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Abstract

Generative Large Language Models (LLMs)
are capable of being in-context learners. How-
ever, the underlying mechanism of in-context
learning (ICL) is still a major research question,
and experimental research results about how
models exploit ICL are not always consistent.
In this work, we propose a framework for eval-
uating in-context learning mechanisms, which
we claim are a combination of retrieving inter-
nal knowledge and learning from in-context ex-
amples by focusing on regression tasks. First,
we show that LLMs can solve real-world re-
gression problems and then design experiments
to measure the extent to which the LLM re-
trieves its internal knowledge versus learning
from in-context examples. We argue that this
process lies on a spectrum between these two
extremes. We provide an in-depth analysis of
the degrees to which these mechanisms are trig-
gered depending on various factors, such as
prior knowledge about the tasks and the type
and richness of the information provided by the
in-context examples. We employ three LLMs
and utilize multiple datasets to corroborate the
robustness of our findings. Our results shed
light on how to engineer prompts to leverage
meta-learning from in-context examples and
foster knowledge retrieval depending on the
problem being addressed.

1 Introduction

The emergence of transformers (Vaswani et al.,
2017) has revolutionized natural language process-
ing, leading to the development of LLMs such as
GPTs (Brown et al., 2020). In addition to their
impressive zero-shot performance, these models
demonstrated the capability of in-context learning
(ICL), by which they learn a task from examples
provided in the context of the prompt (Brown et al.,
2020). In tasks where both zero-shot and ICL set-
tings are applicable, ICL consistently outperforms
the zero-shot setting (Brown et al., 2020; Liu et al.,

2022). However, the inner mechanism of ICL in
LLMs remains an open area of research.

Broadly speaking, current research identifies
two main approaches to explain the ICL mech-
anism (Dong et al., 2024; Li et al., 2024): 1)
Meta-learning, 2) Knowledge retrieval. With meta-
learning (Schmidhuber, 1987), the LLM learns a
new unseen pattern from the in-context examples,
allowing it to generalize to new inputs that fol-
low the same pattern. In contrast, with knowledge
retrieval, the LLM uses the in-context examples
as cues to access and apply information already
stored within its pre-trained parameters without in-
ferring new patterns from the provided examples.
For instance, given examples of input/output num-
ber pairs in the context, meta-learning allows the
model to learn their relationship and apply it to
new inputs. However, if the prompt informs the
model that the pairs are the earth’s population given
a year, the LLM utilizes its knowledge retrieval and
infers that the function is exponential and plateaus
at around 8-10 billion after the year 2000.

Contrary to current research, we propose a dif-
ferent approach, arguing that ICL is not merely
learning or retrieving knowledge, but rather, its be-
havior lies on a spectrum between the two, which
can be adjusted depending on various factors. Be-
fore exploring our proposed approach, we elaborate
on the hypotheses mentioned above. 1

The first hypothesis suggests that transformers
are effective meta-learners, and LLMs can gener-
ate accurate predictions based solely on the given
input-output pairs. (Bai et al., 2023) theoretically
proves and practically tests the capability of an
encoder-based transformer to implement general-
ized linear models in-context. (Garg et al., 2022)
uses a decoder-based model, a GPT-2 architecture
modified for regression, that uses the input fea-
tures inside the embeddings (instead of using to-

1See Appendix A for a detailed discussion on related work.
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Figure 1: The three main prompt configurations: In configuration a) the actual names of the features and the output
are known, and the LLM is asked to guess the “price of a used Toyota or Maserati in 2019”. Configuration b) is
similar to a) except that the feature names are anonymized. Here, the LLM is asked to estimate the “Output”. In
Configuration c), we replace the real prices of in-context examples with randomly (Gaussian) generated numbers.

kens) and outputs a number. Their model’s perfor-
mance surpasses a 2-layer Multi-Layer Perceptron
(MLP) and a decision tree by meta-learning. Fur-
ther, (Vacareanu et al., 2024) directly uses LLMs to
test regression capabilities using a limited number
of features (less than 3) and concludes that LLMs
are capable regressors based on in-context exam-
ples. However, according to our findings, their
claim of avoiding data contamination is not well-
supported. We note that none of these research
works use realistic datasets or consider the combi-
nation of meta-learning with knowledge retrieval.

The second approach emphasizes knowledge re-
trieval while downplaying the learning aspect. For
example, (Min et al., 2022) examines 12 LLMs
across various classification tasks, concluding that
altering output labels, which are needed for learn-
ing, has no impact on performance. They argue
that the crucial elements of ICL are limited to defin-
ing the label space, input distribution, and overall
task format. Meanwhile, (Kossen et al., 2024) ar-
gues that LLMs utilize the labels but in an arbitrary
manner when experimenting with the same classi-
fication tasks. (Li et al., 2024) further dismisses
the significance of output labels and instead pro-
poses two knowledge retrieval approaches. These
include the retrieval of pre-existing solutions from
training data (Min et al., 2022; Wang et al., 2023;
Wies et al., 2023), and a novel solution composi-
tion approach, inspired by (Hahn and Goyal, 2023),
which proposes that learned solutions can be com-
bined. While this work offers valuable insights
into ICL mechanisms, its findings are limited to a
narrow selection of datasets and models. Here, the

exclusive use of LLaMA 2 (Touvron et al., 2023),
which is known to struggle with long token con-
texts (Machlab and Battle, 2024; Zuhashaik et al.,
2023) results in some different findings compared
to our work. For instance, they report that remap-
ping the inputs of in-context input-output pairs to
alternative text reduces the accuracy to that of a
random model (even with up to 40 in-context ex-
amples). On the other hand, under similar condi-
tions, our experiments indicate that in newer mod-
els, learning occurs with optimal performance. We
refrain from making specific claims about task se-
lection or composition in our work. Instead, we cat-
egorize these processes under the broader umbrella
of knowledge retrieval 2. Similarly, to investigate
ICL, (Pan et al., 2023) uses simple classification
tasks and older models (e.g., GPT-3 Ada), and as a
result, its findings are partially different from ours.

We propose a different hypothesis that resolves
the contradictions in the research community and
support our claims with extensive empirical test-
ing. We argue that ICL is not merely learning or
retrieving knowledge but uses a combination of the
two, which lies on a spectrum determined by fac-
tors we can manipulate. In this regard, we propose
an evaluation framework and conduct a compara-
tive study of different LLMs and datasets, focusing
specifically on regression problems as our testing
ground. In our evaluation framework, we query
the LLM to estimate an output number based on
a set of (feature, value) pairs given a set of ICL
examples, as shown in Figure 1(a).

2See Appendix B for a more detailed analysis of the dis-
crepancies between our findings and those of (Li et al., 2024).
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We opted for regression tasks for the following
reasons: This choice aligns our work with the ma-
jority of related ICL meta-learning research, thus
facilitating direct comparisons and building upon
existing findings. These include works that alter
the output module of LLMs, such as (Garg et al.,
2022) and those that use the token generation out-
put of LLMs as is, such as (Vacareanu et al., 2024).
Moreover, (Bhattamishra et al., 2024) demonstrates
that the ICL capability of LLMs is independent of
their input/output modules and is present in the
intermediary layers of the LLMs. Finally, while
LLMs are capable of regression (even when inputs
are given to them in a textual format (Vacareanu
et al., 2024)), this task still has a complex output
space (e.g., continuous or unbounded), which is
challenging for LLMs (Fang et al., 2024).

