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Abstract

With the commercialization of large language
models (LLMs), weight-activation quantization
has emerged to compress and accelerate LLMs,
achieving high throughput while reducing in-
ference costs. However, existing post-training
quantization (PTQ) techniques for quantizing
weights and activations of LLMs still suffer
from non-negligible accuracy drops, especially
on massive multitask language understanding.
To address this issue, we propose Low-Rank
Quantization (LRQ) − a simple yet effective
post-training weight quantization method for
LLMs that reconstructs the outputs of an in-
termediate Transformer block by leveraging
low-rank weight-scaling matrices, replacing the
conventional full weight-scaling matrices that
entail as many learnable scales as their associ-
ated weights. Thanks to parameter sharing via
low-rank structure, LRQ only needs to learn
significantly fewer parameters while enabling
the individual scaling of weights, thus boost-
ing the generalization capability of quantized
LLMs. We show the superiority of LRQ over
prior LLM PTQ works under (i) 8-bit weight
and per-tensor activation quantization, (ii) 4-bit
weight and 8-bit per-token activation quantiza-
tion, and (iii) low-bit weight-only quantization
schemes. Our code is available at Software.

1 Introduction

As ChatGPT and GPT-4 (OpenAI, 2023) have
showcased unprecedented capabilities across var-
ious domains such as common sense reasoning,
mathematical problem-solving, and coding profi-
ciency, there has been an exponential surge in in-
terest surrounding the development of Large Lan-
guage Models (LLMs). This surge in interest has
culminated in the recent release of cutting-edge
LLMs like Llama (Touvron et al., 2023a), PaLM 2
(Google et al., 2023), and Llama 2 (Touvron et al.,
2023b). Accordingly, serving LLMs has rapidly
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emerged as a significant concern in both academia
and industry. This stems from the substantial mem-
ory footprint and considerable computational cost
incurred when operating these language models
with tens or hundreds of millions of parameters in
FP16 format. Therefore, extensive efforts (Frantar
et al., 2023; Liu et al., 2023b) such as quantization
or pruning are underway to compress LLMs and
provide efficient deployment. In particular, quan-
tization has garnered considerable interest among
LLM engineers and researchers because quantiza-
tion aids in not just model compression but also
inference acceleration.

LLM quantization techniques fall into two pri-
mary categories: weight-only quantization and
weight-activation quantization. Weight-only quan-
tization concentrates on enhancing memory-bound
operations like matrix-vector multiplication by
quantizing weights of LLMs into low-bit integers
(e.g., 2-4 bits). With activations kept in FP16,
weight-only quantization exhibits marginal accu-
racy degradation but is only effective in accelerat-
ing text generation inference for small batch sizes
(e.g., a single batch). In contrast, weight-activation
quantization aims to expedite computationally in-
tensive operations, such as matrix-matrix multipli-
cation, typically by quantizing both weights and
activations of LLMs into 8-bit integers and employ-
ing INT8 GEMM kernels. This comprehensive
quantization approach enables LLM serving for
large batch sizes, thus enhancing LLM throughput
and expediting LLM inference through integer ma-
trix multiplication. Yet, it comes with the trade-off
of potential non-negligible accuracy drop. While
each approach boasts its own set of strengths and
weaknesses, we first focus on weight-activation
quantization on the grounds that achieving high-
throughput LLM inference is important to handle a
substantial volume of user requests in real time.

Recent studies (Dettmers et al., 2022; Yao et al.,
2022; Xiao et al., 2022; Lee et al., 2023b; Liu et al.,
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(a) Common Sense Reasoning tasks (b) Massive Multitask Language Understanding

Figure 1: (a) Zero-shot performance and (b) five-shot accuracy of Llama with 8-bit per-channel asymmetric weight
quantization and 8-bit per-tensor asymmetric static activation quantization, while keeping the KV cache in FP16.

2023a) have attempted to quantize both weights
and activations of LLMs. Among these works, only
SmoothQuant (Xiao et al., 2022) and FlexRound
(Lee et al., 2023b) demonstrated the potential for a
hardware-efficient per-tensor static activation quan-
tization scheme that can reduce the inference la-
tency and memory usage by up to two-thirds and
half respectively compared to FP16 baselines as
thoroughly elucidated in Xiao et al. (2022). Given
the compelling advantages of this scheme, we also
stick mainly to per-tensor static activation quan-
tization, with a primary focus on preventing non-
negligible performance degradation, one of its key
drawbacks, from occurring.

Despite promising results that SmoothQuant and
FlexRound yielded, they still possess inherent limi-
tations on enhancing model accuracy when using
per-tensor static activation quantization. Although
SmoothQuant is a potent technique for alleviating
the difficulty of quantizing activation outliers, it
uniformly divides activations in each channel and
multiplies the weights in the corresponding input
channel by some constant. Since such an uniform
per-channel smoothing transformation can only
scale the weights collectively per channel, not indi-
vidually, SmoothQuant may lead to non-negligible
accuracy loss after quantization for certain models
as in Figure 1. On the other hand, as FlexRound
learns a separate scale for each weight and thus
enables flexible weight quantization based on indi-
vidual characteristics of each weight, FlexRound
can show marginal zero-shot accuracy drop on com-
mon sense reasoning tasks in Figure 1(a). However,
as depicted in Figure 1(b), FlexRound falls short in
performing well on massive multitask language un-
derstanding (MMLU), which necessitates problem-
solving skills, specialized knowledge, as well as
basic knowledge across diverse subjects. We em-
pirically confirm that this phenomenon is because

FlexRound has to learn too many scales relative to
limited calibration samples due to the assignment
of an independent scale to every weight.

To improve generalization performance on such
a challenging benchmark, we propose a new post-
training weight quantization approach, “Low-Rank
Quantization (LRQ)”, as a middle ground between
SmoothQuant and FlexRound. LRQ is designed
to minimize the mean squared error between the
outputs of an intermediate FP16 Transformer block
and those of its quantized counterpart with respect
to low-rank weight-scaling matrices instead of full
weight-scaling matrices that involve as many scales
as their associated weights. Using such low-rank
matrices, we can reduce the number of learnable pa-
rameters effectively while maintaining the concept
of scaling weights individually by sharing learn-
able parameters via low-rank structure. As a result,
LRQ can attain comparable accuracy to FP16 base-
lines on both common sense reasoning tasks and
MMLU for every Llama model as seen in Figure 1.

