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Abstract

Sampling is a basic operation for large lan-
guage models (LLMs). In reinforcement learn-
ing rollouts and meta generation algorithms
such as Best-of-N, it is essential to sample high-
quality trajectories efficiently within a given
compute budget. To find an optimal allocation
for sample compute budgets, several choices
need to be made: Which sampling configura-
tions (model, temperature, language, etc.) to
use? How many samples to generate in each
configuration? We formulate these choices
as a learning problem and propose OSCA, an
algorithm that Optimizes Sample Compute
Allocation by finding an optimal mix of differ-
ent inference configurations. Our experiments
show that with our learned mixed allocation, we
can achieve accuracy better than the best single
configuration with 128x less compute on code
generation and 25x less compute on 4 reason-
ing tasks. OSCA is also shown to be effective
in agentic workflows beyond single-turn tasks,
achieving a better accuracy on SWE-Bench
with 3x less compute than the default configu-
ration. Our code and generations are released
at https://github.com/LeiLiLab/OSCA.

1 Introduction

Large language models (LLMs) solve more prob-
lems with more inference compute. Different ways
of scaling up LLM inference include sampling
(Chen et al., 2021), self-consistency (Wang et al.,
2023c), tree search (Yao et al., 2024), etc. Among
these, sampling is the most basic and serves as an
atomic operation needed in all other more com-
plicated methods. Sampling is also essential for
collecting high-quality rollouts in reinforcement
learning. Therefore, it is crucial to do it well.

Previous studies (Wang et al., 2023b) have in-
vestigated how to find the optimal sampling con-
figuration, such as the best temperature. While
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Figure 1: On 4 benchmarks with a total of 7 tasks, our
optimized allocations are better than both optimal pure
allocations and uniform allocations in most cases.
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these methods are effective, they miss one key fact:
Not all problems have the same optimal sampling
configuration. Some problems are easier solved
in one configuration while others in another (Li
et al., 2022). This highlights the need for a mixed
allocation of the sample budget instead of a pure
allocation that uses a single configuration.

As shown in Figure 1, just by uniformly allocat-
ing the compute budget over all possible inference
configurations (dubbed “uniform mixed”), LLMs’
accuracy can already surpass the optimal pure al-
location on LiveCodeBench. Uniform mixed allo-
cation gets 64% accuracy with 4 samples, while
optimal pure needs 16x more samples to get a sim-
ilar accuracy. Since uniform allocation is only one
of the exponentially many allocations in the search
space, it is natural to ask: How do we find the opti-
mal sample budget allocation for LLM inference?

We formulate this as a learning problem: given a
set of different inference configurations, a training
problem set, and a compute budget, we need to dis-
tribute the budget to maximize the expected accu-
racy. To solve this problem, we use a hill-climbing
algorithm and demonstrate its effectiveness with
theoretical justification and experiments. As shown
in Figure 1, the learned allocation from OSCA is
significantly better than the optimal pure allocation,
especially when the sample size is small.

To provide further insights for future adopters
of OSCA, we conduct ablation studies on the effec-
tiveness of different hyperparameters in the mix,
the number of problems needed in the training set,
and scenarios where mixed allocations do not offer
significant improvements. Moreover, we show on
SWE-Bench, a benchmark for LLM agents, that
replacing pure sampling with OSCA’s learned allo-
cation in just one step boosts the entire workflow’s
performance. This demonstrates that a mixed sam-
pling strategy not only improves single-turn tasks
but also enhances agentic workflows, leading to
better reasoning and decision-making.

Our contributions are the following:

• We highlight the need for mixed allocation of
LLM sample compute and formulate it as a learn-
ing problem.

• We propose an effective algorithm OSCA for op-
timizing sample compute allocations and demon-
strate its effectiveness on 4 benchmarks.

• We provide detailed analyses of when and why
mixed allocations work, as well as their role in
more complicated inference time algorithms.

2 Related Work

Inference Time Algorithms. Following the tax-
onomy of Welleck et al. (2024) on inference-time
algorithms, chained meta-generators run multiple
LLM calls sequentially and use the output sam-
ple from each call as the input to the next one
(Dohan et al., 2022; Schlag et al., 2023). Parallel
meta-generators samples multiple candidates for
a problem and selects the best candidate (Wang
et al., 2023c; Chen et al., 2022; Jiang et al., 2023;
Zhang et al., 2023; Huang et al., 2023). Step-level
search methods regards problem-solving as a multi-
step process and sample candidate next steps at
each intermediate state, using algorithms like tree
search (Yao et al., 2024), graph search, and Monte-
Carlo Tree Search (Lample et al., 2022; Tian et al.,
2024; Chi et al., 2024). Refinement-based meth-
ods samples candidate solutions sequentially, rely-
ing on some feedback to revise the next candidate
(Madaan et al., 2024; Shinn et al., 2024). Although
these algorithms scale up inference differently, they
all need LLM sampling as a basic operation.

