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Abstract

Contrastive Language-Image Pre-training
(CLIP) has become the standard for cross-
modal image-text representation learning.
Improving CLIP typically requires additional
data and retraining with new loss functions,
but these demands raise resource and time
costs, limiting practical use. In this work, we
introduce HELIP, a cost-effective strategy
that improves CLIP models by exploiting
challenging text-image pairs within existing
datasets in continuous training. This eliminates
the need for additional data or extensive
retraining. Moreover, HELIP integrates
effortlessly into current training pipelines
with minimal code modifications, allowing
for quick and seamless implementation.
On comprehensive benchmarks, HELIP
consistently boosts existing models. In
particular, within just two epochs of training,
it improves zero-shot classification accuracy
on ImageNet for SLIP models pre-trained on
CC3M, CC12M, and YFCC15M datasets by
3.05%, 4.47%, and 10.1% , respectively. In
addition, on fine-grained classification datasets,
HELIP improves the zero-shot performance
of CLIP and SLIP by an average of 8.4% and
18.6%, and their linear probe performance by
an average of 9.5% and 3.0%. The code is
publicly available at: https://github.com/
haonan3/HELIP-NAACL-2025.git.

1 Introduction

Contrastive Language-Image Pretraining
(CLIP) (Radford et al., 2021) is quickly be-
coming the standard for foundation models (Awais
et al., 2023) due to its effectiveness for a variety
of vision-language tasks without task-specific
finetuning (Li et al., 2021; Baldrati et al., 2022).

*Equally contributed to this work, †Corresponding author.
§Affiliated with Department of Systems Engineering and En-
gineering Management, and Shun Hing Institute of Advanced
Engineering, The Chinese University of Hong Kong, Hong
Kong

However, web-crawled image-text pairs used for
the CLIP model pretraining are often loosely
connected, resulting in multiple plausible matches
beyond the assigned ones (Wu et al., 2022).
Several methods have been presented to improve
CLIP models by investigating appropriate matches
and utilizing widespread supervision among
image-text pairs for training (Li et al., 2022a, 2021;
Mu et al., 2022; Radenovic et al., 2023).

Efforts to improve contrastive language-image
pretraining models have primarily taken two di-
rections: (1) the addition of objectives to improve
the efficacy of supervision (Li et al., 2022a; Mu
et al., 2022); and (2) the employment of intra- and
inter-modality similarity to select and retrain mod-
els using data deemed challenging at the sample
level (Li et al., 2021; Radenovic et al., 2023). How-
ever, those approaches inevitably require retraining,
and those identified as challenging data struggle
to bring benefits to model performance. This chal-
lenge is partly due to their reliance on finding chal-
lenging data within a single batch during training,
where truly beneficial challenging data is rare. And,
CLIP models’ original contrastive loss is not opti-
mally configured to exploit the nuances of difficult
data. These limitations restrict the practical ap-
plication of these methods, especially considering
the substantial investments already made in pre-
training numerous CLIP models (Li et al., 2022a;
Mu et al., 2022); retraining for minimal gains is
inefficient. This aspect underscores the need for
efficient enhancement strategies that do not rely
on additional data collection to improve existing
pretrained models.

To improve the existing CLIP models, we in-
troduce the HELIP framework, which involves fur-
ther training the models with challenging data se-
lected from their original training dataset. HELIP

defines and identifies the challenging data at the
pair level, distinguishing it from traditional meth-
ods that compare sample-level similarities between
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images and texts. Specifically, HELIP treats each
text-image pair as a distinct entity within the joint
vision-language space, and defines pairs in close
proximity as hard pairs. Furthermore, HELIP intro-
duces the Hard Pair Mining (HPM) strategy, a
novel approach that moves beyond the traditional
use of representation spaces learned by CLIP mod-
els. Note, the CLIP space is primarily designed for
evaluating sample-level similarities—for instance,
comparing an image and text (individually, not as
a pair)—lacking in evaluating characteristics at the
pair level. HPM transforms the task of discover-
ing pairs in close proximity into a solvable proxy
task, with the goal of selecting a pair set that opti-
mally supports the target pair’s text-image agree-
ment. HELIP enhances CLIP models not just with
the original text-image contrastive loss (Radford
et al., 2021), which uniformly pushes all negative
samples away from their positive counterpart but
also incorporates the Hard Negative Margin Loss
(HNML) into the loss function. As depicted in
Figure 2, HNML imposes an additional geomet-
ric structure on the representation space, reflecting
the pair-level similarity. Through this approach,
HELIP effectively leverages the information within
challenging data to boost model performance.

Empirical evidence shows that HELIP improves
the performance of existing CLIP models, includ-
ing pre-trained CLIP, SLIP, and DECLIP, across a
variety of benchmarks, such as zero-shot classifi-
cation, text-image retrieval, and fine-grained linear
probing. For zero-shot classification on ImageNet,
CIFAR-10, and CIFAR-100, HELIP consistently
boosts the performance of all six pre-trained mod-
els. Particularly, using HELIP to boost SLIP mod-
els pre-trained on CC3M, CC12M, and YFCC15M
results in ImageNet zero-shot accuracy gains of
3.05%, 4.47%, and 10.14%, respectively. Further,
on seven fine-grained image classification datasets,
those pre-trained models achieve better zero-shot
and linear probe performance with HELIP. Specif-
ically, the average zero-shot accuracy of CC3M
pre-trained CLIP and SLIP are improved by 8.4%
and 18.6%. The average linear probe accuracy of
CC3M pre-trained CLIP and SLIP are improved
by 9.5% and 3.0% respectively. Additionally, the
performance gain is also valid in terms of zero-shot
retrieval, with 1.1 of R@1 on Flickr30K, and 2.2
of R@1 on COCO for SLIP with HELIP.

2 Related Work

Vision-Language Pre-training. Vision-Language
Pretraining (VLP) leverages large-scale image-text
datasets to learn joint representations transferable
to downstream tasks. VLP models are typically
classified into single-stream and dual-stream archi-
tectures. Single-stream models concatenate text
and visual features processed by a single trans-
former (Li et al., 2019; Chen et al., 2022; Zhang
et al., 2020). Dual-stream models use separate
encoders for image and text, performing cross-
modal interactions at a higher level (Radford et al.,
2021; Jia et al., 2021; Li et al., 2022b; Mu et al.,
2022; Yao et al., 2022). CLIP (Radford et al.,
2021), a dual-stream model, employs contrastive
learning with 400M web-crawled image-text pairs
to achieve remarkable zero-shot recognition per-
formance. Recent works enhance CLIP’s perfor-
mance by applying self-supervision within the vi-
sual modality (Mu et al., 2022) or incorporating
nearest neighbor supervision (Li et al., 2022b).
While these methods improve performance, they in-
troduce additional computational costs due to data
augmentations.
Contrastive Learning with Hard Negative Sam-
ples. Contrastive learning aims to learn represen-
tations by bringing similar examples closer and
pushing dissimilar ones apart (Chen et al., 2020a,b;
Wang and Isola, 2020). Incorporating hard negative
samples into the loss function has been shown to
improve performance (Cai et al., 2020; Huynh et al.,
2022; Kalantidis et al., 2020; Li et al., 2021; Raden-
ovic et al., 2023; Robinson et al., 2021; Shah et al.,
2022). In language-image contrastive learning, ap-
proaches like Li et al. (2021) and Radenovic et al.
(2023) mine hard negatives using intra- or inter-
modality similarity, selecting samples with high
cosine similarity in visual or textual features. How-
ever, due to the loose alignment in web-crawled
data, high similarity in these features doesn’t nec-
essarily indicate that pairs are difficult to distin-
guish. In contrast, we propose a hard sample min-
ing method that discovers similar pairs in the joint
vision-language space, efficiently selecting truly
challenging samples to improve learning.

