ZRSC (Lv et al., 2023) 94.10 77.10 84.80 | 93.40 92.50 92.90
ZSRE (Tran et al., 2023) 94.50 96.48 95.46 | 9636 96.68 96.51
5 | MC-BERT (Lan et al., 2023) 80.28 84.03 82.11 | 90.82 91.30 90.47
TMC-BERT (Moller and Usbeck, 2024) | 90.11 87.89 88.92 | 93.94 93.30 93.62
GPT-40! 91.24 72.07 80.03 | 96.75 83.05 89.20
GLiREL' 69.88 65.82 62.80 | 94.56 89.17 81.21
GLIiREL (+ synthetic pretraining)? 89.41 80.67 83.28 | 96.84 9341 94.20
RelationPrompt (Chia et al., 2022) 68.51 7476 71.50 | 80.33 79.62 79.96
DSP-ZRSC (Lv et al., 2023) 80.00 74.00 76.90 | 80.70 88.00 84.20
ZSRE (Tran et al., 2023) 8543 88.14 86.74 | 81.13 82.24 81.68
10 | MC-BERT (Lan et al., 2023) 72.81 7396 73.38 | 86.57 8527 8592
TMC-BERT (Moller and Usbeck, 2024) | 81.21 81.27 81.23 | 84.42 84.99 85.68
GPT-40f 77.62 66.14 68.35 | 84.07 58.00 66.20
GLIiREL' 76.45 71.80 68.89 | 8540 78.29 80.14
GLIiREL (+ synthetic pretraining)’ 89.87 81.56 83.67 | 91.09 8742 87.60
RelationPrompt NG (Chia et al., 2022) | 54.45 2943 37.45 | 6649 40.05 49.38
DSP-ZRSC (Lv et al., 2023) 77.50 6440 70.40 | 8290 78.10 80.40
ZSRE (Tran et al., 2023) 64.68 65.01 6530 | 66.44 69.29 67.82
15 | MC-BERT (Lan et al., 2023) 65.71 67.11 6640 | 80.71 79.84 80.27
TMC-BERT (Moller and Usbeck, 2024) | 73.62 74.07 73.77 | 82.11 79.93 81.00
GPT-40! 81.04 32.06 41.57 | 8442 6576 70.70
GLiREL' 66.14 6540 6091 | 75.76 7134 70.40
GLIiREL (+ synthetic pretraining)’ 79.44 7481 7391 | 88.14 84.69 84.48

Table 1: Performance comparison of models on Wiki-ZSL and FewRel datasets for various values of unseen relations
m. Metrics are averaged at the macro level. Values in bold are the best metrics for the given dataset and value of m.
The dagger (1) denotes our reported results; the remaining results are taken from their original papers. An extended
table comparing more models can be found in appendix Table 6.

Dataset # Instances # Rel Types # Triples
Wiki-ZSL 94,383 113 183,269
FewRel 56,000 80 56,000

Re-DocRED 4,053 96 120,664

Table 2: Dataset statistics.

work from Zaratiana et al. (2024), the refinement
layer can be applied to:

» Refine the entity pair representation with re-
spect to the text,

» Refine the relation label representations with
respect to the entity pairs, or

¢ Refine both.

The refinement process is composed of two main
stages: (1) a cross-attention mechanism and (2) a
feed-forward network (FFN) applied iteratively for
a number of layers.

Given the entity pair representations k., and
the relation type representations gy, the refinement
process can be written as follows:

Cross-Attention: The representations are refined
using cross-attention, where the entity pair repre-
sentations attend to the relation type representa-
tions, and vice versa. For the entity pair refinement,
we compute:

K., = Ky + CrossAt(kuy, q;) (4

where CrossAtt(a, b) represents the cross-attention
(also called encoder-decoder attention) mechanism
as used by Vaswani et al. (2023), which allows
information exchange between a and b.

