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Abstract

Reasoning and linguistic skills form the cor-
nerstone of human intelligence, facilitating
problem-solving and decision-making. Recent
advances in Large Language Models (LLMs)
have led to impressive linguistic capabilities
and emergent reasoning behaviors, fueling
widespread adoption across application do-
mains. However, LLMs still struggle with
complex reasoning tasks, highlighting their sys-
temic limitations. In this work, we focus on
evaluating whether LLMs have the requisite
representations to reason using two founda-
tional relationships: "equivalence" and "inher-
itance". We introduce novel tasks and bench-
marks spanning six languages and observe that
current SOTA LLMs often produce conflict-
ing answers to the same questions across lan-
guages in 17.3-57.5% of cases and violate in-
heritance constraints in up to 37.2% cases. To
enhance consistency across languages, we pro-
pose novel "Compositional Representations"
where tokens are represented as composition of
equivalent tokens across languages, with result-
ing conflict reduction (up to -4.7%) indicating
benefits of shared LLM representations.

1 Introduction

Reasoning is the capacity to employ logic and an-
alyze relationships among entities to extrapolate
from known evidence to derive new insights. Lan-
guage significantly bolsters this process by supply-
ing the necessary structure and vocabulary for en-
coding complex ideas, thus facilitating hypothesis
generation and evaluation. The intricate connection
between linguistic and reasoning capabilities is a
hallmark of human intelligence, enabling abstract
thinking, problem-solving, and decision-making.

Recent advancements in LLMs such as ChatGPT
(OpenAI, 2022) and Claude (Anthropic, 2023c)
showcase their exceptional language generation ca-
pabilities and their potential to boost performance

*Contributed to this work during her internship at Amazon

Fruit

Apple

फल, fal, Obst

सेब , seb, Apfel

instance relationship instance relationship

equivalence
relationship

equivalence
relationship

Color:
Red Color: ?

Reason by Equivalence: Properties should be
same across equivalent objects in other languages.

Can 
walk: ?

Can 
walk: No

Reason by
Inheritance:
Properties should
be inherited from 
the parent across
all of its specific
instances.

Figure 1: An example of Reasoning by "Equivalence"
and Reasoning by "Inheritance" based on existence of
equivalence/inheritance relationship between concepts.

across diverse Natural Language Processing (NLP)
tasks (Ahuja et al., 2023), with multiple studies also
pointing to emergent reasoning abilities at scale
(Wei et al., 2022). However, LLMs continue to
face challenges with complex reasoning tasks such
as planning and problem-solving, indicating that
their expansive modeling capacity and extensive
training regime might enable them to mask deeper
systemic shortcomings through superficial reason-
ing. As LLMs increasingly permeate applications
catering to multilingual users with complex needs,
gaining a deeper understanding of their functioning
becomes imperative, as it could uncover systemic
gaps and pave the way for superior models.

Robust reasoning hinges on the availability of
powerful constructs such as entity-relation (ER)
graphs and rules to interpret relationships. For
instance, an ER graph with entities A, B, and C,
where "A is the father of B" and "C is the wife of
A" allows us to deduce that C is likely the mother
of B, based on interpretation of the relationships
"father" and "wife". While there are myriad rela-
tionships underpinning reasoning such as “cause
and effect“ and ”comparison“, in our current work,
we focus on "equivalence" and "inheritance" due to
their predominance in enhancing the efficiency of
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Figure 2: An example of LLM (Claude-v1 Instant) lacking "equivalence relationship between equivalent concepts
across languages" due to tight coupling of knowledge representation and language expression unlike in Humans.

logical inference through property transfer, which
is also reflected in their adoption as core constructs
of knowledge representation and programming lan-
guages (Minsky et al., 1974). Fig 1 illustrates
these relationships showing how humans create
the necessary representations of "Apple" to rea-
son across equivalent objects ("seb" : "Apple" in
Hindi (transliterated), "Apfel" : "Apple" in Ger-
man, etc) independent of the language/script of ex-
pression (Reasoning by Equivalence), and inherit
properties from the abstract concept "Fruit" across
all of its specific instances ("Apple", "Orange" etc)
(Reasoning by Inheritance). Here, we expect repre-
sentations of equivalent objects to be similar, while
that of inherited objects satisfy transitivity. These
representations are crucial for efficient learning,
knowledge sharing, and updation of beliefs.

Typically, humans create abstractions using de-
notational semantics, i.e., a word’s meaning is de-
fined by objects it describes, which is the favored
approach in logical theory. In contrast, LLMs use
distributional semantics, i.e., a word’s meaning
stems from the training data context, which can
be problematic when the data has gaps, such as
infrequent connections between equivalent words
across languages. Hence, despite impressive per-
formance on NLP tasks(Ahuja et al., 2023), it is un-
clear if LLMs create the necessary representations
within and across languages to support consistent
reasoning across equivalent and inherited objects.

Contributions. In this work, we focus on whether
LLMs have the requisite representations to reason
by equivalence and inheritance across languages
and make the below contributions.
1. We introduce a novel task and parallel bench-

mark datasets of factoid QA to evaluate "Reasoning
by Equivalence" in LLMs and assess the perfor-
mance of multiple SOTA LLMs on this task across
6 languages (English, French, Spanish, German,
Portuguese and Hindi). On our benchmarks, LLMs
generate conflicting answers across languages in
17.3-57.5% of cases indicating a significant gap.
We also perform a controlled experiment to iden-
tify factors promoting consistency across languages
and find a strong positive correlation with similarity
in script and typology.
2. We present another task and associated new
benchmark to evaluate "Reasoning by Inheritance"
in LLMs and study the proficiency of multiple
SOTA LLMs across six languages. Our results
indicate that LLM answers violate inheritance con-
straints in up to 37.2% cases across these languages
with most violations observed in Hindi.
3. We also propose a novel method for constructing
"Compositional Representations" in LLMs by rep-
resenting tokens as composition of other equivalent
tokens in vocabulary, which grants the model ac-
cess to (otherwise) distant representations of equiv-
alent objects across languages, thereby facilitating
improved knowledge sharing and reduction in con-
flicts with gains up to 4.7% compared to baselines.