We show that LLMs can perform regression on
realistic datasets and measure the extent to which
the LLM retrieves its internal knowledge versus
learning from in-context examples. We provide
an in-depth analysis of the degrees to which these
mechanisms are triggered depending on the factors
we use in our framework: the number of (feature,
value) pairs, the number of in-context examples,
and the prompting strategies.

In summary, our contributions are as follows: 1)
We demonstrate that LLMs can effectively learn
from regression examples of realistic datasets in-
context, extending previous work on synthetic data
to more practical scenarios. 2) We propose a new
hypothesis about the ICL mechanism that com-
bines both learning and knowledge retrieval dur-
ing the LLM inference, reconciling the research
community’s findings. 3) We introduce an evalu-
ation framework that allows for systematic com-
parison of ICL mechanisms across different LLMs,
datasets, and prompt configurations3. 4) We pro-
vide a comprehensive analysis of how LLMs bal-
ance internal knowledge retrieval and learning from
in-context examples and propose prompt engineer-
ing techniques to control them.

2 Problem Setting

Our study focuses on a regression task where we
use LLMs to predict numerical outputs based on
the given inputs. We assume a regression dataset,
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, compris-
ing input-output pairs, is given. Each xi comprises
a set of pairs (fij , vij) where fij represents the fea-

3The code and analytical tools are available at §.

ture name and vij is the numerical value of fij . The
target variable yi is the numerical value of the out-
put. For example, if we consider a dataset provid-
ing the price of used cars given their fuel economy
and mileage, we could have an input with (feature,
value) pairs, (Fuel Economy,16) and (Mileage, 0),
and an output, 95595, indicating the price.

To resemble a regression problem setting, we
present the LLM with a subset of m input-output
examples {(x1, y1), (x2, y2), . . . , (xm, ym)} taken
from the in-context split of D for learning. Then,
we query the LLM with the feature pairs of x taken
from the test split of D to obtain the answer y as the
output.4 Figure 1(a) depicts our problem setting
in the context of a regression task that involves
predicting the “price of a used Toyota or Maserati
in 2019”, which is the target variable name, given
three (feature, value) pairs with a set of provided
in-context examples. When m equals 0, we obtain
the zero-shot setting without prior examples.

2.1 Prompt Configurations

We employ three main prompt configurations for
prompting the models, as shown in Figure 1. These
configurations vary in different ways, such as hid-
ing the real name of features (Figure 1(b)) or the
actual ground truth (Figure 1(c)). We also prompt
the LLM with simple numerical generation as a
baseline in our experiments. This results in a total
of four prompt configurations. We also consider
other prompt configurations which either served
as ablations or didn’t provide any significant in-
sights. In each prompt configuration, the context of
the prompt comprises a task instruction, in-context
examples (sample regression task input-outputs),
and a query. The task instruction asks the LLM to
estimate the objective of the dataset (such as the
price of a used car) based on the given features by
just providing a number and no explanation as
the output. Each of these parts can be changed or
removed according to the prompt configuration.
Named Features (Configuration a): This is our
most straightforward prompt configuration. It re-
veals the actual names of the features and the re-
quired target variable (depending on the dataset) in
the prompt. For instance, in the case of a dataset
about the price of used cars, the LLM is instructed
to estimate a “Used Car Price” based on “City fuel
Economy”, “Mileage” and “Passenger Car Classifi-

4We note that since we do not change the architecture of
the LLMs, all numbers must be represented to and read by the
LLM in textual form.
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cation”. Following this instruction, sample input-
output examples are given to the model, and then
the query is asked as shown in Figure 1(a).
Anonymized Features (Configuration b): In this
setup, which is shown in Figure 1(b), we present the
LLM with input-output pairs where the actual name
of the features and the target variable are changed
to “Feature #” and “Output”, respectively. The
instruction asks the LLM to estimate the “Output”
based on the given “Features”. Here, the LLM can
not use its domain knowledge, and can only use
the provided number of the features.
Randomized Ground Truth (Configuration c):
In our final main prompt configuration shown in
Figure 1(c), we maintain the named features but
replace the ground truth values with randomly gen-
erated numbers (independent of the feature values).
These random numbers are generated using a Gaus-
sian distribution based on the dataset statistics. This
setup mainly serves as a control configuration to
test to what degree the LLMs are truly learning
from the provided ground truth in the examples.
Direct Question Answering (Direct QA): To es-
tablish an LLM baseline, we ask LLMs to estimate
the target variable based on the given named fea-
tures without any in-context examples (m = 0).
We also define the scope of the output by providing
the mean and the standard deviation of the ques-
tioned dataset in the instruction to the LLM. An
example of this added information is: “Estimate the
insurance cost of this person given the information.
An issuance cost is typically around 13270.42 with
a standard deviation of 12110.01”.

2.2 Models and Metrics
We evaluate several LLMs, including LLaMA 3
70B (AI@Meta, 2024), GPT3.5 (Brown et al.,
2020), and GPT4 (OpenAI, 2023). We initially con-
sidered smaller LLMs such as Mistral 7B (Jiang
et al., 2023), but found their performance for regres-
sion tasks to be insufficient and consequently ex-
cluded them. To provide a comprehensive compar-
ison, we also employed classical machine learning
techniques alongside these LLMs. Specifically, we
utilized a straightforward Ridge regression (Hoerl
and Kennard, 1970) and the more advanced Ran-
domForest model (Breiman, 2001). Further details
about these models, such as their hyper-parameters,
are included in Appendix D.

In our analysis, for each dataset, we test the
LLMs with a mix of factors (we call these fac-
tors to distinguish them from the features fij de-

fined in our problem setting). The first factor is the
prompt configurations, which can be Named Fea-
ture, Anonymized Features, Randomized Ground
Truth, or Direct QA. The second and third fac-
tors are the number of in-context examples and the
number of (feature, value) pairs, which we will
refer to as the number of features. The number of
in-context examples is 0, 10, 30, and 100, and the
number of features is 1, 2, and 3 in our experiments.
These feature numbers indicate using the first fea-
ture (F1), the first two features (F2), and all three
features (F3) (features are ordered and sorted in de-
creasing order of importance). Not all these factors
can be used together as the 0 in-context examples
factor can only be used with the Direct QA prompt
configuration, and other prompt configurations can
not be used with the 0 in-context examples fac-
tor. To assess the performance of the LLMs and
the machine learning models on regression tasks,
we use Mean Squared Error (MSE) as our main
evaluation metric. We also calculate and report the
coefficient of determination R2 and Mean Absolute
Error (MAE) in Appendix E.

3 Experiments

This section presents our experimental findings,
highlighting the interplay between various factors
that influence the performance of LLMs across
regression tasks and datasets.