Scaling Inference. Many studies investigate how
scaling in inference affects LLM performance. Al-
phaCode (Li et al., 2022; Leblond et al., 2023)
scales up the sample number and finds the solve
rates scale log-linearly with more samples. Brown
et al. (2024) improves LLMs’ performance on math
problems by repetitively sampling candidate solu-
tions with a high temperature. Wu et al. (2024) and
Snell et al. (2024) study the scaling behaviors of
various inference time algorithms, reward models,
and the model sizes. In this paper, we investigate
the allocation algorithm between various inference
configurations for scaling up inference.

Inference Compute Optimization. There are two
typical ways to optimize inference compute. One is
to search for a single optimal configuration. For ex-
ample, Wang et al. (2023a) proposes EcoOptiGen
to optimize the inference hyperparameter under a
limited compute budget, and Wang et al. (2024)
finetunes LLMs to self-regularize its generation
with the best hyperparameter set. The other is to
find the optimal allocation between various infer-
ence configurations (Graves, 2016; Dehghani et al.,
2019). Damani et al. (2024) allocates the compute
budget based on the estimation of problem diffi-
culty. Here, we optimize the compute allocation to
different inference configurations.
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Figure 2: With 4 sampling configurations and a compute
budget of 1, pure allocation spends all the budget on
one configuration. Uniform allocation evenly distributes
the budget across configurations. Optimized allocation
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3 Method

3.1 Problem: Sample Compute Allocation
LLM Problem-Solving. We study how to im-
prove LLM-based solvers for problems with binary
correctness values. Formally, a problem is a pair
(x, v), where x ∈ X is the problem specifications,
v : X × Y → {True, False} is the verifier that
maps a solution of the problem to a truth value,
and Y is the space of solutions. An LLM solver
is given the problem specification and produces
a distribution PrLM(y|x) over the solution space
conditioned on the problem specification.
Compute Budget and pass@C. We evaluate
LLM-based problem solvers with the average solve
rate of test set problems given a fixed compute bud-
get C, which can be defined as the maximum num-
ber of samples, the maximum number of tokens,
the maximum FLOPs, etc. For any definition of
compute budget C, we generate as many samples
as possible from PrLM(y|x) within the compute
limit. The solver can be evaluated using pass@C,
which is defined as the probability of at least one
sample among the candidates being correct. In our
experiments, we use the number of samples as a
metric for C.
Sampling Configurations. Given a problem spec-
ification x, there are multiple inference hyperpa-
rameters to decide when solving it with an LLM –
the model to use, inference temperature, language
of the output, prompt, etc. For the i-th hyper-
parameter, we use Hi to denote the set of fea-
sible values and hi to denote an element in Hi

that is actually chosen. Assuming the number of
tunable hyperparameters is d, we call an d-tuple

h = (h1, h2, · · · , hd) ∈ H = H1×H2×· · ·×Hd

a sampling configuration.
Sample Compute Allocation. Suppose there are
|H| = m sampling configurations, and we want to
allocate a compute budget C across them. We de-
fine an allocation as a mapping function π : H →
N to represent the amount of compute assigned to
each sampling configuration and it should satisfy∑

h∈H π(h) = C. For convenience we use πi to
denote π(hi). We categorize sample budget allo-
cations into two types: A pure allocation spends
all the compute on one sampling configuration, i.e.,
there exists exactly one i for which πi > 0; while
a mixed allocation spends compute on more than
one sampling configurations. Examples of different
types of allocations can be found in Figure 2.
Learning Allocations. We want to find for a test
set of problems Dtest and a given per-problem com-
pute budget C, a sample compute allocation π,
such that the problem solve-rate pass@C can be
maximized given the same amount of compute. We
assume access to an i.i.d. training problem set
Dtrain and a per-problem allocation-learning com-
pute budget C0 that can be used for trying out dif-
ferent sampling configurations.

3.2 Why Mixed Allocation?
We show an example that demonstrates why it is
sometimes necessary to use a mixed allocation of
sample compute. Consider two problems x1 and
x2, and two configurations h1 and h2. We use
Pr(pass|h, x) to denote the probability of generat-
ing a correct solution to the problem x under con-
figuration h. Let’s assume that Pr(pass|h1, x1) =
10%,Pr(pass|h2, x1) = 1%,Pr(pass|h1, x2) =
1%,Pr(pass|h2, x2) = 10%. In other words, h1 is
better at solving x1 and h2 is better at solving x2.

Consider the allocation of 10 samples per prob-
lem to these two configurations. If we use a pure
allocation, all 10 samples will be entirely given to
either h1 or h2, the expected pass@10 would be

1− (1− 0.1)10 + 1− (1− 0.01)10

2
= 37.3%.