To the best of our knowledge, this is the first
quantitative study of LLM reasoning via equiva-
lence and inheritance across languages. We will
share the benchmarks as a community resource
and to ensure reproducibility after organization ap-
proval. Note that even when the desired equiva-
lence and inheritance relationships hold and prop-
erties transfer correctly (our current focus), there
may be gaps in LLM’s multi-step reasoning pro-
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cess due to other factors as we discuss in detail in
Appendix A.1.

2 Related Work

Multilingual NLP. LLMs like ChatGPT (OpenAI,
2022), GPT-4 (OpenAI et al., 2024), Claude (An-
thropic, 2023c), BLOOMZ (Muennighoff et al.,
2023), XGLM (Lin et al., 2022) have shown impres-
sive performance on standard multilingual NLP
tasks and benchmarks (Ahuja et al., 2023; Zhao
et al., 2023; Enis and Hopkins, 2024; Ahuja et al.,
2024). Despite extensive evaluations and the ex-
istence of parallel multilingual datasets such as
MLQA and XQUAD (Ahuja et al., 2024), to the
best of our knowledge, there is no prior work or
tailored benchmarks for assessing LLMs’ ability to
reason by equivalence and inheritance across mul-
tiple languages. Further, there is a chance of pub-
lic benchmarks with duplicated knowledge across
languages being included in LLM training data,
rendering reasoning related assessments unreliable.
Our study is the first to create controlled bench-
marks and evaluate LLMs on these reasoning tasks
to identify gaps and potential contributing factors.

Reasoning in LLMs. Reasoning abilities of
LLMs have been studied for problem solving, de-
cision making, and critical thinking (Huang and
Chang, 2023; Wei et al., 2022; Bubeck et al., 2023).
Prior work has also looked at evaluating ability
of encoder only models like BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019) to understand
ontological knowledge (Wu et al., 2023). In this
work, we focus on reasoning based on two foun-
dational relationships: equivalence and inheritance
and evaluate popular LLMs on these dimensions
across multiple languages. In recent years, there
have been advances (Aspis et al., 2022; Lazzari
et al., 2024; Marconato et al., 2023) in neuro-
symbolic architectures that combine symbolic and
sub-symbolic components to enable efficient com-
putation of symbolic representations and deductive
reasoning. However, these works do not present a
detailed analysis of representations of equivalent or
related entities and these methods also entail much
higher computational costs, limiting their adoption.

Representation Learning in NLP. Improving
distributed representations led to significant per-
formance improvements in past (Liu et al., 2021;
Devlin et al., 2018; Mikolov et al., 2013). Prior
work on adapting attention mechanisms to bridge
gaps across disparate but related inputs such as

translated/transliterated data has led to improved
multilingual representations (Conneau et al., 2020;
Khanuja et al., 2021; Arora et al., 2023). In our cur-
rent work, we bridge the gap between distant repre-
sentation spaces of various languages by adapting
the attention mechanism to better utilize the token-
language mapping.

3 Reasoning by Equivalence

Reasoning by equivalence is a core building block
that enables efficient and scalable reasoning across
contexts, with the efficiency being determined by
the size of the equivalence classes (sets of equiva-
lent objects). Construction of these “equivalence
classes”, i.e., "abstract concepts" from specific
contexts and reusing these abstract concepts flexi-
bly beyond the specific contexts (An et al., 2023;
Mitchell, 2021; Kumar et al., 2023; Giunchiglia
and Walsh, 1992; Hull, 1920), is a natural human
skill. The human ability to acquire knowledge from
one language (e.g., “apple is red”) and construct
representations shared across languages as in Fig
1 is a prime example. Similar to multilingual hu-
mans, LLMs also see large amount of multilingual
data during pre-training (Blevins and Zettlemoyer,
2022). For instance, pretraining data of GPT-3 and
BLOOM spanned 119 and 46 languages (Brown
et al., 2020; Scao et al., 2023) respectively. In this
section, we evaluate if SOTA LLMs also have the
ability to reason by equivalence across languages
given their impressive multilingual capabilities,
and if this ability is due to shared representations
(i.e. existence of equivalence relationship) or dupli-
cation of knowledge across languages. Note that
the existence of "equivalence relationships encoded
in LLM representations" is a fundamental prereq-
uisite for complex reasoning even though it does
not guarantee that LLMs can effectively leverage
it for multi-step logical reasoning due to gaps in
LLM’s inference mechanism based on associative
attention (see Appendix A.1).

3.1 How good are LLMs at exhibiting
“Reasoning by Equivalence”?

We evaluate if LLMs exhibit “Reasoning by Equiv-
alence” specifically across languages by estimating
how dependent LLM’s answers are on the language
of input/output expression. A high dependency
indicates tight coupling of the knowledge repre-
sentation with the language and points to lack of
shared abstractions and limited ability to reason
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En-Fr En-Es En-De En-Pt En-Hi Avg
Claude v1 Instant 31.41 32.66 30.81 31.99 56.31 36.64
Claude v2 22.20 22.54 21.75 22.89 47.02 27.28
Claude v3 Sonnet 20.99 21.23 20.60 21.49 43.51 25.56
BLOOMZ-7B 37.23 34.67 50.88 33.95 52.69 41.88
XGLM-7.5B 42.99 42.49 38.74 41.74 57.53 44.70

Table 1: Conflict rate between LLM answers to parallel En-XX questions, XX = [Fr, Es, De, Pt, Hi].