Self-Attention: The refined entity pair represen-
tation undergoes further refinement using a self-
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attention mechanism to capture intra-pair interac-
tions:

Ky = Fly, + SelFAL(i),) ©)

This process can be repeated for a number of re-
finement layers — in practice we use a maximum of
two refinement layers for efficiency. After the at-
tention mechanism, a feed-forward network (FFN)
is applied to further transform the representations:

rinal — FEN (k") (6)

The same procedure applies when refining relation
type representations q; to get g™,

The final refined representations "3 and gf"a!
are then used for scoring the relation between the
entity pair (u,v) and the relation type ¢, as de-

scribed in Section 3.5.

3.5 Scoring Layer

To evaluate whether the relationship between entity
pair (u,v) corresponds to any relation type ¢ in
the set of given relation types 7', we calculate the
following matching scores:

(u,v) ={¢(u,v,t) [t €T}, (7
where
$(u,v,t) = o(ky,ar) € R ®)

In Equation 8, o denotes a sigmoid activation func-
tion. K., is the representation of the entity pair
representation for entities u and v. q; is the rela-
tion type representation vector type t. As we train
with binary cross-entropy loss, ¢(u, v, t) can be in-
terpreted as the probability of the entity pair (u, v)
being of type t.

3.6 Training Dataset Generation

As discussed in Section 2, synthetic data gener-
ation has been a key enabler for recent improve-
ments in efficient zero-shot NLP models. Due to
the difficulty of large-scale manual annotation for
relationship classification in particular, synthetic
data generation offers a significant improvement in
the effectiveness of GLIiREL. Our synthetic anno-
tation protocol generates training data for relation
classification using an LLM. The goal is to cre-
ate a flexible relation classification model capable
of identifying a broad range of relationship types
across various domains. Thus, it is crucial that our
training dataset captures diverse relation types.

We follow a methodology similar to Bogdanov
et al. (2024), who utilized the C4 dataset (Raffel
etal., 2020) to create a rich NER dataset. Bogdanov
et al. (2024) sampled from C4, an English web
crawl dataset widely used for pretraining LLMs,
and employed gpt-3.5-turbo to annotate the entity
types. Notably, they did not predefine the entity
labels, allowing the LLM to extract a diverse set
of entities. Similarly, in our work, we employ an
LLM to generate a wide variety of relation labels
without imposing predefined relation types, thus
ensuring a rich and varied set of annotations. To
this end, we use a random sample of the Fineweb
dataset (Penedo et al., 2024), another English web
crawl dataset chosen for its high quality and diverse
material.

We use Mistral 7B-Instruct-v0.2 (Jiang et al.,
2023) to annotate every entity pair in every text.
The prompt used is shown in the Appendix (Fig-
ure 8). Our synthetic dataset contains 63,493 texts
with 25,619,624 annotated relations, the majority
of which are labeled NO RELATION. For our experi-
ments, we discard those labels that intersect with
benchmark labels, in order to strictly maintain the
zero-shot paradigm. The dataset is available for
public use.

3.7 Extending to Coreference Resolution and
Document-Level Relation Classification

Co-referential reasoning has been demonstrated
to significantly enhance the performance of down-
stream tasks such as extractive question answering,
fact verification, and relation extraction (Ye et al.,
2020). Motivated by this insight, we also inves-
tigate GLiREL’s performance on document-level
relation classification, which requires co-reference
resolution to aggregate cluster-level relations, pro-
jecting relations to the document level. The results
of our experiments are presented in Appendix Sec-
tion A.6.

4 Experiments

4.1 Relation Classification Datasets

We evaluate GLiREL using the Wiki-ZSL and
FewRel benchmarks. Chen and Li (2021) de-
rived Wiki-ZSL as a subset of Wiki-KB (Sorokin
and Gurevych, 2017), generated through distant
supervision. Entities are extracted from com-
plete Wikipedia articles and linked to the Wikidata

3https://huggingface.co/datasets/jackboyla/
ZeroRel
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knowledge base to obtain their relations. FewRel
(Han et al., 2018) was compiled in a similar man-
ner but underwent additional filtering by crowd
workers to enhance data quality and class balance.
Although originally designed for few-shot learning,
FewRel can be used to benchmark zero-shot rela-
tion classification provided that the relation labels
in the training and testing sets are disjoint.

Corpus statistics of the Wiki-ZSL and FewRel
datasets are summarized in Table 2. Our main
results can be seen in Table 1, with an extended
table in the appendix (Table 6).