3 Hard Pairs for Visual-Language Models
In this section, we first define the notations and
revisit CLIP for zero-shot recognition in the pre-
liminary section. Next, we introduce the Hard Pairs
Mining strategy (HPM), and the associated Hard
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Figure 1: Hard Pair Mining (HPM). Choose hard pairs
by optimizing the support set to maximize the agreement
prediction of the target pair.

Negative Margin Loss (HNML), designed to effi-
ciently exploit hard pairs.

3.1 Preliminaries
We consider the task of contrastive image-text pre-
training. Given an image-caption dataset D =
{zi}Ni=1 = {(xIi , xTi )}Ni=1, (xIi , x

T
i ) ∈ I × T , the

xIi , xTi denote the image and its corresponding cap-
tion, I and T indicates visual and textual space
respectively, and I × T indicates the joint Vision-
Language space. The goal is to learn a dual encoder
model ϕ = {ϕimage, ϕtext}, where ϕimage repre-
sents the image encoder and ϕtext denotes the text
encoder. We use the shorthand Ii = ϕimage(x

I
i )

and Ti = ϕtext(x
T
i ) to denote the encoded repre-

sentation of an image and its caption, respectively.
The contrastive objective of CLIP is formulated as,

ℓCLIP = − 1

|B|
∑

i∈B

log
exp (sim(Ii, Ti)/σ)∑

j∈B exp (sim(Ii, Tj)/σ)
, (1)

where sim(·, ·) is the cosine similarity function, B
is a batch of samples and σ is a trainable parameter
controlling the temperature. Intuitively, the above
formulation explicitly aligns the representations of
image and text from one pair.

3.2 HPM: Hard Pair Mining

In this study, we define hard pairs as the pairs that
are nearby to a specified target pair within the joint
vision-language space, I × T , which serves as
the domain for pair data. Equation 2 depicts the
problem of hard pair mining. Here, zi represents
the target pair, Hi denotes a set of pairs chosen
from the dataset Di = D \ zi, and the metric S(, )
quantifies the similarity between the target pair and
a set of pairs,

H⋆
i = argmax

Hi

S(zi,Hi). (2)

However, a key challenge arises in defining the
similarity metric for pairs, S. Existing CLIP meth-
ods (Radford et al., 2021; Li et al., 2022b,a) pre-
liminary focus on aligning an image with its cap-
tion (Radford et al., 2021; Li et al., 2022a) from a
image-text pair. They rarely emphasize on bringing
similar pairs closer while distancing the dissimi-
lar ones, which makes current methods fall short
in gauging similarity between two pairs. For in-
stance, the cosine similarity between two pairs is
ill-defined, within the context of current methods.

To identify nearby pairs, we introduce the idea of
text-image pair agreement maximization. This can
be viewed as a proxy task for selecting hard pairs.
To illustrate the rationale for using text-image pair
agreement as a proxy for selecting hard pairs, we
return to the principle obtained from traditional ma-
chine learning methods: the prediction of a model
on a test sample is substantially influenced by sam-
ples in the training dataset that are similar to the
test one. For example, the K-Nearest Neighbors
(KNN) algorithm classifies a new instance using
the K-closest training examples. The linear regres-
sion model predicts the output of a test sample
using the weighted sum of the training samples,
with higher weights given to samples that are more
similar to the test sample. Recent empirical and
theoretical studies on model memorization and gen-
eralization (Chen et al., 2009; Zhang et al., 2021;
Stephenson et al., 2021; Brown et al., 2021) also
provide support for this. Intuitively, if a pair agree-
ment prediction model trained on a set of pairs
predicts a specific target pair as having a high prob-
ability of being a matching pair, the target pair is
likely to be similar to the matching pairs on which
the model was trained. The challenge of selecting
hard pairs is transformed into an optimization task
centered on the text-image pair agreement, which
is formally represented as:

argmax
Hi

S(zi,Hi) = argmax
Hi

PM(zi|Hi), (3)

where PM(zi|Hi) denotes the prediction of a pair
agreement model,M, for the pair zi based on a pair
setHi. This set is a subset ofDi. In this framework,
the goal of selecting a hard pair is transformed into
identifying a training set Hi such that the model
M predicts the target pair as a matching pair.

Designing a suitable pair agreement prediction
model for this proxy task is a nontrivial endeavor
because the model needs to not only predict the pair
matching probability but also allow the optimiza-
tion of the training set, as indicated in Equation 3.
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Consequently, a conventional deep neural network
design becomes unviable due to the impracticality
of retraining across all possible sets Hi from Di.
Taking inspiration from recent work (Norelli et al.,
2022), we propose a data-centric design for the
agreement prediction modelM. As illustrated in
Figure 1, the model leverages two pretrained single-
modal encoders, i.e., fimage and ftext, to align repre-
sentations of images and texts in a unified Vision-
Language space. Specifically, the model encodes
the target pair zi into (Ii, Ti) using these single-
modal encoders. For the visual modality, we deter-
mine a similarity vector between the target pair zi
and the dataset Di. The similarity vector is defined
as S⃗I(xIi ,Di) = [. . . , sim(Ii, Ij), . . . ]

⊤ ∈ RN−1.
Here Ij = fimage(x

I
j ) with (xIj , x

T
j ) being an el-

ement of Di, and function sim(·, ·) denotes the
cosine similarity. To counteract noise, values in the
vector S⃗I(xIi ,Di) are set to zero if sim(Ii, Ij) < τ .
This cleaned-up vector is represented as S̃I . The
procedure for the textual modality is analogous,
producing a vector denoted as S̃T . Note, the rep-
resentations in this shared space are intuitively in-
terpretable: each dimension corresponding to the
visual/textual similarity of the input to a unique
pair in the multimodal dataset. This interpretable
characteristic enables us to directly optimize the
supporting set to maximize the pair matching prob-
ability:

H⋆
i = argmax

|Hi|=k
S̃I(xIi ,Hi)

⊤S̃T (xTi ,Hi), (4)

where theH⋆
i is the hard pair set and k ∈ R+ is the

number of selected pairs which is much less than
|D|. The previous problem can be efficiently solved
by greedily choosing dimensions that maximize the
inner product. Due to the interpretable property,
the selected dimensions are corresponding to the
desired pairs.
Mitigation of Noisy Data Impact. The prior
method assumes the target pair zi to be a suit-
able matching pair. However, in inherently
noisy datasets, such as web-crawled ones like
LAION (Schuhmann et al., 2022), mismatched
pairs might be present. The potential negative ef-
fects of hard pairs generated by these mismatched
pairs necessitate the development of a strategy for
identifying and eliminating them. We create a pair
removal strategy based on the availability of hard
pairs: A target pair zi is deemed as unsuitable and
thus removed, if there is a non-empty subset of the
mined hard pair set, Hsub

i ⊆ H⋆
i with |Hsub

i | > 0,

such that S̃I(xIi ,Hsub
i )⊤S̃T (xTi ,Hsub

i ) = 0.
Intuitively, this equation suggests that the num-

ber of entries positively supporting the target pair
zi as a matching pair is fewer than k. To illustrate
how this concept can aid in cleaning noisy data,
consider the following example: Suppose the target
pair consists of a “cat” image but a “dog” caption
(clearly it is a mismatch). For it to be considered a
correct match, numerous pairings with same erro-
neous pattern (i.e., “cat” images paired with “dog”
captions) would need to exist in the dataset. By
assuming a certain error types are fewer than k
throughout the dataset, if no subset of size k within
the dataset D \ zi supports zi as a matching pair,
this signals that the target pair is an outlier, likely
due to a labeling error or mismatch. Such outliers
can degrade dataset quality, so they are removed to
ensure the reliability of hard data.
Fast Hard Pair Mining (FastHPM). It is intuitive
to infer that for a dataset collected from a single
source, the number of intrinsic hard pairs, which
are robust enough to enhance the learned represen-
tation, will proportionally increase with the size of
the dataset originating from that source. To iden-
tify k (much less than |D|) qualified hard pairs, a
portion of the dataset D is sufficient. As a result,
we present the Fast Hard Pair Mining (FastHPM)
approach, which was designed to avoid the time
complexity associated with hard pair mining over
the entire dataset. FastHPM’s objective can be for-
malized as follows:

H⋆
i ≈ argmax

|H|=k
S̃I(xIi ,Hi)

⊤S̃T (xTi ,Hi), (5)

where Hi ⊆ Di and |Di| = C is sampled uni-
formly from set Di. In this equation, it’s notewor-
thy that the selection of value C is solely based on
the number of hard pairs k, instead of the size of
Di. Consequently, this optimization reduces the
time complexity of FastHPM to O(N). The de-
tailed procedure of the hard pair mining algorithm
is presented in Appendix A.

3.3 HNML: Hard Negative Margin Loss

The image-text contrastive loss ℓCLIP , as illus-
trated in the preliminary section, aligns the true
image-text pairs. But it poses no constraints on
the overall geometry among data pairs (Goel et al.,
2022). After involving hard data into the finetuning
stage, equally maximizing the distance for normal
negative pairs and hard negative pairs is an unde-
sired way to utilize the information provided by
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Figure 2: Hard Negative Margin Loss (HNML). Hard
negative pairs (i.e., the golden retriever) are closer to
the positive than the normal negative pairs.

hard negative pairs. The intuition follows directly
from Figure 2. In a desired representation space,
the similarity between the positive and the hard
negative, S1, should be greater than the similarity
between the positive and those normal negatives,
S2,S3. Therefore, to impose the additional geo-
metric structure, we introduce the Hard Negative
Margin Loss (HNML):

ℓmargin =
1

|B|
∑

j∈B

max
(
0, sim(Ii, Tj) − min

j′∈Hp
i

{sim(Ii, Tj′ )}
)
,

(6)
where Hp

i ⊆ H⋆
i is the hard negative pairs for the

target zi involved in one training batch. Note, the
HNML is computationally efficient. No extra in-
ner product computation is required. The geomet-
ric regularization is applied over the inner product
matrix computed in the original CLIP loss, Equa-
tion equation 1. Then, the well-trained model is
finetuned with the following loss, where γ is the
hyperparameter balancing the two losses,

ℓfinetune = ℓCLIP + γℓmargin. (7)

To boost the performance of well-trained CLIP
models without introducing extra data and extra pa-
rameters, we introduce the further training strategy
which involves the preprocessed hard pairs into the
batch composition during training. As shown in
Figure 3, for text-image pairs within the batch B,
we randomly sample a subset B′ as seeds. Then, for
zi ∈ B′, we randomly select |Hp

i | = p pairs from

H⋆
i . The actual training batch is B = B

|B′|⋃
i=0
Hp

i .

We summarize the training pipeline in appendix A.

Two golden 
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Positive Sample
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Negative Sample

Figure 3: Continuous training CLIP with Hard Pairs.
For text-image pairs within a batch, we sample corre-
sponding hard data from the preprocess hard pair set.

4 Experiments
In Section 4.2, we empirically investigate HE-
LIP’s efficacy in improving zero-shot classifica-
tion, image-text retrieval, and linear probing per-
formance of existing vision-language models. Sec-
tion 4.3 examines HELIP’s performance with scaled
training data. We provide in-depth studies on Hard
Positive Mining (HPM) and Hard Negative Mining
with Margin Loss (HNML) in Sections 4.4 and 4.5,
respectively. Discussions on robustness over noisy
datasets and additional empirical analyses of hard
mining methods are deferred to the appendix.

4.1 Experimental Setup

Training Datasets. We used open-source
datasets including CC3M (Sharma et al., 2018),
CC12M (Changpinyo et al., 2021), and two
15M subsets of YFCC100M: v1 (Radford et al.,
2021) and v2 (Li et al., 2022b). The combined
datasets—CC3M, CC12M, and YFCC15M v1
(Open29M (Li et al., 2022b))—were not fully ob-
tained due to expired URLs. Additionally, we sam-
pled 7.5M and 8M subsets from the noisier LAION-
5B (Schuhmann et al., 2022), labeled LAION7.5M
and LAION8M. Although smaller than the 400M
pairs used in CLIP’s original study (Radford et al.,
2021), these datasets suit our computational re-
sources and have been widely used in language-
image pretraining benchmarks (Goel et al., 2022;
Li et al., 2022b; Mu et al., 2022).
Downstream Datasets. We evaluate HELIP us-
ing zero-shot image classification, linear prob-
ing, and zero-shot image-text retrieval. Beyond
ImageNet (Deng et al., 2009), CIFAR10, and
CIFAR100 (Krizhevsky et al., 2009), we as-
sess performance on seven fine-grained classifica-
tion datasets: Caltech101 (Fei-Fei et al., 2004),
Food101 (Bossard et al., 2014), Sun397 (Xiao
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et al., 2010), Flowers102 (Nilsback and Zis-
serman, 2008), CUB (Wah et al., 2011), Stan-
ford Cars (Krause et al., 2013), and FGVC Air-
craft (Maji et al., 2013). For zero-shot image-text
retrieval, we use MS-COCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2015). Implementation
details are provided in the appendix.

4.2 Main Results and Discussion
Zero-Shot Classification. We evaluate the zero-
shot performance of CLIP, SLIP, and DECLIP mod-
els, along with their HELIP-fine-tuned versions
(CLIP-HELIP, SLIP-HELIP, and DECLIP-HELIP),
on the CC3M, CC12M, YFCC15M, and Open29M
datasets. Table 1 shows that models with HELIP

consistently outperform their counterparts. Specifi-
cally, on the CC3M dataset, HELIP boosts the Ima-
geNet zero-shot accuracy of CLIP from 19.04% to
19.86% and improves SLIP by over 13% to 26.05%.
We include two baseline methods, CYCLIP (Goel
et al., 2022) and CLOOB (Fürst et al., 2021),
for reference. Using SLIP checkpoints from Mu
et al. (2022) pretrained on CC12M, SLIP-HELIP

achieves a 4.47% higher zero-shot accuracy on Im-
ageNet than SLIP. Since DECLIP parameters for
CC3M and CC12M are unavailable, we compare
DECLIP and DECLIP-HELIP on the YFCC15M
v2 dataset, also presenting SLIP and DECLIP mod-
els pretrained by Li et al. (2022b) evaluated with
their pipeline (denoted with ∗). Because templates
significantly impact zero-shot tasks, we use our
evaluation pipeline (the same as OpenCLIP) for
fair comparison; further baseline details are in
Appendix B. Both SLIP and DECLIP show im-
provements with HELIP, averaging increases of
15.49% and 6.74%, respectively. To demonstrate
HELIP’s efficacy on larger datasets, we evaluated
CLIP and CLIP-HELIP on Open29M. The original
CLIP model reaches its best zero-shot ImageNet
accuracy of 42.32% at epoch 18. Applying HE-
LIP boosts this to 46.33% with just one additional
epoch, whereas continued training with the original
CLIP loss slightly decreases accuracy to 42.25%.
Zero-Shot Fine-Grained Classification. Utilizing
hard image-text pairs in contrastive learning, HE-
LIP enhances the discriminative power of CLIP’s
visual embeddings, benefiting fine-grained clas-
sification tasks. As shown in Table 2, SLIP-
HELIP improves zero-shot accuracy on Caltech101
by 12.88% and 3.95% for models pre-trained on
CC3M and CC12M, respectively. Both CLIP
and SLIP models consistently improve when aug-