En-Fr En-Es En-De En-Pt En-Hi Avg
Claude v1 Instant 29.91 30.44 29.72 30.28 42.92 32.65
Claude v2 20.45 21.13 20.52 21.38 28.14 22.32
Claude v3 Sonnet 17.89 18.06 17.34 17.99 28.61 19.97

Table 2: Conflict rate between LLM responses in [En, Fr, Es, De, Pt, Hi] for input questions in En.

by equivalence with knowledge duplication. Fig 2
shows an example where Claude-v1 instant’s an-
swers are significantly dependent on the language
of input/output expression. Below, we outline our
methodology, dataset, metrics and results.

3.1.1 Methodology
Let R = {r1, · · · rL} be a set of languages
with [Xr1Xr2 , ...XrL ] denoting parallel questions
across ri ∈ R. We perform two assessments.
Dependency on Input Language (DIL). Given L
parallel questions [Xr1 , Xr2 , ...XrL ]; we generate
LLM answers1 Y ri for each Xri independently.
Choosing an anchor language ranchor ∈ R, we
check for each r ∈ R \ {ranchor} if Y ranchor and
Y r conflict with each other .
Dependency on Output Language (DOL). Given
ranchor, we input Xranchor into the LLM and gener-
ate answers Y r for Xranchor for all r ∈ R indepen-
dently. Then, we check for each r ∈ R \ {ranchor}
if Y ranchor and Y r conflict with each other.

Here, two answers are called conflicting if
they contain contradictory information and not
merely if there are different or one of them is
non-informative. For our experiments, we consider
English (En), French (Fr), Spanish (Es), German
(De), Portuguese (Pt) and Hindi (Hi) languages, i.e.
R = {En,Fr,Es,De,Pt,Hi} and ranchor = En.
Since authors in (Lin et al., 2022; Ahuja et al.,
2023) show that English instructions in the prompt
perform better than instructions written in the na-
tive language for non-English languages, we tune
the English instructions in prompt separately for
each LLM and then keep these consistent for that
LLM across all DIL and DOL experiments.

1Temperature=0 across the paper for deterministic outputs.

3.1.2 Dataset and Metrics
Dataset. To ensure feasibility of automated evalua-
tion via LLM-based judges and reduce variations
due to subjective interpretation and cultural varia-
tions, our evaluation focused primarily on objective
factual/attribute-based questions on entities. We
prepare En factual questions dataset consisting of
88,334 questions on well known named entities and
translate the dataset to Fr, Es, De, Pt and Hi us-
ing AWS Translate (AWS, 2017b). See Appendix
A.5.1 for more details on the dataset and Fig 15 for
a few sample questions.
Metrics. We compute the conflicts among an-
swers generated by LLM for different input/output
expression languages.2 We define conflict rate
between (ri, rj) language pair as fraction of
total answer pairs which are conflicting, i.e.

ConflictRate(ri, rj) =
Σ

|D|
k=1J(Y

ri
k ,Y

rj
k )

|D| , where

|D| is dataset size and J returns 1 if (Y ri
k , Y

rj
k )

are conflicting, else returns 0. We use Claude v3
Sonnet as the judge J with prompt shown in Fig 13
in Appendix A.4. Table 5 in Appendix A.4 shows
that the average precision of our judge is >95%.

3.1.3 Analysis and Results
Table 1 shows conflict rate for various LLMs for
DIL task.3 We can see that conflict rate reduces
with increase in model strength. Open source mod-
els lag behind closed source models by a significant
margin with 25-44% average conflict rate across

2Since we care about consistent and common knowledge
representation in LLMs for equivalent concepts, we only as-
sess conflicting LLM responses to equivalent questions and
not worry about factual accuracy of responses.

3GPT-3.5 had similar results as Claude v3 Sonnet but we
could not add those results due to organization policy.
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(a) German (b) Hindi

Figure 3: Avg. Rank and Fraction of tokens which had to be replaced in German and Hindi with parallel English
token to achieve consistent answer as English.

different LLMs and languages. Since we establish
from results in Table 1 that LLMs are highly de-
pendent upon input expression language, and that
this dependency is consistent across varied open-
source and closed-source LLMs of varied size, we
evaluate only Claude family models for DOL task
as shown in Table 2. We observe similar trends as
average conflict rate of 19-32%. Both these results
show that knowledge representation is tightly cou-
pled with expression/language in LLMs, indicating
a lack of right abstractions and limited knowledge
sharing across languages in LLMs. Fig 16 and Fig
17 in Appendix A.5.2 show sample conflicting an-
swers from various LLMs to equivalent questions
from DIL and DOL tasks respectively.

3.2 Factors affecting LLMs ability to exhibit
“Reasoning by Equivalence”

To better understand knowledge transfer and source
of conflicts across languages in LLMs, we perform
a controlled experiment wherein we create syn-
thetic QnA data with non-existent named entities
that LLM does not have any prior knowledge on
and train it on synthetic data in one language and
test for its transfer in other languages.

3.2.1 Controlled Experiment
Dataset. We create synthetic data of non-existent
named entities and hallucinated articles about those
entities using Claude v1-instant. We also generate
factual questions about synthetic named entities
which can be answered only from hallucinated ar-
ticles. We only keep those questions for which
Claude’s answers with and without the article con-
flict with each other to ensure any LLM is un-

ENGLISH HINGLISHGERMANHINDI

 Test set

Train

Train

Train

Train

-

Figure 4: Setup for the controlled experiment. We train
on unique 25% of the data for each language and test on
its parallel data in other three languages.

likely to have any prior knowledge of our synthetic
data. Our synthetic QnA dataset has 2063 synthetic
named entities and has 32016 QnA pairs. As we
perform the controlled experiment with En,De,Hi
and HiEn (transliterated Hindi), and our synthetic
question set is in En, we also translate it to De and
Hi using AWS Translate, and transliterate to HiEn
using IndicTrans (Bhat et al., 2015).

