
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 7826–7838

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Enhancing Language Model Hypernetworks with Restart:
A Study on Optimization

Yihan Zhang1, Jie Fu2, Rongrong Ji3, Jie Chen1,4*

1 School of Electronic and Computer Engineering, Peking University, Shenzhen, China
2 Shanghai AI Lab 3 Xiamen University
4 Pengcheng Laboratory, Shenzhen, China

ariszhang@stu.pku.edu.cn, fujie@pjlab.org.cn,
rrji@xmu.edu.cn, chenj@pcl.ac.cn

Abstract
Hypernetworks are a class of meta-networks
that generate weights for main neural networks.
Their unique parameter spaces necessitate ex-
ploring suitable optimization strategies to en-
hance performance, especially for language
models. However, a comprehensive investiga-
tion into optimization strategies for hypernet-
works remains absent. To address this gap, we
analyze the loss landscape of hypernetworks
and propose that restart optimization strategies
can improve their performance for language
models. We find that hypernetworks have inher-
ently more complicated loss landscapes com-
pared to conventional networks due to their dis-
tinct parameter spaces. Consequently, a restart
strategy that periodically resets the learning
rate can facilitate better convergence for hyper-
networks. Through experiments on instruction
tuning and multi-task training, we demonstrate
that the restart strategy consistently enhances
the performance of hypernetworks for language
models, often more effectively than for con-
ventional deep neural networks. Our findings
highlight the importance of tailored optimiza-
tion techniques to unlock the full potential of
hypernetworks in natural language processing
tasks1.

1 Introduction

In recent research, large language models (LLMs)
have been proven to be useful tools for learning
complicated representations. However, LLMs have
limitations regarding their weights and architec-
ture, typically fixed after training. Hypernetworks,
proposed by Ha et al. (2022), use one small neu-
ral network to generate the weights for the main
network, which attracts great attention for their po-
tential to address this gap. Hypernetworks create
a new parameter space distinct from the one cre-
ated by the main network. Given the significance

*Corresponding Author.
1Code is publicly available for research purposes: https:

//github.com/Aris-z/HyperRestart

of model training strategies in the overall training
process, it is highly advantageous to investigate
optimization techniques within this new parameter
space. The existing hypernetworks usually adopt
an optimization strategy similar to the standard
training of a general LLMs (Ye and Ren, 2021;
Ivison and Peters, 2022). This means that they do
not specifically conduct comparative research on
different optimizers and schedulers during training,
which we believe finally prevents hypernetworks
from being used to their full potential.

To address the question above, we conduct a
study on the optimization of hypernetworks for
language models (LMs). When considering the
optimization of the neural networks, their loss land-
scapes depict the direction of optimization. This
makes loss landscape important when we try to
bridge this gap between conventional LMs and hy-
pernetworks. The restart strategy (Loshchilov and

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

11.79

14.79

17.79

20.79

23.79

26.79

29.79

32.79

Figure 1: Rugged loss landscapes of Hypernetwork

Hutter, 2022), by cyclically resetting the learning
rate to the initial state during training, can effec-
tively navigate the challenges of ill-conditioned
loss functions and saddle points. Particularly for
hypernetworks with unique parameter spaces, these
simple meta networks’ loss landscapes tend to be

7826

https://github.com/Aris-z/HyperRestart
https://github.com/Aris-z/HyperRestart

more rugged compared to the main network, with
more local minima and saddle points, as shown in
Figure 1. This makes traditional optimization meth-
ods prone to getting stuck in these areas and unable
to proceed further. The restart strategy introduces
a certain perturbation to the model and allows it to
escape from the blocked regions and more easily
reach the global optimum.

In this work, we conduct a series of experiments
to investigate the influence of the restart strategy
in hypernetworks for language models. Our inves-
tigation also includes an analysis of minima and
saddle points, which provides a foundation for the
application of the restart strategy in this context.
We conduct a series of experiments to assess the
robustness and generalizability of the restart strat-
egy when applied to hypernetworks for LMs. As a
result, we reveal that the restart strategy enhances
the performance of hypernetworks when used for
LMs. Notably, this effect is often more obvious in
hypernetworks than in conventional LMs.

In summary, our contributions are as follows:

• We conduct an empirical study of the loss
landscape of hypernetworks and conventional
LLMs, concentrating on their structural dif-
ferences and point out the similarities and dif-
ferences between hypernetwork and conven-
tional network.

• We explore the impact of restart phases in
the training of hypernetworks, with a special
emphasis on their role in instruction tuning
for LLMs.

• We provide a comprehensive set of experi-
mental results across diverse datasets and hy-
pernetwork architectures, demonstrating the
effectiveness and generalization of the restart
strategy in enhancing hypernetwork perfor-
mance.

