
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 8006–8024

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Sneaking Syntax into Transformer Language Models
with Tree Regularization

Ananjan Nandi, Christopher D. Manning & Shikhar Murty
Department of Computer Science

Stanford University
Stanford, CA 94305, USA

{ananjan,smurty}@stanford.edu

Abstract

While compositional accounts of human lan-
guage understanding are based on a hierarchi-
cal tree-like process, neural models like trans-
formers lack a direct inductive bias for such
tree structures. Introducing syntactic induc-
tive biases could unlock more robust and data-
efficient learning in transformer language mod-
els (LMs), but existing methods for incorpo-
rating such structure greatly restrict models,
either limiting their expressivity or increasing
inference complexity. This work instead aims
to softly inject syntactic inductive biases into
given transformer circuits, through a structured
regularizer. We introduce TREEREG, an aux-
iliary loss function that converts bracketing
decisions from silver parses into a set of dif-
ferentiable orthogonality constraints on vector
hidden states. TREEREG integrates seamlessly
with the standard LM objective, requiring no
architectural changes. LMs pre-trained with
TREEREG on natural language corpora such
as WikiText-103 achieve up to 10% lower per-
plexities on out-of-distribution data and up to
9.5 point improvements in syntactic generaliza-
tion, requiring less than half the training data to
outperform standard LMs. TREEREG still pro-
vides gains for pre-trained LLMs: Continued
pre-training of Sheared Llama with TREEREG
results in improved syntactic generalization,
and fine-tuning on MultiNLI with TREEREG
mitigates degradation of performance on ad-
versarial NLI benchmarks by 41.2 points. We
release all code to guide future research1.

1 Introduction

A substantial body of research (Crain and
Nakayama, 1987; Pallier et al., 2011; van Schijndel
et al., 2013; Hale et al., 2018) suggests that human
language processing is inherently hierarchical: syn-
tactic rules combine word-level meanings to give
rise to semantics for larger constituents, which are

1https://github.com/ananjan-nandi-9/tree_
regularization

then combined into sentences. In contrast, trans-
formers (Vaswani et al., 2017), the architecture
behind large language models (LLMs), allow for
arbitrary, non-hierarchical routing of information
while processing an input sentence.

LLMs are pre-trained on massive amounts of
data to achieve reasonable generalization (Achiam
et al., 2023; Dubey et al., 2024), but recent studies
find that state-of-the-art LLMs still struggle with
compositional generalization (Guo et al., 2020;
Berglund et al., 2024; Hale and Stanojević, 2024),
the ability to understand familiar words in novel
contexts. Prior work (Socher et al., 2013; Eriguchi
et al., 2016) proposed explicitly tree-structured
models capable of data-efficient compositional gen-
eralization, but they are too constrained and not
amenable to pre-training at scale.

Consequently, people have proposed inductive
biases that encourage hierarchical computation in
transformers, including Syntactic Language Mod-
els (SLMs, Sartran et al., 2022; Murty et al., 2023b)
that model a joint distribution over words and syn-
tax trees. While SLMs often improve data effi-
ciency and syntactic generalization, they have sev-
eral drawbacks: They often involve additional pa-
rameters to model syntax, constrain the attention
mechanisms of the underlying model, or involve
more complex and slower inference methodologies.

In this work, we instead devise a new differ-
entiable loss function that softly injects syntactic
inductive biases into a given circuit of the trans-
former: TREEREG. These biases are soft structural
constraints that aim to ensure that the hidden state
representation from the transformer circuit for each
constituent in an input sentence is maximally or-
thogonal to that of its surrounding context (Fig-
ure 1). TREEREG is simply added as a regularizer
to the LM loss during training. Crucially, an LM
trained with TREEREG is completely indistinguish-
able from a standard LM in both architecture and
inference mechanism.

8006

https://github.com/ananjan-nandi-9/tree_regularization
https://github.com/ananjan-nandi-9/tree_regularization

he is

spancontext context

very happy now

he is very happy now

Transformer LM Circuit
he is very happy now

he

“he”

“he is very happy”

“he is very happy now”

is very happy now
 (1,1) (2,2) (3,3) (5,5)
(4,5)(2,3)(1,2)

(1,3) (3,5)
(2,5)(1,4)

(1,5)

(i) (ii)

(iii)

(iv)

(2,4)
(3,4)

(4,4)

Figure 1: TREEREG loss (LTR) computation for S = “he is very happy now”. (i) Computation of vector hidden
states hi by passing S as input to some circuit of the LM. hi is the representation for the prefix of S ending at i. (ii)
Span Contextual Independence Score (SCIN, § 3.1) computation for “is very happy”. Orthogonality constraints
are enforced between span representation h4 and its context h1 and h5. (iii) Chart of SCIN for all spans in S. (iv)
Possible bracketings of “is very happy” are (“is very”, “happy”) with score SCIN(2, 3) + SCIN(4, 4) and (“is”,
“very happy”) with score SCIN(2, 2) + SCIN(3, 4). Loss for this span (l(2,4)) encourages the second bracketing.
LTR = l(1,5) + l(1,4) + l(2,4) includes analogous losses for spans “he is very happy” and “he is very happy now”.

The use of TREEREG improves syntactic gen-
eralization across model and data scales. On di-
agnostic sentence transformation tasks such as
tense inflection and question formation (McCoy
et al., 2020), it significantly enhances grokking
behavior (§ 4). It also improves syntactic gen-
eralization on the BLiMP (Warstadt et al., 2020)
and SyntaxGym (Gauthier et al., 2020) test suites
by up to 3.2 and 9.5 points, both when used
during pre-training from scratch (§ 5), and dur-
ing continued pre-training (§ 6.1). LMs with
TREEREG surpass the syntactic generalization of
baseline LMs with less than half the training data
(§ 5.2). Most importantly, TREEREG improves out-
of-distribution language understanding. When used
during pre-training of LMs on fully parsed (§ 5.1)
as well as a mixture of parsed and unparsed (§ 5.3)
data, TREEREG reduces out-of-distribution per-
plexities by up to 9.2%. When TREEREG is used
for fine-tuning an LLM on MultiNLI (Williams
et al., 2018), it mitigates performance drops by
up to 41.2 points on adversarial NLI benchmarks
(§ 6.2). We release all code at https://github.
com/ananjan-nandi-9/tree_regularization.

2 Background and Notation

Tree Structures in Language Processing. Con-
sider a sentence S = {x1, x2, . . . , xn} where xj is
the j th token in the sentence. Let tree T (S) over
sentence S be a set of spans Sa;b = {xa, . . . , xb}
such that if Sa;b and Sb+1;c ∈ S, then Sa;c ∈ S.
We say Sa;c is split at index b to get spans Sa;b and

Sb+1;c of T (S). Prior work (Pallier et al., 2011; van
Schijndel et al., 2013; Hale et al., 2018) suggests
that human language processing is hierarchical—
sentences contain “constituents” or spans of words
that act as semantic units, with smaller constituents
(“is”, “very happy”) recursively combining to form
larger ones (“is very happy”), building up mean-
ing incrementally. The constituency parse T̂ (S)
is the tree form by all constituents of S. Tree-
structured models (Socher et al., 2013; Tai et al.,
2015) build sentence representations through recur-
sively bottom-up computation over constituency
parses, whereas for transformers, any hierarchi-
cally structured computation is at most implicitly
learned in the attention layers.