Our main contribution is threefold:

• We propose a new post-training weight quan-
tization method coined LRQ that leverages
low-rank weight-scaling matrices for inter-
mediate Transformer block output reconstruc-
tion, which improves the generalization per-
formance of quantized LLMs as in Figure 1.

• We provide empirical insights into the signifi-
cance of reducing the number of learnable pa-
rameters and how the utilization of low-rank
matrices to effectively decrease learnable pa-
rameters impacts the generalization ability of
quantized LLMs.

• We validate the effectiveness of LRQ under
a wide variety of quantization schemes (8-bit
weight and per-tensor activation quantization,
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4-bit weight and 8-bit per-token activation
quantization, and low-bit weight-only quanti-
zation) with marginal accuracy loss.

2 Method

In this section, we outline the post-training quan-
tization (PTQ) background that our method, LRQ
is based on, figure out the problem arising when
quantizing LLMs, and formulate LRQ. Finally, we
deepen an empirical understanding of how LRQ
can improve generalization in quantized LLMs.

2.1 Background
Block-wise Reconstruction First of all, our
method is based on block-wise reconstruction,
which originates from BRECQ (Li et al., 2021)
for the purpose of taking into account the intra-
block dependency and has been widely used in
QDrop (Wei et al., 2022), FlexRound (Lee et al.,
2023b), and AQuant (Li et al., 2023) due to its ef-
ficacy to yield less generalization error than layer-
wise reconstruction. As we concentrate on weight-
activation quantization of LLMs that are generally
Transformer-based models, the block-wise recon-
struction process is applied to every Transformer
block in the order of arrangement. To be more
concrete, with a small set of calibration data, the
objective of block-wise reconstruction is to find
quantized weights Ŵ by minimizing the block re-
construction error ∥WX−Ŵ X̃∥22 where W and
X are the weights and inputs of a FP16 Trans-
former block while X̃ is the inputs of its quantized
counterpart (i.e., the outputs of its immediately
preceding Transformer block with all its previous
Transformer blocks quantized).

FlexRound Among PTQ studies that take ad-
vantage of block-wise reconstruction, FlexRound
shows the state-of-the-art performance for a wide
variety of models ranging from computer vision
models to large language models including Llama.
In FlexRound, the formulation of Ŵ is written as

Ŵ = s1

⌊ W

s1 ⊙ exp(S2)

⌉
, (1)

where s1 is a quantization step size, S2 is a weight-
scaling matrix whose shape is exactly the same as
that of W , ⌊·⌉ and exp(·) indicate the rounding
and exponential function, and ⊙ and / represent
element-wise multiplication and division. Depend-
ing on the type of W , some supplementary vectors
are added to S2, but we exclude these additional

Figure 2: Zero-shot performance and five-shot accuracy
of Llama 7B for FlexRound (FR) on common sense
reasoning (CSR) tasks and MMLU according to the cal-
ibration sample size, with 8-bit per-channel asymmetric
weight and 8-bit per-tensor asymmetric static activation
quantization, while keeping the KV cache in FP16.

vectors to keep the expression uncluttered. At the
beginning of learning, S2 is set to a zero matrix and
s1 is initialized to argmins1 ∥W − Ŵ ∥22 to start
learning from rounding-to-nearest (RTN). Then,
both s1 and S2 are learned to minimize the block
reconstruction error ∥WX−Ŵ X̃∥22 with a small
amount of calibration data as explained above. As
FlexRound learns a separate scale for each weight,
FlexRound can quantize each weight to one of not
just the two nearest quantization grids but also more
distant ones, based on individual characteristics of
each weight. Nonetheless, as shown in Figure 1,
quantized LLMs via FlexRound might exhibit re-
duced scores on challenging tasks like MMLU.

2.2 Motivation

We hypothesize that the failure to generalize well
on challenging benchmarks like MMLU arises
from the necessity of learning an individual scale
for every weight with limited calibration samples.
Now that S2 has as many learnable parameters as
the size of W in Eq. 1, FlexRound’s objective to
achieve flexible weight quantization through the
assignment of an independent scale to each weight
may be deemed excessive when applied to LLM.

For instance, for Llama 7B, the smallest model
in Llama, FlexRound has to learn more than 200
million scales with only just a few hundred or thou-
sand calibration samples. FlexRound may be there-
fore prone to overfitting when quantizing LLMs.
To resolve this issue, there might be two solutions:
(i) increasing calibration samples, and (ii) decreas-
ing learnable parameters. In the former case, as
shown in Figure 2, the accuracy of FlexRound on
MMLU increases as the calibration sample size

7710



(a) Calibration sample (b) Unseen sample

Figure 3: Accumulated root mean square error (RMSE) between WX and Ŵ X̃ for RTN, FlexRound, and LRQ on
(a) a calibration sample from the C4 dataset and (b) an unseen sample from common sense reasoning and MMLU
benchmarks, ranging from the first Transformer block to the last Transformer block of Llama 7B. Here, weights
and activations are quantized to 8-bit with per-channel asymmetric quantization and per-tensor asymmetric static
quantization, while the KV cache remains in FP16. Note that RMSE tends to rise in line with the block index due to
the presence of X̃ that accumulates quantization error resulting from previous quantized Transformer blocks.

grows larger. Yet, FlexRound still falls behind
the FP16 baseline on MMLU by more than 3.5
percent, even when utilizing 2048 calibration sam-
ples, the maximum number we can use on a single
NVIDIA A100-80GB GPU during the block-wise
reconstruction process. Thus, we turn our focus to-
ward reducing the number of learnable parameters.

2.3 Low-Rank Quantization
To reduce the number of learnable parameters,
we decompose a weight-scaling matrix, S2, into
a low-rank matrix before performing the recon-
struction process. To be more specific, for W ∈
RCout×Cin , S2 ∈ RCout×Cin is factorized into
L2U2 where L2 ∈ RCout×r and U2 ∈ Rr×Cin

for r < min(Cout, Cin). Additionally, we supple-
ment L2U2 with a row vector, r2 ∈ RCout×1 and
a column vector, c2 ∈ R1×Cin , which is inspired
by the addition of a row or column vector (or both)
to a low-rank matrix in recommendation systems,
one of the most popular applications of low-rank
structure, for better prediction of ratings by con-
sidering a bias for each user or each item (Jahrer
and Töscher, 2012; Goodfellow et al., 2016; Koren
et al., 2021). As a result, we formulate Ŵ as

Ŵ = s1

⌊ W

s1 ⊙ exp(L2U2 + r2 + c2)

⌉
, (2)

which we refer to as ‘Low-Rank Quantization
(LRQ)’. At first, L2 and U2 are initialized to ze-
ros and random values from a normal distribution
respectively, and r2 and c2 are set to zero vectors
so that L2U2 + r2 + c2 starts from a zero matrix
like S2 in Eq. 1. Then, s1, L2, U2, r2, and c2 are

learned to minimize ∥WX − Ŵ X̃∥22 in a block-
by-block manner. The ablation study on the effect
of r2 and c2 in LRQ is presented in Appendix B.