Experiment Setup. We train XGLM-4.5B on
unique 25% of the synthetic data for each lan-
guage and test on its parallel data in other three
languages. Specifically, we train on concatenated
Den

1 , Dhi
2 , Dde

3 , Dhien
4 data where Dr

s denotes syn-
thetic data in rth language from sth quarter of Dr.
For s = 1, En is the anchor language and we
evaluate knowledge transfer to Hi,De,HiEn by
looking at conflicts between LLM answer to En
question from Den

1 and LLM answer to parallel
Hi,De,HiEn questions from Dhi

1 , Dde
1 , Dhien

1 re-
spectively. As shown in Fig 4, same procedure is
followed for s ∈ {2, 3, 4} where Hi,De,HiEn are
anchor languages respectively.
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Figure 5: Conflict rate for different language pair types.

3.2.2 Results and Analysis

Fig 5 shows there is significantly higher knowledge
transfer between languages with similar typology
and same script, as compared to the pairs where
either typology or script is different (see Fig 18
in Appendix A.5.3 for conflict rate of all language
pairs individually). For instance, conflict rate for
En-De is much lower than that of En-HiEn, which
in turn is lower than that of En-Hi.
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Figure 6: Illustration of Rank.

We define Rank
of a token x in a
non-anchor ques-
tion as the po-
sition at which
its parallel token
from anchor ques-
tion occurs if we
sort all tokens in
the vocabulary by
cosine similarity
with x in descend-
ing order. Rank of
a token captures
the relative prox-
imity to the an-

chor language’s parallel token in the embedding
space. To assess what it would take to get a non-
conflicting answer, we replace tokens in the non-
anchor question with their parallel anchor question
tokens in the descending order of rank, i.e., farthest
(non-anchor,anchor) parallel tokens are replaced
first, till we obtain a non-conflicting answer. Fig 3a
shows dense region of De tokens with small ranks
which had to be replaced by their parallel anchor
question tokens to reach a non-conflicting consis-
tent answer. This shows that having close enough
representations for equivalent tokens in different
languages might also not be enough, and they have
to be same for LLM to learn consistent knowledge.

This limitation stems from the representation space
LLMs operate in since we project discrete symbols
in the continuous embedding space. On the other
hand, for Hi in Fig 3b, average rank of replaced
tokens is significantly higher relative to De, likely
due to the typology and script differences in case of
En−Hi, which points to the need for near similar
representations to share knowledge.

These results show that consistency of LLMs for
distant languages is likely to stem from duplication
of knowledge across languages in the training data,
whereas for languages with similar typology and
script, knowledge sharing occurs due to similar rep-
resentation of equivalent tokens and information
propagation. The effect of "duplicate knowledge in
LLM training" is also reflected in conflict rate num-
bers of Tables 1 and 2 which are lower than those
in Table 4. Results in Tables 1 and 2 are based on
factual questions on well-known real entities, while
the Table 4 results are from the controlled exper-
iment with questions about synthetically created
non-existent named entities. For the real entities in
Tables 1 and 2, LLMs may have been pre-trained
on duplicate information about the same entity ex-
pressed in multiple languages leading to consistent
responses even when the LLM representations of
the corresponding entities are significantly differ-
ent (i.e., no equivalence relationship). However, for
the synthetic entities in Table 4, LLMs are unlikely
to have seen duplicate knowledge across languages
during pre-training and has to learn about them (in
one language) during the controlled training pro-
cess resulting in significantly higher "conflict rates".
See Appendix A.2 for more discussion on the effect
of duplication of knowledge across languages in
LLM’s training data.

4 Reasoning by Inheritance

Reasoning by Inheritance is also a key building
block of common sense and logical reasoning in
humans enabled by concept abstractions. Humans
identify common patterns amongst instances of the
same type and create abstract concepts to reason
consistently across all specific instances by inherit-
ing properties from the abstract concept as shown
in Fig 1. In this section, we investigate if SOTA
LLMs can use their ontological knowledge and in-
herit properties from abstract concepts consistently
across various specific instances of the abstract con-
cept within multiple languages.

We evaluate if an LLM exhibits “Reasoning by
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En Fr Es De Pt Hi Avg
Claude v1 Instant 3.36 18.33 17.16 9.12 15.05 36.5 16.59
Claude v2 3.37 4.55 11.69 4.96 6.78 18.53 8.31
Claude v3 Sonnet 0.13 4.43 7.27 1.86 5.41 14.69 5.63
BLOOMZ-7B 4.78 8.76 7.49 8.08 10.4 23.27 10.46
XGLM-7.5B 36.61 30.87 35.65 36.5 37.27 33.59 35.08

Table 3: Conflict rate of LLM answers on inheritance-based questions on common concepts in En, Fr, Es, De, Pt, Hi.

L
L
M

L
L
M

LLM does not exhibit reasoning
by inheritance.

Can fruits walk?

  Can     the fruit
  banana walk?

 �ा फल चल सकते
ह�?

�ा �ूट केला चल
सकता है?

"is-a" instance
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हां, केला
 एक �ूट है
 जो चल 
सकता है।

नही,ंफल चल
 नही ंसकते
�ों�िक वे 
जीिवत नही ं

 होते।

No, fruits
cannot
walk.

No, the fruit
banana
cannot
walk.

LLM exhibits reasoning by
 inheritance.

English Hindi

Figure 7: An example of LLM (Claude v1 Instant) ex-
hibiting reasoning by inheritance in En but not in Hi.

Inheritance” within a language by checking if spe-
cific instances of an abstract parent concept inherit
properties of the parent without conflicts. Fig 7
shows an example wherein Claude-v1 instant does
not exhibit reasoning by inheritance in Hi due to
the lack of the right abstractions.

Dataset. We prepare a set of 35 abstract con-
cepts and 2396 well known named entities which
are specific instances of those abstract concepts.
For each one of the abstract concept, we hand-
curate set of properties that all of its specific in-
stances should inherit. We create templatized ques-
tions from those properties to prepare En dataset
and translate it to Fr, Es, De, Pt and Hi using AWS
Translate (AWS, 2017b). Fig 19 in Appendix A.6.1
shows a sample of our dataset.