Hierarchical Structure in Transformers. Re-
cent evidence suggests that pre-trained transform-
ers behave similarly to tree-structured models on
certain tasks (Murty et al., 2023c,a). The tree pro-
jection metric from Murty et al. (2023c) quantifies
how well a transformer’s computation can be ap-
proximated by a tree-structured model. It is based
on the idea that bottom-up computations on trees
create context-invariant representations at interme-
diate nodes. Therefore, the tree built from maxi-
mally context-invariant spans aligns most closely
with the transformer’s computation. Another line
of work builds Syntactic Language Models (Sar-
tran et al., 2022; Murty et al., 2023b; Hu et al.,
2024) that learn joint distributions over inputs and
their parses to introduce syntactic inductive bi-
ases into transformer language models. These ap-

8007

https://github.com/ananjan-nandi-9/tree_regularization
https://github.com/ananjan-nandi-9/tree_regularization

proaches involve substantial changes to the trans-
former architecture—explicitly modifying atten-
tion patterns, as well as changing the output space
or inference mechanisms. TREEREG provides an
alternative, biasing transformer circuits towards hi-
erarchical structure through regularization.

Evaluating Syntactic Generalization. Syntactic
generalization refers to an LM’s ability to apply
syntactic rules implicitly learned during training to
new, unseen data. We use the BLiMP (Warstadt
et al., 2020) and SyntaxGym (SG, Gauthier et al.,
2020) test suites to evaluate LMs for syntactic gen-
eralization. In BLiMP, models are presented with
pairs of grammatical and ungrammatical sentences
that differ minimally, and are evaluated on assign-
ing lower perplexity to the grammatical sentences.
The SG test suites evaluate six distinct syntactic
phenomena, with each suite involving a particu-
lar inequality constraint related to the surprisal of
different continuations of input sentences based
on their prefixes. These constraints are rooted in
theories of syntax; for example, assigning higher
surprisal to the third word in the sentence “I know
who you introduced to them.” compared to “I know
that you introduced to them.”

3 Our Approach

TREEREG is a differentiable loss function that in-
jects the hierarchical structure of input constituency
parses into transformer circuits. Inspired by Murty
et al. (2023c), TREEREG specifies a set of soft con-
straints to ensure that constituent representations
are maximally independent of surrounding context.
For any span, we quantify this independence with
the Span Contextual Independence Score (SCIN,
§ 3.1). TREEREG maximizes SCIN for spans cor-
responding to input constituents while simultane-
ously minimizing it for other spans (§ 3.2). In an
optimally trained model, the tree with the highest
cumulative SCIN thus recovers the constituency
parse. We then provide a greedy algorithm to ex-
tract the parse tree induced by TREEREG from
a given model for any input sentence. A deeper
discussion of the design choices underlying our
method can be found in Appendix A.

3.1 Span Contextual Independence Score

Let hl
a,1,h

l
a,2, . . . ,h

l
a,n be L2-normalized vector

hidden states for each token in S produced by at-
tention head a at layer l of a causal auto-regressive
transformer LM with multi-headed self-attention.

Since most tasks benefit from a blend of hierarchi-
cal and unstructured computation, we only apply
TREEREG on the circuit formed by a given subset
of attention heads A at a given layer l.

Span vectors. For any j ≤ n, hl
A,j is the con-

catenation (#) of vector representations from the
attention heads in A at layer l for prefix x≤j :

hl
A,j = #a∈Ahl

a,j (1)

Then, for span Si;j , hl
A,i−1 contains information

before the start of Si;j , or the context for the span.

Contextual Independence. We operationalize
contextual independence in terms of orthogonal-
ity constraints between span representations. In
particular, for Si;j to be contextually invariant, we
expect hl

A,j to be independent of, or orthogonal to
hl
A,i−1. We also constrain hl

A,j+1 to be orthogonal
to hl

A,j , as the information in Si;j is expected to be
independent of what comes after it in the sentence.
Therefore, we define SCINl

A for Si;j at layer l for
attention heads in A as

SCINl
A(i, j) = ∥orth(hl

A,j ,h
l
A,i−1)∥

+ ∥orth(hl
A,j+1,h

l
A,j)∥, (2)

where ∥∥ is the L2 norm, and orth(x, y) = x −
(x⊤y)y for any two normalized vectors x and y.
For the sake of completeness, ∥orth(hj , h−1)∥ ∀j
and ∥orth(hk+1, hk)∥ are assumed to be 0. Since
l and A are fixed during training, we simplify
SCINl

A to SCIN from here on.

3.2 TREEREG Loss

Given sentence S, the TREEREG loss (LTR) biases
the model towards driving up SCIN for all spans
in the constituency parse T̂ (S) while driving down
SCIN for other spans. Specifically, for constituent
Si;j ∈ T̂ (S) split at index p, we first compute split
scores s(i, q, j) for i ≤ q ≤ j − 1 as

s(i, q, j) = SCIN(i, q)

+ SCIN(q + 1, j). (3)

We then use these scores to compute a span-level
log loss l(i,j). These losses are computed as

l(i,j) = log

[j−1∑

q=i

exp s(i, q, j)

]
− s(i, p, j). (4)

8008

LTR is then the sum of span-level losses l(i,j) for
all constituents in T̂ (S),

LTR =
∑

Si;j∈T̂ (S)

l(i,j). (5)

In practice, LTR is computed recursively top-
down on T̂ (S) following Alg. 1. LTR is added as
an auxiliary loss to the LM loss during training,
resulting in the training objective LLM + αLTR
where LLM is the LM loss. Since both LTR and
LLM are cross-entropy losses, α can generally be
set to 1. LTR and LLM can also consume data from
different datasets. For example, we can perform
LM on a large pre-training dataset while passing
batches from a smaller, parsed dataset to LTR.

Recovering parses during inference. During in-
ference, we can use a top-down greedy decoding
algorithm to recover the unique parse tree encoded
in the TREEREG constraints for any given S from
the hidden states of a circuit. Given SCIN scores
for all spans in S, we recover the tree that max-
imizes the sum of SCIN scores across its spans.
Specifically, the split for any span Si;j happens at
the index p̂ that maximizes s(i, q, j),

p̂ = argmax
q∈[i,j−1]

s(i, q, j). (6)

Si;p̂ and Sp̂;j can then be recursed on to obtain more
constituents of this induced parse tree. Details of
this method can be found in Alg. 2.

3.3 Implementation Details

SCIN computation does not require additional
model calls and can be performed during the for-
ward pass that computes LLM. SCIN scores for
all spans in a sentence can be calculated simul-
taneously and efficiently using vectorization, as
detailed in Appendix C. Additionally, updates from
LLM and LTR can occur at different frequencies
during training, for example, LTR may be applied
once every k steps of LLM. Despite the quadratic
time complexity of computing LTR (which scales
with the square of input token count), these factors
collectively ensure that TREEREG remains efficient
in practice. As per our implementation, there is an
increase of around 25% in training time if LTR is
applied once every 10 LLM steps, on 25% of at-
tention heads. This excludes the time required for
parsing the data used in TREEREG. The parses
are either included with the dataset (BLLIP-LG,

MultiNLI) or can be computed once and reused for
every training run.

4 Warm-up: Improving Grokking on
Sentence Transformation Tasks

We start by training transformer LMs on two diag-
nostic tasks derived from PCFGs (See Appendix D
for examples and data statistics). In Tense Inflec-
tion (TI), the model is provided with an input in the
past tense, and required to generate the same input
in the present tense. In Question Formation (QF),
the model is required to transform a declarative
sentence into a question. For QF, we report first
word accuracy of the decoded question, and for TI,
we report the fraction of test inputs for which the
target verb is correctly inflected.