Method ImageNet CIFAR10 CIFAR100

C
C

3M

CYCLIP (Goel et al., 2022) 22.08 51.45 23.15
CLOOB (Fürst et al., 2021) 23.97 - -
CLIP† (Radford et al., 2021) 19.04 33.06 13.77

CLIP†-HELIP 19.86 34.05 14.13
SLIP (Mu et al., 2022) 23.00 65.61 34.69

SLIP-HELIP 26.05 68.18 37.77

C
C

12
M

CLIP† (Radford et al., 2021) 30.27 51.07 21.94
CLIP†-HELIP 32.05 52.27 24.51

SLIP (Mu et al., 2022) 41.17 81.30 53.68
SLIP-HELIP 45.64 82.31 53.79

Y
FC

C
15

M SLIP (Mu et al., 2022) 25.29 (34.30∗) 60.19 26.80
SLIP-HELIP 35.43 75.49 47.84

DECLIP (Li et al., 2022b) 36.05 (43.20∗) 78.12 50.60
DECLIP-HELIP 43.80 84.88 56.31

29
M

CLIP† (Radford et al., 2021) 42.32 71.98 42.73
CLIP† Cont. Train 42.25 71.72 42.66

CLIP†-HELIP 46.33 77.97 48.33

Table 1: Zero-shot classification performance on Ima-
geNet, CIFAR-10, and CIFAR-100. Baselines marked
with † were trained by us; others use publicly avail-
able pre-trained parameters. For SLIP and DECLIP on
YFCC15M, we report both our evaluation using Open-
CLIP with pre-trained parameters from (Li et al., 2022b)
and the results reported in (Li et al., 2022b), marked
with ∗.
mented with HELIP. The above results indicate that
the embedding space becomes tighter when using
hard pairs in contrastive loss.
Zero-Shot Retrieval. We evaluate HELIP on zero-
shot image-to-text retrieval tasks on MS-COCO
(Lin et al., 2014) and Flickr30K (Plummer et al.,
2015). As shown Table 3, both CLIP and SLIP,
pre-trained on CC3M and CC12M , consistently
improved by HELIP.
Linear Probing. The linear probing task trains
a randomly initialized linear classifier on the fea-
ture extracted from the frozen image encoder on
the downstream dataset. We train the logistic re-
gression classifier using scikit-learn’s L-BFGS im-
plementation (Pedregosa et al., 2011), with max-
imum 1,000 iterations on those 7 datasets. For
each dataset, we search for the best regularization
strength factor on the validation set over 45 loga-
rithmically spaced steps within the range 1e-6 to
1e+5. Experimental results in Table 4 demonstrate
that both CLIP-HELIP and SLIP-HELIP have con-
sistent improvements over their counterparts on
almost all 7 datasets. Note that on CC12M, SLIP-
HELIP performs marginally better on 5 out of 7
datasets. It’s probably because the self-supervision
of SLIP (Mu et al., 2022) within the visual modal
can be beneficial for learning fine-grained visual
embedding, while SLIP-HELIP doesn’t include im-
age self-supervision during the training. And we
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Dataset Method Caltech101 Food101 Sun397 Flowers102 CUB Stanford Cars FGVC Aircraft Average

CC3M

CLIP 42.14 13.02 27.08 13.37 3.45 1.08 1.02 14.45
CLIP-HELIP 48.08 13.11 28.94 13.61 3.70 1.17 1.11 15.67

SLIP 54.01 16.03 29.19 12.06 4.70 1.21 1.50 16.96
SLIP-HELIP 66.89 17.05 33.69 15.16 4.85 1.19 1.29 20.12

CC12M

CLIP 63.78 31.53 37.86 19.56 7.32 14.22 2.49 25.25
CLIP-HELIP 64.85 36.49 38.22 24.73 8.58 15.59 2.97 27.35

SLIP 76.33 52.33 44.96 31.81 10.50 22.53 3.06 34.50
SLIP-HELIP 80.28 54.86 47.53 31.39 10.56 25.67 4.08 36.34

Table 2: Zero-shot performance on fine-grained image classification. On a variety of fine-grained classification
benchmarks, HELIP consistent boosts the model performance compared to the original versions.

Pretraining
Dataset Method COCO Flickr30K

R@1 ↑ R@5 ↑ R@1 ↑ R@5 ↑

CC3M

CLIP 14.4 34.1 31.7 56.0
CLIP-HELIP 17.8 39.8 35.4 61.0

SLIP 22.3 45.6 39.6 68.6
SLIP-HELIP 23.4 48.3 41.8 69.6

CC12M

CLIP 26.9 52.6 47.2 74.3
CLIP-HELIP 27.8 54.3 48.2 75.4

SLIP 39.0 66.0 65.4 90.1
SLIP-HELIP 39.4 67.2 66.2 89.7

Table 3: Zero-shot image-text retrieval results on
MSCOCO and Flickr. ↑ indicates higher is better.

did not match the training batch size as SLIP (Mu
et al., 2022) because of resource limitations. A
combination of HELIP and image self-supervision
with larger batch size may be a potential direction
for achieving better linear probe performance.

4.3 HELIP with Scaled Training Data
To investigate the impact of expanded training
dataset sizes on the effectiveness of HELIP, we
trained the CLIP model on the YFCC15M dataset.
This training yielded a zero-shot classification ac-
curacy of 25.46% on ImageNet. After applying HE-
LIPand one epoch of training, its performance im-
proved to 26.45%. To summarize the zero-shot per-
formance on ImageNet of both the standard CLIP
and its enhanced version, CLIP-HELIP, across dif-
ferent data scales, we have illustrated these results
in Figure 4. The results show that HELIP consis-
tently enhances CLIP’s performance. Most notably,
the largest dataset, Open29M, witnessed a remark-
able performance increase of 3.06% with HELIP.
This result indicates that HELIP can provide imme-
diate performance enhancements for well-trained
CLIP models on larger datasets, such as the private
400M dataset mentioned in (Radford et al., 2021).

4.4 Impact of Hard Negative Margin Loss

We examine the impact of hard negative mar-
gin loss (HNML) on the SLIP model’s perfor-
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Figure 4: Zero-shot performance on ImageNet for mod-
els pre-trained on different dataset sizes.
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Figure 5: Hard pairs from HPM and fastHPM. FastHPM
produces high-quality hard pairs that compete with
HPM.

mance. Specifically, we analyze the SLIP model
pre-trained on CC3M when further trained with
both HPM and HNML, compared to training with-
out HNML. We evaluated zero-shot classification
performance across datasets including ImageNet,
CIFAR-100, CIFAR-10, Caltech-101, Food-101,
and SUN397. As detailed in Table 5, the SLIP
model augmented with HPM and HNML outper-
forms the baseline SLIP and SLIP + HPM models
by 4.51 and 3.27 points, respectively. Notably,
the model achieves better performance on CIFAR-
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Dataset Method Caltech101 Food101 Sun397 Flowers102 CUB Stanford Cars FGVC Aircraft Avg.