Methodology. We evaluate the consistency of
LLMs in inheriting and applying ontological knowl-
edge consistently across specific instances of ab-
stract concepts by directly asking in native lan-
guage if the specific instance has the property of
abstract concept and checking if the answer for ab-
stract concept and specific instance are conflicting.

Metrics. We compute conflict rate as in the
Section 3 but focus on comparing LLM answers
on an inheritable property for an abstract parent
concept and that of its specific instances.

Results. Table 3 shows conflict rate for ques-
tions requiring reasoning by inheritance across six
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Figure 8: CoRe Illustration: LLM can access distant
equivalent representations to permit knowledge sharing.

languages.3 We notice that conflict rate is low for
En for most models but quite high for Hi, which
likely has low representation in the model training
corpus. This indicates that the ability to reason by
inheritance likely depends on the amount of spe-
cific language data during training LLMs, which in
turn points to gaps in inductive biases in LLMs. Fig
20 in Appendix A.6.2 shows few LLM responses
that violate inheritance constraints with conflicting
answers for parent and child concepts.

5 Compositional Representation (CoRe)

We now consider mechanisms to mitigate lack of
knowledge consistency across languages which
emerged as a problem in the prior sections. Our
analysis points to two key observations:
1. “Identical” representations for equivalent con-
cepts ensures perfect knowledge transfer while
“distant” representations lead to separate copies
of knowledge being learned.
2. Languages from different families (such as En
and Hi) have distant LLM representations for equiv-
alent concepts resulting in low knowledge sharing
between them and high inconsistency unless dupli-
cate information is fed in both languages.
Based on these observations, we propose CoRe
with the aim of bridging distant representation
spaces to enable greater knowledge sharing. It
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hinges on the key idea that representing a concept
via composition of representations of all equiva-
lent concepts across languages would enable LLM
to maintain consistent knowledge for that concept
across languages as shown in Fig. 8. This is in
contrast to the current LLM models (Fig. 9) where
a sentence input into the transformer decoder in
LLMs does not have access to representations of
equivalent tokens from distant languages and can
only utilize the localised knowledge in that lan-
guage’s representation space.

5.1 Methodology

िट�कटू �थापना

Transformer Decoder

...

Figure 9: Default mechanism
in Transformers.

Attention (Vaswani
et al., 2017) is an
essential mechanism
of transformer archi-
tecture that converts
an input sequence
into a latent encod-
ing using representa-

tional vectors formed from the input, i.e., queries,
keys and values to determine the importance of
each portion of input while decoding. Typically,
in transformers, each token pays attention to other
nearby tokens in the input sequence. Since this
process can miss out on equivalent tokens in other
languages, especially in the absence of a parallel
multi-lingual corpus, we modify the learning ap-
proach to consider all tokens in the vocabulary as
candidates for attention. Specifically our method-
ology consists of two steps: (a) proximal token
selection, and (b) construction of compositional
representation, which we describe below.
Step 1: Proximal token selection. For a given
token, we first select the top-n proximal tokens
across each language based on compatibility of the
existing representations. Formally, let X = [xi]

N
i=1

and Z = [zi]
N
i=1 denote the sequence of input to-

kens and the associated embedding representations
of size do. Let U = [uj ]

M
j=1 be all the vocabulary

tokens and B = [bj ]
M
j=1 be the associated embed-

ding representations of size do. Further, let U r be
the vocabulary tokens associated with the language
r ∈ R, where R denotes the entire set of languages
being considered. Let Q = [qi]

N
i=1, K = [kj ]

M
j=1

and V = [vj ]
M
j=1 be the sequences of query, key

and value vectors of dimensions dk, dk and dv re-
spectively, given by qi = zTi WQ, kj = bTj WK and
vj = bTj WV where WQ ∈ Rdo×dk , WK ∈ Rdo×dk

and WV ∈ Rdo×dv are the learned projection matri-

ces. Let C = QKT
√
dk

∈ RN×M be the compatibility
matrix between Q and K.

For each input token xi, we identify the top n
proximal or most-compatible tokens from each lan-
guage r ∈ R as per the compatibility values:

U r
sel(i) = {uj |Cij ∈ top-n({Cij |uj ∈ U r}),

where top-n(·) denotes the largest n values of the
input set. Note that in addition to using the organic
representations for estimating compatibility, we
could also use additional cues from domain ontolo-
gies or dictionaries to construct this proximal token
set. Further, to ensure computational efficiency,
instead of considering the entire set of vocabulary,
a smaller candidate pool of tokens per language
can be chosen using K-NN based on existing token
embeddings at each stage.
Step 2: Construction of compositional represen-
tation. The next step is to build a compositional
representation from all the selected proximal to-
kens similar to regular attention mechanism. To
ensure only the selected proximal tokens contribute,
we define f(C) = [fij ] where,

fij =

{
0 if uj ∈ U r

sel(i) ∀r ∈ R

−∞ otherwise.
(1)

We augment representation of Z being input to
the decoder layer as Z ′ = softmax(C + f(C))V .
Since R includes all the languages including ones
distant from that of the input sequence X , Z ′ be-
comes a composition of equivalent tokens from all
the languages yielding more consistent responses.

5.2 Experiments and Results
CoRe augments the transformer architecture and
can be used while pretraining LLMs. However,
since pretraining entails additional compute cost, it
is preferable to use CoRe with existing pre-trained
models. For our experiments, we augment pre-
trained XGLM-4.5B model with CoRe.