2.4 Effect of Low-rank Matrices on
Generalization of Quantized LLMs

Considering that a full weight-scaling matrix is sub-
stituted with a low-rank matrix as seen in Eq. 2
derived from Eq. 1, one might wonder (i) whether
the minimization of block reconstruction error on
calibration samples is feasible despite the use of
low-rank matrices, and (ii) how the utilization of
low-rank matrices can result in improved gener-
alization performance on unseen benchmarks as
Figure 1 demonstrates. To address these concerns,
we conduct a comparative analysis of accumulated
root mean square error (RMSE) between WX and
Ŵ X̃ for RTN, FlexRound, and LRQ.

For a calibration sample that is selected from
the C4 dataset, even if both FlexRound and LRQ
initially start their learning process from the same
RTN baseline, LRQ achieves an almost identical
accumulated RMSE to FlexRound, as illustrated in
Figure 3(a). This observation underscores that the
use of low-rank weight-scaling matrices does not
pose any noticeable obstacle to the minimization of
block reconstruction error on calibration data. For
common sense reasoning and MMLU benchmarks
that are unseen during the reconstruction stage,
however, accumulated RMSE for LRQ is much
smaller than that for FlexRound as well as RTN as
described in Figure 3(b). This compelling result
implies that harnessing the parameter-efficiency of
low-rank matrices can facilitate superior generaliza-
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Table 1: Zero-shot performance of Llama on common sense reasoning tasks (BoolQ, PIQA, HellaSwag, Wino-
Grande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization, per-tensor
asymmetric static activation quantization, and per-token asymmetric KV cache quantization. The accuracy (%) is
reported for all tasks. The number of bits used for weights, activations, and KV cache is 8-bit.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 7B 16/16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 60.97

SmoothQuant 8/8/8 69.42 72.63 69.07 64.72 48.61 37.12 39.20 57.25
FlexRound 8/8/8 72.54 76.50 71.88 66.77 53.03 39.76 42.00 60.35
LRQ (Ours) 8/8/8 72.84 77.37 72.04 67.01 53.03 40.53 41.60 60.63

Llama 13B 16/16/16 68.53 79.11 76.23 70.01 59.89 44.54 42.20 62.93

SmoothQuant 8/8/8 67.34 75.19 71.78 69.06 54.92 40.44 38.80 59.65
FlexRound 8/8/8 68.78 78.51 75.23 70.56 58.46 44.03 41.00 62.37
LRQ (Ours) 8/8/8 68.84 78.78 75.56 70.80 59.13 44.62 41.60 62.76

Llama 33B 16/16/16 68.38 80.09 79.21 72.93 58.92 45.48 42.00 63.86

SmoothQuant 8/8/8 71.31 75.30 71.29 68.98 53.66 43.26 41.00 60.69
FlexRound 8/8/8 69.05 79.49 77.49 70.88 56.86 43.60 42.00 62.77
LRQ (Ours) 8/8/8 68.84 79.98 78.52 73.72 58.21 45.73 43.00 64.00

Llama 65B 16/16/16 82.32 80.85 80.71 77.19 58.71 46.33 44.60 67.24

SmoothQuant 8/8/8 78.78 79.54 79.11 73.32 56.23 45.90 43.80 65.24
FlexRound 8/8/8 80.46 79.38 79.23 74.98 57.20 46.42 45.00 66.10
LRQ (Ours) 8/8/8 82.35 81.12 79.96 75.61 58.96 46.59 45.40 67.14

tion on unseen benchmarks. In light of these find-
ings, the incorporation of low-rank matrices into
block-wise reconstruction is indeed a pivotal step
in enhancing the generalization capability of quan-
tized LLMs. For visual representation across vari-
ous samples, three figures are incorporated in Ap-
pendix C, each depicting the accumulated RMSE
for three distinct samples. In addition, we illustrate
the sensitivity of the accumulated RMSE to the
number of calibration samples in Appendix D.

3 Experiments

In this section, we first explore the influence of the
rank r in Eq. 2 and the quantity of calibration sam-
ples on the performance of LRQ. Next, to verify
the effectiveness of LRQ, we compare LRQ with
existing state-of-the-art post-training quantization
(PTQ) methods for large language models (LLMs).

We use just a single NVIDIA A100-80GB GPU
to quantize LLMs via LRQ. We randomly choose
512 calibration samples with a token length of 1024
from the training set of C4 (Raffel et al., 2020).
Unless otherwise mentioned, LRQ is applied to
all linear layers in both attention and feed-forward
modules, and the rank r in Eq. 2 is set to 2048
for large language models beyond 30B parameters
or to 1024 for smaller models so as to reduce the
number of learnable parameters by approximately
half compared to FlexRound. The exact ratio of
the number of learnable parameters in LRQ to the
number of pre-trained weights for an intermediate
Transformer block of each Llama model is given

(a) Rank Study

(b) Calibration Sample Size Study

Figure 4: Zero-shot and five-shot performances of
Llama 7B on common sense reasoning (CSR) tasks
and MMLU, where weights and activations are quan-
tized to 8-bit while the KV cache is kept in FP16.

in Appendix J. Quantized models are evaluated on
MMLU (Hendrycks et al., 2021) in the five-shot
setting or common sense reasoning benchmarks:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), ARC easy and challenge (Clark
et al., 2018), and OpenBookQA (Mihaylov et al.,
2018) in the zero-shot setting. More details are
deferred to Appendix I.