Setup. We train 4-layer transformer LMs for
500k steps (Base LM), performing extended train-
ing to enable grokking as reported in prior work
(Murty et al., 2023a). For TREEREG LM, we auto-
parse both datasets with the Berkeley Neural Parser
(Benepar, Kitaev et al., 2022), and use LTR on 2
out of 8 attention heads using hidden states from
layer 2 of the LM, once every 20 steps of LLM. To
account for variance across training runs, we report
averages as well as best performance at the end of
training across 4 seeds (Table 1). We also report
the training iteration (averaged over all runs) after
which the performance on the test set converges.

Results. LMs trained with TREEREG grok faster
and achieve higher performance than Base LMs
on average, across datasets. Notably, on QF,
TREEREG LM obtains a 57.5 pt gain over a
standard LM (generalizing perfectly) while also
grokking over 10 times faster on average.

Model Avg. Acc. (↑) Best Acc. (↑) itr. (↓)

Tense Inflection (TI)
Base LM 47.2 ± 16.7 71.1 427k ± 41k
TREEREG LM 90.4 ± 6.3 98.3 391k ± 35k

Question Formation (QF)
Base LM 42.1 ± 15.4 66.9 460k ± 7k
TREEREG LM 99.6 ± 0.7 100.0 43k ± 26k

Table 1: Evaluations on TI and QF tasks. We report av-
eraged test accuracy across seeds (Avg. Acc.), the best
test accuracy (Best Acc.), and the average iteration af-
ter which test performance converges (itr.). TREEREG
LMs grok faster and achieve better performance.

8009

Model Syntactic Generalization (↑) PPL (↓) Modified Architecture Inference Overhead
BLiMP SG BLLIP PTB

Base LM 72.2 71.9 21.6 49.1 - -

PLM 75.1 80.2 29.8 - ✗ ✓

TG - 82.5 30.3 - ✓ ✓

PUSHDOWN LM 75.6 82.3 19.9 - ✓ ✓

TREEREG LM 74.8 80.0 22.3 44.6 ✗ ✗

Table 2: Syntactic Generalization on BLiMP and SG test suites, and perplexities (PPL) on BLLIP-LG test set
(BLLIP) and PTB test set (PTB) for models trained on BLLIP-LG. Results for PLM, TG and PUSHDOWN LM are
taken from Murty et al., 2023b. TREEREG LMs show better syntactic generalization and better generalization to
PTB compared to the Base LM.

5 Sentence-Level Language Modeling

Can TREEREG provide gains when introduced in
pre-training? We investigate this under settings
where data passed to LLM and LTR is the same
(§ 5.1) and different (§ 5.3).

5.1 Language Modeling on BLLIP-LG

Setup. We train 16-layer LMs on the BLLIP-LG
dataset (Hu et al., 2020) (Base LM, detailed hy-
perparameters in Appendix F). For TREEREG LM,
we use LTR at layer 12 of the LM, on 2 out of 8
attention heads, once every 10 steps of LLM, on the
already-parsed BLLIP-LG dataset. A discussion
of the layer and attention heads used for LTR can
be found in Appendix G. We benchmark syntactic
generalization using the BLiMP and SG test suites
(See § 2). To evaluate out-of-distribution general-
ization, we report perplexity on the Penn TreeBank
(PTB; Marcus et al., 1993) test set.

To the best of our knowledge, all prior ap-
proaches to induce hierarchical computations in au-
toregressive causally-trained transformer language
models do not leave the underlying transformer
architecture untouched, and thus are not directly
comparable with TREEREG. Nevertheless, we
also report results for Parsing as Language Model
(PLM; Qian et al., 2021), Transformer Grammars
(TG; Sartran et al., 2022), and Pushdown Layers
(PUSHDOWN LM; Murty et al., 2023b) in Table 2.

Results. TREEREG achieves a 2.6 point (pt) gain
on BLiMP and 8.1 pt overall gain on SG test suites.
Figure 2 shows TREEREG improves over the base-
line on 4 out of 6 SG test suites, with a notable 17 pt
gain on Licensing. TREEREG LM also generalizes
better to PTB with 9.2% lower perplexity, with a
marginal 0.7 pt perplexity increase on BLLIP-LG.

L
ic
e
n
s
in

g

G
ro

s
s
 S

y
n
ta

c
ti
c

S
ta

te

G
a
rd

e
n
 P
a
th

E
ff
e
c
ts

C
e
n
te

r
E
m

b
e
d
d
in

g

A
g
re

e
m

e
n
t

L
o
n
g
 D

is
ta

n
c
e

D
e
p
e
n
d
e
n
c
ie
s

0

0.2

0.4

0.6

0.8

Base LM

TreeReg LM (ours)

A
c
c
u
r
a
c
y

Figure 2: Comparing TREEREG LM with Base LM
from Table 2 on SG test suites. TREEREG LM outper-
forms the Base LM on 4 out of 6 test suites, with 1 tie.

While PLM, TG and PUSHDOWN LM out-
perform TREEREG at syntactic generalization on
BLiMP and SG test suites, they require additional
parameters or incur inference overheads. Except
for Pushdown LM, these models also have substan-
tially higher perplexities on the BLLIP-LG test set
compared to TREEREG, showing the benefits of
the unchanged transformer architecture.

5.2 Sample Efficiency
Setup. To measure sample efficiency gains from
TREEREG, we train 16-layer LMs with the same
configuration as § 5.1 on [10, 50, 100]% of BLLIP-
LG. Only parses of the data used for LM is used
for TREEREG in each case. We present syntactic
generalization results on SG in Figure 3.

Results. While syntactic generalization improves
with more training data for both the Base and

8010

20 40 60 80 100

50

55

60

65

70

75

80 Base LM

TreeReg LM (ours)

Percentage of BLLIP-LG Trained On

S
y
n

t
a
c
t
ic

 G
e
n

e
r
a
li
z
a
t
io

n

Figure 3: Plot of Syntactic Generalization on SG test
suites vs Percentage of BLLIP-LG data used to train
LMs from scratch. TREEREG LM exceeds the maxi-
mum syntactic generalization performance of Base LM
with less than 50% of the data.

TREEREG LMs, TREEREG LMs outperform the
baseline across all settings. Moreover, the per-
formance gap widens as the amount of training
data increases. Notably, TREEREG surpasses the
baseline’s maximum syntactic generalization per-
formance on SG by 4.4 points when trained on only
50% of the data, demonstrating substantially more
sample-efficient syntactic generalization. There-
fore, even though TREEREG increases training
time by 25% compared to a baseline trained for
the same number of iterations (see § 3.3), it reaches
better syntactic generalization in only 62.5% of the
baseline’s training time.

5.3 Language Modeling on WikiText

Setup. Auto-parsing text corpora may not always
be practical for large-scale language modeling, par-
ticularly when the corpus is very large or when the
text lacks clear syntactic structure, as is the case
for web data. Therefore, we experiment with a set-
ting where the pre-training and parsed data come
from different data sources. We train a 12-layer
GPT-2-small model (Base LM) on chunks of 1024
tokens from WikiText-103 (?) with the exact hyper-
parameters and tokenization of GPT-2 small (with
the addition of dropout (= 0.1) to prevent overfit-
ting). For TREEREG LM, we reuse the BLLIP-LG
parses and use LTR at layer 4, on 3 out of 12 at-
tention heads, once every 10 steps of LLM. We
also test a setting where LM training is additionally
performed on one batch from BLLIP-LG for every
20 batches from WikiText-103 (Table 3) for both
Base LM and TREEREG LM. PTB is again used

to evaluate out-of-distribution generalization.

Model Syntactic Generalization (↑) PPL (↓)

BLiMP SG WikiText PTB

No LM on BLLIP-LG
Base LM 71.0 69.4 17.5 331.5
TREEREG LM 72.5 73.7 17.8 411.1

LM on BLLIP-LG
Base LM 71.5 67.2 18.3 53.2
TREEREG LM 74.1 76.7 19.7 50.8

Table 3: Syntactic Generalization on BLiMP and SG
test suites, and perplexities on the WikiText and PTB
test sets for GPT-2-small models trained on WikiText,
with and without LM on BLLIP-LG. TREEREG LMs
show better syntactic generalization in both settings.