3.1 Datasets

To assess the LLMs’ performance across diverse
domains and complexity levels, we select three re-
gression datasets and three of their most important
features, where feature importance was calculated
with RandomForest (Louppe et al., 2013): 1) Ad-
mission Chance: the likelihood of admission to
graduate programs for Indian students (Acharya
et al., 2019) with three highly correlated features.
Since this dataset is about Indian students, there
is a lower chance of being observed in the LLM’s
training data, reflecting the general imbalance that
skews towards USA-centric data (Zhu et al., 2023).
2) Insurance Cost: focuses on predicting a similar
distribution of the annual individual medical costs
billed by health insurance companies in the USA,
drawing from demographic statistics compiled by
the U.S. Census Bureau (Lantz, 2013). For this
dataset, the first feature is the most important one
by far. 3) Used Car Prices: the estimation of the
price of a used Toyota or Maserati car in 2019.
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Here, the first two features are the most impactful
ones. 5 These datasets are pre-processed to se-
lect their most important features. We divide each
dataset into two splits: an in-context subset com-
prising 100 instances and a test subset with 300
instances. See Appendix C for details.

Figure 2: Baseline results (Direct QA configuration)
across datasets and number of features. The dashed red
line shows the performance of the Mean model.

3.2 Knowledge Retrieval Assessment

To establish a baseline for our subsequent analyses,
we first evaluate the LLMs’ performance using only
their knowledge retrieval, without any in-context
examples. This assessment is required to under-
stand how the in-context examples in other prompt
configurations modulate the LLMs’ performance
and ICL mechanisms. The performance of LLMs
with Direct QA prompt configuration is shown in
Figure 2. The red dashed line shows the perfor-
mance of Mean model, which outputs the mean
of the dataset independent of the input features.As
can be observed, the additional features gener-
ally improve the performance across tasks (with
inconsistencies when using LLaMA 3). However,
the LLMs’ utilization of features does not directly
correlate with feature importance, as explained in
Section 3.1. As for the impact of datasets, the
Admission Chance dataset consistently shows the
poorest results, with most outcomes at or above
the Mean model’s MSE. As mentioned earlier, this
dataset is the least exposed to LLMs, which likely
explains these findings.

We further explored the Direct QA approach by
asking the LLM to explain its reasoning based on
the given features before providing the final esti-
mate. This variation yielded predictions compara-

5All datasets used in this study are publicly available. For
references and details of our pre-processing code, visit §.

ble to the Direct QA results without offering addi-
tional insights and consequently was excluded from
our main prompt configurations. See Appendix F
for example answers and related diagrams.

3.3 Learning/Knowledge Retrieval Interplay
We have defined four main prompt configurations
to vary the degree to which the model uses its
knowledge retrieval or learning from the in-context
examples. By comparing the performance of these
prompt configurations, we can understand how
LLMs utilize knowledge retrieval and learning
from the outputs. Figure 3 compares these prompt
configurations’ effects on LLMs. The Randomized
Ground Truth prompt configuration, shown with
the lime color, consistently yields the worst results.
Note that the names of the features are revealed
here. As a result, this prompt configuration creates
a scenario where patterns in the data may contra-
dict the model’s internal knowledge. For instance,
in the Insurance dataset, some in-context examples
show that people who smoke less, require lower in-
surance costs, while others indicate higher costs for
the same group. The negative impact of this prompt
configuration on performance becomes more sig-
nificant as the number of in-context examples with
random outputs increases. This is particularly evi-
dent when using 100 in-context examples. These
results suggest that the LLMs are using the output
variables to learn from the examples, and increas-
ing the number of in-context examples shifts the
spectrum from knowledge retrieval to learning.
Our findings, which indicate that LLMs can be
pushed to prioritize learning from the in-context
examples over knowledge retrieval, challenge the
uselessness of the outputs claimed by (Min et al.,
2022; Li et al., 2024).

Comparing the Named Features and Anonymized
Features prompt configurations shows the power
of combining the two paradigms of learning
from in-context examples and knowledge retrieval.
Anonymized Features prompt configuration, shown
with the green color in Figure 3, allows only us-
age of the numeric part of the features for learning.
This prompt yields better results than the Direct
QA and the Mean model. Named Features prompt
configuration, which adds the actual name of the
features to the examples, is shown in purple. By en-
couraging the use of knowledge resulting from the
added names of the features, it consistently outper-
forms Anonymized Features prompt configuration
across variations of the factors, that is the number
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Figure 3: Comprehensive comparison of prompt configurations’ effects on our models across various factors, shown
in a hierarchy. The top level for each dataset distinguishes between GPT-3, LLaMA 3, and GPT-4 results using
black, grey, and white arcs, respectively. The notation ICi indicates the number of in-context examples, while F1,
F2, and F3 represent the use of the first feature, the first two features, and all three features, respectively. The MSE
scale of each dataset is shown at top left corner.

of in-context examples and the number of features.
These results show that LLMs can exploit both
in-context examples’ outputs for learning and
clues like feature names for knowledge retrieval.
Note that when we replaced the feature names with
random, unrelated names with the same ranges as
the original features (e.g., replacing Smoker Sta-
tus with Married since both are binary), the results
remained the same as those of the Anonymized
Features prompt configuration.

3.4 Knowledge Retrieval Compensates for
In-context Examples

As previously noted, the Named Feature prompt
configuration, which combines knowledge and
learning, generally outperforms the Anonymized
Feature prompt configuration, which relies only
on learning. Regarding these prompt configura-
tions, analyzing our defined factors, such as the
number of in-context examples, reveals more in-
sights about ICL. Conventionally, in the realm of
LLMs, more in-context examples tend to improve
the task outcome. However, as demonstrated in
Figure 3, performance deteriorates with more in-
context examples when outputs are random, even
if the model possesses knowledge about the sub-
ject. Figure 4, which compares the performance of
different numbers of in-context examples, reveals
that the Named Feature prompt configuration per-
forms better when fewer in-context examples are
used (solid vs dashed lines). A significant perfor-
mance gap between the two prompt configurations

is observed at 10 in-context examples, shown with
the solid and dashed purple lines. However, at
100 in-context examples, shown with the solid and
dashed lime lines, the performance levels converge.
This underscores the potential for reducing the
number of required in-context examples by pro-
viding task-specific information, thereby shifting
the spectrum from learning to knowledge retrieval.

Moreover, Figure 5 shows the advantage of the
Named Features prompt configuration over both
the Anonymized Features prompt configuration
and also the traditional machine learning mod-
els by comparing them across various numbers of
in-context examples. With fewer in-context ex-
amples (30 and especially 10), Named Features
prompt configuration models generally outperform
all other models. Their results indicate that the
type of information in the LLMs’ prompt can en-
courage exploiting their internal knowledge. More-
over, the LLMs’ capability to retrieve knowledge
makes them more data-efficient, i.e., few-shot
learners, than even classical machine learning
models, RandomForest and Ridge. However, this
advantage applies primarily in a low-data regime
and does not account for issues such as the higher
training and execution costs of LLMs, which we
discuss further in Section 4. All the models eventu-
ally converge at 100 examples when sufficient data
for regression is provided.
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Figure 4: Comparison of the number of in-context examples using Named Features (straight lines) and Anonymized
Features (dashed lines) prompt configurations. F1, F2 and F3 indicate using 1st (F1), then 1st and 2nd (F2), and all
three features (F3).The MSE scale of each dataset is shown at the top left corner.

Figure 5: Performance of Named Features and
Anonymized Features prompt configurations, Ridge,
and RandomForest for 3 features based on the number
of in-context examples.

3.5 More Features Help Knowledge Retrieval

Unlike the number of in-context examples, the num-
ber of features stands out as a unique factor that can
improve both learning and knowledge retrieval
in LLMs. As additional features are incorporated
into the context, LLMs can better learn the relation-
ships between features and outputs and also retrieve
more relevant knowledge. This clearly helps in the
case of Named Features prompt configuration.