3.1 Ablation Study

Rank Study To examine the impact of the rank
r in Eq. 2 on the generalization on unseen bench-
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Table 2: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag, Wino-
Grande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization, per-tensor
asymmetric static activation quantization, and per-token asymmetric KV cache quantization. The accuracy (%) is
reported for all tasks. The number of bits used for weights, activations, and KV cache is 8-bit.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

SmoothQuant 8/8/8 67.65 73.29 67.52 62.90 51.35 37.80 37.60 56.87
FlexRound 8/8/8 72.05 77.26 71.30 65.98 54.88 39.16 39.20 59.98
LRQ (Ours) 8/8/8 67.86 76.99 71.97 67.01 54.71 40.19 40.00 59.82

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

SmoothQuant 8/8/8 63.55 75.95 70.99 66.30 53.96 40.10 40.60 58.78
FlexRound 8/8/8 66.94 79.00 75.32 69.38 58.54 42.92 40.40 61.79
LRQ (Ours) 8/8/8 68.59 78.67 75.83 70.64 58.16 43.34 39.80 62.15

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

SmoothQuant 8/8/8 76.21 76.55 79.30 74.11 55.85 46.25 45.60 64.84
FlexRound 8/8/8 76.18 80.36 79.09 75.06 60.10 46.42 43.80 65.86
LRQ (Ours) 8/8/8 77.95 81.23 79.78 74.82 57.83 46.33 43.60 65.93

Table 3: Five-shot accuracy of Llama on Massive Multi-
task Language Understanding with per-channel asym-
metric weight quantization, per-tensor asymmetric static
activation quantization, and per-token asymmetric KV
cache quantization. The accuracy (%) is reported for
four disciplines. The number of bits used for weights,
activations, and KV cache is 8-bit, the same as Table 1.

Method STEM Humanities Social
Science Other Average

Llama 7B 30.58 33.88 38.19 38.25 35.12

SmoothQuant 28.40 28.69 32.79 30.48 29.94
FlexRound 27.60 28.71 29.61 31.99 29.43
LRQ (Ours) 29.72 32.79 37.44 38.16 34.39

Llama 13B 36.35 44.97 54.14 53.15 47.02

SmoothQuant 27.24 30.12 30.58 31.31 29.87
FlexRound 33.63 42.81 48.65 49.26 43.60
LRQ (Ours) 35.16 44.55 51.74 52.04 45.83

Llama 33B 46.69 56.39 67.40 63.60 58.38

SmoothQuant 37.94 41.64 50.57 51.48 45.07
FlexRound 43.47 52.20 61.94 59.90 54.24
LRQ (Ours) 45.26 52.58 63.99 61.26 55.51

Llama 65B 51.95 61.87 73.32 67.58 63.57

SmoothQuant 44.83 50.82 63.34 57.09 53.72
FlexRound 46.32 54.60 65.06 62.49 56.94
LRQ (Ours) 50.96 61.28 71.99 66.66 62.65

marks, we compare LRQ with different r (spanning
from 64 to 8192) to FlexRound for Llama 7B as
shown in Figure 4(a). The performance of LRQ (de-
picted by the red curve) either remains relatively
stable (the left side of Figure 4(a)) or increases
gradually from 33.97% to 34.47% (the right side
of Figure 4(a)) with the rise in the rank r from 64
to 1024. As the rank r continuously increases from
2048 to 8192, however, the performance of LRQ
eventually declines to match that of FlexRound (in-
dicated by the blue curve) on both common sense
reasoning tasks and MMLU, which leads us to set
the rank r to 1024 for Llama 7B. Hence, selecting
an appropriate low rank r becomes crucial to enable
quantized LLMs via LRQ to achieve well-rounded

Table 4: Five-shot accuracy of Llama 2 on Massive
Multitask Language Understanding with per-channel
asymmetric weight quantization, per-tensor asymmetric
static activation quantization, and per-token asymmetric
KV cache quantization. The accuracy (%) is reported for
four disciplines. The number of bits used for weights,
activations, and KV cache is 8-bit, the same as Table 2.

Method STEM Humanities Social
Science Other Average

Llama 2 7B 37.04 43.38 51.84 52.44 45.96

SmoothQuant 30.42 27.95 34.29 34.27 31.33
FlexRound 33.40 36.96 43.13 46.30 39.70
LRQ (Ours) 34.82 39.91 46.47 47.62 42.04

Llama 2 13B 44.27 54.43 63.41 60.76 55.68

SmoothQuant 30.98 29.29 35.36 35.29 32.37
FlexRound 41.09 51.58 61.39 59.41 53.28
LRQ (Ours) 42.88 51.97 62.14 59.93 54.08

Llama 2 70B 57.79 65.16 80.44 74.61 69.11

SmoothQuant 47.51 53.84 68.35 63.94 57.99
FlexRound 54.27 61.11 77.45 71.31 65.57
LRQ (Ours) 54.44 62.61 76.99 71.78 66.12

performance across various tasks encompassing
common sense reasoning and MMLU benchmarks.

Calibration Sample Size Study To identify
whether the performance of LRQ improves with an
increase in the number of calibration samples, we
also conduct experiments on LRQ for Llama 7B
with various calibration sample size while fixing
the rank r to 1024. The accuracy of LRQ rises
with a larger calibration sample size, but it reaches
a saturation point when exceeding 1024 calibration
samples as depicted in Figure 4(b). Nevertheless,
LRQ can surpass FlexRound irrespective of the
calibration sample size not only on common sense
reasoning tasks but also on the MMLU benchmark,
which sheds light on the effect of low-rank ma-
trices on enhancing the generalization ability of
quantized LLMs as we elaborate on in Section 2.4.
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Table 5: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag, Wino-
Grande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization, per-token
asymmetric activation quantization, and per-token asymmetric KV cache quantization. The accuracy (%) is reported
for all tasks. Here, weights are quantized to 4-bits, while activations and KV cache utilize 8-bit quantization.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

SmoothQuant 4/8/8 43.03 63.71 41.08 54.30 35.69 27.99 32.60 42.63
FlexRound 4/8/8 71.71 76.77 72.24 66.14 53.49 40.02 40.40 60.11
LRQ (Ours) 4/8/8 73.00 76.99 71.90 65.98 54.38 39.68 41.20 60.45

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

SmoothQuant 4/8/8 61.62 56.53 37.31 51.38 31.57 24.74 30.60 41.96
FlexRound 4/8/8 69.05 78.51 75.51 69.53 58.75 43.60 41.20 62.31
LRQ (Ours) 4/8/8 71.13 78.29 75.79 68.90 57.83 43.34 41.20 62.35

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

SmoothQuant 4/8/8 50.46 71.60 48.35 55.09 44.87 32.17 37.40 48.56
FlexRound 4/8/8 77.31 80.96 79.89 75.30 60.19 48.21 43.40 66.47
LRQ (Ours) 4/8/8 77.92 81.28 80.42 75.06 60.94 48.04 42.60 66.61

Table 6: Five-shot accuracy of Llama 2 on Massive
Multitask Language Understanding with per-channel
asymmetric weight quantization, per-token asymmetric
activation quantization, and per-token asymmetric KV
cache quantization. The accuracy (%) is reported for
four disciplines. Here, weights are quantized to 4-bits,
while activations and KV cache utilize 8-bit quantiza-
tion, which is the same as Table 5.