Dataset, Downstream Task and Implemen-
tation Details. Since we want to examine if
CoRe helps improve consistency among distant lan-
guages, we use the same dataset and setup as the
controlled experiment in Sec 3.2.1. We augment
XGLM architecture and add CoRe to it. We initial-
ize learnable projection matrices WQ,WK ,WV by
identity matrix to ensure stable continual training
and choose n ∈ {5, 10, 15} for selecting the top-n
tokens for our experiment. In our experiments, for
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n en-hi en-de en-hien hi-en hi-de hi-hien de-en de-hi de-hien hien-en hien-hi hien-de
XGLM-4.5B - 74.4 58.6 73.2 72.6 73.6 72.4 57.1 75 74.3 70.5 72.1 71.8

XGLM-4.5B
+ CoRe

5 73.5 55.6 71.9 71.9 72.7 71.9 55.7 74 73.3 68.4 70.4 69.5
10 72.8 53.9 73.1 71 72.2 72.2 53.8 73.9 73.9 69.8 70 69.1
15 73.2 56.8 72.3 71.3 73.3 71.8 56.8 75.5 73.5 68.7 71 69.2

Table 4: Effect of CoRe on conflict rate for different language pairs.

each one of the languages we are working with
(En,Hi,De,HiEn), we consider the top-n most
compatible tokens from all vocabulary tokens of
that language and En. This considers En as the an-
chor language and helps build a “bridge” between
distant representation spaces of other languages
and En. We did this for more efficient experimen-
tation but there is no constraint in CoRe on the
set of languages from which we can choose top-n
proximal tokens. We identify the language(s) a
vocabulary token can belong to beforehand using
language detector from AWS Comprehend (AWS,
2017a) and store the asset for repeated use dur-
ing forward pass. We use Pytorch (Paszke et al.,
2019) and Huggingface Transformers library (Wolf
et al., 2020) for implementation. We train baseline
XGLM-4.5B and XGLM-4.5B+CoRe for 20k steps
on p3dn.24xlarge machine with 8 GPUs with learn-
ing rate of 1e-05 and linear learning rate scheduler
with 80040 max steps, gradient accumulation steps
of 2 and per device training batch size of 1.

Results. Table 4 shows that CoRe consistently
reduces conflict rate across 12 language pairs, with
gains up to 4.7%. Variation in conflict rate with dif-
ferent values of n suggests that keeping n static is
not ideal as it might add noise to representations in
some cases. Distribution of cosine similarity of ran-
dom 1K parallel En-De words in Fig 10 shows that
representations from CoRe for equivalent words
are closer with similar behavior observed for other
language pairs. Fig 21 in Appendix A.7.1 shows
sample questions where XGLM-4.5B+CoRe pro-
vides more consistent answers compared to XGLM-
4.5B (baseline). To evaluate CoRe’s impact on
a downstream task we did a small scale experi-
ment for NLI task on XNLI (Conneau et al., 2018)
dataset and observed 14% reduction in inconsis-
tency across predictions for parallel En-De NLI
data points without hurting NLI performance, see
Appendix A.7.2 for more details.

Efficiency of CoRe. In our experiments, adding
CoRe increased the training time by ∼50% but
that is without using FlashAttention (Dao et al.,
2022) for CoRe which is expected to be ∼2x faster.

Figure 10: Distribution of cosine score of random 1K
parallel En-De words.

We were unable to experiment using FlashAtten-
tion because we only had access to V100 machine.
Since compatibility matrix is constructed by dot
product of Q and K matrices as described in Sec
5.1, this is a computationally intensive operation
which can be made more efficient by considering
a smaller candidate pool of tokens per language of
interest using a more efficient method like K-NN
before constructing compatibility matrix. We will
be experimenting with these alternatives which can
improve computational efficiency of CoRe as part
of our future work.

6 Conclusion

We introduce “Reasoning by Equivalence” and
“Reasoning by Inheritance” tasks and evaluate pop-
ular LLMs to highlight the lack of consistent rep-
resentation across languages. This systemic gap
manifests in inefficient learning, limited knowledge
sharing, and over-reliance on extensive data and
computational resources, pointing to the need for
better representations. We also perform controlled
experiments to identify the influencing factors and
propose CoRe to bridge the gap between distant
language representations which leads to 4.7% boost
in performance. We hope our work spurs further
research on gaining richer understanding of LLM-
based reasoning across languages.
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Limitations

Our current work has a few limitations, which we
discuss below.
Scope of Relationships: Our study focuses on
LLMs’ ability to reason based on two foundational
relationships: "equivalence" and "inheritance." Fu-
ture research could broaden this scope to include
other key relationships such as "cause and effect,"
"comparison," and "mereological" relationships.
Our proposed CoRe approach is also applicable
only to symmetric relationships such as "equiva-
lence," but there is a possibility of extending to
asymmetric and transitive relationships using hy-
perbolic representations.
Evaluation Focus: Current experiments primarily
targeted objective, factoid-based questions, chosen
for their clarity and the feasibility of automated
evaluation via LLM-based judges. This approach
facilitated a less ambiguous assessment of LLM
reasoning capabilities and the benefits of our CoRe-
based mitigation. However, reasoning tasks do
encompass subjective, long-form generation tasks
such as summarization and problem solving, which
can be explored in future, since that could entail
access to expensive human-in-the-loop evaluations.
LLM Architectures: Our current work focuses ex-
clusively on transformer-based autoregressive gen-
erative LLMs,which include widely used models
such as Claude, XGLM, GPT-4, and LLama. Re-
cent advances in neuro-symbolic methods offer al-
ternative architectures and training methods that
enhance reasoning abilities albeit at a higher com-
putational costs that limits their adoption in real-
world application. Our research identifies specific
gaps in the popular LLMs, highlighting the need to
integrate ideas from neuro-symbolic research.