However, the less obvious insights in this sec-
tion emerge from the Anonymized Features prompt
configuration, which relies only on learning and
consistently improves with the addition of features.
As shown in Figure 6 for 100 in-context exam-
ples (the dotted lines), each additional feature ei-
ther improves the results or maintains near-optimal
performance. A similar, but less robust, trend is
seen in the 30 in-context examples’ diagram in Ap-

pendix F. While adding more features improves
results, this improvement is more significant in lan-
guage models compared to machine learning mod-
els such as Ridge and RandomForest in Figure 6.
Given that in this prompt configuration 1) feature
names are anonymous, 2) only raw numerical data
is available for output estimation, and 3) the im-
provement in the performance of LLMs does not
correlate with the importance of the features, we
conjecture that the results could be influenced by
data contamination from the observed numbers.
This assertion is supported by the fact that this
phenomenon is absent in the Admission Chance
dataset, the least likely seen dataset by LLMs.

In the Named Feature prompt configuration for
100 in-context examples depicted in Figure 6, the
results show an overall improvement, yet the trend
is not as consistently downward or smooth as ob-
served in the Anonymized Features prompt con-
figuration when features are added. This fluctua-
tion suggests that the knowledge retrieval aspect
becomes more prominent and occasionally super-
sedes the learning component as the number of
features increases. Based on these observations
that happen at a high number of 100 in-context
examples, we hypothesize that adding features pri-
marily enhances the knowledge retrieval aspect
rather than contributing to the learning.

3.6 Quantitative Analysis

Following (Yoo et al., 2022), we introduce a quanti-
tative metric to assess the impact of knowledge on
model performance. We denote the rate of improve-
ment of a prediction after the addition of knowledge
(named features) as Knowledge Effect Ratio (KER),
which can be calculated as such:
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Figure 6: Performance of Anonymized Features prompt
configuration, Ridge, and RandomForest for 100 in-
context examples based on the number of features.

KER =
|YAF − YGT | − |YNF − YGT |

|YAF − YGT |
× 100 (1)

where YAF shows a prediction from the
Anonymized Features Configuration, YNF shows a
prediction from the Named Features Configuration
and YGT is the ground truth value. This formula
measures the rate of change in error (Mean Ab-
solute Error) due to added knowledge in learning.
We compute the KER for each dataset and com-
bination of factors and then select its median im-
provement rate to mitigate the influence of outliers.
As expected, this rate remains near zero across
almost all factor combinations for the Admission
Chance dataset, given that it does not benefit from
knowledge in our tests. For the other two datasets,
Figure 7 shows the average improvements across
feature factors for each dataset and the number of
in-context examples. Notably, the most significant
gains emerge when the number of in-context exam-
ples is small, aligning with our earlier observations.

4 Discussion

Our evaluation framework and extensive experi-
ments provide insights into the ICL mechanisms of
LLMs. In this section, we discuss the implications
of our findings, address limitations, and suggest
directions for future research.

4.1 Controlling ICL Mechanisms
Understanding and manipulating ICL mechanisms
in LLMs proves invaluable for practical applica-
tions and effective prompt engineering. Our exper-

Figure 7: KRER improvement across different models
and datasets with varying numbers of in-context exam-
ples. The improvements become more notable as the
number of in-context examples decreases.

iments show that the LLMs use both learning from
the in-context input-output examples and prior in-
formation with varying extents. We found that in-
creasing the number of in-context examples encour-
ages learning while adding more features mainly
boosts knowledge retrieval. However, these ben-
efits only materialize when there is room for im-
provement in the respective mechanism. For ex-
ample, using more than 100 in-context examples
did not help LLMs, and in the Admission Chance
dataset, where the features were highly correlated,
the addition of features did not help the perfor-
mance either. This insight explains why (Min et al.,
2022)’s tasks appeared not to utilize output labels
for learning; In their tasks, the dominant knowl-
edge retrieval aspect likely eclipsed any learning
benefits. Our findings also challenge the view of
LLMs as merely meta-learners. While previous re-
search demonstrates decoder models’ capacity for
meta-learning, the complex interplay of different
training objectives (unknown in some proprietary
models) and other factors introduce a significant
knowledge retrieval component. Consequently, ear-
lier findings can only be directly extrapolated to
LLMs when considering all these dynamics.

4.2 Practical Applications

Our findings emphasize the importance of striking
an optimal balance between the number of mean-
ingful features and the number of in-context exam-
ples to optimize LLMs performance. By strategi-
cally reducing the quantity of in-context examples
while increasing the number of named features, it
is possible to achieve resource efficiency and other
potential benefits, such as mitigating data biases,
without compromising performance. Conversely,
when tackling tasks unfamiliar to the model, prun-
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ing less important features can free up space in
the LLM’s token context, allowing it to accom-
modate more in-context examples. This shifts the
ICL mechanism towards the learning side of the
spectrum and improves the model’s performance.

4.3 Traditional ML Models vs LLMs

Our findings show that LLMs can be more data-
efficient in low-data regimes, leveraging their pre-
trained knowledge to achieve strong performance
with only a few in-context examples. This advan-
tage holds against traditional ML models even with
the addition of more than 3 features, given that in
classical ML models, with sparse data, more fea-
tures lead to overfitting- a problem we encountered
on our datasets as well. In addition, in our ex-
periments, LLMs excelled at identifying the most
important features of the datasets, performing on
par with the classical feature selection method we
used. On the negative side, LLMs require substan-
tial computational resources to train and deploy.
Meanwhile, traditional models such as Ridge re-
gression or RandomForest can be trained rapidly
on standard hardware and may eventually surpass
LLMs if enough data is provided.

4.4 Data Contamination

In our experiments, we showed that LLMs can per-
form regression on realistic datasets, even when fea-
ture names are anonymized. However, as detailed
in the experiments section and illustrated in Fig-
ure 6, the improvement does not correlate with the
actual importance of input features in the dataset.
This discrepancy strongly suggests that data con-
tamination occurs even at the level of numerical val-
ues. These findings challenge the claims made by
(Vacareanu et al., 2024), which uses a prompt con-
figuration similar to Anonymized Features to avoid
data contamination. Their study utilizes either well-
known Friedman formulas or formulas that can be
closely approximated (using two decimal places)
by common mathematical expressions6.

4.5 Order of Features & In-Context Examples

In our experiments, we explored two factors: re-
arranging the order of features in the Direct QA
prompt configuration and sorting the in-context
examples in the Anonymized Features prompt con-
figuration. When permuting the order of our three
features (resulting in six possible permutations),

6E.g. y = 10x+ sin(5πx) + cos(6πx) ≈ 10x.

we found only a slight change in performance. Af-
ter sorting the in-context examples by their label
values (with three features), we tested the impact
on performance using sets of 10 and 100 in-context
examples. While both scenarios resulted in a drop
in performance, the drop was notably steeper when
using 100 examples. Among the models we eval-
uated, GPT-4 was the least affected, maintaining
robust performance with 10 sorted examples but
showing a marked decrease with 100 examples.