On the other hand, if we use a mixed allocation
and split 10 samples evenly between h1 and h2,
the expected pass@10 would be

1− (1− 0.1)5 × (1− 0.01)5 = 43.8%,

which is significantly higher than the pure alloca-
tion’s result.
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3.3 Our Algorithm

The proposed OSCA is described in Algorithm 1.
Estimating pass probability. For each sampling
configuration hi and each problem xj in the train-
ing set, we estimate a probability matrix P with
|H|× |D| elements. Each element pij indicates the
probability of a sample from hi solving xj . We
estimate pij by sampling C0 times from hi and
computing the frequency of correct solutions,

pij ≈
cij
C0

, (1)

where cij is the number of correct samples gener-
ated for the problem xj with the configuration hi.
Note that to save compute, the estimation compute
budget C0 is much smaller than the actual compute
budget C.
Maximizing expected pass@C on training set.
Assuming that the test set is i.i.d. with the train-
ing set, we optimize π to maximize pass@C on
training data. For a single problem xj and a sin-
gle configuration hi ∈ H, its pass@Ci is defined
as it probability of being solved with compute Ci,
which can be derived as

Pr(xj solved with Ci samples from hi)

= 1− (1− pij)
Ci . (2)

By aggregating all problems and all configura-
tions, we can obtain this optimization problem:

max
π

E[pass@C]

=
1

|D|

|D|∑

j=1


1−

|H|∏

i=1

(1− pij)
πi


 ,

s.t. 0 ≤ πi ≤ C,

|H|∑

i=1

πi = C, πi ∈ N. (3)

Note that if we remove the integral constraint
πi ∈ N from Problem (3), the relaxed problem is
convex (Proof in Appendix A.1) that can be solved
optimally by hill climbing algorithm (Russell and
Norvig, 2016). We start from a randomly picked
distribution of compute π(0). At each iteration t, we
examine all the neighbors of the current distribution
that differ slightly from π(t) and “climb” to the
neighbor if it’s better than the current distribution
to obtain π(t+1). The algorithm stops once there
is no better neighbor. Though the algorithm is not

guaranteed to produce global optima for integral
solutions, it works well empirically.

This algorithm can be extended to problems with
real scores with some slight modification, as dis-
cussed in Appendix A.4.

Algorithm 1 OSCA: Algorithm for Optimizing
Sample Compute Allocation

1 Input: Inference budget C, estimation budget C0, sam-
pling configurationsH, training problem setDtrain, where
(xi, vi) ∈ Dtrain is a problem specification and its veri-
fier.

2 Output: Inference strategy π.
3
4 function OPTIMIZEALLOCATION(C,C0,H,Dtrain)
5 P ← ESTIMATEPASSPROB(C,C0,H)
6 Randomly initialize allocation π = {π1, . . . , πm}

such that
∑m

i=1 πi = C.
7 repeat
8 improved← False
9 // Enumerating all neighboring strategies

10 for i ← 1 to m, j ← 1 to m and i ̸= j and
πi > 0 do

11 q ← π
12 qi, qj ← πi − 1, πj + 1
13 if PREDACC(q, P )>PREDACC(π, P ) then
14 π ← q // Climb to a better strategy.
15 improved← True.
16 end if
17 end for
18 until not improved
19 end function
20
21
22 function ESTIMATEPASSPROB(C,C0,H)
23 for hi ∈ H do
24 for (xj , vj) ∈ Dtrain do
25 Generate C0 samples y1, y2, · · · , yC0 , yi ∼

PrLM(y|x,h).
26 c← |{yi : vj(yi) = True}|.
27 pij ← c/C0.
28 end for
29 end for
30 end function
31
32 function PREDACC(π, P )
33 return 1

|D|
∑|D|

j=1

(
1−∏|H|

i=1(1− pij)
π(hi)

)

34 end function

Discussion on the definition of compute budget.
In our experiments, we use the number of samples
as a metric for compute, which is reasonable when
the compute/price to generate each sample is simi-
lar for different configurations. However, there are
other cases when the model sizes differ greatly or
when the FLOPs budget for each sampling configu-
ration varies significantly. For those cases, sample
budget is not a good proxy for compute budget, and
Problem (3) will need to be modified to accommo-
date different definitions of compute budget, pos-
sibly by adding a coefficient to weight the sample
budget for each problem. Nonetheless, such modifi-
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cation does not change the convexity of the relaxed
problem. Thus our algorithm can still apply.

4 Evaluation on Single-Turn Tasks

We first evaluate OSCA on single-turn tasks, where
a solution to a problem can be generated with a
single LLM call.

4.1 Baselines

We consider three baselines in our experiments –
default pure allocation, optimal pure allocation, and
uniform mixed allocation:

Default pure allocation is the one used to pro-
duce the leaderboard results on the benchmarks.
These benchmarks usually run LLM inference once
for each problem instance, with a very basic prompt
and a low temperature for reproducibility and fair
comparison. Therefore, the default pure allocation
is not optimized for scaling up.

Optimal pure allocation is the one that has the
highest pass@C0 on the training set given a com-
pute budget of C0. Since the actual C is larger than
C0 in most cases, we use pass@C0 to select the
optimal configuration. Comparison between the
optimal pure allocation and the default pure allo-
cation indicates whether it is necessary to search
for a good set of inference hyperparameters, which
is what existing hyperparameter optimization tech-
niques do.