4.2 Zero-Shot Relation Classification Settings

For each dataset, we randomly select m relations
as unseen relations (m = |Y,,|) and split the data
into training and testing sets, ensuring that these m
relations do not appear in the training data so that
Y, N'Y, = (). We evaluate using macro precision,
recall and F1 score. Experiments are repeated five
times with different random selections of unseen
relations and train-test splits, and the mean metrics
are reported. We vary m to examine its impact on
performance and to compare against other models.

Training Details For each experiment, we train
one model from scratch on the given dataset, and
another model is trained following pretraining on
our synthetically-annotated dataset. We limit the
number of relation type labels prepended to each
training instance to 25. For instances where there
are less than 25 relation labels, we sample distinct
negative labels from the training set. Following
Sainz et al. (2023), we introduce regularization by
shuffling relation type labels and randomly drop-
ping labels for each instance. We ablate this reg-
ularization in Section 5.2. Further training details
are provided in the Appendix Section A.5.

Baselines We include the results from works
described in Section 2. We also include the
results of OpenAl’'s GPT-40 model (version
gpt-40-2024-08-06) as a baseline for LLM per-
formance on the zero shot relation classification
task. In our experiments, we use the prompt as
shown in Figure 7 to acquire a prediction for each
entity pair in each instance.

4.3 Results

GLiREL demonstrates impressive capacity for the
zero-shot relation classification task, achieving
SoTA performance on both Wiki-ZSL and FewRel.
Pretraining on the synthetically annotated dataset

shows significant improvement over training from
scratch. Additionally, GLiREL is the most succes-
ful model in terms of maintaining performance as
the number of unseen labels m increases. GLiREL
outperforms GPT-4o at every value of m for each
dataset. At m = 15, GLiREL is marginally bet-
ter than the current leading model TMC-BERT. It
should be noted that both MC-BERT and TMC-
BERT require additional data (entity types and de-
scriptions for each relation type label), as well as
one forward pass for each entity pair and label, to
achieve their result. GLIREL uses only the given
relation type labels, and can classify all entity pair
relations in a single forward pass.

S Analysis

5.1 Inference Speed

We compare the inference speeds of GLiREL
against some of the highest-performing ZS rela-
tion classification models; TMC-BERT (Moller
and Usbeck, 2024) and RelationPrompt (Chia et al.,
2022). We run inference for each model on both
GPU (one Tesla T4) and CPU. We use WikiZSL
and FewRel datasets with number of unseen label
m = 10 and batch size of 32. Each instance in
FewRel contains exactly one entity pair, whereas
WikiZSL instances have an average of two (up to
a maximum 12). Our performance metric is sen-
tences processed per second. The results can be
seen in Table 3.

At inference time, the best RelationPrompt
model generates /N synthetic training examples per
unseen label. In our experiments, we set number
of synthetic examples N = 25, although N = 250
is recommended. RelationPrompt NG does not use
the generator component to create synthetic train-
ing examples. This provides a speed up but at the
expense of significant performance deterioration.

RelationPrompt consists of a training data gen-
erator (GPT2 with 124M parameters) and an ex-
tractor (140M parameters). TMC-BERT has 109M
parameters. GLiREL has 467M parameters in total.

Result GLIiREL maximizes performance while
maintaining efficiency for FewRel on CPU, show-
ing a relatively small decrease in throughput when
presented with more entity pairs in WikiZSL. This
deterioration is far more pronounced for TMC-
BERT, which requires a forward pass for every
entity pair, for every candidate label. For Relation-
Prompt, the generation component poses a signif-
icant bottleneck. On GPU, the margin becomes
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much more apparent, with GLiREL processing 20x
more sentences than RelationPrompt and TMC-
BERT on Wiki-ZSL.