We hypothesize that sorting examples by label
values may cause LLMs to prioritize the sorted
label pattern rather than the relationships between
features and labels—an effect possibly affected
by LLMs’ inherent ability to detect and continue
sorting patterns (Besta et al., 2024). We noticed
that when the examples were sorted in ascending
order, the mean predicted value went up, and when
sorted in descending order, it went down. This
suggests that the sorting pattern guides the model’s
predictions, and it is best to keep the order of in-
context examples randomized.

5 Conclusion

In this study, we have explored the ICL capabilities
of LLMs through an empirical study on regression
tasks. Our results demonstrate that LLMs utilize a
blend of retrieved internal knowledge and learned
information from in-context examples. Our find-
ings extend the evaluations of prior hypotheses on
ICL. For example, we evaluate the usage of outputs
in in-context learning examples and show how to
manipulate their effectiveness. This work not only
advances our understanding of LLMs’ in-context
learning phenomenon but also offers practical in-
sights for optimizing their application through care-
ful prompt engineering.
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Limitations

Scope of Study

Our framework focuses on regression tasks in line
with most previous meta-learning research. We
also utilize three diverse regression datasets. More
regression (or classification) datasets with different
characteristics, such as different relationships be-
tween their features, can be used for future investi-
gation, which could elaborate more on the findings
of our work with the previous work that dismissed
the importance of outputs for learning.

Interpretability

We interact with LLMs as a black box and the
underlying neural mechanisms remain opaque in
our experiments. Integrating this approach with
interpretability techniques could yield a deeper un-
derstanding of ICL.

Experimental Constraints

The token limit of some LLMs prevented us from
testing beyond 100 in-context examples and three
features in certain combinations. Although we
found that results with 200 in-context examples
closely mirrored those with 100, including a 4th
feature could have further reinforced our findings.
When tested, the results of the 4th feature aligned
with our conclusions. However, we ultimately re-
stricted our analysis to three features to maintain a
comprehensive combination across all models.

Data Contamination Challenge

Addressing the challenge of data contamination re-
mains a complex issue (Sainz et al., 2023; Balloccu
et al., 2024). As mentioned earlier, it is hard to
distinguish the degree of Data Contamination from
approximate Knowledge Retrieval. Based on our
findings, data contamination can happen even with
the sequence of numerical values without any lin-
guistic clues. To mitigate this issue, we suggest us-
ing distributions that are neither widely recognized
nor easily approximated by common mathematical
expressions. Furthermore, for datasets, it is advis-
able to utilize information sourced from regions
beyond the United States or outside the primary
training domain of the language model. This ap-
proach helps to minimize the potential influence of
knowledge retrieval in generating the results.
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A Related Work

As mentioned in the introduction, the research
in this field can be categorized into meta-
learning (Schmidhuber, 1987) and knowledge re-
trieval. So far, most works are theoretical, and most
can be categorized into one of these two groups.
However, both of these aspects are changing as this
field rapidly expands; New empirical research is
coming along, and new ideas are emerging, such as
ours, that can not easily fit into one of these groups.
For example, (Li et al., 2023) proposes a structure
that improves a basic transformer’s in-context learn-
ing capabilities by breaking the input into multiple
steps. The transformer still uses the outputs but
also the knowledge that is given to it in its input.
Another example would be (Kossen et al., 2024),
which empirically tests LLMs and claims that they
can learn from the output labels but in an arbitrary
manner, a challenge our paper aims to address. An-
other interesting example that we cannot simply put
into a group is (Coda-Forno et al., 2023), which
performs meta-in-context learning by showing sim-
ilar entire tasks and their solutions in the context
of the model. Despite these emerging works, it’s
worth noting that most papers can still be classi-
fied into our established groups. When evaluating
the literature, it’s crucial to distinguish between
theoretical claims and those based on empirical or
synthetic data. Some theoretical papers suggest or
imply that their findings might extend to LLMs, but
such extrapolations should be approached with cau-
tion, as highlighted by (Deutch et al., 2024; Shen
et al., 2024).

In the meta-learning research, (Bai et al., 2023)
theoretically prove that transformers can be trained
to implement linear models within a specific error
threshold. Then, they practically test the capabil-
ity of an encoder-based transformer to implement
generalized linear models in context and show that
they are also robust against noisy data. In order
to test the ICL capability of transformers, (Garg
et al., 2022) use a GPT-2 architecture which is
closer to an LLM than a simple transformer. How-
ever, they modify this GPT-2 architecture for re-
gression using the input features inside the embed-
dings instead of using tokens and output a number
instead of generating tokens. Their model’s per-
formance surpasses linear models as well as KNN
models, XGBoost, and a 2-layer neural network.
Different from these, (von Oswald et al., 2023)
hypothesize that the strong performance of Trans-

formers comes from an architectural bias towards
mesa-optimization which they test on simple se-
quencing tasks, and (Cheng et al., 2024) suggest
Transformers can implement gradient descent in
function space, enabling them to learn linear and
non-linear models.

In the realm of empirical research, our fo-
cus is exclusively on studies examining ICL, dis-
tinct from related works involving numerical con-
cepts such as numerical reasoning (Razeghi et al.,
2022). (Vacareanu et al., 2024) uses a lot of dif-
ferent LLMs such as Gemini-pro (Team et al.,
2024), Claude 3 (Anthropic, 2024), GPT-4 (Ope-
nAI, 2023) to test their ICL regression capabilities.
They use various settings with up to three features,
but not all features are relevant to the output as
limited as a result. This work conducts rigorous
testing with many models, and the only issue it has
is regarding its claim of avoiding data contamina-
tion, which is not well-supported. They either use
well-known Friedman formulas or formulas that
can be closely approximated (using two decimal
places) by common mathematical expressions such
as y = 10x+ sin(5πx) + cos(6πx) simplified as
y = 10x. Also, the data is based on formulas,
which are not realistic regression datasets.

The first paper that argues output labels do not
matter was (Min et al., 2022). It tested various
LLMs across multiple tasks and concluded that re-
placing the outputs with random labels does not
affect the results, and the only important elements
of ICL are limited to defining the label space, input
distribution, and overall task format. Following this
work, (Pan et al., 2023) uses the same sentiment
analysis, toxicity detection, natural language infer-
ence/paraphrase detection, and topic/stance classi-
fication tasks but argues that learning and retrieval
occur under different circumstances. In contrast to
our research, their approach employs less complex
tasks (same tasks used in (Min et al., 2022)), which
they acknowledge could influence the observed pat-
terns. Additionally, they utilize more basic models,
including earlier and smaller iterations of GPT-3
such as ada. As a result, their findings yield distinct
trends and visual representations compared to our
work. Inspired by (Hahn and Goyal, 2023), (Li
et al., 2024) dismisses the significance of output
labels and proposes that learned solutions can be
combined for inference. The main limitation of
this work is the exclusive use of LLaMA 2 (Tou-
vron et al., 2023). Our experimental results differ
from (Min et al., 2022; Pan et al., 2023; Li et al.,
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2024), which requires a unified platform for direct
comparison, which is practically infeasible. We
argue this conflict is mainly due to the task and
model selection. We will explain further on (Li
et al., 2024) in Appendix B.