Method STEM Humanities Social
Science Other Average

Llama 2 7B 37.04 43.38 51.84 52.44 45.96

SmoothQuant 26.77 24.87 22.81 25.85 25.05
FlexRound 37.81 42.55 50.47 50.65 45.14
LRQ (Ours) 36.88 42.53 50.80 52.22 45.36

Llama 2 13B 44.27 54.43 63.41 60.76 55.68

SmoothQuant 27.07 24.25 25.22 26.43 25.57
FlexRound 42.88 50.71 61.94 59.93 53.77
LRQ (Ours) 43.90 52.56 62.07 59.96 54.49

Llama 2 70B 57.79 65.16 80.44 74.61 69.11

SmoothQuant 27.37 24.59 27.59 25.94 26.16
FlexRound 56.26 62.89 78.78 72.92 67.26
LRQ (Ours) 55.57 64.65 78.97 72.52 67.65

3.2 Per-tensor Static Activation Quantization

As meticulously studied in Xiao et al. (2022), per-
tensor static activation quantization is hardware-
efficient and can be implemented on off-the-shelf
GPUs with FasterTransformer, the state-of-the-art
Transformer inference framework provided from
NVIDIA, to achieve up to 1.5× inference speed-up
and almost halving the memory footprint compared
to FP16 baselines. Accordingly, we employ per-
tensor asymmetric static activation quantization as
well as per-channel asymmetric weight quantiza-
tion. Moreover, we also quantize the KV cache
to 8-bit with a per-token asymmetric quantization
scheme. It is worth noting that for large batch sizes,
the KV cache can consume a much larger amount
of memory than the model size, thus causing a

bottleneck in high-throughput LLM inference. For-
tunately, the performance discrepancy before and
after per-token asymmetric KV cache quantization
is almost insignificant no matter which quantiza-
tion method is selected, as presented in Appendix
H. For this reason, we also additionally utilize per-
token asymmetric KV cache quantization. Further
experimental details are provided in Appendix I.

Table 1, 2, 3, and 4 reveal the efficacy of LRQ
on common sense reasoning tasks and MMLU. For
common sense reasoning tasks, the zero-shot accu-
racy of LRQ is almost close to that of FP16 base-
lines, being superior to that of both SmoothQuant
and FlexRound for most of the Llama and Llama 2
models. Not only that, LRQ also considerably out-
performs SmoothQuant and FlexRound on MMLU.

3.3 Per-token Activation Quantization

Although LRQ shows better performance than
SmoothQuant and FlexRound on both common
sense reasoning tasks and MMLU when employ-
ing per-tensor asymmetric static activation quan-
tization, there is still the five-shot accuracy gap
on MMLU between LRQ and FP16 baselines for
Llama 2 as in Table 4. Thus, we also conduct ex-
periments on Llama 2 with a per-token asymmetric
activation quantization scheme. More details about
experimental settings are given in Appendix I.

In Table 5 and 6, when quantizing weights to 4-
bit and both activations and KV cache to 8-bit, LRQ
can attain similar zero-shot performance to FP16
baselines on common sense reasoning benchmarks
and narrow the five-shot performance difference
between FP16 baselines and quantized models to
less than 1.5 percent on the MMLU benchmark.
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Table 7: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag, Wino-
Grande, ARC easy and challenge, and OpenBookQA) and the causal language modeling task on WikiText2 with
per-channel asymmetric weight-only quantization. The accuracy (%) and the perplexity (PPL) are reported for
common sense reasoning tasks and the causal language modeling task, respectively. The lower PPL, the better.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average WikiText2

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45 5.47

OmniQuant 3/16/16 65.72 73.99 67.65 63.61 49.71 36.26 39.80 56.58 6.57
FlexRound 3/16/16 70.15 75.73 69.92 66.46 51.43 38.31 39.20 58.74 6.34
LRQ (Ours) 3/16/16 71.31 76.44 70.35 64.88 52.23 39.08 39.20 59.07 6.48
OmniQuant 4/16/16 68.99 77.48 71.26 67.01 53.66 39.08 40.00 59.64 5.74
FlexRound 4/16/16 73.24 76.55 72.09 67.09 52.82 39.51 40.80 60.30 5.83
LRQ (Ours) 4/16/16 71.80 76.88 72.40 67.88 53.24 40.27 40.20 60.38 5.75

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65 4.88

OmniQuant 3/16/16 69.02 77.69 72.77 65.90 54.00 42.75 38.80 60.13 5.58
FlexRound 3/16/16 66.02 78.29 74.41 67.32 57.15 42.15 40.60 60.85 5.59
LRQ (Ours) 3/16/16 67.49 78.45 74.25 69.30 56.23 42.58 41.60 61.41 5.57
OmniQuant 4/16/16 65.17 78.94 75.39 67.80 56.44 42.75 41.60 61.16 5.02
FlexRound 4/16/16 69.94 79.00 75.93 69.06 58.96 43.26 40.40 62.36 5.01
LRQ (Ours) 4/16/16 70.49 78.78 76.13 69.93 59.85 43.52 41.20 62.84 5.02

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77 3.31

OmniQuant 3/16/16 66.54 80.74 78.13 73.48 57.20 45.90 42.60 63.51 3.93
FlexRound 3/16/16 75.02 80.25 79.02 70.24 58.63 46.93 42.20 64.61 3.92
LRQ (Ours) 3/16/16 78.13 80.47 79.54 75.37 59.55 46.84 43.60 66.21 3.89
OmniQuant 4/16/16 77.13 80.96 80.53 75.85 59.76 46.76 42.40 66.20 3.47
FlexRound 4/16/16 78.38 80.58 80.49 75.85 59.51 47.87 43.60 66.61 3.45
LRQ (Ours) 4/16/16 79.72 80.36 80.58 77.03 59.72 47.44 43.80 66.95 3.47

Table 8: Average zero-shot accuracy and perplexity of
Llama 3 8B on common sense reasoning tasks (PIQA,
HellaSwag, WinoGrande, ARC easy and challenge) and
WikiText2 respectively, using 4-bit per-channel asym-
metric weight-only quantization. The lower PPL, the
better. More details are given in Table 11. The results of
GPTQ, AWQ, and QuIP come from Huang et al. (2024).