CC3M

CYCLIP 80.88 54.95 - 83.74 - 22.72 28.02 -
CLIP 80.11 53.82 56.40 84.07 40.30 22.70 35.61 53.29

CLIP-HELIP 82.49 59.79 59.56 87.84 46.19 30.01 42.48 58.34
SLIP 87.96 72.50 66.96 91.91 49.77 39.25 45.87 64.89

SLIP-HELIP 89.64 73.09 67.67 93.02 53.16 42.44 48.66 66.81

CC12M

CLIP 85.35 68.00 64.45 87.88 48.75 57.80 40.32 64.65
CLIP-HELIP 85.87 68.89 64.95 88.36 49.41 58.55 40.17 65.17

SLIP 92.89 83.63 74.34 94.87 60.99 73.43 52.23 76.05
SLIP-HELIP 92.85 84.25 74.74 95.09 60.53 74.23 52.36 76.29

Table 4: Linear probe performance on Fine-grained Image Classification. On average, the linear probe performance
of CLIP and SLIP pretrained on CC3M and CC12M are improved.

10 without HNML. We hypothesize that HNML
enhances the discriminative power of learned rep-
resentations by incorporating class distance as a
cost metric. Therefore, for classification tasks with
a larger number of subclasses, employing HNML
during training can improve performance.

ImageNet CF10 CF100 Caltech101 Food101 Sun397 Avg.

SLIP 23.00 65.61 34.69 54.01 16.03 29.20 37.09
wo HNML 24.94 69.44 36.35 64.07 16.51 30.91 40.37
w HNML 26.05 68.18 37.77 66.89 17.05 33.68 41.60

Table 5: SLIP continous training with and without hard
negative margin loss.

4.5 Delving into Hard Pair Mining
Performance Comparison between HPM and
FastHPM. A comparison was made between the
zero-shot performances of SLIP models, further
trained with hard pairs obtained from both HPM
and fastHPM. This comparison, conducted under
three different settings, was summarized in Table 6.
Additionally, we established subsets D̃i of sizes 3M
and 6M, and accordingly denoted HELIP with these
subset sizes as HELIP-3M and HELIP-6M. Table 6
shows that the zero-shot performances of HELIP-
3M and HELIP-6M remain competitive with the
global HPM hard pair mining approach. These
findings suggest that fastHPM offers an efficient
hard pair mining strategy without compromising
performance and has the potential to scale up in
larger pre-training datasets.

Imagenet CIFAR10 CIFAR100

SLIP 41.17 81.30 53.68
HELIP- 3M 45.07 82.42 55.22
HELIP- 6M 44.98 81.64 56.62
HELIP- Full 45.64 82.31 53.79

Table 6: Zero-shot performance of SLIP with HELIP on
CC12M with hard pairs from HPM and fastHPM.

Visual insights into HPM and FastHPM. We took
the initiative to visualize the hard pairs as identi-

fied by the aforementioned three methods. Within
Figure 5, the leftmost image-text pairing is ear-
marked as the target. The pairs in the primary row
are those selected via HPM. The subsequent rows,
specifically the second and third, present image-
text pairings identified by the 6M fastHPM and
the 3M fastHPM methods, respectively. Through a
comparative visualization, it’s evident that the hard
pairs pinpointed by fastHPM bear a significant re-
semblance to the target pair. For readers keen on
delving deeper, we’ve provided an extended set of
visualization outcomes in Appendix J.
Computational Time Analysis. Table 7 provides
a comparison of the computational time required
by HPM and fastHPM. The hard negative pairs
preparation times listed were measured on 8 V100
GPUs, with the exception of the ∗ symbol, which
was measured on a single V100 GPU. Given its ef-
ficiency and the performance similarities observed
in Table 6, fastHPM emerges as a compelling alter-
native to the full HPM method.

CC3M CC12M YFCC15M

HELIP- 3M - 2h18min 3h27min
HELIP- 6M - 5h3min 6h19min
HELIP- Full 1h9min∗ 9h11min 17h41min

Table 7: Preparation time for hard pairs. FastHPM
speeds up the hard negative pairs mining process.

5 Conclusion

In this work, we present HELIP, a framework that
enhances pre-trained CLIP models by more ef-
fectively utilizing their original training datasets.
HELIPoffers a cost-effective and easily integrable
solution for improving existing models without
extensive retraining or additional data. Specifi-
cally, it treats each text-image pair as a point in
the joint vision-language space and identifies hard
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pairs, those that are close together, using the Hard
Pair Mining (HPM) strategy. Furthermore, to ef-
ficiently leverage these hard pairs, we introduce
the Hard Negative Margin Loss (HNML). Empiri-
cally, we found that HELIPboosts the performance
of existing checkpoints within a few epochs of con-
tinuous training. Evaluations across various bench-
marks, including zero-shot classification, image-
text retrieval, and linear probing, demonstrate the
effectiveness and efficiency of our method. These
findings highlight that in the era of large-scale mod-
els and datasets, performance improvement can be
achieved not only by collecting more data or scal-
ing up models, but also by intelligently maximizing
the utility of the data we already have.

6 Limitations

While HELIP demonstrates significant improve-
ments over existing CLIP models, several limita-
tions should be acknowledged.

Dependence on Dataset Quality and Diversity.
The effectiveness of HELIP is inherently tied to the
quality and diversity of the original training dataset.
If the dataset contains limited variability or is bi-
ased toward certain domains, the benefits of min-
ing hard pairs may diminish. In scenarios where
datasets are very small, the selection of meaningful
challenging pairs becomes more difficult, poten-
tially limiting the overall performance gains.

Reusing Original Training Data. HELIP lever-
ages the original pretraining data without incor-
porating additional external data sources. While
this approach reduces the need for costly data col-
lection, it might also inherits biases present in the
original dataset.

Limited Evaluation on Diverse Datasets. The
empirical evaluations of HELIP are conducted on
specific datasets like CC3M, CC12M, YFCC15M
and subsets of LAION. While these are widely
accepted benchmarks, the generalizability of its
improvements to real-world applications requires
further evaluation.
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A Appendix: Algorithm

We summarize the Hard Pair Mining (HPM), the
fast Hard Pair Mining (fastHPM) and the training
pipeline of HELIP in Algorithm 1, 2 and 3 respec-
tively.

Algorithm 1: Hard Pair Mining (HPM)

Input: Hard pairs number per sample k
Pretrained unimodal vision model: ftext
Pretrained unimodal vision model: fimage
Dataset
D = {(xI1, xT1 ), (xI2, xT2 ), · · · , (xIN , xTN )}
Threshold for visual and textual modality τI
and τT
Output: Hard samples

H = [H1,H2, · · · ,HN ]
for i ∈ [1, N ] do

s← [0, 0, · · · , 0]⊤ ∈ RN

Ii ← fimage(x
I
i )

Ti ← ftext(x
T
i )

for j ∈ [1, N ] do
Ij ← fimage(x

I
j )

Tj ← ftext(x
T
j )

S⃗I
j ←

Ii·Ij
∥Ii∥2·∥Ij∥2

if Ii·Ij
∥Ii∥2·∥Ij∥2

>

τI else 0
S⃗T
j ←

Ti·Tj

∥Ii∥2·∥Tj∥2
if Ti·Tj

∥Ti∥2·∥Tj∥2
>

τT else 0
sj ← S⃗I

j · S⃗T
j

end
Hi ← argmax(s, k)
if ∃j ∈ Hi, sj = 0 then
Hi = ∅ # Indicate noise sample

end

Note, in the inner for loop, shown in Algorithm 1,

the image and caption representations will be re-
peatedly computed. To accelerate the hard pair
mining and avoid unnecessary computational over-
head, we compute and save the encoded image
features and text features. Besides, the outer loop
is parallelized in the implementation.