Uniform mixed allocation naively distributes
the compute budget evenly to every sampling con-
figuration hi in H . We compare the uniform mixed
allocation with our learned mixed allocation to ex-
amine whether it is necessary to optimize sample
compute allocations for them to perform well.

4.2 Tasks and Benchmarks

We evaluate OSCA on 6 tasks from 3 benchmarks
– LiveCodeBench (Jain et al., 2024), LiveBench
(White et al., 2024), and BigCodeBench (Zhuo
et al., 2024). The first two benchmarks are built
with periodically released examinations and com-
petitions so that the possibility of contamination
can be minimized. To further avoid contamination,
we choose the earlier released problems as training
set Dtrain.

LiveCodeBench (Jain et al., 2024) collects
LeetCode-style problems from weekly held online
programming competitions.Each problem comes
with a natural language specification including
problem description, sample test cases, and input

range. When given a problem, an LLM is sup-
posed to create a program that can pass both the
sample tests visible to the model and the hidden
tests that are usually more comprehensive. Within
each platform in LiveCodeBench, we sort the prob-
lems according to the time they were released and
use the first 3/5 of the problems as training data.
This split gives us 305 problems for training and
205 problems for evaluation. Most training prob-
lems are released before 2024, while the evaluation
problems are after 2024.

LiveBench (White et al., 2024) contains 6 prob-
lem categories: data analysis, language, reasoning,
math, instruction following, and coding. The re-
sponses to the instruction-following problems are
not easy to verify, and their coding problems are
mostly taken from LiveCodeBench. The remain-
ing four categories are used for evaluation. The
problems have two release dates (2024-06-24 and
2024-07-26), but most categories have only one re-
lease. Therefore, we mixed these two versions and
randomly split each category by 3:7, resulting in
201 training and 471 testing problems. Compared
to LiveCodeBench, optimizing sample compute al-
location is harder on LiveBench, because there are
problems from different domains.

BigCodeBench (Zhuo et al., 2024) contains 148
function completion problems that require multiple
python libraries to implement. We split up the
problems randomly into 70 training problems and
78 testing problems.

Model Temp. Lang.

LCB

Default GPT-4o 0.2 Python
Optimal GPT-4o 1 Python

Mixed
GPT-4o

0-1.6 Python, C++Gemini
DeepSeek

LB

Default Llama3 0 N/A
Optimal Llama3 0.8 N/A

Mixed
Qwen2

0-1.8 N/ALlama3
DeepSeek

BCB

Default Qwen2 0.2 N/A
Optimal Llama3 1.4 N/A

Mixed
Qwen2

0.2-1.4 N/ALlama3

Table 1: Implementation details for the three bench-
marks, including the hyperparameters we consider, the
default inference strategy on the leaderboard, and the
budget for strategy learning and inference. Temp. and
Lang. are the temperature and the programming lan-
guage used when sampling.
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We list the sampling configurations in Table 1.
The temperatures we consider are multiples of 0.2.
For all configurations, we set C0 to 50. Note that
there is one more hyperparameter to optimize for
LiveCodeBench – the programming language. For
LiveBench, the open-weight models we choose all
have about 70B parameters. We also provide the
values of hyperparameters for the pure allocation
baselines and the budgets for learning and testing.

4.3 Key Observations
We present the pass rates for different sample com-
pute allocations in Table 2. For allocations other
than the default pure, we show the difference be-
tween their pass rate and that of default pure. Sev-
eral key observations can be made from these re-
sults:

Pure allocation is not enough, mixed alloca-
tion is necessary. By finding the optimal pure
allocation on the training set, we get much better
accuracy than the default allocation, highlighting
the importance of a suitable inference configuration.
However, pure allocation is not enough on Live-
CodeBench. We find that code problems require
a more diverse solution set, making the pure con-
figuration not enough. On LiveCodeBench, just by
allocating sample compute evenly across inference
settings, we achieve a pass@8 of 73.3%, which is
better than the pass rate of optimal pure allocation
with 512 samples.

Uniform mixed allocation is not enough,
OSCA’s optimized allocation is necessary. On
LiveBench, uniform mixed allocation does not out-
perform optimal pure, suggesting that we can’t
always opt for uniform mixed. However, OSCA’s
optimized allocation does. With 8 samples, OSCA’s
pass rate comes to 67%, which is higher than the
pass rate of the default pure allocation with 128
samples. In fact, OSCA outperforms all others in
all but two cases.

OSCA scales well with larger compute bud-
gets. Although the sample compute budget (C0)
used for estimating the solve rate matrix was
merely 50, OSCA can still produce strong sam-
ple compute allocations even when the test time
compute budget C is as large as 1024 per problem.