B Learning from Outputs

In this section, we examine the paper (Li et al.,
2024) and why its findings differ from ours. As
mentioned earlier, the main problem with this work
lies in its exclusive use of LLaMA 2 (Touvron et al.,
2023), a model known to struggle with long token
contexts (Machlab and Battle, 2024; Zuhashaik
et al., 2023) which negatively impacts the ICL.
While the choice of LLaMA 2 as a powerful open-
source LLM at the time is understandable, LLaMA
3 (AI@Meta, 2024), which addressed many of
LLaMA 2’s issues and offered significantly im-
proved capabilities, was already available at the
time of publication. Some of their experiments re-
quire direct access to the LLM architecture, which
necessitates an open-source LLM. However, many
of their experiences can be done with the GPT fam-
ily or other powerful models. Based on the LLM
choice alone, this work is severely limited. Further
limiting the study, the authors selected three sim-
ple review sentiment/news-type datasets that even
basic machine learning models can excel at.

Regarding specific experiments, experiment 4.1
demonstrates that mapping each label to another
fixed label yields results worse than a random base-
line, even with 40 in-context examples. This find-
ing contradicts our work and other related studies,
which have shown that models can learn from out-
puts. We suspect this discrepancy may be attributed
to LLaMA 2’s well-documented issue of forgetting
tasks as the number of tokens increases. Confusion
ensues because the outputs likely appear nonsen-
sical to LLaMA 2, and it has forgotten its instruc-
tions. It would have been beneficial for the authors
to specify whether LLaMA 2 was outputting incor-
rect labels or entirely irrelevant answers.

Experiments 4.2 and 5.1 also raise questions,
as they rely on token embeddings, which, with-
out further evidence, appear unrelated to ICL. For
example, (Li et al., 2023) suggests that the level-by-
level inference in transformers is necessary for ICL.
The combination of embeddings and other factors,
such as training the linear model for 80 epochs to
match LLaMA 2’s 80 layers, seems arbitrary and
lacks clear justification in these experiments.

In conclusion, while the paper (Li et al., 2024)
offers interesting insights specifically regarding its
categorization of the three hypotheses, its method-
ological choices and reliance on LLaMA 2 signifi-
cantly limit its relevance to the broader discussions
of in-context learning in language models.

C Datasets

To assess the LLMs’ performance across diverse
domains and complexity levels, we select three re-
gression datasets. These datasets are pre-processed
to select their most important features. All numeri-
cal values in the datasets are rounded to two deci-
mal points. We divide each dataset into two splits:
an in-context subset comprising 100 instances and
a test subset with 300 instances.

Figure 8: The relative importance of features across our
datasets calculated with RandomForest (also reflecting
improvements in our Ridge as later shown in Figure 6.

C.1 Admission Chance

This dataset estimates the likelihood of admission
to graduate programs for Indian students (Acharya
et al., 2019). Since this dataset is about Indian stu-
dents, it may be less seen in our model’s training
data, reflecting the general imbalance that skews
towards USA-centric data (Zhu et al., 2023). The
dataset’s selected features are CGPA (Cumulative
Grade Point Average), GRE Score, and TOEFL
Score. Among our three datasets, this is the only
dataset with high inter-correlation among each
feature pair (Pearson correlation (Pearson, 1895)
greater than 0.80). As a result, the feature im-
portances, which are calculated with RandomFor-
est (Louppe et al., 2013) and shown in Figure 8,
assign minimal importance to the second and third
features. The target variable has a mean of 0.72
and a standard deviation of 0.14.

C.2 Insurance Cost

This dataset focuses on predicting a similar distri-
bution of the annual individual medical costs billed
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by health insurance companies in the USA, draw-
ing from demographic statistics compiled by the
U.S. Census Bureau (Lantz, 2013). The selected
features are Smoker Status, BMI, and Age with
their importances shown in Figure 8. Smoking Sta-
tus emerges as the most critical feature, followed
by BMI, and then Age. The average and standard
deviations of costs are 13, 270.42 and 12, 110.01,
respectively.

C.3 Used Car Prices

We use selected subset of the used car prices
dataset (Mital, 2023) that involves predicting the
price of a used Toyota or Maserati car in 2019.
The features include City Fuel Economy, Mileage
with similar high importance, and Passenger Car
Classification with minimal importance, as shown
in Figure 8. The target variable has a mean of
42, 279.49 and a standard deviation of 50, 014.51.

D Hyper-Parameters

As mentioned earlier, we evaluate several LLMs,
which are LLaMA 3 70B (AI@Meta, 2024),
GPT3.5 (Brown et al., 2020), and GPT4 (Ope-
nAI, 2023). We also used Ridge regression (Hoerl
and Kennard, 1970) and RandomForest (Breiman,
2001). The GPT-3 and GPT-4 versions we use
are ”gpt-4-0125-preview“, ”gpt-3.5-turbo-0125“.
In these models, the temperature is set to 0.1, and
make tokens is set to 10. Each time the models do
not generate a number (i.e., generate a disclaimer
that says “the data is insufficient”), the seed value,
which is initialized to 100, is increased by one.
This precaution was not necessary for GPT-4, but
GPT-3.5 sometimes refused to answer the ques-
tions. For LLaMA 3, top p value is set to 0.99, max
tokens to 6, and the temperature to 0.1. Similar
to GPT models, we propmt LLaMA 3 again if it
fails to generate a number. For Ridge, the default
Python class of scikit(Pedregosa et al., 2011) has
the alpha value ( the normalizing variable) of 1.
For RandomForest, however, we wanted to make it
more generalized. Consequently, we used 10, 000
estimators and a max depth of 2 for it.

E MAE and R2

In this section, we depict the main diagrams in the
paper with MAE and 1 − R2 metrics instead of
MSE. MAE is less sensitive to outliers compared
to MSE and is expressed in the same units as the
original data. R2, also known as the coefficient of

determination, ranges from 0 to 1 and represents
the proportion of variance in the dependent variable
that is predictable from the independent variable(s).
An R2 value of 1 indicates that the model explains
all the variability of the response data around its
mean, while 0 means the model explains none of
the variability. It can also be negative, indicating
that the model fits the data worse than the Mean
model. R2 differs from MSE and MAE because the
higher, the better. As a result, to make R2 diagrams
comparable, instead of R2, we show the results for
1−R2 (1 is included to show the negative results.
This also moves the baseline results of R2 to 1 for
the Mean model.

For Figures 2,3,4,5 and 6 of the main paper, the
MAE results are shown in Figures 9,11,13,15 and
17, respectively. For Figures 2,3,4,5, and 6 of the
main paper, the 1−R2 results are shown in Figures
10,12,14,16 and 18, respectively.

Figure 9: This figure shows Figure 2 of the main paper
with MAE instead of MSE. The figure shows the base-
line results of LLMs’ (Direct QA configuration) across
datasets and number of features. The dashed red line
shows the performance of the Mean model.

Figure 10: This figure shows Figure 2 of the main paper
with 1-R2 instead of MSE. The figure shows the base-
line results of LLMs’ (Direct QA configuration) across
datasets and number of features. The dashed red line
shows the performance of the Mean model.
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Figure 11: This figure shows Figure 3 of the main paper with MAE instead of MSE. The figure shows the
comprehensive comparison of prompt configurations’ effects on our models across various factors, shown in a
hierarchy. The top level for each dataset distinguishes between GPT-3, LLaMA 3, and GPT-4 results using black,
grey, and white arcs, respectively. The notation ICi indicates the number of in-context examples, while F1, F2, and
F3 represent the use of the first feature, the first two features, and all three features, respectively.