Ethics Statement

Our research aims to identify and address gaps in
the reasoning abilities of widely used LLMs, partic-
ularly for low-resource languages used by a large
population of the world. To ensure the validity of
our findings, we created a new parallel factoid QA
datasets and conducted controlled experiments to
prevent data duplication across languages in LLM
training data from influencing LLM reasoning per-
formance. The datasets used have no associated
privacy or intellectual property concerns, and we
plan to open-source them post-review to adhere
to double-blind protocol and ensure reproducibil-
ity. Evaluation was performed using automated

LLMs, with prompts detailed in the appendix for
transparency. Beyond the common ethical consid-
erations of using generative language models, our
work did not involve any additional ethical issues.
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A Appendix

A.1 Existence of Equivalence/Inheritance
Relationships vs Using them in Multi Step
Reasoning

It is important to distinguish between (a) the exis-
tence of "equivalence" and "inheritance" relation-
ships among concepts in LLM representations, and
(b) the LLM’s ability to actually utilize these rela-
tionships (encoded in the representations) for multi
step reasoning. The former can be considered a
prerequisite for the latter.

By the "existence of an equivalence relationship"
between A and B, we mean that the LLM’s rep-
resentations and their direct use during inference
allows properties of A and B to be transferred to
each other or reconciled for conflicts. Similarly, an
"inheritance relationship" between A and B would
imply that A inherits properties of B.

Consider the question "Does the river
Kaveri flow in the same continent as the
river Seine?". We could answer this correctly as
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Figure 11: An example of prior information which can
be combined to answer the question "Does the river
Kaveri flow in the same continent as the river
Seine?" in both English and Hindi. Equivalence rela-
tionships are in bold.

"No" using different sets of prior information with
varying levels of reasoning applied. For example,
in Scenario 1, we might directly utilise the infor-
mation "Kaveri and Seine flow in different
continents". Alternatively, in Scenario 2, we
might need to combine multiple pieces of informa-
tion (expressed as entity-attribute or entity relation-
ship predicates) as shown in Fig 11 to arrive at
the answer. Scenario 2 demonstrates the ability to
generalize from a small set of training data with
limited compute effort to address a broader range
of questions. To arrive at the correct answer, we
need both the basic building block relationships as
well as the capability to effectively combine them
as part of LLM inference.

In our current study, we are primarily fo-
cused on evaluating whether the basic equiva-
lence/inheritance relationships exist in LLMs by
assessing simple property transfer and conflict res-
olution on questions related to equivalent entities
or parent-child entities. It is possible that even
when the desired relationships hold and properties
transfer correctly, there may be gaps in the overall
multi-step reasoning process, resulting in an inac-
curate LLM response. This is because the existence
of "abstraction" or "equivalence/inheritance rela-
tionships encoded in LLM representations" does
not necessarily mean that the LLM would always
effectively leverage this information for its reason-
ing since the LLM’s inference mechanism, which
relies on associative attention, differs from logical
operations. We do not yet evaluate this larger ca-
pability (item b) because there are multiple factors
involved, and there is likely a gap in item (a) itself.

Figure 12: An example parallel question from MLAMA
(Kassner et al., 2021) dataset.

A.2 Impact of Prior Information seen during
Training

Consider a pair of parallel questions from the
MLAMA (Kassner et al., 2021) dataset ("Which
continent is Kaveri located in ?") as shown in Fig
12. When an LLM provides the same response
"Asia" without conflicts for the two parallel ques-
tions in En and Hi, it could be due to one of the
following two reasons:

1. Existence of Equivalence relation-
ship/Common Abstraction: The LLM is
aware of equivalence between the En and
Hi versions of entities "Kaveri" and "India"
in Fig 11 beyond just the basic language
constructs.

2. Duplication of Information: The LLM could
have seen two parallel, aligned pieces of infor-
mation that "Kaveri is located in Asia"
in both En and Hi even though there LLM’s
representations of the corresponding equiva-
lent entities are highly divergent. In the latter
case, while the LLM can answer this specific
question well without conflicts, that behavior
might not generalize well to other questions
about "Kaveri" in Hi that were not part of the
training data.

Hence, conflict rate estimates could lead to mis-
leading conclusions about the existence of equiva-
lence and inheritance relationships for well-known
real entities due to the bias introduced by prior du-
plicate (or even contradictory) information in the
LLM training data across languages. This effect
of "duplicate knowledge in LLM training" is
also reflected in our results, where the conflict rate
numbers in Table 4 are higher than those in Tables
1 and 2. We expect the effect observed in Tables 1
and 2 to be more pronounced in public datasets like
MLAMA, as they may be part of the LLM’s train-
ing data, either directly or indirectly. For instance,
we generated responses from Claude v1 instant for
parallel En−De 100 randomly sampled questions
from MLAMA dataset and observed ∼15% conflict
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En-Fr En-Es En-De En-Pt En-Hi Avg
96% 97% 94% 95% 94% 95.20%

Table 5: Precision of Claude v3 Sonnet as the judge in
identifying conflicting answers across language pairs

rate which is much lower than the average results
in Tables 1 and 2 (∼30%).

A.3 Accounting for LLMs’ proficiency in
different languages

We evaluate LLMs only on the languages for which
there is official documentation of support for that
language or there is prior work demonstrating good
performance on NLP tasks of that language. For
example, Anthropic claims support for English,
Spanish, Portuguese, French, German and multiple
other languages (Anthropic, 2023a; AWS, 2023),
and also showcases Claude’s multilingual capabili-
ties on these languages. Hindi is also mentioned in
Claude model cards (Anthropic, 2023b, 2024). In
our study, the LLMs we evaluate on a language are
proficient with respect to the linguistic patterns and
the common vocabulary of that language, which
is different from the knowledge (factual informa-
tion) aspects. Further in our evaluation, we fo-
cused on well-formed objective factual questions
to avoid variations due to subjective interpretations
and cultural nuances. This ensures that the knowl-
edge consistency or alternatively the conflict rate in
responses across languages primarily depends on
(a) the knowledge duplication in the training data
and (b) the effectiveness of knowledge transfer,
i.e., equivalent entity representations across the lan-
guages. The point we wish to highlight in our work
is that LLM training and representations should
be designed so as to enable efficient knowledge
transfer within and across languages.