2 Related Work

2.1 Restart in Optimization
To enhance optimization in deep neural networks,
restart techniques are increasingly used to navigate
complicated loss landscapes and avoid local min-
ima. Adaptive warm restart (O’donoghue and Can-
des, 2015) initiates restarts based on the objective
function’s behavior or the gradient’s orientation.
The learning rate’s role is pivotal in this context,
as it dictates the convergence speed towards the
global minimum (Mishra and Sarawadekar, 2019).

Figure 2: Illustration of general hypernetworks.
F(X; Θ) is the main network that generates the out-
puts corresponding to different inputs X . H(C; Φ) is
the hypernetwork whose outputs Θ are the weights or
other parameters of the main network. C is a learnable
task embeddings and Φ represents the hypernetworks’
parameters.

Smith (2017) introduced the cyclical learning
rate (CLR) policy, which varies the learning rate
within defined boundaries. Loshchilov and Hut-
ter (2022) adapted restart methods to stochastic
gradient descent (SGD), implementing a cosine an-
nealing schedule to periodically reset the learning
rate.

The main obstacle in loss function optimization
is often saddle points characterized by small gra-
dients and can decelerate learning (Dauphin et al.,
2014; Choromanska et al., 2015). Restart strategies
have proven effective in traversing these regions
more quickly (Dauphin et al., 2015). Large lan-
guage models (LLMs) employ learning rate sched-
ules that include warmup and decay phases dur-
ing pre-training (Zhao et al., 2023), and recent ap-
proaches suggest that resetting the learning rate
during continual pre-training can further enhance
performance (Gupta et al., 2023). These strategies
are crucial for optimizing the learning process in
complicated loss landscapes.

2.2 Hypernetworks

Hypernetworks (Ha et al., 2022) are a novel class
of neural networks that generate the parameters
for a main deep neural network (DNN). Instead of
learning parameters of a main DNN directly, the
hypernetworks produce these weights (Chauhan
et al., 2023a). This paradigm has given rise to
hyperDNNs, which encompass DNNs utilizing hy-
pernetworks for various applications (Mahabadi
et al., 2021; Ivison and Peters, 2022; Volk et al.,
2022; Xiao et al., 2023; Ye and Ren, 2021).

7827

Hypernetworks are characterized by their abil-
ity to facilitate soft weight sharing across multiple
tasks, enhancing multi-task learning and transfer
learning capabilities (Ye and Ren, 2021; von Os-
wald et al., 2020; Chauhan et al., 2023b). They
also enable the creation of data-adaptive DNNs,
where the hypernetwork tailors the main network’s
weights to the specific data at hand (Ye and Ren,
2021). Furthermore, hypernetworks often have
fewer weights than traditional DNNs, offering a
form of parameter efficiency that is particularly
advantageous in resource-constrained scenarios
(Zhao et al., 2020; Ivison and Peters, 2022).

Recent advances in parameter-efficient tuning
for NLP models, despite their effectiveness, are
often limited to low data scenarios such as zero-
shot or few-shot. Ivison et al. (2023) address
this by introducing Hypernetworks for Instruction
Tuning (HINT). In parallel, He et al. (2022) pro-
pose HyperPrompt that leverages a hypernetwork
as a global memory for query attention. These
hypernetwork-based approaches promise to deliver
new task adaptability with controlled computa-
tional and parameter overhead. Because of the
general application of hypernetworks, investigat-
ing how to unlock the potential of hypernetworks
is important. Considering that the structure of hy-
pernetworks may be different from that of ordinary
DNNs, we hope to find better optimization methods
from their differences.

3 Preliminaries

In the following part, we refer to the hypernetwork
and the corresponding main network whose param-
eters are not generated by the hypernetwork but are
learnable, when we analyze the difference in loss
landscape between the hypernetwork and the main
network.

3.1 Landscape of Hypernetworks

For a pair of input data (X,Y), we denote the
common language model as F , where the model
forward is represented by F(X; Θ) = Y , and Θ
is the set of weights updated via backpropagation.
However, in hypernetwork language models (hyper-
LMs), there is a hypernetwork H(C; Φ) to generate
the weights Θ of the main network F , where C is
the input to the hypernetwork. The optimization
problems for the hyperLM can be simply written

as given below:

min
Θ

L(F(X; Θ), Y)

→min
Φ

L(F(X;H(C; Φ)), Y), (1)

where L is the loss function. Following the formula
above, the general gradient update strategy is for-
mulated as: θnm[t] = θnm[t− 1]− η ∂L

∂θnm[t−1] . In hy-
pernetworks, main network weights Θ are the out-
put of hypernetwork H(C; Φ). Then, the gradient
of hypernetwork weights is: ∂L

∂ϕj
i

=
∑
m,n

∂L
∂θnm

∂θnm
∂ϕj

i

,

∂L
∂θnm

is the main network’s weight gradient, θnm
is the nth parameter in m layer of main network
and ϕj

i is the jth parameter in i layer of hyper-
network. Now we suppose there is a set: Y =
{Θ1, . . . ,Θi, . . . }. The element Θi in Y are the
parameters such that gradients of the main network
are equal to 0. The existence of set Y is obvious. It
is equivalent to the existence of minima (both local
and global) and saddle points in neural networks.