Results. We observe improvements in syntactic
generalization with TREEREG in both settings, ob-
taining up to 2.6 pt gain on BLiMP and 9.5 pt
overall gain on SG test suites. The gains are rela-
tively smaller when LM training is not performed
on BLLIP-LG, and perplexities on PTB increase
by 24% over the baseline. In this setting, we find
that perplexities are also high on BLLIP-LG, av-
eraging around 300. As a result, we conjecture
that the hidden states used in TREEREG are not
adequately trained in this setting, leading to worse
out-of-distribution perplexities.

In the other setting, Base LM struggles to uti-
lize the LM training on BLLIP-LG, resulting in a
2.2 pt overall drop on SG. In contrast, TREEREG

shows an overall increase of 3 pt on SG test suites.
Perplexities on PTB are again 2.4 pts lower with
TREEREG in this setting compared to Base LM,
showing better generalization from the BLLIP-LG
LM training.

6 Continued Pre-training and Fine-tuning

Next, we apply TREEREG to LLMs. In particular,
we use the Sheared Llama-1.3B model of Xia et al.
(2024) and explore TREEREG under continued pre-
training and fine-tuning settings.

6.1 Continued Pre-training on BLLIP-LG

Setup. We perform continued pre-training of
Sheared Llama-1.3B (Base LM) on BLLIP-LG,
with a context window of 512 tokens, to get CPT
LM. For TREEREG LM, BLLIP-LG parses are
used, and LTR is applied once every 5 steps of
LLM, on 6 out of 24 attention heads at layer 16 of
the LLM. We report scores on the BLiMP and SG
test suites and perplexity on PTB (Table 4).

8011

Model Syntactic Generalization (↑) PPL (↓)

BLiMP SG BLLIP PTB

Base LM 73.6 80.7 23.8 42.5

CPT LM 80.7 83.9 9.24 15.2
TREEREG CPT LM 81.9 85.5 9.41 14.3

Table 4: Syntactic Generalization on BLiMP and SG test
suites, and perplexities on BLLIP-LG and PTB test sets
for Sheared Llama-1.3B (LM) continued pre-trained
(CPT) on BLLIP-LG. With TREEREG, CPT LM shows
better syntactic generalization and PTB perplexities.

Results. TREEREG results in a 1.2 pt gain on
BLiMP and 1.6 pt overall gain on SG test suites,
along with a 0.9 pt decrease in PTB perplexity.
These improvements are less significant than those
reported in § 5.1, which we conjecture is due to
the greater challenge in rewiring the unstructured
inductive biases learned by the LLM during large-
scale pre-training.

6.2 Fine-tuning on MultiNLI

Can TREEREG prevent LLMs fine-tuned on clas-
sification tasks from learning spurious shortcuts?
To answer this, we consider Natural Language In-
ference (NLI), a task that involves classifying the
logical relationship between a premise and a hy-
pothesis sentence as entailment, contradiction, or
neutral. Prior work (McCoy et al., 2019; Geiger
et al., 2020) suggests that models often learn spu-
rious shortcuts when trained on broad coverage
NLI datasets, causing them to fail on diagnostic
out-of-distribution datasets.

Setup. We finetune Sheared Llama-1.3B (Base
LM) on MultiNLI (Williams et al., 2018) (training
details and evaluation methodology in Appendix E)
to get FT LM. For TREEREG LM, we binarize
the parses of the premise and hypothesis sentences
provided in the dataset and apply LTR at layer 16 on
6 out of 24 attention heads, every 10 steps of LLM.
We report accuracy on the MultiNLI test set, which
includes a matched split from the same sources
as the training data, and a mismatched split from
different sources. We also present results (Table 5)
on two diagnostic datasets: MoNLI (Geiger et al.,
2020) and MED (Yanaka et al., 2019).

Results. We note improvements of up to 2.2 pt
on MultiNLI from TREEREG. Next, we find a de-
crease of 48.4 pt on MoNLI and 6.9 pt on MED
when Base LM is finetuned on MultiNLI. With
TREEREG, the finetuned model is substantially

Model MultiNLI (↑) Adversarial (↑)

Matched Mismatched MoNLI MED

Base LM 35.5 35.1 50.3 50

FT LM 65.9 66.3 1.9 43.1
TREEREG FT LM 68.1 68.0 43.5 45.8

Table 5: NLI accuracies on MultiNLI test splits and two
Adversarial NLI evaluation datasets for Sheared Llama-
1.3B (LM) finetuned (FT) on MultiNLI. TREEREG re-
sults in more gains on MultiNLI and lower decreases on
the adversarial benchmarks.

more robust, with a moderate decrease of 6.8 pt
on MoNLI and 4.2 pt on MED compared to Base
LM. We conclude that TREEREG discourages the
LM from learning spurious shortcuts for this task.

7 Analysis

Parsing. TREEREG induces a tree-structured in-
ductive bias in transformer LMs. We explore
how well these induced trees align with given con-
stituency parses. In particular, we use the procedure
detailed in § 3.2 to recover induced parses from
TREEREG LM (§ 5.1) and TREEREG CPT LM
(§ 6.1) trained on BLLIP-LG. We evaluate parsing
on the auto-parsed BLLIP-LG and the manually
annotated PTB test sets. Additionally, to estimate
parsing on domains other than Newswire, we eval-
uate parsing on the 4000 Questions dataset (Judge
et al., 2006). Since TREEREG induces unlabeled
binarized parses, we report unlabeled F1 scores
against binarized parses in Table 6.

Model BLLIP (↑) PTB (↑) 4kQ (↑)

TREEREG LM 95.2 88.4 91.6
TREEREG CPT LM 94.6 89.1 94.5

Kitaev et al., 2022 - 94.7 87.7

Table 6: Unlabeled F1 scores against parses from the
BLLIP-LG, PTB and 4000 Questions (4kQ) test sets
for TREEREG LMs trained from scratch (TREEREG
LM) and continued pre-trained from Sheared Llama-
1.3B (TREEREG CPT LM) on BLLIP-LG. F1 scores
are near or above 90 for all datasets. We also present
unlabeled F1 scores from Benepar (Kitaev et al., 2022)
for comparison.

Although TREEREG only implicitly encodes
constituency parses in transformer hidden states,
we observe that it demonstrates remarkable pars-
ing capabilities. Parses induced by TREEREG

align closely with given parses on all datasets,
with F1 scores near or above 90. Parsing per-

8012

formance on PTB and 4000 Questions is slightly
better with TREEREG CPT LM, likely due to im-
proved representations from Sheared Llama-1.3B
(which benefits from large-scale pre-training) on
these datasets, that are relatively out-of-distribution
from the BLLIP-LG training data. Notably, in-
duced parses from TREEREG align better with sil-
ver parses than Benepar (Kitaev et al., 2022) on
the 4000 Questions datasets, by 6.8 F1 pts. We
provide some example parses on each dataset in
Appendix H.

Emergent structure across layers. We investi-
gate the evolution of tree structure across layers
in models trained with TREEREG. To do this, we
first infer trees for the BLLIP-LG test set from the
circuit formed by the attention heads used to train
TREEREG, at each layer of the 16-layer TREEREG

LM from § 5.1 (trained with LTR at layer 12). We
report unlabeled F1 scores of parses recovered at
every layer against given parses in Figure 4.