Model Wiki-ZSL FewRel

F Speed (sent/s) F Speed (sent/s)
CPU
RelationPrompt NG | 43.80 16.41 55.61 9.27
RelationPrompt 71.5 1.96 80.0 1.59
TMC-BERT 81.23 0.12 85.68 1.91
GLiREL 83.67 4.63 87.60 4.93
GPU
RelationPrompt NG | 43.80 63.1 55.61 59.8
RelationPrompt 71.5 2.06 80.0 1.72
TMC-BERT 81.23 1.41 85.68 27.81
GLiREL 83.67 47.60 87.60 41.07

Table 3: Under the number of unseen label m = 10 on
the zero-shot relation classification task, the comparison
between RelationPrompt, TMC-BERT, and GLiREL in
F1-score and speed. GLiREL speed is shown in bold.

5.2 Ablation Study

Relation Type Random Dropping We em-
ployed a strategy of randomly dropping relation
labels in order to vary the number of relation labels
during training. This approach aims to increase
model robustness to different numbers of labels at
inference time.

Result By ablating this component, we see that
GLiREL benefits from random dropping on Wiki-
ZSL but actually deteriorates on FewRel. This may
be caused by the higher number of entity pairs
and relation labels in Wiki-ZSL demanding greater
generalization of the model, while the single entity
pair in FewRel instances provides a cleaner signal
and random dropping is unhelpful noise.

7= With Drop
85 e Without Drop

Mean Macro F1

FewRel

WikizZsL

Figure 4: Addition of random drop: The effect of
randomly dropping relation labels during training on the
FewRel and WikiZSL datasets. Using m = 15.

Refinement Layers The refinement layers as de-
scribed in Section 3.4 aim to enhance the represen-
tations of both the entity pair representations and
the relation label representations respectively.

Result For the FewRel dataset, we observe ben-
efits from having both prompt and entity pair (re-
lation) refinement layers. Conversely, the model

performs best on Wiki-ZSL when no refinement
layers are used. As with the random drop ablation,
this contrast can be attributed to the difference in
entity pairs between the two datasets. The FewRel
model benefits from additional depth, as it is mod-
elling only one entity pair interaction per instance.
With multiple entity pairs in Wiki-ZSL instances,
the cross-attention mechanism may introduce un-
helpful interactions between irrelevant pairs and
relations, amplifying signal noise.

No refinement

Refine relation only

Refine prompt only

Refine prompt + relation

TR oo

67.37

/A 54.16

50 55 60 65 70 75

Mean Macro F1

Figure 5: Addition of refinement layers: The effect of
adding refine layers for entity pair and relation labels
representations. From the WikiZSL dataset, using m =
15

Refine relation only 77.43

Refine prompt only 80.98
Refine prompt + relation 84.48

70 72 74 76 78 80 82 84 86
Mean Macro F1

Figure 6: Addition of refinement layers: The effect of
adding refine layers for entity pair and relation labels
representations. From the FewRel dataset, using m =
15

6 Conclusion

We have shown that GIIREL is a flexible and highly
performant approach to zero-shot relation clas-
sification (ZSRC), which achieves SoTA results
on challenging benchmarks. Unlike other high-
performing ZSRC models, GLiREL can classify
multiple entity pairs and relation labels in a sin-
gle input, making it more efficient. Additionally,
we have presented a paradigm for generating high-
quality, large-scale synthetic datasets for zero-shot
relation classification, as well as an effective train-
ing protocol. We hope these methods inspire future
work in the area of relation classification.

7 Limitations

As both labels and text are processed in a single for-
ward pass, the number of labels that can be passed

8237



in an instance is limited by the model’s max se-
quence length — in DeBERTa’s case this is 512
tokens. It is possible to extend DeBERTa’s max
positional encoding length to larger values, but that
has not been studied here. An avenue for future
work that may solve this issue has already been
implemented for the GLiNER library, through the
use of bi- and poly-encoders.* Such architectures
enable the use of arbitrary amounts of labels. The
embeddings of these labels can be precomputed,
which may bring additional efficiency benefits.

The joint encoding of labels and input sequence
allows the model to condition label and entity pair
representations with respect to one another. This is
advantageous in cases where it is important for the
model to be aware of all possible labels that can be
predicted. However, a limitation of this approach
is that the model’s performance on one label can
be influenced by the order and number of other
provided labels.