Algorithm 2: fast Hard Pair Mining
(fastHPM)

Input: Hard pairs number per sample k
Pretrained unimodal vision model: ftext
Pretrained unimodal vision model: fimage
Dataset
D = {(xI1, xT1 ), (xI2, xT2 ), · · · , (xIN , xTN )}
Threshold for visual and textual modality τI
and τT
Candidate pool size C
Output: Hard samples

H = [H1,H2, · · · ,HN ]
for i ∈ [1, N ] do

Uniformly C samples from Dataset D,
Di =
{(xI1, xT1 ), (xI2, xT2 ), · · · , (xIC , xTC)}

s← [0, 0, · · · , 0]⊤ ∈ RN

Ii ← fimage(x
I
i )

Ti ← ftext(x
T
i )

for j ∈ [1, C] do
Ij ← fimage(x

I
j )

Tj ← ftext(x
T
j )

S⃗I
j ←

Ii·Ij
∥Ii∥2·∥Ij∥2

if Ii·Ij
∥Ii∥2·∥Ij∥2

>

τI else 0
S⃗T
j ←

Ti·Tj

∥Ii∥2·∥Tj∥2
if Ti·Tj

∥Ti∥2·∥Tj∥2
>

τT else 0
sj ← S⃗I

j · S⃗T
j

end
Hi ← argmax(s, k)
if ∃j ∈ Hi, sj = 0 then
Hi = ∅ # Indicate noise sample

end

B Appendix: Discussion about baselines

In our experiments, we utilized CLIP, SLIP, and
DECLIP as baseline models on CC3M, CC12M,
YFCC15M, and Open29M datasets. To ensure
our results are both compelling and reproducible,
we primarily employed publicly available check-
points as our baseline and rigorously tested the
effectiveness of HELIP against these checkpoints.
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Algorithm 3: Hard samplE for boosting contrastive Language-Image Pretrained models (HELIP)

Input: D = {(xI1, xT1 ), (xI1, xT1 ), · · · , (xIN , xTN )}
Hard Pair Mining algorithm, HPM() # or the fastHPM()
Pretrained unimodal vision model: ftext
Pretrained unimodal vision model: fimage
Pretrained contrastive language-image model {ϕimage, ϕtext}
hyperparameters:

Hard pairs number k
Hard negative margin strength γ
Sampled hard negatives number p
Learning ratio η
Batch size b
Training iteration number E
Visual and textual modality threshold τI and τT

Output: CLIP model {ϕimage, ϕtext}

H ← HPM(D, ftext, fimage, k, τI , τT )
for iter ∈ [1, E] do

B ← {z1, . . . , zb} i.i.d.∼ Uniform(D)
for zi ∈ B do
Hp

i ← {zi, . . . , zp}
i.i.d.∼ Uniform(Hi)

B ← B ∪Hp
i

end
Compute loss ℓfinetune, Equation (6), with samples B ϕimage ← ϕimage + η · ∂ϕimageℓfinetune
ϕtext ← ϕtext + η · ∂ϕtextℓfinetune

end

On CC3M, the checkpoint of SLIP model is re-
leased*. We enhanced its performance by apply-
ing HELIP which notably improved the zero-shot
performance on ImageNet from 23.00 to 26.05.
However, we noticed that the CLIP with ResNet50
on CC3M is missing. To address this, we under-
took the pretraining ourselves. Our results were
encouraging: the performance of our pretrained
CLIP with ResNet50 achieved a score of 19.86,
surpassing the 17.10 achieved by SLIP’s CLIP with
ViT-B/32 as reported in (Mu et al., 2022). This out-
come suggests the robustness of our implementa-
tion. Besides, consistent with several prior studies,
we found that on smaller pretraining datasets, CLIP
with ResNet50 outperforms CLIP with ViT-B. On
the CC12M dataset, a similar situation arose: while
the SLIP checkpoint was available, the CLIP model
was absent, leading us to undertake its pretraining.
On the YFCC15M (v1) collected by (Radford et al.,
2021), we trained the CLIP model. This resulted

*https://github.com/facebookresearch/SLIP#results-and-
pre-trained-models

in a 25.46 score in the ImageNet zero-shot classi-
fication, closely aligning with the 26.10 outcome
reported by (Cui et al., 2022). Additionally, for
the YFCC15M (v2) dataset referenced in (Li et al.,
2022b), both SLIP and DECLIP pretrained param-
eters were made available by (Li et al., 2022b),
which we utilized directly as our baselines. On the
larger dataset, Open29M, there was a lack of open-
source pretrained checkpoints, prompting us to con-
duct the pretraining ourselves. Notably, the per-
formance of our reimplementation (42.32) closely
aligns with the results reported by (Li et al., 2022b),
indicating the effectiveness of our approach.

C Appendix: Analysis of the Impact of
Subset Size on Hard Pair Selection in
FastHPM

In the comparison of HPM and FastHPM detailed
in Section 4.5, we explore the efficacy of using
3M and 6M subset sizes of the CC12M dataset in
FastHPM for mining hard pairs. The result, Table 6,
shows that with a reduced subset size as small as
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Figure 6: The average selection criteria values for hard pairs mined by FastHPM with different subset sizes.

3 million entries, mining hard pairs and further
training with these pairs can boost CLIP to achieve
competitive performance with full set for mining.

In this section, we delve deeper into the analysis
of hard pairs mined by FastHPM across varying
subset sizes. Based on the selection criteria defined
by FastHPM (Equation 5), we denote the selection
criteria value as S̃I(xIi ,H⋆

i (j))
⊤S̃T (xTi ,H⋆

i (j)).
Here,H⋆

i (·) represents a pair within the set of hard
pairsH⋆

i , mined by FastHPM for a specified target
pair i under a given subset size. Additionally, the j
inH⋆

i (j) indicates the j-th hard pair within the set
H⋆

i . Note, a higher selection criteria value signifies
a harder mined pair.

We present the average selection criteria values
for top-k hard pairs in Figure 6. As depicted by
the grey horizontal line, the average selection cri-
teria values for the top-20 hard pairs selected by
FastHPM-1.5M, the top-40 by FastHPM-3M, and
the top-80 by FastHPM-6M all approximate 0.477.
This figure indicates that a further reduction in the
subset size might necessitate adjustments to the
number of hard pairs sampled to preserve qual-
ity. For instance, in our experiments detailed in
Table 6, we uniformly sampled hard pairs for train-
ing from the top 50 for HELIP-3M. As Figure 6
suggests, a sampling range of 10 for HELIP-1M
might be effective. Particularly, considering that

HELIPsignificantly boosted the pre-trained models
with just an additional training epoch, as discussed
in Section 4.2, selecting one hard pair for each
target pair from a pool of 10 will be feasible.

D Appendix: Implementation Details

Our experiments are conducted across three distinct
architectures: ResNet-50, ViT-B/16, and ViT-B/32,
tailored to various datasets and pretrained models.
Specifically, for loading the pretrained CLIP model
on CC3M and CC12M, the ResNet-50 is used as
the image encoder. Besides, to align with exist-
ing checkpoints established by Mu et al. (2022),
we use ViT-B/16 for SLIP model experiments on
CC3M and CC12M, respectively. And, we use
ViT-B/32 for pretraining on YFCC15M v1, v2, and
Open29M datasets to ensure fair comparison with
the previous results (Li et al., 2022b). Further-
more, for the SLIP and DECLIP models, we adapt
the pretrained parameters from the publicly avail-
able resources† The input resolution of the image
encoder is 224 × 224 and the maximum context
length of the text encoder is 77. All of our experi-
ments are conducted on 8 V100 GPUs with a batch
size of 128 for ViT-B/16 models, and a batch size
of 512 for ResNet-50 models and ViT-B/32 models.