0 2 4 6 8 10 12 14 16

20

30

40

50

60

70

80

90

100

Layer

B
L
L
IP

-
L
G

 P
a
r
s
in

g
 F

1

Figure 4: Unlabeled F1 scores on the BLLIP-LG test
set for parse trees induced from every layer of a 16-
layer TREEREG LM trained on BLLIP-LG with LTR at
layer 12. Circuits become increasingly tree-structured
till layer 12, then rapidly become unstructured.

The F1 scores reveal that at layer 1, the parses
are nearly random. As we progress to layer 12,
they increasingly align with given parses. Beyond
layer 12, there is a sharp drop in F1 scores back
to near-random by layer 16. This suggests that
the circuit involved in LTR becomes increasingly
aligned with given parses up to layer 12, and then
rapidly loses this structure. We conclude that to
perform next-word prediction, TREEREG LMs im-
plement a non-syntactic function over the syntactic
representations built at layer 12. These syntactic
representations are, in turn, built gradually over

the preceding layers of the transformer, even in the
absence of explicit supervision from TREEREG at
these layers.

Training on Randomized Parses. To assess if
the gains from TREEREG are specifically due to
hierarchical computation that align closely with
constituency parses, we conduct a controlled ex-
periment. We train a 16-layer LM using the exact
setup described in § 5.1, but instead of using gold
parses, we provide TREEREG with random parses
of BLLIP-LG sentences (Randomized TREEREG

LM). These randomized parses are generated top-
down recursively, by choosing random split points
for each sentence span. We then compare perfor-
mance with the TREEREG LM and Base LM on
the BLiMP and SG test suites (Table 7).

Model BLiMP (↑) SG (↑)

Base LM 72.2 71.9
TREEREG LM 74.8 80
Randomized TREEREG LM 73.4 71.8

Table 7: Results on BLiMP and SG test suites for LMs
trained from scratch on BLLIP-LG, with silver and ran-
domized parses (Randomized TREEREG LM) passed
to TREEREG. Performance decreases with randomized
parses compared to silver parses.

As expected, overall performance on the SG
test suites drops marginally compared to Base LM
when randomized parses are fed to TREEREG. On
the other hand, BLiMP accuracies increase by 1.2
pts even in this setting. We hypothesize that this
discrepancy arises from BLiMP’s less granular
sentence-level perplexity-based evaluation, in con-
trast to the surprisal-based approach used in SG.

Dependence on amount of parsed data. We
train 16-layer LMs on BLLIP-LG using TREEREG,
with the same setup as § 5.1, but vary the per-
centage of parsed BLLIP-LG used for TREEREG

across [1, 5, 10, 20, 40, 60, 80, 100]%. We re-
port the overall SG test suite performance for these
settings in Figure 5.

As the amount of parsed data provided to
TREEREG increases, we see a general trend of im-
provement in syntactic generalization on the SG
test suites. Remarkably, we see improvements over
Base LM from TREEREG even when it is provided
with parses for only 1% of the data used for LM.

8013

0 20 40 60 80 100

70

72

74

76

78

80

82

Percentage of Parsed Data

S
y
n

t
a
c
t
ic

 G
e
n

e
r
a
li
z
a
t
io

n

Syntactic Generalization

of Base LM

Figure 5: Syntactic Generalization on SG test suites
vs Percentage of parsed BLLIP-LG data provided to
TREEREG, for LMs trained from scratch on BLLIP-LG.
Even with 1% of the data, TREEREG LMs have better
syntactic generalization than baseline LMs.

8 Other Related Work

Generalization Failures of Transformer LMs.
A substantial body of research has pointed out the
limitations of transformer-based LMs in achieving
robust compositional generalization. They have
been shown to struggle with simple tasks, such
as determining the parity of binary strings (Bhat-
tamishra et al., 2020; Chiang and Cholak, 2022),
balancing bracket sequences (Hahn, 2020), as well
as more complex diagnostic natural language tasks
(McCoy et al., 2020; Geiger et al., 2020; Dziri
et al., 2023). Large-scale pre-training does not
fully resolve these issues. For instance, Berglund
et al. (2024) shows that GPT-4 (Achiam et al.,
2023) fails to generalize on bijective relationships
(for example, answering “Who is Tom Cruise’s
mother?” correctly but not “Who is Mary Lee
South’s son?”). Hale and Stanojević, 2024 also find
that Gemini Pro (Team et al., 2023) does not learn
syntactic universals such as the Final-over-Final
condition (Sheehan et al., 2017) for low-resource
languages such as Basque.

Tree-structure in Neural Networks. Building
on theories of tree-structured human language pro-
cessing, prior work explores various tree-structured
model architectures (Socher et al., 2013; Tai et al.,
2015; Le and Zuidema, 2015; Dyer et al., 2016;
Shen et al., 2019; Hu et al., 2021). These models
often excel at data-efficient compositional general-
ization due to their inherently hierarchical compu-
tation. However, they have been largely overshad-

owed by non-hierarchical pre-trained transformer-
based LLMs (Brown et al., 2020; Achiam et al.,
2023).

Linguistic Structure in Transformers. One
promising alternative to tree-structured models
is to inject syntactic inductive biases into trans-
formers either by jointly modeling sentences and
parse structure (Qian et al., 2021; Sartran et al.,
2022; Murty et al., 2023b, among others), or via
constraints on self-attention (Strubell et al., 2018;
Wang et al., 2019; Deshpande and Narasimhan,
2020; Sartran et al., 2022). Although these models
bring data efficiency and generalization improve-
ments, they often require additional parameters,
impose rigid constraints on attention mechanisms,
or complicate inference. To the best of our knowl-
edge, TREEREG is the first approach to introduce
explicit, albeit soft, syntactic biases into the trans-
former without modifying the architecture. This
is achievable because standard transformers can
encode hierarchical languages of bounded depth
(Yao et al., 2021) when trained appropriately.

9 Conclusion

We propose TREEREG, a structured regularizer that
injects soft syntactic inductive biases into given cir-
cuits of a transformer LM, converting constituency
parses of input sentences into differentiable orthog-
onality constraints on vector hidden states. Without
requiring any architectural changes to the trans-
former, models pre-trained with TREEREG achieve
up to 10% lower perplexities on out-of-distribution
data and enhance syntactic generalization by up to
9.5 points on standard test suites. When applied to
pre-trained LLMs, TREEREG improves syntactic
generalization during continued pre-training and
mitigates degradation on adversarial NLI bench-
marks by up to 41.2 points when used during fine-
tuning. TREEREG more than doubles the sample
efficiency of syntactic generalization and does not
require the entire training dataset to be parsed, mak-
ing it practical and efficient. To the best of our
knowledge, this work is among the first to translate
insights from a mechanistic interpretability-related
work (Murty et al., 2023c) into an actionable model-
ing innovation. We leave unsupervised alternatives
to TREEREG, pre-training at scale with TREEREG,
and application of TREEREG to languages other
than English as future work.

8014

Limitations

TREEREG requires constituency-parsed datasets,
which might be difficult to obtain for languages
other English due to the lack of easily available
constituency parsers. This also makes TREEREG

inapplicable to languages that do not have con-
stituency structure, and we limit the experiments
presented here to English. TREEREG also intro-
duces some additional hyperparameters that require
tuning, such as the layer and subset of attention
heads on which TREEREG is be applied. As a
heuristic, applying TREEREG at the middle layer
of the model, on 25% of the attention heads, tends
to work well across settings (see our ablations in
Appendix G for more details). Finally, while we
optimize TREEREG computation through vector-
ization, it still adds some computational overhead
during training.