One benchmark-related issue observed by the
authors is that texts in which two entities appear
may not provide sufficient evidence for the imputed
relationship. For example, an instance in Wiki-ZSL
(Chen and Li, 2021) imputes the relation label P20
(place of death) between "Jim Dickinson" and
"Memphis" for the following text:

"The Pengwins recorded with Rick Der-
ringer at Bearsville Studios in New York
and in Mempbhis with producer Jim Dick-
inson, and by Columbia and Polygram."

This is due to the distant annotation of Wiki-ZSL,
which uses Wikidata to assign relationships be-
tween identified entities. To make a correct pre-
diction, a model would require access to an ex-
ternal knowledge base. This is not implemented
in GLiREL or the majority of the methods bench-
marked in Table 1. In light of this, the authors
suggest moving away from Wiki-ZSL as one of
the primary benchmarks for ZSRC, towards bench-
marks that assess a model’s ability to extract rela-
tionships based solely on the text provided (as seen
in FewRel).
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A Appendix

A.1 Extended Related Work

Existing Approaches Many systems have ad-
dressed relation extraction with varying degrees
of success. Earlier works saw CNNs employed in
the task of slot filling (Adel et al., 2016), a similar
task to relation extraction.

Wang et al. (2022) introduce Deepstruct to im-
prove the structural understanding abilities of lan-
guage models by pretraining them to generate struc-
tures from text on a collection of task-agnostic
corpora, enabling zero-shot transfer of knowledge
about structure-related tasks. Deepstruct uses this
method to achieve state-of-the-art performance on
a variety of structured prediction tasks, including
RC.

Riedel et al. (2013) use matrix factorization and
universal schemas to extract relations by leveraging
the shared structure between different relations to
improve performance.

Rocktischel et al. (2015b) and Demeester et al.
(2016) focus on injecting logical background
knowledge into embeddings for relation extraction
by mapping entity-tuple embeddings into an ap-
proximately Boolean space, This method improves
generalization and leads to significant performance
gains over a matrix factorization baseline.

Zhang et al. (2017) have explored the combina-
tion of LSTM sequence models with entity position-
aware attention to enhance relation extraction. This
approach, when coupled with large supervised
datasets, has resulted in significant performance
improvements in slot-filling tasks.

Question-Answering and Textual Entailment
Sainz et al. (2021) and Obamuyide and Vlachos
(2018) reformulate relation extraction as an entail-
ment task by using simple verbalizations of relation
labels and descriptions. These systems allow for
the use of existing textual entailment models and

datasets to achieve strong performance in zero-shot
and few-shot settings.

Levy et al. (2017) reduced relation extraction
to answering reading comprehension questions by
associating natural-language questions with each
relation slot. This approach enables the use of neu-
ral reading comprehension techniques and supports
zero-shot learning by facilitating the extraction of
new relation types.

Distant Supervision for Relation Extraction
Dataset Construction Hand-annotating relation
classification (RC) datasets at scale is intractable
both because of the size and domain-specificity of
relation taxonomies, and especially because of the
quadratic number of potential relations in a given
text, as a function of the number of named entities
in the text. Foundational research leverages dis-
tant supervision to bootstrap training datasets for
RC, utilizing open source knowledge bases such
as Wikidata (Vrandeci¢ and Krétzsch, 2014), Free-
base (Bollacker et al., 2008) and DBPedia (Auer
et al., 2007) to obtain high-quality relations be-
tween entities, and then mining data sources such
as Wikipedia for texts mentioning both head and
tail entities to construct training datasets (Bunescu
and Mooney, 2007; Mintz et al., 2009).

Distant supervision enables the creation of large
scale datasets; however, historical work is still con-
strained to specific pre-defined label sets, and train-
ing data is noisy because inputs are not specifically
annotated for particular relations.

Real-world Evaluation of Relation Extraction
Models Sabo et al. (2021) critique existing few-
shot learning (FSL) datasets for RC, highlighting
their unrealistic data distributions, and propose
a novel method to create more realistic few-shot
test data using the TACRED dataset (Zhang et al.,
2017), resulting in a new benchmark. Furthermore,
they analyze classification schemes in embedding-
based nearest-neighbor FSL approaches, proposing
a novel scheme that treats the "none-of-the-above"
(NOTA) category as learned vectors, improving
performance.