Figure 12: This figure shows Figure 3 of the main paper with 1-R2 instead of MSE. The figure shows the
comprehensive comparison of prompt configurations’ effects on our models across various factors, shown in a
hierarchy. The top level for each dataset distinguishes between GPT-3, LLaMA 3, and GPT-4 results using black,
grey, and white arcs, respectively. The notation ICi indicates the number of in-context examples, while F1, F2, and
F3 represent the use of the first feature, the first two features, and all three features, respectively.

F Reasoning Configuration and
Additional Diagrams

In this section, we include some diagrams that
could have provided more insight and were re-
moved from the main text for space. We also show
examples of the reasoning configurations and dia-
grams related to that.

F.1 Additional Diagrams of the Main Paper

Here, we included the variants of Figures 5 and 6
of the main paper that we omitted for space. Figure
5 with 1 and 2 features is shown in Figures 19 and

20. Figure 6, with 10 and 30 in-context examples,
is shown in Figures 21 and 22.

F.2 Reasoning Examples
In this section, we show examples of reasoning
for estimating an output for each dataset and LLM
with 3 features. We will show the results of this
setting in the next section.

F.2.1 GPT-3 Reasoning over the Admission
Chance Dataset:

Based on the given information, the applicant has a
high Cumulative GPA of 8.48, a decent GRE score
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Figure 13: Figure 4 of the main paper with MAE instead of MSE. The figure shows the comparison of the number
of in-context examples using Named Features (straight lines) and Anonymized Features (dashed lines) prompt
configurations. F1, F2 and F3 represents using 1st (F1), then 1st and 2nd (F2), and all three feature (F3).

Figure 14: Figure 4 of the main paper with 1-R2 instead of MSE. The figure shows the comparison of the number
of in-context examples using Named Features (straight lines) and Anonymized Features (dashed lines) prompt
configurations. F1, F2 and F3 represents using 1st (F1), then 1st and 2nd (F2), and all three feature (F3).

Figure 15: This figure shows Figure 5 of the main paper
with MAE instead of MSE. The figure shows the per-
formance of Named Features and Anonymized Features
prompt configurations, Ridge, and RandomForest for 3
features based on the number of in-context examples.

of 311.0, and a good TOEFL score of 104.0. These
scores are above average and indicate a strong aca-
demic background.

Considering that the average Chance of Admis-

Figure 16: This figure shows Figure 5 of the main paper
with 1-R2 instead of MSE. The figure shows the perfor-
mance of Named Features and Anonymized Features
prompt configurations, Ridge, and RandomForest for 3
features based on the number of in-context examples.

sion is 0.74 with a standard deviation of 0.14, and
the applicant’s strong academic profile, I would
estimate that the Chance of Admission for this ap-
plicant is higher than the average.
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Figure 17: This figure shows Figure 6 of the main paper
with MAE instead of MSE. The figure shows the perfor-
mance of Anonymized Features prompt configuration,
Ridge, and RandomForest for 100 in-context examples
based on the number of features.

Figure 18: This figure shows Figure 6 of the main paper
with 1-R2 instead of MSE. The figure shows the perfor-
mance of Anonymized Features prompt configuration,
Ridge, and RandomForest for 100 in-context examples
based on the number of features.

My final estimation is 0.80.

F.2.2 LLaMA Reasoning over the Admission
Chance Dataset:

Based on the provided information, I will estimate
the Chance of Admission.

The given scores are all above average, indicat-
ing a strong applicant. The cumulative GPA of 8.48
is excellent, suggesting a high level of academic
achievement. The GRE score of 311.0 is also above
average, indicating strong verbal and quantitative
skills. The TOEFL score of 104.0 is well above
the average required for most graduate programs,
demonstrating a high level of English proficiency.

Considering these strong scores, I would expect

Figure 19: This figure shows Figure 5 of the main paper
with 1 feature instead of 3. The figure shows the per-
formance of Named Features and Anonymized Features
prompt configurations, Ridge, and RandomForest based
on the number of in-context examples.

Figure 20: This figure shows Figure 5 of the main paper
with 2 features instead of 3. The figure shows the per-
formance of Named Features and Anonymized Features
prompt configurations, Ridge, and RandomForest based
on the number of in-context examples.

the Chance of Admission to be higher than the
average of 0.74. Given the standard deviation of
0.14, I would estimate the Chance of Admission to
be around one standard deviation above the mean.

My final estimation is 0.88.

F.2.3 GPT-4 Reasoning over the Admission
Chance Dataset:

To estimate the Chance of Admission based on the
provided information, we need to consider how the
given data points (Cumulative GPA, GRE Score,
TOEFL Score) might relate to the average Chance
of Admission and its standard deviation. However,
without specific information on how these factors
correlate with admission chances, we’ll have to
make some general assumptions based on typical
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Figure 21: This figure shows Figure 6 of the main paper
with 10 in-context examples instead of 100. The figure
shows the performance of Anonymized Features prompt
configuration, Ridge, and RandomForest based on the
number of features.

Figure 22: This figure shows Figure 6 of the main paper
with 30 in-context examples instead of 100. The figure
shows the performance of Anonymized Features prompt
configuration, Ridge, and RandomForest based on the
number of features.

admissions criteria.
1. **Cumulative GPA**: An 8.48 GPA, assum-

ing it’s on a 10-point scale, is quite high. This
would generally be seen as a strong positive in
the admissions process, suggesting a higher than
average chance of admission.

2. **GRE Score**: A score of 311 is some-
what above average (the average GRE scores for
many programs tend to hover around the low to
mid-300s). While not outstanding, it’s competitive
enough not to detract significantly from an applica-
tion, especially with a strong GPA.

3. **TOEFL Score**: A TOEFL score of 104
is good, indicating a strong proficiency in English.
For most universities, this score is above the min-

imum requirement and should be sufficient to not
negatively impact the chance of admission.

Given the average Chance of Admission is 0.74
with a standard deviation of 0.14, and considering
the strong GPA, adequate GRE, and TOEFL scores,
it’s reasonable to estimate the Chance of Admission
to be above average but not exceptionally so due to
the GRE score not being far above average.

Taking into account the positive impact of a high
GPA and good TOEFL score, balanced against the
GRE score, a reasonable estimate might place the
Chance of Admission slightly above the average
but not by a large margin. Therefore, considering
the given data and the average Chance of Admis-
sion, my final estimation is 0.78."

F.2.4 GPT-3 Reasoning over the Insurance
Cost Dataset:

Based on the given information of being a smoker,
having a BMI of 24.7, and being 43 years old, we
can expect higher annual medical costs compared
to non-smokers, individuals with lower BMIs, and
younger individuals. Smokers tend to have higher
medical costs due to the increased risk of various
health conditions such as lung cancer, heart disease,
and respiratory issues. Additionally, as individu-
als age, they are more likely to develop chronic
health conditions that require ongoing medical care,
which can also contribute to higher medical costs.
A BMI of 24.7 is considered within the normal
range, which may have a slightly lower impact on
medical costs compared to individuals with higher
BMIs.

Taking into account these factors, along with
the average annual individual medical costs billed
by health insurance in the USA of $13,270.42
and a standard deviation of $12,110.01, I estimate
that the annual individual medical costs for a 43-
year-old smoker with a BMI of 24.7 in the USA
would be higher than the average due to the in-
creased health risks associated with smoking and
age. Therefore, my final estimation is $20,000."
"Based on the provided information of being a non-
smoker with a BMI of 25.8 and an age of 46, we
can estimate that the individual is relatively healthy.
Typically, younger individuals with a healthy BMI
and who do not smoke tend to have lower medical
costs compared to older individuals or those with
unhealthy habits.