Acknowledgments

We thank Ananth Agarwal, Jasper Jian, Derek
Chong, Harshit Joshi, Martijn Bartelds and other
members of the Stanford NLP Group, and the re-
viewers for discussions and feedback.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of lan-
guage models: Part 1, learning hierarchical language
structures. arXiv preprint arXiv:2305.13673.

Lukas Berglund, Meg Tong, Maximilian Kaufmann,
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-
rbak, and Owain Evans. 2024. The reversal curse:
LLMs trained on “A is B” fail to learn “B is A”.
In Proceedings of the International Conference on
Learning Representations.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of the International Conference on Neu-
ral Information Processing Systems.

David Chiang and Peter Cholak. 2022. Overcoming a
theoretical limitation of self-attention. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).

John Cocke. 1969. Programming languages and their
compilers: Preliminary notes. New York University.

Stephen Crain and Mineharu Nakayama. 1987. Struc-
ture dependence in grammar formation. Language,
pages 522–543.

Ameet Deshpande and Karthik Narasimhan. 2020.
Guiding attention for self-supervised learning with
transformers. In Findings of the Association for Com-
putational Linguistics: EMNLP.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lor-
raine) Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck,
Peter West, Chandra Bhagavatula, Ronan Le Bras,
Jena Hwang, Soumya Sanyal, Xiang Ren, Allyson Et-
tinger, Zaid Harchaoui, and Yejin Choi. 2023. Faith
and fate: Limits of transformers on compositionality.
In Proceedings of the International Conference in
Neural Information Processing Systems.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neural
machine translation. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Jon Gauthier, Jennifer Hu, Ethan Wilcox, Peng Qian,
and Roger Levy. 2020. Syntaxgym: An online plat-
form for targeted evaluation of language models. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models par-
tially embed theories of lexical entailment and nega-
tion. In Proceedings of the BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP.

8015

Yinuo Guo, Zeqi Lin, Jian-Guang Lou, and Dongmei
Zhang. 2020. Hierarchical poset decoding for compo-
sitional generalization in language. In Proceedings of
the International Conference on Neural Information
Processing Systems.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–
171.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

John T. Hale and Miloš Stanojević. 2024. Do LLMs
learn a true syntactic universal? In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment of
syntactic generalization in neural language models.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

Xiang Hu, Pengyu Ji, Qingyang Zhu, Wei Wu, and
Kewei Tu. 2024. Generative pretrained structured
transformers: Unsupervised syntactic language mod-
els at scale. arXiv preprint arXiv:2403.08293.

Xiang Hu, Haitao Mi, Zujie Wen, Yafang Wang, Yi Su,
Jing Zheng, and Gerard de Melo. 2021. R2D2: Re-
cursive transformer based on differentiable tree for
interpretable hierarchical language modeling. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics and the International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

John Judge, Aoife Cahill, and Josef van Genabith. 2006.
QuestionBank: Creating a corpus of parse-annotated
questions. In Proceedings of the International Con-
ference on Computational Linguistics and Annual
Meeting of the Association for Computational Lin-
guistics.

Tadao Kasami. 1966. An efficient recognition and
syntax-analysis algorithm for context-free languages.
Coordinated Science Laboratory Report no. R-257.

Nikita Kitaev, Thomas Lu, and Dan Klein. 2022.
Learned incremental representations for parsing. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers).

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term memory.
In Proceedings of the Joint Conference on Lexical
and Computational Semantics.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of english: The penn treebank. Computational
linguistics, 19(2):313–330.

R Thomas McCoy, Robert Frank, and Tal Linzen. 2020.
Does syntax need to grow on trees? sources of hier-
archical inductive bias in sequence-to-sequence net-
works. Transactions of the Association for Computa-
tional Linguistics, 8:125–140.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher Manning. 2023a. Grokking of hierarchi-
cal structure in vanilla transformers. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers).

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher Manning. 2023b. Pushdown layers: En-
coding recursive structure in transformer language
models. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher D Manning. 2023c. Characterizing in-
trinsic compositionality in transformers with tree pro-
jections. In Proceedings of the International Confer-
ence on Learning Representations.

Christophe Pallier, Anne-Dominique Devauchelle, and
Stanislas Dehaene. 2011. Cortical representation of
the constituent structure of sentences. Proceedings
of the National Academy of Sciences, 108(6):2522–
2527.

Peng Qian, Tahira Naseem, Roger Levy, and Ramón Fer-
nandez Astudillo. 2021. Structural guidance for trans-
former language models. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics and the International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers).

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Miloš Stanojević, Phil Blunsom, and Chris Dyer.
2022. Transformer grammars: Augmenting trans-
former language models with syntactic inductive bi-
ases at scale. Transactions of the Association for
Computational Linguistics, 10:1423–1439.

Michelle Sheehan, Theresa Biberauer, Ian Roberts, and
Anders Holmberg. 2017. The Final-Over-Final Con-
dition: A Syntactic Universal, volume 76. MIT Press.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrating
tree structures into recurrent neural networks. In Pro-
ceedings of the International Conference on Learning
Representations.

8016

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics and the International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Marten van Schijndel, Andy Exley, and William Schuler.
2013. A model of language processing as hierarchic
sequential prediction. Topics in cognitive science,
5(3):522–540.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the International Con-
ference on Neural Information Processing Systems.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing and the International Joint Conference
on Natural Language Processing.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. Blimp: The benchmark of linguistic
minimal pairs for english. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers).

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared llama: Accelerating language
model pre-training via structured pruning. In Pro-
ceedings of the International Conference on Learning
Representations.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and
Johan Bos. 2019. Can neural networks understand
monotonicity reasoning? In Proceedings of the ACL
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and
Karthik Narasimhan. 2021. Self-attention networks
can process bounded hierarchical languages. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics and the International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Daniel H Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
control, 10(2):189–208.

A Discussion of Design Decisions

A.1 Last Hidden State as Representation for
Prefix

We use the hidden state for the last token in a
span as an easily computable representation of the
span. There is some evidence suggesting that in the
middle layers of an autoregressive transformer lan-
guage model, the burden of computation of repre-
sentations tends towards the right, indicating that in-
termediate hidden states summarize corresponding
prefixes to some extent. For instance, Allen-Zhu
and Li, 2023 find that when a transformer is trained
on generations from a Probabilistic Context-Free
Grammar (PCFG), ancestors of non-terminals are
encoded at the hidden state of the last token in the
span produced from the non-terminal. Therefore,
we leverage the prefix information summarized in
the hidden state of the last token of a span and rely
on the LM’s substantial expressive capabilities to
embed TREEREG’s orthogonality constraints into
its hidden states.

A.2 Orthogonality for Operationalizing
Contextual Independence

We choose to operationalize contextual indepen-
dence between spans as orthogonality of corre-
spoding hidden states, to design an efficiently com-
putable loss function. There exist other ways of
operationalizing contextual independence but these
are inefficient and often require multiple forward
passes on the transformer. For instance, Murty
et al., 2023c defines contextual independence as
the similarity between the sum of hidden states for
a span with unconstrained attention, compared to
those from a transformer with masked attention for

8017

the prefix of the span. Another efficient alterna-
tive is using the negative absolute value of cosine
similarity between span vector representations to
represent contextual independence. This does not
work as well, resulting in a syntactic generaliza-
tion of 76.4 on SG test suites (a drop of 3.6 points)
and 70.6 on BLiMP (a drop of 4.2 points) when
used during the pretraining of a 16-layer LM from
scratch on BLLIP-LG (§ 5.1).