Gao et al. (2019) present FewRel 2.0 by adding
a new, dissimilar domain test set and a NOTA
option to the existing FewRel (Han et al., 2018)
dataset. The authors’ experiments reveal that cur-
rent state-of-the-art models and techniques strug-
gle with these additional challenges that more ac-
curately mirror real-world application of relation
extraction models.
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A.2 Tokenization Details

The special [REL] and [SEP] tokens are added
as special tokens to the encoder’s tokenizer vo-
cabulary. The input sequence from Figure 3 is
passed to the tokenizer, which joins all elements by
whitespace before creating the appropriate encoder-
specific subword tokens and input IDs. For ex-
ample, the label "participation in” would be
tokenized into the subword tokens: "particip”,
"##ation” and "## in". A mapping from the
original input elements in Figure 3 to the input IDs
is maintained in order to perform subword token
pooling of the encoder output. We follow Zaratiana
et al. (2022), and perform pooling by taking the
vector representation of the first subword token. In
the above example, this would correspond to the
vector representation for "particip”.

With the treatment of one or more tokens as ele-
ments, relation type labels can be text of any length.
Because the subword tokens of each label are sub-
ject to the aforementioned pooling operation, we
denote each label using a single index t,,.

A.3 GPT-40 Baseline Prompt

Prompt:
Classify the relationship(s) between the HEAD and TAIL entities in the
following text.

Only use the relation labels provided to classify the relationship.

If no relation exists, return ['NO_RELATION'].

Text: {text}
HEAD: {head}
TAIL: {tail}

Relation labels: {labels}

Figure 7: Prompt used to measure GPT-40 performance
on the zero-shot relation classification task.

A.4 Synthetic Data Generation Details

Prompt:

You are a fantastic relation extraction model who only outputs
valid JSON. Extract the relation between the given entities
using the context in the below text. If no relation exists, use
the label NO_RELATION.

ONLY RETURN THE RELATION LABEL. Do not add additional text.

Pay VERY close attention to which entity is the head and tail;
this dictates the direction of the relationship.

Text: {text}
Entities: {ents}

Relation:

Figure 8: Prompt used for synthetic dataset generation.

A.5 Training Setup Details

For the hyperparameters and configuration of our
model, refer to Table 4. We used the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with an initial

learning rate of 1 x 10~ for the pretrained en-
coder parameters and 1 x 10~* for the remaining
parameters involved in span representation, rela-
tion representation and scoring layers. A warmup
ratio of 10% was used with a cosine scheduler. The
hidden layer size for all non-encoder layers was set
to 768. The batch size was 8, with total number of
steps set to 20,000. All experiments were carried
out using one NVIDIA Tesla T4 GPU.

A.6 Coreference Resolution and
Document-level Relation Classification

We conceptualize coreference resolution as a spe-
cific case of relation classification, where the coref-
erence relation between two mentions referring to
the same entity is represented by a special SELF
label.

To add coreference resolution ability to GLiREL,
we simply include the SELF relation type in the
label set during training and inference.

In our experiments (Section 4), we evaluate
the performance of this approache using the Re-
DocRED dataset (Tan et al., 2023).

Document-Level Relation Classification When
coreference information is available, document-
level relation extraction (DocRE) can be achieved
by propagating local relations across coreference
clusters. To implement this, we employ a post-
processing step that clusters mentions based on the
SELF relation, akin to the connected components
algorithm. The outgoing (non-SELF) edges from
each mention within a cluster are then interpreted
as document-level relations between the resolved
entity cluster and other entity clusters in the text.
Figure 9 provides an illustration of this concept.

"Malala Yousafzai, the youngest Nobel Peace Prize laureate, gave an
inspiring speech at the United Nations. Later, Yousafzai met with Justin
Trudeau to discuss education reform."

8 Justin
Discussed Trudeau
™. educational reform
United
Nations

Figure 9: An example of merging entities into clusters
and aggregating their relations.