One part of our motivation is based on the fact
that the main problem of high-dimensional non-
convex optimization is saddle points (Dauphin
et al., 2014). Given that most neural networks
satisfy this condition, we argue that the generaliz-
ability of this assumption is valid.

When the parameter θnm is generated by hyper-
network H(C; Φ), the gradient of hypernetwork
parameter Φ is:

∂L
∂ϕj

i

=
∑

m,n

∂L
∂θnm

∂θnm

∂ϕj
i

= 0.

s.t. ∀i, j, ϕj
i ∈ Φ

(2)

This means if there is a set X = {Φ1, . . . ,Φi, . . . },
whose elements are the parameters such that gradi-
ents of hypernetwork equal to 0. We note H−1 as
the inverse transformation of H, then

H−1(C;Y) ⊆ X

s.t. H−1(C;Y) =
⋃

H−1(C; Θi). Θi ∈ Y
(3)

In other words, the saddle points or minimum
points of the main network are also those of the
hypernetwork. Especially ∂L

∂ϕj
i

is sum of main net-

work’s gradients ∂L
∂θnm

, which can be close to zero

while each part ∂L
∂θnm

∂θnm
∂ϕj

i

is not.

3.2 Alignment with Main Networks
In section 3.1, we find hypernetwork has a cumula-
tive number of saddle points and minima that is at

7828

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

11.79

14.79

17.79

20.79

23.79

26.79

29.79

32.79

(a) Hypernetwork

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

11.715

12.115

12.515

12.915

13.315

13.715

14.115

14.515

14.915

(b) Main network

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.1788

10.2288

10.2788

10.3288

10.3788

10.4288

10.4788

10.5288

10.5788

10.6288

(c) Initialized hypernetwork

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0502

10.1002

10.1502

10.2002

10.2502

10.3002

10.3502

10.4002

10.4502

(d) Initialized main network

Figure 3: (a) and (b) illustrate that after training, the hypernetwork maintains a complicated loss landscape, in
contrast to the main network, which exhibits a simplified landscape. And the hypernetwork’s convergence to its
minimum coincides with the main network reaching a saddle point. This corresponds to our results in section 3.2,
which means the zero gradient points (minimum or saddle point) are corresponding. But it doesn’t mean that the
saddle points of the main network are also the saddle points of the hypernetwork. In this figure, it is the saddle point
of the main network corresponding to the minimum of the hypernetwork. (c) and (d) demonstrate that, prior to
training, both networks exhibit comparably intricate loss landscapes, reflecting the anticipated similarity in their
initial optimization topography. This also corresponds to our results in section 3.2, which means the optimization
route and difficulty of the two models in the very early stage of training will be similar.

least as great as the main network’s. It is natural for
us to figure out if there is a guarantee that the saddle
points or minima of the main network align with
those of the hypernetwork. Because the geometry
of loss landscapes of models is characterized by
the Hessian matrix of the loss function, we focus
on analyzing the Hessian of hypernetworks. We de-
note the Hessian matrix of hypernetwork as Hϕ =
∂2L

∂ϕj
i∂ϕ

l
k

where i, j, k, l ∈ {1, . . . , |Φ|} and the Hes-

sian matrix of main network as Hθ =
∂2L

∂θji ∂θ
l
k

where

i, j, k, l ∈ {1, . . . , |Θ|}. Then we can find that

Hϕ = JT
ϕ HθJϕ, (4)

where Jϕ is the Jacobian matrix of main network.
The detailed proof can be found in Appendix A.

Note that the Jacobi matrix usually becomes de-
generate at the end of training because of instrisic
dimension(Hu et al.). But at the beginning of train-
ing Jϕ is not as degenerate as it is at the end of
training. This suggests that the two Hessian ma-
trices likely share the same positive and negative
inertia coefficients.

To further validate that, we conduct experiments
in Figure 3. It provides a visual representation of
the hypernetwork and the corresponding network,
both in their trained and untrained states. Our aim
is to investigate the alignment of the loss landscape
between hypernetworks and main networks. This
visualization was generated using the methodol-
ogy proposed by Li et al. (2018). The figure was
plotted with an x-axis and y-axis range of [-10,

7829

0 50 100 150 200 250 300 350
Step

40

45

50

55

60

65
Ro

ug
e-

L
sc

or
e

HyperdecodersRestart

T5Baseline

HyperdecodersBaseline

T5Restart

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

Le
ar

ni
ng

 ra
te

Restart lr
Constant lr

(a) Rouge-L Fmeasure of models (b) Loss of models

Figure 4: Rouge-L Fmeasure and loss of models on P3 training split. The legend on the left corresponds to the
Rouge-L score and loss. The legend on the right is the corresponding learning rate. The solid line corresponds to
the left legend, and the dashed line corresponds to the right legend.