†https://github.com/facebookresearch/SLIP,
https://github.com/Sense-GVT/DeCLIP.
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The dimension of the image and text embeddings is
1024 for ResNet-50 models and 512 for ViT-B/16
and ViT-B/32 models. We set τ = 0.5, γ = 1,
k = 50 and p = 1 for all the experiments by de-
fault. Automatic mixed-precision is used to save
GPU memory. To keep the model from overfitting,
we use early stopping if there is no performance
gain on ImageNet zero-shot accuracy in 5 epochs.
It is worth noting that using zero-shot classifica-
tion performance on ImageNet as a criterion for
early stopping is a commonly used practice for the
training of CLIP (Radford et al., 2021; Mu et al.,
2022).

To reflect that our method is designed to work
with few assumptions on encoder, we used en-
coders pretrained over a single-modal source rather
than multimodally pretrained ones when preparing
hard negative pairs. Specifically, we used an un-
supervised pre-trained vision transformer, DINO
VITs8 (Caron et al., 2021), and a Sentence Trans-
former (SentenceT) (Reimers and Gurevych, 2019)
to encode text. For DINO VITs8, the embedding
size is 384, while for SentenceT, it is 768.

E Appendix: Performance of HELIP on
noisy dataset

We expanded our investigation to assess the ef-
fectiveness of HELIPon subsets of LAION7.5M
and 8M, which are randomly sampled from
LAION (Schuhmann et al., 2022). The results are
detailed in Table 8. The CLIP model, enhanced
with HELIP consistently outperformed its original
counterpart on both subsets across a majority of the
evaluated datasets, including ImageNet, CIFAR10,
CIFAR100, Caltech, and Food. On the 7.5M subset,
HELIP enhances performance across all datasets by
an average of 3.6%. Although CLIP scores slightly
higher on the Sun dataset, HELIPboosts its over-
all performance with an average improvement of
2.5% on the 8M subset. These results highlight
the enhanced performance achieved through HE-
LIP, demonstrating its robustness and effectiveness
in improving existing models that have been pre-
trained on noisy data.

F Appendix: Analysis of the Impact of τ
on Hard Pair Selection

To examine the impact of the threshold parameter τ
on the selection of hard pairs, we analyze the simi-
larities in the rankings of hard pairs (using Kendall
Rank Similarity) mined by HPM under various τ

values. The hard pairs are ranked by using the selec-
tion criteria value mentioned in Appendix C. The
results on the CC12M dataset are displayed in Fig-
ure 7. We observe that the selection of hard pairs is
robust to changes in the τ value. This resilience is
partly because we only mine the top 50 hard pairs,
a subset unlikely to be significantly affected when
τ ≤ 0.5.
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Figure 7: The Impact of τ on Hard Pair Selection.

G Appendix: Analysis of the Impact of
Mitigating Noisy Data

As presented in Section 3.2, to enhance the overall
quality and reliability of the training dataset, data
pairs lacking substantial support from the entirety
of the training data are considered unsuitable and
removed.

This section further empirically analyzes the im-
pact of our noise mitigation strategy by detailing
the quantity and nature of pairs removed across
various datasets. Specifically, our approach re-
moves 4.67% of the pairs from CC3M, 3.64% from
CC12M, and 7.41% from YFCC15M, before con-
tinuing with pretraining. Figure 8 visualizes the
pairs filtered from CC12M. Notably, our strategy
effectively removed pairs such as unavailable im-
ages (e.g., two blank or white images in the second
row) and mismatched pairs. These results suggest
that our noise mitigation strategy can effectively
clean the data using two single-modality models
before training a CLIP model from scratch.
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ImageNet CIFAR10 CIFAR100 Caltech Food Sun Avg.

CLIP-7.5M 23.5 34.6 14.5 58.9 28.6 25.3 30.8
CLIP-HELIP-7.5M 25.8 39.9 16.7 61.9 34.1 28.2 34.4

CLIP-8M 25.1 31.1 12.9 60.9 29.5 27.5 31.2
CLIP-HELIP-8M 26.5 38.8 14.6 62.3 33.1 26.6 33.7

Table 8: Zero-shot performance of CLIP on two LAION subsets.

person have sent us images of person .

unfortunately , there are no appropriate 
pictures of us on the plane .

my nephew met my cat for the first time . a male hiker looks over a view of 
granite mountains from the summit .

industry of turquoise , nice way to 
handle the pass through

what should i do if i have bad 
cuts on the sides of my mouth ?

a street sign with the name of the placeperson - the lady by the lake
cloud , sun rays burst through the 
clouds during sunrise .

Figure 8: Visualization of the image-caption pairs filtered out from CC12M.

H Appendix: Comparison with Other
Hard Data Selection Method

We evaluate the efficacy of the proposed method
in enhancing the discriminative capacity of learned
representations by comparing its zero-shot classi-
fication performance with that of other hard data
mining strategies. As described in the Section 2, a
common way to define hard data is through intra-
modality similarity. Hence, we introduce the hard
data mining methods depending on (sample level)
image similarity mining and text similarity mining
and denote them as IM and TM respectively. For a
given target pair, we compute the cosine similarity
between its image/text representation and that of
the remaining dataset. The image and text repre-
sentations are encoded using a pretrained Resnet50

and BERT, respectively. As the preprocessing step,
IM and TM methods mine hard negatives before
continuous pretraining. Subsequently, we integrate
the mined hard negative pairs into the training
pipeline of CLIP and denote them as CLIP+IM and
CLIP+TM and optimize the original contrastive
loss to fine-tune the model. Additionally, we also
include the hard negative contrastive loss, HN-
NCE, proposed by Radenovic et al. (2023), as
a baseline. HN-NCE upsamples the weight of
hard-negatives identified by the current model. As
shown in Table 9, when the CC3M pretrained CLIP
model is combined with HELIP, the performance
of our pair-level hard data mining method signifi-
cantly outperforms other sample-level techniques.
Besides,we observe that compared to the baseline
CLIP performance, the introduction of TM and IM
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Imagenet CIFAR10 CIFAR100

CLIP 19.04 33.06 13.77

CLIP + TM 16.70 28.71 9.67
CLIP + IM 16.93 29.22 10.42
CLIP + HN-NCE 19.47 29.88 11.83
CLIP + HELIP 19.86 34.05 14.13

Table 9: Zero-shot performance of CLIP pre-trained
on CC3M boosted by hard data mined by different
methods. HELIP shows superior performance, consis-
tently outperforming local/global hard sample mining
techniques by a substantial margin.

methods results in a decline in performance. To
better understand the reasons behind this drop, we
analyzed the outputs of the TM and IM methods in
detail. In Figure9, we illustrate the data obtained
through three distinct preprocessing methods: Hard
Pair Mining (HPM), Image Similarity Mining (IM),
and Text Similarity Mining (TM). The first row de-
picts the image-text pairs identified by HPM, while
the second and third rows showcase the pairs mined
by IM and TM, respectively. For TM (IM displays
similar issues), the selected pairs often feature cap-
tions that are highly similar or identical, which is
typical in data collected from the web. Even though
identical pairs may not always be present, repeti-
tions of the same images or text are common. Ac-
cording to the CLIP contrastive loss (Equation 1),
the model is forced to push nearly identical cap-
tion representations toward and away from two dis-
tinct image representations at the same time.This
inherent contradiction in objectives contributes to
a degradation in performance. To illustrate, con-
sider a target pair (Ttarget, Itarget) and a mined pair
(Tmined, Imined) using TM, where Ttarget ≈ Tmined
but Itarget ̸≈ Imined. In the contrastive loss frame-
work, the model aims to minimize the distance be-
tween (Itarget, Ttarget) and maximize the distance be-
tween (Itarget, Tmined). However, the near-identity
of Ttarget and Tmined leads to conflicting optimiza-
tion targets and a potential decline in performance.