A.4 Judge Precision
Table 5 shows precision of Claude v3 Sonnet as
the judge in identifying conflicting answers across
language pairs obtained by annotating random sam-
ple of 100 answer pairs for 5 language pairs each.
Prompt for Claude v3 Sonnet judge is shown in Fig
13.

A.5 Reasoning by Equivalence
A.5.1 Data Preparation
We hand-curated 51 (parent) abstract concepts man-
ually (e.g., monuments, actors, cities, etc.) that
primarily correspond to common nouns. See Fig

14 for full list of the 51 abstract concepts. Then,
we created 3641 named entities that are specific
instances of these (parent) abstract concepts, e.g.,
Taj Mahal is a specific instance of monument) us-
ing Claude with human review to weed out non-
existent ones. For each one of the 3641 named
entities, we prepared a set of questions which have
objective or factual answers using Claude with the
following prompt.
Give different unambiguous complete questions
about "{entity}" which have specific factual an-
swers.

We built this prompt after multiple iterations of
analysis of generated questions for a small sample
of entities. The dimensions of evaluation were: (i)
The generated question should be complete and un-
ambiguous, i.e. it should be clear which entity the
question is about and what attribute/fact is being
asked, (ii) The answer to the generated question
should be an unambiguous factual response. From
the final set of generated 88,334 questions, we ran-
domly sampled and manually annotated 500 gen-
erated questions of which 96.2% were complete
and unambiguous, and 99.4% had an unambiguous
factual answer. The annotations were done by a
professional English speaker.

Our original question set is in En which we
also translate to Fr, Es, De, Pt and Hi using AWS
Translate (AWS, 2017b). We translated using AWS
translate which is one of the best commercial trans-
lation services (Rushing, 2020). AWS translate is
expected to translate questions while preserving
their meaning. We rely on AWS translate to trans-
late the concept into most natural variant in case
multiple variants are possible. To get an estimate
of lower bound of AWS translate’s performance on
our datasets, we consider the En-Hi translation task
since Hi being a non-Latin language with differ-
ent lexical representation is much more divergent
from En. We enlisted a professional bilingual Hindi
and English speaker to annotate a random sample
of 200 En-Hi question pairs on the translation ac-
curacy and observe 97.5% accuracy. This high
translation accuracy is likely due to the nature of
our English questions, which are well-formed and
unambiguous. Fig 15 shows few sample questions
from our dataset.

A.5.2 Analysis
Fig 16 and Fig 17 show sample conflicting answers
from various LLMs to equivalent questions from
DIL and DOL tasks respectively.
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Figure 13: Prompt for Claude v3 Sonnet to use it as the judge.

Figure 14: List of 51 (parent) abstract concepts.

Figure 15: Sample questions from our question bank which we use to evaluate LLMs for reasoning by equivalence.

A.5.3 Additional Details on Controlled
Experiment

For computing the rank of a multi-token word, we
compute the rank of each one of its tokens and
consider the minimum rank amongst them as the
rank of multi-token word. Figure 18 shows conflict
rate of all (anchor, non-anchor) language pairs with
number of training steps.

A.6 Reasoning by Inheritance

A.6.1 Dataset
Fig 19 shows sample questions about abstract con-
cepts and their specific instances from our dataset.

A.6.2 Qualitative Analysis
Fig 20 shows a few sample errors from various
LLMs wherein they violate inheritance constraints
by giving conflicting answers for parent and child
concept, and across children of the same type.

A.7 Compositional Representation (CoRe)

A.7.1 Qualitative Analysis
Fig 21 shows few sample anchor and non-
anchor language questions with their answers from
XGLM-4.5B (baseline) and XGLM-4.5B+CoRe.

A.7.2 Effect of CoRe on a Downstream Task

The main focus of our work in “Reasoning by
Equivalence” was to assess if LLMs exhibit consis-
tent knowledge across languages, and we proposed
CoRe to improve consistency. However, to evaluate
CoRe’s impact on a downstream task we performed
a small experiment for NLI task on XNLI (Conneau
et al., 2018) dataset (on first 100 examples from
validation set) with the same zero shot setup as
XGLM paper (Lin et al., 2022) and observed com-
parable performance with and without CoRe (46-47
for En, 39-40 for De). However, we observed a
significant reduction in inconsistency across predic-
tions for parallel En−De NLI data points (28%
inconsistency in predictions without CoRe vs 14%
inconsistency with CoRe, wherein model’s predic-
tion is said to be inconsistent if it predicts differ-
ent labels for parallel datapoints across languages
(En and De in this case)). We anticipate that in-
corporating CoRe during pre-training or continual
training with larger dataset could yield further im-
provement in downstream task performance as well
which we could not do because of compute con-
straints. We consider those experiments and further
evaluation of CoRe across various different tasks
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Figure 16: Sample errors from different LLMs on DIL task. Red and Green colored cells highlight conflicting and
non-conflicting answers with the anchor language (En) answer, respectively.
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Figure 17: Sample errors from different LLMs on DOL task. Red and Green colored cells highlight conflicting and
non-conflicting answers with the anchor language (En) answer, respectively.

(a) For different language pairs (b) Averaged for different language pair types

Figure 18: Figure showing how conflict rate changed during training in controlled experiment.
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Figure 19: Dataset sample of questions about abstract concepts and their specific instances which we use to evaluate
LLMs for reasoning by inheritance.

Figure 20: Sample errors from various LLMs wherein they violate inheritance constraints. Red and Green colored
cells highlight conflicting and non-conflicting answers with the parent concept question’s answer, respectively.

on NLP benchmarks as part of future work.
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Figure 21: Sample anchor and non-anchor language questions wherein we get consistent answers after training with
CoRe.
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