4.4 Ablation Studies
We conduct ablation experiments on LiveBench to
answer the following questions.

How many problems do we need in training
to learn a good mixed allocation? We run OSCA
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Figure 3: OSCA’s pass rates on LiveBench when trained
with different proportions of the training data.

on different proportions of the original training set
and plot the results in Figure 3. Since there are
multiple ways of subsampling the training set, we
run it multiple times and compute the average. For
reference, we also plot the results when we train
on the test set, which should be the upperbound
of OSCA. We observe that with the full training
data, the allocation learned is very close to the
upperbound. At smaller sample compute C, the
allocation trained from less data is not much worse
than the allocation from full training data. However,
as C gets to over 26, the allocation gets much worse
with less training data. We hypothesize that this is
because when C is large, only the hard problems
contribute to the difference in accuracy, which are
prone to overfitting when training data is small.
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Figure 4: OSCA with different sample compute for esti-
mating pass rates. C0 = 50.

How large does C0 need to be in order to esti-
mate pass rates on training data? C0, the sample
compute budget for estimating pass rates on train-
ing data, can be much smaller than C, which might
affect OSCA’s performance. We study how esti-
mating with different values of C0 might affect the
learning process. As Figure 4 shows, even with
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pass@C with varying C ↑
21 22 23 24 25 26 27 28 29

LiveCodeBench

Default pure 47.1 49.4 51.7 53.9 55.7 57.1 58.4 59.5 60.8
Optimal pure +1.8 +4.1 +5.6 +6.6 +7.2 +7.5 +7.6 +8.4 +9.4
Uniform mixed +4.3 +15.0 +21.6 +24.4 +25.8 +26.7 +27.2 +27.6 +28.1
Learned mixed (ours) +17.4 +22.6 +23.7 +25.2 +26.3 +27.3 +27.7 +27.2 +26.9

LiveBench

Default pure 46.0 51.3 55.9 59.7 62.6 64.9 66.7 68.3 -
Optimal pure +2.4 +6.0 +9.3 +10.0 +11.2 +12.5 +13.8 +14.7 -
Uniform mixed -11.7 -4.4 +3.1 +8.0 +10.5 +11.6 +12.5 +12.8 -
Learned mixed (ours) +5.9 +8.8 +11.1 +12.3 +13.0 +13.8 +14.8 +14.7 -

Table 2: Accuracy at different compute budgets (C) using different sample compute allocations. We report the
difference in accuracy for non-default allocations. LCB stands for code generation tasks in LiveCodeBench. LB
stands for subtask categories in LiveBench. The best result for each setting is in bold.
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Figure 5: OSCA’s pass rates on LiveBench when it is
banned from allocating compute to multiple tempera-
tures or multiple models.

26% of the original C0, OSCA can still get an accu-
racy very close to its upperbound, indicating that it
is not really sensitive to C0.

Which hyperparameter in sampling configu-
rations needs mixed allocation? To study whether
mixed allocation is needed for the two hyperpa-
rameters – temperature or model, we consider two
limited versions of OSCA by banning it from using
more than one temperature or more than one model.
As shown in Figure 5, when OSCA is not allowed
to use multiple models, its accuracy degrades to
that of optimal pure. When OSCA is not allowed to
use multiple temperatures, its accuracy degrades to
be worse than optimal pure. These results suggest
that in order for OSCA to perform well, we need
more diverse sampling configurations.

How general is OSCA’s learned allocation?
In Table 2, we report the overall performance on
LiveBench, because OSCA’s training data is a com-
bination of 4 subtasks from LiveBench – math,
reasoning, language and data analysis. To evaluate
the generality of the learned allocation, we examine
its performance on the 4 tasks separately. As Ta-

pass@C with varying C ↑
23 25 27

T1

Default pure 53.7 60.3 65.2
Optimal pure +7.0 +9.1 +12.4
Uniform mixed +2.5 +8.1 +9.7
Learned mixed +10.3 +11.4 +14.0

T2

Default pure 70.1 82.5 87.5
Optimal pure +6.0 +5.4 +6.2
Uniform mixed +1.4 +10.6 +9.7
Learned mixed +12.1 +10.1 +8.8

T3

Default pure 47.4 54.5 59.9
Optimal pure +8.9 +15.1 +17.8
Uniform mixed +2.5 +10.0 +12.6
Learned mixed +14.1 +16.1 +16.2

T4

Default pure 52.5 53.2 53.9
Optimal pure +9.8 +16.2 +20.0
Uniform mixed +6.4 +15.4 +20.6
Learned mixed +9.3 +16.3 +21.9

Table 3: Accuracy of different allocations on subtasks
of LiveBench – math (T1), reasoning (T2), language
(T3), data analysis (T4).

ble 3 shows, OSCA is the best in 7/12 cases and the
second best in the remaining 5. This indicates that
the OSCA’s learned allocation is domain-specific
to some extent. Example problems of these 4 cate-
gories can be found in Appendix A.3.