10] at a resolution of 256 steps. During the visu-
alization process, specific parameters were fixed,
and the Xavier initialization technique (Glorot and
Bengio, 2010) was applied. Figure 3 (a) and (b)
illustrate that after training, the hypernetwork main-
tains a complicated loss landscape, in contrast to
the main network, which exhibits a simplified land-
scape. Notably, the hypernetwork’s convergence
to its minimum coincides with the main network
reaching a saddle point, corroborating our prior
analysis. Conversely, (c) and (d) demonstrate that,
prior to training, both networks exhibit comparably
intricate loss landscapes, reflecting the anticipated
similarity in their initial optimization topography.

This ensures that, for hypernetworks, using some
optimization methods from conventional LMs will
not cause any performance loss at the beginning,
but the results show that at the end of the optimiza-
tion, the hypernetwork still maintains a relatively
complex loss landscape while general LMs tend to
flatten out. This requires special methods such as
restart to help the model achieve the similar con-
vergence effect as conventional LMs. The restart
strategy’s dynamic learning rate adjustments facil-
itate the model’s ability to navigate complicated
loss landscapes more effectively. By periodically
resetting the learning rate, the strategy helps the
model avoid local minima and encourages explo-
ration, which can lead to better generalization on
unseen data. It simulates a new warm-restarted run
once Ti epochs are performed, where i is the index

of the run. Its learning rate can be formulated as:

ηt = ηmin+
1

2
(ηmax−ηmin)(1+cos

Tcur

Ti
π) (5)

, where ηmax is set to the initial learning rate, Tcur

is the number of epochs since the last restart and Ti

is the number of epochs between two warm restarts.
To enhance model convergence, we train the

model for a total of
∑

i Ti epochs, where Ti is
the number of epochs between two restarts. This
approach entails halting the training process when
the learning rate reaches its minimum at a given
epoch.

4 Experiments

Our theoretical derivations and methodologies aim
to reveal the problem of hypernetwork optimization
and investigate the corresponding solution. In the
following part, we mainly use two hypernetworks,
hyperdecoders and hyperformer. Hyperdecoders is
a type of hypernetwork that generates the parame-
ters of adapters in decoders and the adapters and
FFNs are connected in parallel. Hyperformer is
another type of hypernetwork that generates the
parameters of layer normalization and FFNs in
adapters and the adapters and FFNs are connected
in series.

4.1 Instruction Tuning for Hypernetwork
Restart

Due to the popularity of instruction tuning and the
success of hypernetworks on instruction tuning,
we first investigate instruction tuning on hypernet-

7830

Table 1: Result of models on GLUE datasets. For MRPC, QQP and STS-B, we report the F1 score and for other
tasks, we report accuracy. The green scores indicate improved performance on these datasets with the restart, while
red scores indicate reduced performance. The ∗ means the result of our reproduction.

Model CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Baseline
Finetuning∗ 47.43 99.30 90.85 92.31 83.50 84.04 98.60 78.83 84.35

Hyperformer∗ 48.18 97.48 92.14 91.51 88.93 85.63 94.59 79.56 84.75
Hyperformer++∗ 48.59 97.40 91.10 91.94 89.31 85.71 94.79 84.98 85.47

+ restart

Finetuning
42.27 99.10 90.07 92.14 87.90 84.77 98.80 81.02 84.50
(-5.16) (-0.20) (-0.78) (-0.17) (+4.40) (+0.73) (+0.20) (+2.19) (+0.15)

Hyperformer
51.41 98.00 92.08 91.53 88.88 86.24 96.00 83.21 85.91

(+3.23) (+0.52) (-0.06) (+0.02) (-0.05) (+0.61) (+1.41) (+3.65) (+1.16)

Hyperformer++
49.12 97.80 94.29 92.07 89.35 86.02 94.89 81.75 85.66

(+0.53) (+0.40) (+3.19) (+0.13) (+0.04) (+0.31) (+0.10) (+0.73) (+0.19)

works. In this section, we will try to transfer hy-
pernetwork to instruction datasets to evaluate the
effectiveness of restart for instruction tuning.

Table 2: Accuracy of models on P3 validation split.