TreeReg softly encourages higher SCIN for con-
stituents of the parse tree, and lower SCIN for
other constituents. However, a low SCIN score
indicates greater similarity between span vectors,
due to a smaller orthogonal component between
them, which can result in degenerate hidden states.
In practice, this is mitigated by opposing pressure
from LLM, that encourages divergent hidden states
for different tokens in the sentence. To confirm
this, we compute the average SCIN for constituent
and non-constituent spans in the PennTreeBank
test dataset, for the Base LM and TREEREG LM
trained in § 5.1. For the TREEREG LM, the av-
erage SCIN for constituents is 1.29, and that for
non-constituents is 0.98. In contrast, for the Base
LM, the average SCIN for constituents is 0.66, and
that for non-constituents is 0.65. We therefore con-
clude that the average SCIN for non-constituents
is substantially positive for a model trained with
TREEREG, and in fact is even higher than that for
a model trained without TREEREG.

A.3 Computation of SCIN
Our method for computation of SCIN involves
the addition of two terms, the first one be-
ing ∥orth(hj ,hi−1)∥, which captures the con-
textual independence between the information
in a span and its prefix. The second term is
∥orth(hj+1,hj)∥, which is a measure of how
much the suffix of a span is dependent on the infor-
mation contained in the span. The information in
constituent spans should be mostly self-contained
in a tree-structured computation, and therefore the
hidden state after the span is expected to be inde-
pendent of it. While this could result in enforced or-
thogonalities between consecutive words that may
belong to the same constituent, TREEREG only
enforces soft constraints, and there is opposing
pressure from LLM mitigating any undesirable be-
havior. We also found that TREEREG improves
syntactic generalization even without this future-
masking constraint, reaching 77.4 on SG test suites
(a drop of 2.6 points) and 72.8 on BLiMP (a drop

of 2.0 points) when used during pre-training of a
16-layer LM from scratch on BLLIP-LG (§ 5.1).

A.4 Greedy Decoding for Recovering Parses
An alternative to the proposed top-down greedy
decoding algorithm for recovering induced parse
trees (§3.2) is a dynamic programming approach
like the CKY algorithm (Cocke, 1969; Kasami,
1966; Younger, 1967). However, while computing
LTR during training, we only apply supervision
on spans that are possible splits of constituents in
the silver parse tree. For example, when applying
TREEREG to “the quick brown fox jumped over
the river”, there is no supervision on the SCIN for
the span “fox jumped over”, as “fox” is a part of the
constituent “the quick brown fox”, and “jumped
over” is a part of the constituent “jumped over the
river”. A globally optimal parsing algorithm such
as CKY will also consider SCIN for spans that had
no supervision on similar spans during training,
and these can be arbitrarily large, resulting in worse
parsing performance.

B Algorithms for Computing TREEREG
Loss and Induced Parse Trees

Alg. 1 details the procedure used to compute
TREEREG loss for a given sentence. Alg. 2 de-
tails the procedure used to recover induced parsed
trees from TREEREG-trained models.

Algorithm 1: TREEREG Loss

function loss(SCIN,P, i, j);
// Start: loss(SCIN,P, 0, n)
Input :
SCIN : Dictionary of SCIN for all spans
P : Dictionary of split points of constituents
in T̂ (S)
i: Starting index of span Si;j

j: Ending index of span Si;j

Output :li,j , contribution to LTR from Si;j

if j − i < 1 then
/* If span has length 1 or 2,

only one possible split */
return 0;

scores = [SCIN(i, q) + SCIN(q + 1, j)
for q ∈ [i, j − 1]]

p = P (Si;j)
span_loss = cross_entropy(scores, p)
left_loss = loss(SCIN,P, i, p)
right_loss = loss(SCIN,P, p+ 1, j)
return left_loss + span_loss + right_loss

8018

Algorithm 2: TREEREG Probe

function parse(SCIN, i, j);
// Start: parse(SCIN, 0, n)
Input :
SCIN : Dictionary of SCIN for all spans,
i: Starting index of span Si;j

j: Ending index of span Si;j

Output :Constituents in parse tree induced
by SCIN for Si;j

if i == j then
/* If span has length 1,

terminate recursion */
return Sst;st;

split_point = argmaxq∈[i,j−1]

SCIN(i, q) + SCIN(q + 1, j)
left_constituents =

parse(SCIN, i, split_point)
right_constituents =

parse(SCIN, split_point+ 1, j)
return Si;j + left_constituents +

right_constituents

C Efficient Computation of SCIN

In this section, we detail our approach to efficiently
compute SCIN for all spans in a sentence simulta-
neously through vectorization. For sentence S, let
H be the tensor containing all hidden states hl

A,j :

H = [hl
A,1, . . . ,h

l
A,n] (7)

Note that H has dimension (n, kd), where d is the
dimensionality of the hidden states from a single
attention head of the model. We create a tensor O
whose elements correspond to orthogonals dropped
from vectors in H to every other vector in H, with
dimensionality (n, n, kd). In PyTorch, this can be
implemented as follows:

H’ = H.unsqueeze(dim = 1) (8)

D = torch.sum(H ∗ H’,dim = −1) (9)

O = H − D.unsqueeze(dim = −1)∗H’ (10)

We then have:

orth(hl
A,j ,h

l
A,i) = O[i, j, :] (11)

and:

SCIN(i, j) = ∥O[i− 1, j, :]∥
+∥O[j, j + 1, :]∥ (12)

where ∥∥ is the L2 norm as before.

D Dataset Statistics

In this section, we provide statistics for all datasets
used in our experiments in Table 8. We also provide
some examples from the Tense Inflection, Question
Formation, MultiNLI, MoNLI and MED datasets.

Dataset Train Val Test

Tense Inflection 100,000† 1,000† 10,000†

Question Formation 100,000† 1,000† 10,000†

BLLIP-LG 42,000,000∗ 36,000∗ 72,000∗

WikiText-103 1,801,350† 3,760† 4,358†

MultiNLI 392,702† 20,000† 20,000†

Table 8: Statistics for each dataset used in our paper.
†: Number of data points. *: Number of tokens when
tokenized using the GPT-2 tokenizer.

D.1 Tense Inflection Examples
• Input. my quail upon my peacocks remem-

bered her unicorns.

• Output. my quail upon my peacocks remem-
bers her unicorns.

• Input. the vultures upon my unicorn waited.

• Output. the vultures upon my unicorn wait.

D.2 Question Formation Examples
• Input. my raven that doesn’t sleep does

change.

• Output. does my raven that doesn’t sleep
change?

• Input. our orangutans who do swim don’t
eat.

• Output. don’t our orangutans who do swim
eat?

D.3 MultiNLI Examples
• Premise. Conceptually cream skimming has

two basic dimensions - product and geogra-
phy.

• Hypothesis. Product and geography are what
make cream skimming work.

• Label. Neutral

• Premise. How do you know? All this is their
information again.

• Hypothesis. This information belongs to
them.

8019

• Label. Entailment

• Premise. Fun for adults and children.

• Hypothesis. Fun for only children.

• Label. Contradiction

D.4 MoNLI Examples
• Premise. The man does not own a dog.

• Hypothesis. The man does not own a mam-
mal.

• Label. Neutral

• Premise. The man does not own a mammal.

• Hypothesis. The man does not own a dog.

• Label. Entailment

D.5 MED Examples
• Premise. No delegate finished the report on

time.

• Hypothesis. No delegate finished the report.

• Label. Neutral

• Premise. Some delegates finished the survey
on time.

• Hypothesis. Some delegates finished the sur-
vey.

• Label. Entailment

E NLI Setup

We now discuss the training and evaluation setup
used for our NLI experiments. We format the train-
ing examples using the following prompt:

Determine if the hypothesis is an entail-
ment, contradiction or neutral in relation
to the premise. If the hypothesis directly
follows from the premise, it is an entail-
ment. If the hypothesis directly contra-
dicts the premise, it is a contradiction.
Any relationship that does not fit in with
the above definitions is considered neu-
tral. Return A if the second sentence is
an entailment, B if it is a contradiction,
and C if it is neutral.