Can we learn the best configuration at in-
stance level? Ideally, there is no need to use mixed
allocation of sampling compute because there is
only one optimal configuration for a specific prob-
lem. Therefore, we investigate whether it is pos-
sible to learn instance-level optimal configuration.
We conduct this experiment on LiveCodeBench, as
it has a larger training set and more homogeneous
problems and is thus easier to learn. We propose a
k-nearest neighbor algorithm under the assumption
that similar problems need similar sampling config-
urations. For each test problem x, we retrieve the k
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problems in the training set that are most similar to
x, and allocate compute according to the distribu-
tion of optimal configuration over these problems.
We use OpenAI’s text-embedding-3-large to
create semantic embeddings and compute the sim-
ilarity between problems. As shown in Table 4,
OSCA outperforms the problem-specific kNN al-
location of compute, no matter what value k is.
This suggests that it is not straightforward to learn
problem-specific sampling configurations, justify-
ing the need for a domain-specific allocation.

pass@C with varying C ↑
21 23 25 27

k = 4 65.7 73.7 80.0 83.9
k = 8 66.9 74.5 79.9 82.9
k = 16 68.8 76.6 83.2 86.1
k = 32 68.2 77.3 83.0 86.6
k = 64 68.0 77.2 83.4 86.2
OSCA (ours) 72.0 79.1 84.4 86.7

Table 4: Accuracy of problem-specific sample alloca-
tion computed using k-nearest neighbor under different
values of k is consistently lower than OSCA, especially
when the compute budget is small.

5 Evaluation on Agentic Tasks

Optimizing sample compute allocation is not just
useful for its own purpose, it is also useful for
more complicated LLM inference algorithms, such
as tree search and agentic workflows, because sam-
pling is a basic operation in these. To demonstrate
such usefulness, we apply OSCA to an agentic
workflow for SWE-Bench, which needs 2 stages
and 7 steps involving numerous LLM calls to re-
solve software engineering issues in repository-
level code.

5.1 Benchmark and Workflow

SWE-Bench (Jimenez et al.) collects real-world
software engineering issues from open-source
GitHub repositories such as django and matplotlib.
Each issue is paired with human-written unit tests.
To resolve an issue, one needs to understand the
issue description, examine the codebase (often hun-
dreds of thousands of lines long), locate where to
make changes and make necessary modifications
by generating a patch. Decent solutions on this
benchmark often takes an agentic approach by giv-
ing an LLM multiple tools to use and multiple
actions to take and guiding it through a multi-stage
workflow. We consider a subset of SWE-Bench cu-

rated by the authors called SWE-Bench Lite, which
contains 300 issues.
Agentless (Xia et al., 2024) is one of the best-
performing open-source solutions to SWE-Bench.
An overview of how Agentless works can be found
in Appendix A.5 Figure 6. It needs two stages
– bug localization and bug repairing – to resolve
a software engineering issue. There are 7 steps
in total and 4 of them needs LLM sampling. We
apply OSCA to one crucial step in the workflow
– generating patches. Since SWE-Bench is really
expensive to evaluate, we set both C0 and C to be
a smaller value 16.
Implementation Details. We use the same base-
lines from single-turn tasks – default pure alloca-
tion, optimal pure allocation, and uniform mixed
allocation. We randomly sample 150 from the 300
issues as OSCA’s training set, and use the remain-
ing ones for testing. We consider three dimensions
in sampling configuration – model choice, temper-
ature, and prompting. The model choices we con-
sider are gpt-4o-2024-05-13, deepseek-coder-2.5,
and qwen-2.5-70B. The temperatures we consider
are 0.4, 0.8, 1.2, and 1.6. The prompts are the inter-
mediate results generated from the earlier stages of
the workflow. We consider the two sets of interme-
diate results provided by the authors of Agentless1.
They contain the relevant contexts in code files
that the system finds relevant to the specific issue
descriptions.

Both the default and optimal settings are gpt-4o,
temperature 0.8 and prompt set 1.

5.2 Results

As demonstrated in Figure 1, OSCA can also im-
prove the performance of Agentless by improving
one of the steps in its agentic workflow. Compared
to both the pure allocation (Temperature is set to 1
in both default and optimal pure allocation) and uni-
form mixed allocation, OSCA’s learned allocation
can get a similar accuracy with fewer samples. The
gap between OSCA and the optimal pure allocation
enlarges as sample compute gets larger, while uni-
form mixed allocation approaches and outperforms
optimal pure with larger sample sizes.

These findings further demonstrate the necessity
of optimizing sample budget allocation, as it can

1The prompt sets can downloaded at https://github.
com/OpenAutoCoder/Agentless/releases/tag/v0.1.0.
Prompt set 1 is in results/location_merged/loc_
merged_0-1_outputs.jsonl. Prompt set 2 is in results/
location_merged/loc_merged_2-3_outputs.jsonl.
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be used in more complicated workflows to make
them more efficient.