Model P3

FLAN-T5 63.051± 0.296
+ restart 64.159± 0.334 ↑
Hyperdecoders 63.507± 0.201
+ restart 64.904 ± 0.302 ↑

Setup In this experiment, we have opted to uti-
lize Hyperdecoders based on the FLAN-T5 model
and FLAN-T5 (Chung et al., 2022) baseline to
compare the convergence of hyperLMs and con-
ventional LMs, both with and without the use of
restarts. P3 is a collection of prompted English
datasets covering a diverse set of NLP tasks includ-
ing question answering, dialogue, text generation,
text editing, reasoning, etc., providing rich instruc-
tion examples for the model. We train these mod-
els on P3 (Public Pool of Prompts) T0 split (Sanh
et al.), which is a multi-task instruction following
dataset including 193 tasks. We use the AdamW
optimizer in all subsequent experiments due to its
proven effectiveness with transformer architectures
and hypernetworks. Following the setup of (Ivison
et al., 2023) that uses RougeL as the evaluation
metric, we hope the performance of these models
can be properly measured.

Our baseline in this scenario is the Hyperde-
coders and FLAN-T5 models without restart. The
FLAN-T5 and Hyperdecoders model is simply
trained using the P3 dataset above. Because FLAN-
T5 has been well-trained on instruction datasets, it
is more reasonable to choose it as a baseline if we
want to review the performance of hypernetworks

on instruction tuning. For cosine annealing restart,
we use a learning rate of 1e − 4, ηmin = 1e − 6,
T0 = 1 and Tmul = 2.

Experiments The result is shown in Figure 4 and
we also show the final validation score in Table 2.
In line with our prediction, though each time the re-
sult occurs the loss and the accuracy become worse,
the results at the end of two restart intervals become
better and finally outperform the model without
restart. Notably, we set the restart learning rate as
the same as without restart. From the perspective
of the mean, this means we use a smaller learning
rate in restart than in no restart, which results in a
slightly higher loss. However, despite training the
same number of steps with a smaller learning rate,
the restart strategy still achieves better accuracy,
demonstrating the value of this method.

Note that the data used for training is less than
one epoch, which means the restart strategy effec-
tively helps models (not only including hypernet-
work models) converge fast. Moreover, at the end
of the final training phase, the performance of mod-
els with the restart is much better than models with
no restart, but finally, it slows down the conver-
gence speed and reduces the gap between them.
This may be because ηmin of the restart strategy is
small, and the learning rate in the end is too small.

To verify this hypothesis, we carried out a series
of subsequent experiments, each with a distinct
value of ηmin. The impact of varying ηmin on the
outcome is depicted in Figure 5. Our results indi-
cate that an excessively small ηmin (specifically,
when set to 0 in our experiment) leads to subopti-
mal performance compared to other values. How-
ever, it is also noteworthy that a large ηmin does
not necessarily guarantee improved results. This
suggests a non-linear relationship between ηmin

and the performance of our model, emphasizing

7831

Figure 5: The rouge-L score of different restart ηmin

of models on GLUE dataset. The legend on the left
corresponds to the Rouge-L score and the legend on
the right is the corresponding learning rate. The solid
line corresponds to the left legend, and the dashed line
corresponds to the right legend

the importance of carefully selecting this parame-
ter. Overall, we find restart strategy shows better
results on the benchmark and outperforms models
without restart, and this conclusion still holds for
hypernetworks.

4.2 Comparison to Existing SOTA
Hypernetworks

Setup To validate the effectiveness of the state-
of-the-art hypernetwork model, we hope to employ
the HINT. The authors demonstrated exceptional
performance by training the HINT model on the T0
P3 dataset using TPUs and Google Bucket. How-
ever, due to the unavailability of these resources,
we instead utilize Hyperdecoders as mentioned ear-
lier, and apply them to the MRQA dataset (Fisch
et al., 2019) to assess both in-domain and out-of-
domain effectiveness. The MRQA dataset com-
prises 6 datasets for training and evaluation, namely
HotpotQA (Yang et al., 2018), Natural Questions
(Kwiatkowski et al., 2019), NewsQA (Trischler
et al., 2017), SQuAD (Rajpurkar et al., 2016),
SearchQA (Dunn et al., 2017), and TriviaQA (Joshi
et al., 2017), as well as 6 additional datasets for
out-of-domain evaluation, which include BioASQ
(Tsatsaronis et al., 2015), DROP (Dua et al., 2019),
DuoRC (Saha et al., 2018), RACE (Lai et al., 2017),
RelationExtraction (Levy et al., 2017), and Text-
bookQA (Kembhavi et al., 2017). We conduct a full
fine-tuning of these datasets using a global batch
size of 256 and a learning rate of 3e− 4.

Experiments Table 3 and Table 4 show the
result on MRQA dataset. In the in-domain MRQA

validation set, models employing restart techniques
demonstrate a marked improvement over the base-
line Hyperdecoders. This suggests that these tech-
niques may facilitate faster convergence and thus
enhance performance on tasks within the model’s
training domain. However, the effectiveness of
the restart technique is less consistent in the out-
of-domain MRQA validation set. While it outper-
forms the baseline in some datasets, it does not in
others. This indicates that the benefits of the restart
approach may not generalize across all tasks, par-
ticularly those that lie outside the model’s initial
training domain.