[SELF]

Malala
Yousafzai

Gave inspiring
speech to

Number of entity pairs bottleneck One bottle-
neck of the initial GLiREL archictecture is the fact
that the number of entity pairs in an instance scales
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Table 4: Training Setup

Hyperparameter/Configuration Value

Optimizer AdamW (Loshchilov and Hutter, 2017)
Initial Learning Rate (Encoder) 1x107°

Initial Learning Rate (Other Parameters) | 1 x 10~*

Warmup Ratio 10%

Scheduler Cosine

Hidden Layer Size (Non-encoder Layers) | 768

Batch Size 8

Total Training Steps 20,000

GPU NVIDIA Tesla T4

almost quadratically with the number of entities
(N? — N, excluding self-pairs). This becomes a
significant memory issue when extending GLiREL
to document-level relation classification. To alle-
viate this issue, we can incorporate a naive win-
dowing method, which only pairs entity within a
configured token distance window. With the addi-
tion of coreference clusters, the relations predicted
within each window can then be aggregated across
the document.

We further assess the model’s effectiveness on
the established DocRE dataset Re-DocRED (Tan
et al., 2023).

To assess GLIiREL’s performance on the
Document-level relation extraction task, we use
the Re-DocRED dataset. In one experiment, the
model is trained only to predict relations between
entities with no coreference SELF label. The given
(gold) coreference clusters are used to aggregate
relations across each document. This is the typical
setting for the Re-DocRED benchmark. Addition-
ally, we investigate GLiREL’s ability to perform
coreference resolution by using the prediction of
SELF relations between entities to perform corefer-
ence.

Baselines We compare GLiREL to the strongest
models on this benchmark. KD-RoBERTa (Tan
et al., 2022) achieves SoTA results using a
RoBERTa-based model, with the addition of an
axial attention module to capture interdependen-
cies among entity pairs, and a knowledge distil-
lation framework to make use of large-scale dis-
tantly supervised data. Ma et al. (2023a) perform
strongly on Re-DocRED by introducing DREEAM,
a method that integrates evidence retrieval (ER)
to help the model focus on relevant parts of the
document. We also compare LLM-based models
— LMRC (Li et al., 2024a), AutoRE (Xue et al.,

2024), GenRDK and CoR (Sun et al., 2024) —
which were introduced in the Background (Section
2).

Results The results of these approaches are
shown in Table 5. GLiREL achieves competitive
performance against finetuned LLMs with over
x15 more parameters. However, GLiREL is sur-
passed by the more specialised framework LMRC,
while both BERT-based methods KD-RoBERTa
and DREEAM remain significantly better at this
benchmark.

Relying on predicted SELF relations to perform
coreference upon proves to be unreliable, show-
ing poor performance on the benchmark without
annotated coreference clusters.
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Method Ign F} Fy
BERT-based

KD-RoBERTa;4;4¢ (Tan et al., 2022) 77.60 78.28
DREEAM (Ma et al., 2023a) 79.66 80.73
LLM-based

CoR (Sun et al., 2024) - 37.14+9.2
GenRDK (Sun et al., 2024) - 41.3 +8.9
AutoRE (Xue et al., 2024) - 51.91
LoRA FT LLaMA2-7B-Chat (Li et al., 2024b) 52.74 53.02
LoRA FT LLaMAZ2-13B-Chat (Li et al., 2024b) 52.15 52.45
LMRC-LLaMA2-7B-Chat (Li et al., 2024b) 72.33 72.92
LMRC-LLaMAZ2-13B-Chat (Li et al., 2024b) 74.08 74.63
GLiREL

GLiREL (+ gold coref clusters) 53.24 54.13
GLiREL (+ predicted coref clusters) 25.97 25.08