6 Conclusion

In conclusion, this paper presents OSCA, an algo-
rithm designed to optimize sample compute allo-
cation for large language models (LLMs) during
inference. Through various experiments on both
single-turn and agentic tasks, the study demon-
strates that OSCA significantly improves accuracy
with reduced compute resources compared to tra-
ditional methods, such as pure or uniform mixed
allocations. By leveraging a mixed allocation al-
location, OSCA balances different inference con-
figurations, proving particularly effective in code
generation and reasoning tasks, as seen in bench-
marks like LiveCodeBench and LiveBench. This
work demonstrates the importance of adapting sam-
pling allocation to the specific characteristics of the
problem at hand. Furthermore, OSCA’s application
to more complex workflows, such as multi-step
agentic tasks, shows potential for broader utility in
improving the efficiency of LLMs in various real-
world applications. However, future work could
explore optimizing additional hyperparameters and
testing the scalability of the method with larger
compute budgets.

Limitation

Although OSCA demonstrates an effective way
to allocate sample compute there are still sev-
eral limitations. First, this paper mainly focuses
on four representative inference hyperparameters:
model types, temperatures, response languages,
and prompts. In addition to these aspects, there
are other hyperparameters such as top k, top p, rep-
etition penalty, etc. Combining these hyperparam-
eters can make the sample configuration set more
diverse. Besides, due to the computation limitation,
we limited our inference compute budget to 512. It
would be interesting to see how further scaling up
will affect the performance.
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A Appendix

A.1 Proof of Convexity

We aim to minimize the following objective func-
tion:

min
π

O(π) =

m∑

j=1

n∏

i=1

(1− pij)
πi

subject to:

• 0 ≤ πi ≤ C, with πi ∈ N

•
∑n

i=1 πi = C

To simplify the analysis, we take the negative
logarithm of the objective function, which pre-
serves convexity properties:

O(π) =

m∑

j=1

exp

(
n∑

i=1

πi ln(1− pij)

)

Define:

gj(π) =

n∑

i=1

πi ln(1− pij)

Since gj(π is a linear combination of πi, it is an
affine function in π. As affine functions are both
convex and concave, gj(π) is convex.

The exponential function, exp(z), is convex.
Since the composition of a convex function with
an affine function remains convex, it follows that:

hj(π) = exp(gj(π))

is convex in π.
Thus, the overall objective function:

f(π) =

m∑

j=1

hj(π)

=

m∑

j=1

exp

(
n∑

i=1

πi ln(1− pij)

)

is a sum of convex functions, implying that f(π) is
convex.

A.2 Example Problems from LiveCodeBench

Codeforces: Short Sort

Problem Description: There are three cards with
letters a, b, and c placed in a row in some order. You
can do the following operation at most once:

• Pick two cards and swap them.

Is it possible that the row becomes abc after the oper-
ation? Output YES if it is possible, and NO otherwise.
Input:
The first line contains a single integer t (1 ≤ t ≤ 6)
— the number of test cases.
The only line of each test case contains a string con-
sisting of the characters a, b, and c exactly once,
representing the cards.
Output:
For each test case, output YES if you can make the
row abc with at most one operation, or NO otherwise.
Example:
Input:
6
abc
acb
bac
bca
cab
cba
Output:
YES
YES
YES
NO
NO
YES

Python Solution:
def is_possible_to_sort_to_abc(s):

if s == "abc":
return "YES"

if s == "acb" or s == "bac" or s == "cba":
return "YES"

return "NO"
t = int(input())
for _ in range(t):

s = input().strip()
print(is_possible_to_sort_to_abc(s))

C++ Solution:
#include <iostream>
#include <string>
using namespace std;
int main() {

int t;
cin >> t;
while (t--) {

string s;
cin >> s;
if (s == "abc" || s == "acb"
|| s == "bac" || s == "cba") {

cout << "YES" << endl;
} else {

cout << "NO" << endl;
}

}
return 0;

}

7969



LeetCode: Number of Senior Citizens

Problem Description: You are given a 0-indexed
array of strings details. Each element provides in-
formation about a passenger compressed into a string
of length 15. The format of the string is:

• The first 10 characters consist of the phone
number of the passengers.

• The next character denotes the gender of the
person.

• The following two characters indicate the age
of the person.

• The last two characters determine the seat al-
lotted to that person.

Return the number of passengers who are strictly
more than 60 years old.
Example:
Input: details = ["7868190130M7522",

"5303914400F9211",
"9273338290F4010"]

Output: 2

Explanation: The passengers at indices 0, 1,
and 2 have ages 75, 92, and 40. Thus, there
are 2 people who are over 60 years old.