Method # Bits (W/A/KV) Average WikiText2

Llama 3 8B 16/16/16 68.6 6.1

GPTQ 4/16/16 64.8 7.0
AWQ 4/16/16 67.0 7.1
QuIP 4/16/16 67.1 6.5
FlexRound 4/16/16 67.8 6.9
LRQ (Ours) 4/16/16 68.0 6.9

3.4 Per-channel Weight-only Quantization

As LRQ is designed as a post-training weight quan-
tization technique for LLMs, we also run exper-
iments on weight-only quantization for Llama 2
and Llama 3 8B (Dubey et al., 2024) on common
sense reasoning tasks and WikiText2 (Merity et al.,
2016). In Table 7 and 8, we use per-channel weight-
only quantization instead of group-wise weight-
only quantization. Table 7 and 8 show that the
average zero-shot accuracy of LRQ is consistently
higher than that of all PTQ methods on common
sense reasoning tasks. Specifically, in Table 7,
LRQ can perform closely to FP16 baselines on
common sense reasoning tasks even with 3-bit per-
channel weight-only quantization. Despite the fact
that Llama 3 is hard to quantize, Table 8 exhibits
that LRQ attains the smallest accuracy drop (less

Figure 5: Average zero-shot accuracy over latency for
Llama 2 7B, 13B, and 70B, respectively. The blue ex-
presses FP16 baselines while the red represents 4-bit
quantized models via LRQ. The size of a circle indicates
the model size. More details are given in Appendix G.

than 0.7 percent compared to the FP16 baseline) on
common sense reasoning tasks. In addition, Figure
5 displays compression and acceleration after quan-
tizing Llama 2 to 4-bit via LRQ, showing that LRQ
can perform comparably to FP16 baselines while
reducing both latency and model size noticeably.

4 Conclusion

We propose a simple yet effective post-training
weight quantization approach for LLMs, LRQ that
learns low-rank weight-scaling matrices for block-
by-block reconstructing the outputs of an interme-
diate Transformer block. LRQ can decrease the
number of learnable parameters effectively while
allowing for scaling weights individually, thereby
enhancing the generalization of quantized LLMs.
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Limitations

To push the limit of post-training weight-activation
quantization, two research directions emerge: (i) 4-
bit weight and 8-bit activation quantization, and (ii)
INT4 weight-activation quantization. As explained
in Appendix A, Lee et al. (2023a) attempted to
quantize LLMs with 4-bit weight and 8-bit activa-
tion quantization, whereas Wei et al. (2023) and
Shao et al. (2024) strived to quantize LLMs with
INT6 and even INT4 weight-activation quantiza-
tion. In this paper, we only deal with the former
quantization scheme, 4-bit weight and 8-bit activa-
tion quantization.

Like Wei et al. (2023) and Shao et al. (2024), we
could also focus on INT4 weight-activation quanti-
zation rather than 4-bit weight and 8-bit activation
quantization in Section 3.3. However, Liu et al.
(2023a), an earlier LLM quantization work than
Wei et al. (2023) and Shao et al. (2024), already
exhibited the non-marginal accuracy degradation
of 4-bit weight and 8-bit activation quantization
despite the fact that Liu et al. (2023a) exploited
quantization-aware training, not post-training quan-
tization. Furthermore, in terms of serving through-
put, Lin et al. (2024) shows the superiority of 4-
bit weight and 8-bit activation quantization over
INT4 weight-activation quantization as well as
INT8 weight-activation quantization. For these
reasons, we prioritize 4-bit weight and 8-bit acti-
vation quantization over INT4 weight-activation
quantization in this paper.
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A Related Work

Quantization works can be generally categorized into quantization-aware training (QAT) and post-training
quantization (PTQ). As QAT can maintain the performance of FP32/FP16 baselines, QAT has been applied
to computer vision models (Jung et al., 2019; Esser et al., 2020; Lee et al., 2021). Notwithstanding, there
exist many challenges associated with applying QAT to large language models (LLMs) due to the sheer
scale of pre-training data and a huge amount of computational resources required for training on the
whole pre-training dataset. Although Liu et al. (2023a) presented the possibility of applying QAT to
LLMs, unfortunately, they did not perform experiments on Llama 65B, the largest and best performing
model among the Llama models, in spite of using a single 8-GPU node. Kim et al. (2023) introduced
Parameter-Efficient and Quantization-aware Adaptation (PEQA) that fine-tunes only quantization step
sizes. While PEQA consumes less computational resources and can perform better than QAT, it still
requires a single 8-GPU node to quantize Llama 65B.

As Frantar et al. (2023) demonstrated the application of PTQ to LLMs only with a single GPU, many
researchers have recently paid attention to PTQ for LLMs. LLM PTQ can be classified into two categories:
LLM weight-only quantization (Frantar et al., 2023; Lin et al., 2023; Chee et al., 2023) and LLM weight-
activation quantization (Dettmers et al., 2022; Yao et al., 2022; Xiao et al., 2022; Lee et al., 2023b; Wei
et al., 2023; Shao et al., 2024). For the former quantization, Frantar et al. (2023); Chee et al. (2023)
quantized the weights of LLMs into low-bit integers based on layer-wise reconstruction, whereas Lin et al.
(2023) did by not counting on reconstruction but per-channel scaling in consideration of both weight and
activation magnitudes. Despite the fact that all these studies exhibited decent quantization performance,
the main benefit of weight-only quantization does not align with serving LLMs with high throughput as
delineated in Section 1. In this light, we concentrates on weight-activation quantization.

When it comes to weight-activation quantization, Yao et al. (2022) presented ZeroQuant with a 8-bit
group-wise weight quantization scheme and a 8-bit per-token activation quantization scheme based on
layer-wise knowledge distillation, and Dettmers et al. (2022) proposed LLM.int8() with a 8-bit per-
channel weight quantization scheme and a 8-bit per-token activation quantization scheme while keeping
activation outliers in FP16. As discussed in Xiao et al. (2022), however, ZeroQuant incurs severe accuracy
degradation for an open-source LLM, and the inference latency of LLM.int8() can be higher than that of
the FP16 baseline. To deal with both issues, Xiao et al. (2022) devised SmoothQuant that can preserve the
accuracy of OPT (Zhang et al., 2022) by easing the difficulty of activation quantization and accelerate LLM
inference by up to 1.5 times. Yet, SmoothQuant suffers from non-negligible performance degradation for
other open-source models such as Llama and Llama 2 with a 8-bit per-tensor static activation quantization
scheme as illustrated in Figure 1. FlexRound that Lee et al. (2023b) created showed the experimental
results of Llama up to 33B with a 8-bit per-channel weight quantization scheme and a 8-bit per-tensor
static activation quantization scheme, but FlexRound incurs considerable performance degradation on
the massive multitask language understanding (MMLU) benchmark as described in Figure 1(b). Beyond
INT8 weight-activation quantization, Lee et al. (2023a) attempted to quantize LLMs with 4-bit weight
and 8-bit activation quantization, whereas Wei et al. (2023) and Shao et al. (2024) strived to quantize
LLMs with INT6 and even INT4 weight-activation quantization. However, in terms of serving throughput,
Lin et al. (2024) showed the superiority of 4-bit weight and 8-bit activation quantization over INT4
weight-activation quantization as well as INT8 weight-activation quantization.
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B Effect of r2 and c2 in LRQ