4.3 Comparison to Other Hypernetworks
Setup We follow the set and model of (Mahabadi
et al., 2021) and evaluate the performance on the
GLUE benchmark (Wang et al., 2018). We select
this model due to its unique hypernetwork architec-
ture that generates adapters in both the encoder and
decoder. This distinguishes it from our previously
discussed model. For simplicity, we only conduct
the multi-task training because of its popularity in
recent works. This benchmark we use covers para-
phrase detection (MRPC, QQP), sentiment classifi-
cation (SST-2), natural language inference (MNLI,
RTE, QNLI), and linguistic acceptability (CoLA).
We fine-tune the models with a learning rate of 3e-
4 (for restart strategy we make the ηmax = 3e− 4).
The other hyperparameters are selected similarly as
Mahabadi et al. (2021). For better comparison, we
choose the finetuning model and the Hyperformer
model without restart as a baseline.

Experiments To further study the generalization
of this method, we conduct the following exper-
iments to verify this strategy works on most hy-
pernetworks. As evidenced by our experimental
results presented in Table 1, substantial enhance-
ments can be realized on standard datasets. With
restart, hypernetwork can universally increase per-
formance on nearly every task. The benefits of
implementing restarts are especially noticeable in
the MRPC, CoLA, and RTE tasks, where the hyper-
network model experiences a 3-point improvement.
In turn, this contributes to a significant elevation
in the average performance across these tasks. Fas-
cinatingly, the restart strategy does not confer the
same degree of improvement on the standard T5
model as it does on the hypernetwork. In fact, in the
CoLA task, the application of the restart strategy
results in a 5-point performance decrease compared
to the model without restarts. This suggests that the

7832

Table 3: Accuracy and F1 score of models on in-domain MRQA validation split. The green scores indicate improved
performance on these datasets with the restart, while red scores indicate reduced performance.

Model SQuAD HotpotQA TriviaQA NewsQA SearchQA NaturalQs Avg

Hyperdecoders 84.61/91.22 62.63/78.43 68.82/73.73 53.09/67.63 77.31/82.29 64.99/77.19 68.58/78.41

+ restart
84.38/91.48 63.77/79.36 70.31/74.83 54.30/68.74 77.78/82.79 66.79/78.96 70.00/79.36

(-0.23)/(+0.26) (+1.14)/(+0.93) (+1.49)/(+1.10) (+1.21)/(+1.11) (+0.47)/(+0.50) (+1.80)/(+1.77) (+1.42)/(+0.95)

Table 4: Accuracy and F1 score of models on out-domain MRQA validation split. The green scores indicate
improved performance on these datasets with the restart, while red scores indicate reduced performance.

Model BioASQ DROP DuoRC RACE Relation Ext. TextbookQA Avg

Hyperdecoders 54.65/68.82 36.26/45.33 48.90/58.74 32.94/46.35 74.14/85.44 47.04/55.66 48.99/60.04

+ restart
51.93/66.24 37.46/45.83 47.17/57.38 34.12/47.98 72.92/84.60 46.17/56.26 48.30/59.72

(-2.72)/(-2.58) (+1.20)/(+0.50) (-1.73)/(-1.36) (+1.16)/(+1.63) (-1.22)/(-0.84) (-0.87)/(+0.60) (-0.69)/(-0.32)

efficacy of the restart strategy may be different on
the hyperLMs and conventional LMs, underscor-
ing the need for careful consideration when apply-
ing such strategies. Moreover, our results indicate
that the restart strategy generally leads to improved
performance across most tasks when applied to
hypernetwork models. Notably, the Hyperformer
model with restarts outperforms all other models in
terms of average performance, demonstrating the
potential of this approach.

4.4 Comparison to Other Learning Rate
Schedulers

Table 5: Accuracy of different strategies for Hyperde-
coders on GLUE datasets.

Scheduler GLUE

Constant 83.23± 0.29
Cosine 83.27± 0.33
Linear 84.18± 0.20
Polynomial 83.43± 0.27
Restart 84.88 ± 0.33

To evaluate the effectiveness of the restart strat-
egy against other learning rate schedulers, we con-
ducted experiments using the Hyperdecoders on
the GLUE benchmark. Our comparison includes a
variety of learning rate schedules: constant, linear
with warmup, cosine with warmup, and polynomial
decay with warmup. The results, presented in Table
5, demonstrate that the restart strategy surpasses its
counterparts. This strategy consistently achieved
the highest scores, indicating its robustness in han-
dling the diverse set of tasks.

The restart strategy’s success can be largely at-
tributed to its dynamic learning rate adjustments,
which facilitate the model’s ability to navigate com-
plicated loss landscapes more effectively. By pe-
riodically resetting the learning rate, the strategy
helps the model avoid local minima and encourages
exploration, which can lead to better generalization
on unseen data. Moreover, the periodic nature of
the restart strategy acts as a form of implicit regu-
larization. This can potentially reduce the risk of
overfitting(Loshchilov and Hutter, 2022).