Considering the average annual individual med-
ical costs billed by health insurance in the
USA of $13,270.42 with a standard deviation of
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$12,110.01, we can assume that this individual’s
medical costs might be lower than the average due
to their healthy profile. However, since medical
costs can vary significantly based on individual
health conditions and unforeseen circumstances,
it is challenging to provide an accurate estimate
without more specific information.

Taking into account the individual’s healthy pro-
file and the average costs in the USA, my final
estimation is $10,000."

F.2.5 LLaMA Reasoning over the Insurance
Cost Dataset:

Based on the provided information, we can make an
educated estimation of the annual individual medi-
cal costs billed by health insurance in the USA.

We are given the average annual individual med-
ical costs billed by health insurance in the USA,
which is $13,270.42, along with the standard devia-
tion of $12,110.01. This suggests that the distribu-
tion of medical costs is likely to be skewed to the
right, with a long tail of high-cost individuals.

The additional information provided about the
individual, such as being a smoker (smoker: 1.0),
having a BMI of 24.7, and being 43 years old, can
also influence the estimation. Smokers tend to have
higher medical costs due to the increased risk of
smoking-related illnesses. A BMI of 24.7 is con-
sidered overweight, which can also lead to higher
medical costs. The age of 43 is relatively middle-
aged, which may not have a significant impact on
medical costs compared to older or younger indi-
viduals.

Considering these factors, I would adjust the
average annual individual medical costs upwards
to account for the increased risk associated with
smoking and being overweight. However, I would
not adjust it too drastically, as the individual’s age
is not extremely high.

My final estimation is $16,500."

F.2.6 GPT-4 Reasoning over the Insurance
Cost Dataset:

To estimate the annual individual medical costs
billed by health insurance in the USA for a 43-year-
old smoker with a BMI of 24.7, we need to consider
how the given factors (smoking status, BMI, and
age) typically influence medical costs, based on the
provided average and standard deviation.

1. **Smoking Status**: Being a smoker gen-
erally increases medical costs significantly due to
the higher risk of diseases associated with smok-

ing (e.g., lung cancer, heart disease). 2. **BMI**:
A BMI of 24.7 is within the normal weight range
(18.5-24.9), which might not significantly increase
medical costs compared to those with higher BMI
values. 3. **Age**: At 43 years old, an individ-
ual might start to experience more health issues
than a younger person, but not as many as someone
in a more advanced age group. This could mean
slightly higher than average costs due to age but
not the highest possible.

Given the average annual medical costs of
$13,270.42 and considering the significant impact
of smoking, the effect of age, and the relatively
neutral effect of a normal BMI, the costs for this
individual would likely be higher than the average
but not excessively so due to the mitigating factor
of a healthy BMI.

Considering the standard deviation of
$12,110.01, which indicates a wide range of
costs, and the fact that smoking is a major cost
driver, it’s reasonable to estimate that the costs for
this individual would be above average but not at
the extreme end of the spectrum.

Given these considerations, a reasonable esti-
mate for the annual individual medical costs for
this person, factoring in the significant increase
due to smoking but moderated by age and a healthy
BMI, would be somewhat above the average but
not by the full extent of one standard deviation.

My final estimation is $20,000."

F.2.7 GPT-3 Reasoning over the Used Car
Prices Dataset:

To estimate the price of a used car that can be either
a Toyota or Maserati in 2019, we can consider the
following factors:

1. City Fuel Economy: The given city fuel
economy of 14.0 suggests that the car may not be
very fuel-efficient, which could potentially lower
its price.

2. Mileage: The mileage of 0.0 indicates that
the car is essentially brand new or has very low
mileage, which generally tends to increase the price
of a used car.

3. Is Toyota: The fact that the car is not a Toyota
implies that it could be a Maserati, which is a lux-
ury brand known for higher price tags compared to
Toyota vehicles.

Considering these factors, we can infer that the
car is likely a Maserati due to its non-Toyota sta-
tus, which would generally have a higher price tag.
Given that the average price of a used car that can
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be either a Toyota or Maserati in 2019 is $50,014.51
with a standard deviation of $42,279.49, and con-
sidering the low mileage and potential luxury status
of the car, my final estimation for the price of this
used car would be higher than the average, so I
estimate it to be $60,000."

F.2.8 LLaMA Reasoning over the Used Car
Prices Dataset:

Based on the given information, we can see that
the average price of a used car that can be either
a Toyota or Maserati in 2019 is 50014.51 with a
standard deviation of 42279.49. Since the mileage
is 0.0, it’s likely that the car is relatively new or
has been well-maintained, which could increase
its value. The city fuel economy is 14.0, which
is a moderate value, but it’s not a key factor in
determining the price of a used car.

The most important factor is the brand, and
since Is Toyota is 0.0, it means the car is a
Maserati, which is a luxury brand known for its
high-performance and premium vehicles. Maserati
cars tend to hold their value well, and their prices
are generally higher than those of Toyota cars.

Considering these factors, I would estimate the
price of this used car to be higher than the average
price. My final estimation is 65000."

F.2.9 GPT-4 Reasoning over the Used Car
Prices Dataset:

Given the information, we have a car with a city
fuel economy of 14.0, mileage of 0.0, and it is not
a Toyota (implying it could be a Maserati since the
options are either Toyota or Maserati). Maseratis
are luxury vehicles and typically have a higher
price point compared to Toyotas. The average price
of a used car from the given data is $50,014.51 with
a standard deviation of $42,279.49.

Considering the car in question is a Maserati
(as indicated by ""Is Toyota: 0.0""), and it has 0.0
mileage, which suggests it’s either new or nearly
new, we can expect the price to be higher than the
average of the mixed pool of Toyota and Maserati
used cars. The low city fuel economy is character-
istic of high-performance or luxury vehicles, which
aligns with it being a Maserati.

Given these factors, and knowing that Maseratis
are premium vehicles, the price would likely be
above the average. However, without knowing the
exact model or year (beyond it being a used car as
of 2019), we can’t pinpoint the exact price but can
infer it would be higher due to the brand and the

newness indicated by zero mileage.
Considering the standard deviation and the av-

erage, and the fact that this is a luxury vehicle
likely on the higher end of the price spectrum, a
reasonable estimation, taking into account the lux-
ury brand premium and the new condition, would
be one standard deviation above the mean. Thus,
my final estimation is $92,294."

F.3 Reasoning Configuration Diagrams
The diagrams that compare the Direct QA prompt
configuration to the reasoning configuration are
shown in Figures 23, 24 and 25 for metrics MSE,
MAE and 1 − R2, respectively. As mentioned in
the text of the main paper, there is no rhyme or
reason for the behavior of the LLMs in this regard.
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Figure 23: Comparison between Direct QA and Reasoning prompt configurations between dataset, LLMs and the
number of features using MSE metric.
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Figure 24: Comparison between Direct QA and Reasoning prompt configurations between dataset, LLMs and the
number of features using MAE metric.
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Figure 25: Comparison between Direct QA and Reasoning prompt configurations between dataset, LLMs and the
number of features using 1−R2 metric.
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