To show the effect of r2 and c2 in Eq. 2, we compare FlexRound, FlexRound with S2 = L2U2, and LRQ
for Llama 7B and 13B.

Table 9: Zero-shot performance of FlexRound, FlexRound with S2 = L2U2, and LRQ on common sense reasoning
tasks (BoolQ, PIQA, HellaSwag, WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel
asymmetric weight quantization, per-tensor asymmetric static activation quantization, and per-token asymmetric
KV cache quantization (if applied). The number of bits used for weights, activations, and KV cache is expressed as
W/A/KV.

Method # Bits (W/A/KV) Llama 7B Llama 13B

FlexRound 8/8/16 60.53 62.40
FlexRound with S2 = L2U2 8/8/16 60.69 62.62
LRQ (Ours) 8/8/16 60.71 62.92
FlexRound 8/8/8 60.35 62.37
FlexRound with S2 = L2U2 8/8/8 60.49 62.62
LRQ (Ours) 8/8/8 60.63 62.76

Table 10: Five-shot performance of FlexRound, FlexRound with S2 = L2U2, and LRQ on Massive Multitask
Language Understanding with per-channel asymmetric weight quantization, per-tensor asymmetric static activation
quantization, and per-token asymmetric KV cache quantization (if applied). The number of bits used for weights,
activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) Llama 7B Llama 13B

FlexRound 8/8/16 30.20 43.82
FlexRound with S2 = L2U2 8/8/16 33.86 45.48
LRQ (Ours) 8/8/16 34.47 45.83
FlexRound 8/8/8 29.43 43.60
FlexRound with S2 = L2U2 8/8/8 33.96 45.21
LRQ (Ours) 8/8/8 34.39 45.83

As evident from the tables above, FlexRound with S2 = L2U2 surpasses the performance of FlexRound
but falls short of LRQ, which implies that the effect of r2 and c2 cannot be ignored. It is noteworthy that
the five-shot accuracy on MMLU can witness an increase ranging from 1.5% to 4% by simply substituting
S2 with L2U2, which corroborates the significance of leveraging the parameter-efficiency inherent in
low-rank weight-scaling matrices.
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C Figures of Accumulated RMSE on Assorted Samples

(a) Calibration sample (b) Unseen sample

(c) Calibration sample (d) Unseen sample

(e) Calibration sample (f) Unseen sample

Figure 6: Accumulated root mean square error (RMSE) between WX and Ŵ X̃ for RTN, FlexRound, and LRQ
on (a), (c), (e) three different calibration samples from the C4 dataset and (b), (d), (f) three different unseen samples
from common sense reasoning and MMLU benchmarks, ranging from the first Transformer block to the last
Transformer block of Llama 7B. Here, weights and activations are quantized to 8-bit with per-channel asymmetric
quantization and per-tensor asymmetric static quantization respectively, while the KV cache remains in FP16. Note
that RMSE tends to rise in line with the block index due to the presence of X̃ that accumulates quantization error
resulting from previous quantized Transformer blocks.
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D Sensitivity of Accumulated RMSE to the Number of Calibration Samples

(a) Calibration sample (b) Unseen sample

Figure 7: Accumulated root mean square error (RMSE) between WX and Ŵ X̃ for FlexRound and LRQ on (a)
a calibration sample from the C4 dataset and (b) an unseen sample from common sense reasoning and MMLU
benchmarks at the last Transformer block of Llama 7B. Here, weights and activations are quantized to 8-bit with
per-channel asymmetric quantization and per-tensor asymmetric static quantization, respectively.

To figure out the sensitivity of accumulated root mean square error (RMSE) to the number of calibration
samples used for the block-wise reconstruction, we compare accumulated RMSE between WX and Ŵ X̃
for FlexRound and LRQ at the last Transformer block of Llama 7B with the number of calibration samples
varying from 64 to 512. As depicted in Figure 8(a), the accumulated RMSE of the last Transformer
block on a calibration sample diminishes with a reduction in the number of calibration samples. This
phenomenon is because FlexRound and LRQ are more likely to be fitted to calibration samples as the
number of calibration samples becomes smaller. Conversely, Figure 8(b) reveals that the accumulated
RMSE of the last Transformer block on each unseen sample from common sense reasoning and MMLU
decreases with a larger number of calibration samples.

Notably, the pattern elucidated in Section 2.4 persists consistently across varying calibration sample
sizes from 64 to 512. In other words, for every calibration sample size spanning from 64 to 512, LRQ
consistently attains nearly identical accumulated RMSE to FlexRound for a calibration sample from
the C4 dataset. Concurrently, the accumulated RMSE of LRQ remains markedly smaller than that of
FlexRound for an unseen sample from common sense reasoning and MMLU. This observation provides
additional support for the insight presented in Figure 3, as discussed in Section 2.4.
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E Detailed Experimental Results for Llama 3 8B and Mistral 7B

Table 11: Zero-shot performance of Llama 3 8B on common sense reasoning tasks (PIQA, HellaSwag, WinoGrande,
ARC easy and challenge) and the causal language modeling task on WikiText2 with 4-bit per-channel asymmetric
weight-only quantization. The accuracy (%) and the perplexity (PPL) are reported for common sense reasoning
tasks and the causal language modeling task, respectively. The lower PPL, the better. The experimental results of
GPTQ, AWQ, and QuIP originate from Huang et al. (2024).