Table 5: Results on the test set of Re-DocRED. Best metrics are shown in bold

A.7 Full Zero-Shot Relation Classification
Results
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Wiki-ZSL FewRel
m | Model P R Fl | P R Fl
CIM (Rocktischel et al., 2015a) 49.63 48.81 49.22 | 58.05 61.92 59.92
ZS-BERT (Chen and Li, 2021) 71.54 7239 7196 | 76.96 78.86 77.90
MICRE w/Llama (Li et al., 2024a) 76.46 78.53 77.48 | 89.34 91.88 90.59
Tran et al. (2022) 8748 77.50 82.19 | 87.11 86.29 86.69
RelationPrompt NG (Chia et al., 2022) | 51.78 46.76 48.93 | 72.36 58.61 64.57
5 | RelationPrompt (Chia et al., 2022) 70.66 83.75 76.63 | 90.15 88.50 89.30
RE-Matching (Zhao et al., 2023) 78.19 78.41 7830 | 92.82 92.34 92.58
DSP-ZRSC (Lv et al., 2023) 941 77.1 84.8 | 934 925 929
ZSRE (Tran et al., 2023) 9450 96.48 95.46 | 96.36 96.68 96.51
MC-BERT (Lan et al., 2023) 80.28 84.03 82.11 | 90.82 91.30 90.47
TMC-BERT (Moller and Usbeck, 2024) | 90.11 87.89 88.92 | 93.94 9330 93.62
GPT-40 91.24 72.07 80.03 | 96.75 83.05 89.20
GLiREL 69.88 65.82 62.80 | 9456 89.17 81.21
GLIiREL (+ synthetic pretraining) 89.41 80.67 83.28 | 96.84 93.41 94.20
CIM (Rocktidschel et al., 2015a) 46.54 4790 45.57 | 47.39 49.11 48.23
ZS-BERT (Chen and Li, 2021) 60.51 6098 60.74 | 56.92 57.59 57.25
MICRE w/Llama (Li et al., 2024a) 72.36 74.88 73.60 | 80.67 8231 81.48
Tran et al. (2022) 71.59 64.69 6794 | 6441 62.61 63.50
RelationPrompt NG (Chia et al., 2022) | 54.87 36.52 43.80 | 66.47 48.28 55.61
10 | RelationPrompt (Chia et al., 2022) 68.51 74.76 71.50 | 80.33 79.62 79.96
RE-Matching (Zhao et al., 2023) 74.39 7354 7396 | 83.21 82.64 8293
DSP-ZRSC (Lv et al., 2023) 80.0 740 769 | 80.7 88.0 842
ZSRE (Tran et al., 2023) 85.43 88.14 86.74 | 81.13 8224 81.68
MC-BERT (Lan et al., 2023) 72.81 7396 7338 | 86.57 8527 8592
TMC-BERT (Moller and Usbeck, 2024) | 81.21 81.27 81.23 | 84.42 84.99 85.68
GPT-40 77.62 66.14 6835 | 84.07 58.00 66.20
GLiREL 76.45 71.80 68.89 | 85.40 78.29 80.14
GLiREL (+ synthetic pretraining) 89.87 81.56 83.67 | 91.09 8742 87.60
CIM (Rocktischel et al., 2015a) 29.17 30.58 29.86 | 31.83 33.06 32.43
ZS-BERT (Chen and Li, 2021) 34.12 3438 3425|3554 38.19 36.82
MICRE w/Llama (Li et al., 2024a) 67.14 68.87 6799 | 73.74 75.83 7477
Tran et al. (2022) 38.37 36.05 37.17 | 43.96 39.11 41.36
RelationPrompt NG (Chia et al., 2022) | 54.45 29.43 37.45 | 66.49 40.05 49.38
15 | RelationPrompt (Chia et al., 2022) 63.69 6793 65.74 | 7433 7251 73.40
RE-Matching (Zhao et al., 2023) 67.31 67.33 6732 | 73.80 73.52 73.66
DSP-ZRSC (Lv et al., 2023) 7715 644 704 | 829 78.1 804
ZSRE (Tran et al., 2023) 64.68 65.01 6530 | 66.44 69.29 67.82
MC-BERT (Lan et al., 2023) 65.71 67.11 66.40 | 80.71 79.84 80.27
TMC-BERT (Moller and Usbeck, 2024) | 73.62 74.07 73.77 | 82.11 79.93 81.00
GPT-4o 81.04 32.06 41.57 | 84.42 65.76 70.70
GLiREL 66.14 6540 60091 | 75.76 7134 70.40
GLiREL (+ synthetic pretraining) 79.44 7481 7391 | 88.14 84.69 84.48

Table 6: Full performance comparison of models on Wiki-ZSL and FewRel datasets for various values of unseen
relations m. All metrics are averaged on the macro (class) level.
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