5 Limitations

As previously discussed, the hypernetwork intro-
duces a novel parameter space, making it more
suitable for incorporating a new restart strategy.
We have demonstrated the effectiveness of this ap-
proach and hope to explore these directions further
in future work. The hypernetwork architecture is
not only applicable to natural language process-
ing but also raises the question of whether it can
be effectively applied to other modalities, such as
images or multimodal data. Additionally, due to
the efficiency challenges associated with hypernet-
works, we have not yet extended our experiments to
larger-scale language models. Exploring solutions
to these challenges remains an important direction
for future research.

6 Conclusions

To address the problems due to the introduction
of novel parameter spaces, we analyze the loss
landscape of hypernetworks and main networks.
We propose that the restart strategy for the learn-
ing rate can improve the performance and conver-

7833

gence speed of hypernetworks. We conduct our
experiments on three different tasks and across two
different hypernetwork models: Hyperformer and
Hyperdecoders. We anticipate that our work will
stimulate further research into hypernetworks opti-
mization, leading to models that are more closely
aligned with conventional LMs. Additionally, we
hope our findings will inspire more research into
improving hypernetworks optimization strategies.

Acknowledgments

This work was supported in part by the
National Key R&D Program of China (No.
2022ZD0118201), the Shenzhen Medical Research
Funds in China (No. B2302037), Natural Science
Foundation of China (No. 61972217, 32071459,
62176249, 62006133, 62271465), and AI for Sci-
ence (AI4S)-Preferred Program, Peking University
Shenzhen Graduate School, China.

References
Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-

heila Molaei, and David A Clifton. 2023a. A brief
review of hypernetworks in deep learning. arXiv
preprint arXiv:2306.06955.

Vinod Kumar Chauhan, Jiandong Zhou, Soheila Molaei,
Ghadeer Ghosheh, and David A Clifton. 2023b. Dy-
namic inter-treatment information sharing for hetero-
geneous treatment effects estimation. arXiv preprint
arXiv:2305.15984.

Anna Choromanska, Mikael Henaff, Michael Mathieu,
Gérard Ben Arous, and Yann LeCun. 2015. The
loss surfaces of multilayer networks. In Artificial
intelligence and statistics, pages 192–204. PMLR.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Yann Dauphin, Harm De Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. Advances in neural information
processing systems, 28.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre,
Kyunghyun Cho, Surya Ganguli, and Yoshua Ben-
gio. 2014. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimiza-
tion. Advances in neural information processing
systems, 27.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.

Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. Mrqa 2019
shared task: Evaluating generalization in reading
comprehension. In 2nd Workshop on Machine Read-
ing for Question Answering, MRQA@ EMNLP 2019,
pages 1–13. Association for Computational Linguis-
tics (ACL).

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim,
Mats L Richter, Quentin Anthony, Eugene Belilovsky,
Irina Rish, and Timothée Lesort. 2023. Continual pre-
training of large language models: How to (re) warm
your model? arXiv preprint arXiv:2308.04014.

David Ha, Andrew M Dai, and Quoc V Le. 2022. Hyper-
networks. In International Conference on Learning
Representations.

Yun He, Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi
Aribandi, Zhe Zhao, YaGuang Li, Zhao Chen, Don-
ald Metzler, et al. 2022. Hyperprompt: Prompt-based
task-conditioning of transformers. In International
Conference on Machine Learning, pages 8678–8690.
PMLR.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language
models. In International Conference on Learning
Representations.

Hamish Ivison, Akshita Bhagia, Yizhong Wang, Han-
naneh Hajishirzi, and Matthew Peters. 2023. Hint:
Hypernetwork instruction tuning for efficient zero-
and few-shot generalisation. In The 61st Annual
Meeting Of The Association For Computational Lin-
guistics.

Hamish Ivison and Matthew E Peters. 2022. Hyperde-
coders: Instance-specific decoders for multi-task nlp.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 1715–1730.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly

7834

supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?
textbook question answering for multimodal machine
comprehension. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern recognition,
pages 4999–5007.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In 21st Conference on Compu-
tational Natural Language Learning, CoNLL 2017,
pages 333–342. Association for Computational Lin-
guistics (ACL).

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. Advances in neural information pro-
cessing systems, 31.

Ilya Loshchilov and Frank Hutter. 2022. Sgdr: Stochas-
tic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576.

Purnendu Mishra and Kishor Sarawadekar. 2019. Poly-
nomial learning rate policy with warm restart for
deep neural network. In TENCON 2019 - 2019 IEEE
Region 10 Conference (TENCON), pages 2087–2092.