I Appendix: Impact of different encoders
in HPM

We explored the effect of different pretrained en-
coders on HPM’s performance by alternating im-
age and text encoders. Initially, the unsupervised
pretrained DINO VITs8 (Caron et al., 2021) was
paired with the SentenceT (Reimers and Gurevych,
2019) transformer, trained on over a billion internet-
based sentences. This combination was later
swapped for the SWAG VITb16 (Singh et al., 2022)

people tour and enjoy the public 
park during summer

the new wooden seating 
architecture

people enjoy a free outdoor 
concert

people enjoying a sunny 
day at the public park

visitors enjoy a sunny 
summer day

people wait outside 
roman catholic place of 

worship

there were a few of these 
funny amphitheater

summer people in the 
park.

a public park on a 
summer day

crowds of diverse people in 
the city park

HPM

Image Similarity Mining

Text Similarity Mining

Target Pair

Figure 9: Hard negative data selected by different
methods. Compared to data mined using the sample-
level (image/text modal) similarity, hard pairs mined by
HPM are more similar to the target.

and the T5 (Raffel et al., 2020). Additionally, exper-
iments using OpenAI’s CLIP model (Radford et al.,
2021) multimodal encoders were conducted. Inter-
estingly, as Table 10 suggests, the encoder choice
seemingly has negligible impact on HPM’s per-
formance, likely due to the proficiency of current
pretrained models in modeling intra-modal simi-
larities. Moreover, the ability to use single-modal
pretrained models and still achieve competitive or
superior performance implies that there’s no as-
sumption of having access to a high-quality CLIP
model, such as OpenAI’s CLIP-400M.

ImageNet CIFAR10 CIFAR100 Avg.

CLIP Encoders 19.57 33.28 13.53 22.12
VITs8+SentenceT 19.86 34.05 14.13 22.68

VITb16+SentenceT 19.62 35.53 14.67 23.27
VITs8 + T5 19.61 33.99 13.82 22.47

Table 10: The zero-shot performances of HELIP with
different encoders in HPM. HPM’s performance is in-
sensitive to the selection of encoders.

J Appendix: More visualization results

We offer further visualization results pertaining to
the hard samples mined by various methods. As
depicted in Figure 10, the hard samples sourced by
HPM closely resemble the target sample (seen at
the top left). Interestingly, for samples with fewer
objectives, the image and text mining method can
identify a reasonably challenging counterpart, as
seen in the case of “the harbor in a small village”.
However, for intricate scenes, only the HPM is ca-
pable of yielding sufficiently challenging samples,
like the scenario “people touring and enjoying the

7870



public park during summer”. The dataset acquired
from the web encompasses a myriad of such in-
tricate cases. We posit that this is why training
with hard samples unearthed by HPM yields more
proficient outcomes.

Moreover, we present additional visualization
results for hard samples mined via different tech-
niques. Hard samples extracted by HPM exhibit
a stronger resemblance to the target sample, as
highlighted in Figure 10 (top left). We observed
that the image and text mining methods can pro-
vide a relatively fitting hard counterpart for simpler
samples, like “the harbor in a quaint settlement”.
However, for more intricate scenes, only the HPM
method produces samples of adequate difficulty,
such as “people touring and relishing the public
park throughout summer”. The web-based dataset
includes a significant proportion of these complex
cases. Consequently, we infer that training with
hard samples mined by HPM results in enhanced
performance.

K Appendix: Future work
Moving forward, several possibilities for future
research emerge. First, we aim to explore
composition-aware fine-tuning for VLMs, which
could potentially enable more effective utilization
of multimodal information. Moreover, we are in-
trigued by the prospect of combining parameter-
efficient tuning (He et al., 2022) with HELIP po-
tentially further enhancing performance. Another
area of interest is scaling up the dataset size and
examining the applicability of the scaling law to
our method. We also intend to investigate how the
integration of our boosting algorithm might alter
the multimodal dataset curation algorithm (Gadre
et al., 2023). Ultimately, we hope our work will
serve as a catalyst for additional research in the
fine-tuning of pre-trained, large-scale multimodal
models.

L Appendix: Potential Risks and Ethical
Considerations

While our research contributes to advancements
in language-image pretraining, it is important to
acknowledge potential risks and ethical considera-
tions associated with our work.
Privacy Concerns: The datasets used—CC3M,
CC12M, subsets of YFCC15M, LAION7.5M, and
LAION8M—are publicly available and sourced
from the internet. They may contain personal iden-
tifiable information (PII) or images of individuals.

We rely on the dataset providers’ curation processes
to remove personal identifiable information.
Bias and Fairness Issues: The datasets may not
be representative of all demographics or cultures,
potentially leading to models that perform unevenly
across different groups. This lack of fairness can
perpetuate existing societal biases and inequalities.
Misuse of Technology: The models developed
could be misused for malicious purposes, such
as generating deepfakes, enabling unauthorized
surveillance, or creating misleading information,
which could have negative societal impacts.

To address these potential risks, the following steps
could be considered in future work:

Enhanced Data Filtering: Currently, we rely
on the curation and filtering processes conducted
by the dataset creators for the datasets we
used—CC3M, CC12M, YFCC15M subsets, and
subsets of LAION. Implementing additional data
cleaning procedures to identify and remove per-
sonally identifiable information (PII) and offensive
content from the training datasets is an important
area deserving future study.
Bias Mitigation Techniques: Incorporate fairness-
aware learning algorithms and conduct thorough
evaluations to detect and reduce biases in the
model’s output.
Transparency and Accountability: Provide doc-
umentation detailing the data sources, model lim-
itations, and potential biases to inform users and
stakeholders.

M Appendix: Licensing

All datasets used in this study are open-source and
utilized in accordance with their respective licenses.
Specifically, CC3M and CC12M comprise images
with Creative Commons licenses, YFCC100M is
distributed under a Creative Commons Attribution
license, and LAION-5B consists of web-sourced
data under permissive licenses. Our use of these
datasets is strictly for research purposes and com-
plies with their licensing terms.

N Appendix: Use of AI Assistants

We acknowledge the use of AI assistants in the
preparation of this work. Specifically, we utilized
tools, GPT4-o, for proofreading the manuscript
and GitHub Copilot for assisting with coding tasks.
These AI tools were employed to enhance produc-
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tivity and efficiency. All content generated with
the assistance of AI was thoroughly reviewed and
edited by the authors to ensure accuracy and orig-
inality. The responsibility for the final content of
this paper rests solely with the authors.

O Appendix: Artifact Use Consistent
with Intended Purpose

In our research, we utilized several publicly
available datasets—CC3M, CC12M, YFCC15M
subsets, LAION7.5M, and LAION8M—that are
widely used within the computer vision and ma-
chine learning communities for the purpose of
training and evaluating language-image models.
The use of these datasets in our study is consis-
tent with their intended purpose, as specified by
their creators, which is to advance research in im-
age recognition, captioning, and related fields. All
datasets were used strictly for non-commercial,
research-oriented objectives, adhering to the access
conditions and licenses provided by the dataset
providers.

For the artifacts we created during this research,
including the trained models and any derived
datasets or code, we specify that their intended use
is for academic and research purposes only. These
artifacts are shared to promote transparency, repro-
ducibility, and further advancement in the field. We
ensure that this intended use is compatible with the
original access conditions of the datasets we used,
particularly considering any restrictions on deriva-
tive works or redistribution. When sharing our
artifacts, we comply with all applicable licenses
and access terms, and we encourage others who
use our artifacts to do the same.
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Figure 10: Hard pairs selected by different methods.
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