Premise

{premise}

Hypothesis

{hypothesis}

Answer

We frame training as a classification task on
the final logit from the LLM when the prompt
above is passed as input. Instead of using a clas-
sification head, we directly apply cross-entropy
loss over the log-probabilities of ’A’, ’B’, and ’C’
as possible continuations of the prompt, with the
groundtruth class label as the target. During evalu-
ation, we select the continuation with the highest
log-probability at the final logit, with ’A’, ’B’ and
’C’ as choices. Note that we train on MultiNLI,
which includes examples of the entailment, con-
tradiction and neutral labels. On the other hand,
MoNLI and MED datasets treat NLI as a two-class
problem (entailment or neutral). However, we re-
tain all three classes as options during inference on
these datasets, for consistency with training.

F Experiment Hyperparameters

In this section, we detail the hyperparameters used
for all of our main experiments. All experiments
with LMs trained from scratch use tied input and
output weight matrices. For all experiments, linear
warmup is used for learning rates for the first 10%
of training steps, after which cosine decay is used
to reach a learning rate of 0 at the end of training.
We use the AdamW optimizer with epsilon of 1e-7
and clip gradients to a maximum L2 norm of 1.0.

F.1 § 4
• Number of layers: 4

• Number of attention heads: 8

• Hidden dimension: 512

• Training steps: 500,000

• Batch size: 8

• Learning rate: 1e-4

• Weight decay: 0.01

• Dropout: 0.1

F.2 § 5.1
• Number of layers: 16

• Number of attention heads: 8

• Hidden dimension: 512

• Training steps: 100,000

• Batch size: 160

• Learning rate: 1e-4

• Weight decay: 0.01

• Dropout: 0.1

8020

F.3 § 5.3
• Number of layers: 12

• Number of attention heads: 12

• Hidden dimension: 768

• Training steps: 40,000

• Batch size: 480

• Learning rate: 6e-4

• Weight decay: 0.1

• Dropout: 0.1

F.4 § 6.1
• Training steps: 10,000

• Batch size: 32

• Learning rate: 2e-5

• Weight decay: 0.01

• Dropout: 0.1

F.5 § 6.2
• Training steps: 20,000

• Batch size: 32

• Learning rate: 1e-5

• Weight decay: 0.01

• Dropout: 0.1

G Selection of Layer and Number of
Attention Heads for TREEREG

What is the ideal layer and number of atten-
tion heads for the LTR computation? To ex-
plore, we vary the layer used in TREEREG as
[2,4,6,8,10,12,14] and the number of attention
heads used as [2,4,8] out of 8 in the experiment
setup described in Section 5.1 for the training of a
16-layer LM from scratch on the BLLIP-LG dataset.
For the resulting models, we report the overall Syn-
taxGym performance in Figure 6 and PTB perplex-
ities in Figure 7.

We find that applying TREEREG at layer 12 on
2 attention heads results in the highest overall Syn-
taxGym performance as well as lowest PTB per-
plexity. With a couple of exceptions (4 attention
heads at layer 4 and 6), TREEREG consistently out-
performs the Base LM in both SyntaxGym perfor-
mance and PTB perplexities across hyperparameter
settings. Both syntactic generalization and out-of-
distribution perplexities show generally improving
trends till layer 12, after which they start degrading.

2 4 6 8 10 12 14

66

68

70

72

74

76

78

80

82

TreeReg on 2/8 Attention Heads

TreeReg on 4/8 Attention Heads

TreeReg on 8/8 Attention Heads

Layer

S
y
n

t
a
c
t
ic

 G
e
n

e
r
a
li
z
a
t
io

n

Syntactic Generalization

(Base LM)

Figure 6: Syntactic Generalization on SG test suites for
different layers and number of attention heads used in
TREEREG, for LMs trained from scratch on BLLIP-LG.

2 4 6 8 10 12 14

40

42

44

46

48

50

52

TreeReg on 2/8 Attention Heads

TreeReg on 4/8 Attention Heads

TreeReg on 8/8 Attention Heads

Layer

P
e
n

n
 T

r
e
e
B

a
n

k
 P

e
r
p

le
x
it

y

Penn TreeBank Perplexity

of Base LM

Figure 7: PTB Perplexity on SG test suites for different
layers and number of attention heads used in TREEREG,
for LMs trained from scratch on BLLIP-LG.

This finding suggests that TREEREG LMs repre-
sent syntax most naturally at intermediate layers,
on a small subset of attention heads.

H Examples of Parses Induced by
TREEREG

In this section, we provide some examples of parses
induced from the TREEREG LM trained in §5.1 on
the BLLIP-LG, PTB and 4000 Questions test sets.

H.1 BLLIP-LG

Figure 8 is an example where the induced parse
from TREEREG matches the silver parse. Figure 9
and Figure 10 represents a case where the induced
parse differs from the silver parse.

8021

X

X

X

The

X

company

X

X

X

declined

X

X

to

X

X

elaborate

X

X

on

X

X

the

X

disclosure

X

.

Figure 8: Silver and induced parse for “The company
declined to elaborate on the disclosure.”

H.2 PTB
Figure 11 is an example where the induced parse
from TREEREG matches the silver parse. Figure 12
and Figure 13 represents a case where the induced
parse differs from the silver parse.

H.3 4000 Questions
Figure 14 is an example where the induced parse
from TREEREG matches the silver parse. Figure 15
and Figure 16 represents a case where the induced
parse differs from the silver parse.

X

X

X

Mr.

X

Helguera

X

X

X

is

X

X

X

a

X

X

lawyer

X

X

,

X

X

economist

X

X

and

X

rancher

X

X

from

X

X

Buenos

X

Aires

X

.

’

Figure 9: Silver parse for “Mr. Helguera is a lawyer,
economist and rancher from Buenos Aires.”

X

X

X

Mr.

X

Helguera

X

X

X

is

X

X

X

a

X

lawyer

X

X

,

X

X

X

economist

X

X

and

X

rancher

X

X

from

X

X

Buenos

X

Aires

X

.

’

Figure 10: Induced parse for “Mr. Helguera is a lawyer,
economist and rancher from Buenos Aires.”

8022

X

X

They

X

X

X

could

X

X

still

X

X

panic

X

X

and

X

X

bail

X

X

out

X

X

of

X

X

the

X

market

X

.

Figure 11: Silver and induced parse for “They could
still panic and bail out of the market.”

X

X

X

X

Four

X

million

X

X

common

X

shares

X

X

,

X

X

X

via

X

X

Salomon

X

X

Brothers

X

Inc

X

.

Figure 12: Silver parse for ‘Four million common
shares, via Salomon Brothers Inc.”

X

X

X

X

Four

X

million

X

X

common

X

shares

X

X

,

X

X

via

X

X

Salomon

X

X

X

Brothers

X

Inc

X

.

Figure 13: Induced parse for “Four million common
shares, via Salomon Brothers Inc.”

X

X

What

X

X

X

does

X

X

X

the

X

X

Peugeot

X

company

X

manufacture

X

?

’

Figure 14: Silver and induced parse for “What does the
Peugeot company manufacture?”

X

X

X

What

X

debts

X

X

X

did

X

X

X

Qintex

X

group

X

leave

X

?

Figure 15: Silver parse for “What debts did Qintex
group leave?”

8023

X

X

X

What

X

debts

X

X

X

did

X

X

Qintex

X

X

group

X

leave

X

?

’

Figure 16: Induced parse for “What debts did Qintex
group leave?”

8024