Python Solution:
class Solution(object):

def countSeniors(self, details):
count = 0
for detail in details:

age = int(detail[11:13])
if age > 60:

count += 1
return count

C++ Solution:
class Solution {
public:

int countSeniors(vector<string>& details) {
int count = 0;

for (const string& detail : details) {
int age = stoi(detail.substr(11, 2));

if (age > 60) {
count++;

}
}
return count;

}
};

AtCoder: Wrong Answer

Problem Description: You are given two integers
A and B, each between 0 and 9, inclusive. Print any
integer between 0 and 9, inclusive, that is not equal
to A+B.
Input:
The input consists of two integers A and B.
Output:
Print any integer between 0 and 9, inclusive, that is
not equal to A+B.
Example:
Input:
2 5

Output:
2

Input:
0 0

Output:
9

Input:
7 1

Output:
4

Python Solution:
A, B = map(int, input().split())
S = A + B
for i in range(10):

if i != S:
print(i)
break

C++ Solution:
#include <iostream>
using namespace std;

int main() {
int A, B;
cin >> A >> B;
int sum = A + B;
for (int i = 0; i <= 9; ++i) {

if (i != sum) {
cout << i << endl;
break;

}
}
return 0;

}

A.3 Example Problems from LiveBench

Math Problem

Real numbers x and y with x, y > 1 satisfy
logx(y

x) = logy(x
4y) = 10. What is the value

of xy? Please think step by step, and display the
answer at the very end of your response. The answer
is an integer consisting of exactly 3 digits (including
leading zeros), ranging from 000 to 999, inclusive.

Ground Truth: 025
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Reasoning Problem

In this question, assume each person either always
tells the truth or always lies. Tala is at the movie
theater. The person at the restaurant says the person
at the aquarium lies. Ayaan is at the aquarium. Ryan
is at the botanical garden. The person at the park
says the person at the art gallery lies. The person at
the museum tells the truth. Zara is at the museum.
Jake is at the art gallery. The person at the art gallery
says the person at the theater lies. Beatriz is at the
park. The person at the movie theater says the person
at the train station lies. Nadia is at the campground.
The person at the campground says the person at the
art gallery tells the truth. The person at the theater
lies. The person at the amusement park says the
person at the aquarium tells the truth. Grace is at the
restaurant. The person at the aquarium thinks their
friend is lying. Nia is at the theater. Kehinde is at
the train station. The person at the theater thinks
their friend is lying. The person at the botanical
garden says the person at the train station tells the
truth. The person at the aquarium says the person
at the campground tells the truth. The person at the
aquarium saw a firetruck. The person at the train
station says the person at the amusement park lies.
Mateo is at the amusement park. Does the person at
the train station tell the truth? Does the person at the
amusement park tell the truth? Does the person at
the aquarium tell the truth? Think step by step, and
then put your answer in **bold** as a list of three
words, yes or no (for example, **yes, no, yes**. If
you don’t know, guess.

Ground Truth: no, yes, yes

Language Problem

You are given 8 words/phrases below. Find two
groups of four items that share something in common.
Here are a few examples of groups: bass, flounder,
salmon, trout (all four are fish); ant, drill, island, opal
(all four are two-word phrases that start with ’fire’);
are, why, bee, queue (all four are homophones of
letters); sea, sister, sin, wonder (all four are members
of a septet). Categories will be more specific than
e.g., ’5-letter-words’, ’names’, or ’verbs’. There
is exactly one solution. Think step-by-step, and
then give your answer in **bold** as a list of the 8
items separated by commas, ordered by group (for
example, **bass, founder, salmon, trout, ant, drill,
island, opal**). If you don’t know the answer, make
your best guess. The items are: row, drift, curl, tide,
current, press, fly, wave.

Ground Truth: current, drift, tide, wave, curl, fly,
press, row

Example questions from the Data Analysis cat-
egory can be lengthy, so examples can be viewed
here.

A.4 Mathematical Formulas for Evaluating
Results with Fractional Scores

Probability Mass Function (PMF) for the Maxi-
mum Score When Sampling k Scores

To calculate the probability that the maximum
score Xmax among k samples is exactly x:

P (Xmax = x) =

(c≤x

k

)
−
(
c<x

k

)
(
m
k

)

Where:

• m =
∑

x cx is the total sample size.

• c≤x =
∑

y≤x cy is the cumulative count of
scores less than or equal to x.

• c<x =
∑

y<x cy is the cumulative count of
scores strictly less than x.

Expected Maximum Score Across Multiple
Settings with Known PMF

The expected value E[X] of the maximum score
across multiple settings is:

E[X] =
∑

x

x · P (X = x)

Where P (X = x) is computed as:

P (X = x) =

s∏

j=1

Pj(Xj ≤ x)−
s∏

j=1

Pj(Xj < x)

Here, Pj(Xj ≤ x) represents the probability
that the maximum score in setting j is less than or
equal to x. The difference between the products
isolates the probability that the maximum score is
exactly x.

Expected Maximum Score with Excess Sam-
ples

The expected value of the maximum score when
sampling n times is estimated by:

E[X] =
∑

x

(x · [(c+ fx)
n − cn])

Where:

• n is the number of samples,

• fx is the probability density for score x,

• c is the cumulative probability up to score x.

The term (c+ fx)
n − cn reflects the probability

of selecting exactly x as the maximum score from
n samples.
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A.5 Agentless Workflow on SWE-Bench
Figure 6 is the overview of Agentless taken from
their paper (Xia et al., 2024).
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Figure 6: Overview of Agentless, directly taken from their paper (Xia et al., 2024).
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