Brendan O’donoghue and Emmanuel Candes. 2015.
Adaptive restart for accelerated gradient schemes.
Foundations of computational mathematics, 15:715–
732.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra, and
Karthik Sankaranarayanan. 2018. Duorc: Towards
complex language understanding with paraphrased
reading comprehension. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1683–
1693.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
et al. Multitask prompted training enables zero-shot
task generalization. In International Conference on
Learning Representations.

Leslie N Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pages
464–472. IEEE.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. Newsqa: A machine comprehension
dataset. ACL 2017, page 191.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1):1–28.

Tomer Volk, Eyal Ben-David, Ohad Amosy, Gal
Chechik, and Roi Reichart. 2022. Example-based
hypernetworks for out-of-distribution generalization.
arXiv preprint arXiv:2203.14276.

Johannes von Oswald, Christian Henning, Benjamin F
Grewe, and João Sacramento. 2020. Continual learn-
ing with hypernetworks. In 8th International Confer-
ence on Learning Representations (ICLR 2020)(vir-
tual). International Conference on Learning Repre-
sentations.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Zedian Xiao, William Held, Yanchen Liu, and Diyi
Yang. 2023. Task-agnostic low-rank adapters
for unseen english dialects. arXiv preprint
arXiv:2311.00915.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Qinyuan Ye and Xiang Ren. 2021. Learning to gener-
ate task-specific adapters from task description. In

7835

https://doi.org/10.1109/TENCON.2019.8929465
https://doi.org/10.1109/TENCON.2019.8929465
https://doi.org/10.1109/TENCON.2019.8929465

Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 646–
653.

Dominic Zhao, Seijin Kobayashi, João Sacramento, and
Johannes von Oswald. 2020. Meta-learning via hy-
pernetworks. In 4th Workshop on Meta-Learning at
NeurIPS 2020 (MetaLearn 2020). NeurIPS.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

7836

A Proof of Hessian.

We denote loss function L = F(θ1, . . . , θn), θi = H(ϕ1, . . . , ϕn). From the chain rule, we can derive
that:

∂L
∂ϕj

i

=
∂L
∂θ

∂θ

∂ϕj
i

=∇θL ·Xij ,

(6)

where ∇θL =
[
∂L
∂θ1

∂L
∂θ2

. . . ∂L
∂θn

]
and Xij =

[
∂θ1
∂ϕj

i

∂θ2
∂ϕj

i

. . . ∂θn
∂ϕj

i

]T
. Then we estimate their loss

landscape Hessian matrix by calculating the second-order derivative,

∂2L
∂ϕj

i∂ϕ
l
k

= XT
ijHθXkl +∇θL ·Xij,kl,

Xij,kl =
[

∂2θ1
∂ϕj

i∂ϕ
l
k

∂2θ2
∂ϕj

i∂ϕ
l
k

. . . ∂2θn
∂ϕj

i∂ϕ
l
k

]T
.

(7)

Note that ∂2L
∂ϕj

i∂ϕ
l
k

is the items of matrix Hϕ. We can further obtain

Hϕ =




XT
1 · Hθ · X1 XT

1 · Hθ · X2 . . . XT
1 · Hθ · Xm

XT
2 · Hθ · X1 XT

2 · Hθ · X2 . . . XT
2 · Hθ · Xm

· · · · · ·
. . . · · ·

XT
m · Hθ · X1 XT

m · Hθ · X2 . . . XT
m · Hθ · Xm




+ R

=J
T
ϕHθJϕ + R,

(8)

where Jϕ is the Jacobi matrix of main network and Rij =
∑ ∂L

∂θi
∂2θi

∂ϕj
i∂ϕ

l
k

.

In usual LMs, we can suppose the second derivative in R is small enough to be ignored. Then we find
that

Hϕ = JT
ϕ HθJϕ. (9)

B Dataset Statistics

Tables 6, 7 and 8 provide some summary statistics of each dataset used and split sizes.

Table 6: Summary statistics of splits used when evaluating GLUE

Dataset Train Split Size Validation Split Size Test Split Size
CoLA 8551 521 522
SST-2 66349 1000 872
STS-B 5749 750 750
MRPC 3668 204 204
QQP 362846 1000 40430
MNLI 392702 9832 9815
QNLI 103743 1000 5463
RTE 2490 138 139

7837

Table 7: Summary statistics of splits used when evaluating MRQA

Dataset Train Split Size Validation Split Size
SQuAD 86588 10507
HotpotQA 72928 5901
TriviaQA 61688 7785
NewsQA 74160 4212
SearchQA 117384 16980
Natural Qs 104071 12836
BioASQ - 1504
DROP - 1503
DuoRC - 1501
RACE - 674
Relation Ext. - 2948
TextbookQA - 1503

Table 8: Summary statistics of splits used when evaluating P3 split

Dataset Train Split Size Validation Split Size Test Split Size
P3-split 3301000 3301 3301

7838