Method # Bits (W/A/KV) PIQA HellaSwag WinoGrande ARC-e ARC-c Average WikiText2

Llama 3 8B 16/16/16 79.9 60.2 72.8 80.1 50.4 68.6 6.1

GPTQ 4/16/16 76.8 57.4 72.8 74.3 42.4 64.8 7.0
AWQ 4/16/16 78.3 58.6 72.5 77.6 48.3 67.0 7.1
QuIP 4/16/16 78.2 58.6 73.2 78.2 47.4 67.1 6.5
FlexRound 4/16/16 79.3 59.2 73.4 79.3 47.7 67.8 6.9
LRQ (Ours) 4/16/16 79.2 59.2 74.4 79.3 47.8 68.0 6.9

Table 12: Zero-shot performance of Mistral 7B on common sense reasoning tasks (BoolQ, PIQA, HellaSwag,
WinoGrande, ARC easy and challenge, and OpenBookQA) and the causal language modeling task on WikiText2
with per-channel asymmetric weight-only quantization. The accuracy (%) and the perplexity (PPL) are reported for
common sense reasoning tasks and the causal language modeling task, respectively. The lower PPL, the better.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average WikiText2

Mistral 7B 16/16/16 83.82 82.15 81.07 73.95 79.50 54.01 43.80 71.19 5.25

FlexRound 3/16/16 79.72 80.58 77.27 66.61 75.59 46.84 39.40 66.57 6.60
LRQ (Ours) 3/16/16 80.95 80.74 77.50 68.27 75.76 48.81 40.20 67.46 6.13
FlexRound 4/16/16 82.91 81.34 79.78 72.45 78.66 51.11 44.40 70.09 5.48
LRQ (Ours) 4/16/16 84.01 81.66 79.79 73.09 78.58 51.71 45.00 70.55 5.45

To further justify the effectiveness of LRQ for other model families than Llama, we conduct additional
experiments for Mistral 7B v0.1 (Jiang et al., 2023) on common sense reasoning tasks and WikiText2 in
a low-bit per-channel weight-only quantization scheme. In Table 12, LRQ outperforms FlexRound in
both 3-bit and 4-bit per-channel asymmetric weight-only quantization schemes. In particular, in a 3-bit
per-channel asymmetric weight-only quantization scheme, LRQ surpasses FlexRound by about 0.5 PPL
on WikiText2 and by almost 0.9 percent on common sense reasoning tasks.
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F Comparison of Computation Cost to Complete the Quantization Process

For a comparative analysis of SmoothQuant, FlexRound, and LRQ in terms of computational cost to
complete the quantization process, as delineated in Table 13, we measure the execution time and peak
GPU memory usage while quantizing Llama 7B with 8-bit per-channel asymmetric weight quantization
and 8-bit per-tensor asymmetric static activation quantization using 512 calibration samples and a batch
size of 2. Since both FlexRound and LRQ involve gradient-based optimization in a block-wise manner
while SmoothQuant is a learning-free quantization method, FlexRound and LRQ naturally spend more
time and GPU memory quantizing LLMs than SmoothQuant. In Table 13, LRQ’s extended processing
time compared to FlexRound is attributed to the multiplication involving L2 and U2 in Eq. 2. Despite the
slightly longer runtime, LRQ demonstrates an advantage in peak GPU memory usage, utilizing 23.5 GB
compared to FlexRound’s 25.4 GB. This efficiency is attributed to LRQ’s fewer learnable parameters in
comparison to FlexRound.

Table 13: Execution time and peak GPU memory usage while quantizing Llama 7B with 8-bit per-channel
asymmetric weight quantization and 8-bit per-tensor asymmetric static activation quantization using 512 calibration
samples and a batch size of 2

Method Execution time (A) Peak GPU memory usage

SmoothQuant 10 minutes 13.5 GB
FlexRound 5 hours 7 minutes 25.4 GB
LRQ (Ours) 5 hours 22 minutes 23.5 GB

Additionally, we also measure the execution time and peak GPU memory usage while quantizing Llama
2 7B with 4-bit per-channel asymmetric weight-only quantization using 512 calibration samples and a
batch size of 2. Similar to Table 13, Table 14 shows that LRQ consumes more processing time but less
peak GPU memory usage than FlexRound.

Table 14: Execution time and peak GPU memory usage while quantizing Llama 2 7B with 4-bit per-channel
asymmetric weight-only quantization using 512 calibration samples and a batch size of 2

Method Execution time (A) Peak GPU memory usage

FlexRound 2 hours 50 minutes 23.6 GB
LRQ (Ours) 3 hours 3 minutes 21.3 GB
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G Compression and Acceleration Effects after LRQ at Inference Time

Since only a quantization step size (s1) and an integer matrix (W̃ ) are required during inference, once
we obtain an integer matrix by setting W̃ to

⌊
W

s1⊙exp(L2U2+r2+c2)

⌉
after L2, U2, r2, and c2 are learned,

there is no need to recompute the multiplication involving L2 and U2 at test time. In other words, for
inference, like other uniform quantization methods including GPTQ, SmoothQuant, and AWQ, LRQ also
requires only a quantization step size s1 and an integer matrix W̃ without the presence of L2, U2, r2,
and c2. Therefore, packing/unpacking techniques and acceleration kernels (Frantar et al., 2023; Lin et al.,
2023; Park et al., 2024) can be applied to LRQ without additional effort.

Figure 5 and Table 15 exhibit compression and acceleration effects after LRQ with 3-bit and 4-bit per-
channel weight-only uniform quantization. Regarding the compression effect, 3-bit uniform quantization
shows x4.55 compression ratio, and 4-bit uniform quantization shows x3.58 compression ratio on the
model size for Llama 2 7B. To verify the acceleration effect, we measure the matrix multiplication
latency of Llama 2 FFN layers across 7B to 70B on a single token generation. We utilize cuBLAS for
FP16 baselines, while employing the LUT-GEMM kernel (Park et al., 2024) for per-channel weight-only
uniformly quantized models. As shown in Table 15, for Llama 2 70B, the 4-bit per-channel weight-only
quantized model shows x2.33 faster latency, and the 3-bit per-channel weight-only quantized model shows
x2.77 faster latency than the FP16 cuBLAS baseline.

Table 15: Average zero-shot performance on common sense reasoning (CSR) tasks, model size, and latency when
quantizing Llama 2 7B, 13B, and 70B with 3-bit and 4-bit per-channel weight-only uniform quantization. Matrix
multiplication latency of each model’s FFN layers is measured using the LUT-GEMM kernel (Park et al., 2024).

Model Method CSR Avg. Model Size [GB] Latency [ms]

FP16 60.45 13.48 0.05987
Llama 2 7B LRQ (3-bit) 59.07 2.95 0.03750

LRQ (4-bit) 60.38 3.76 0.04462

FP16 62.65 26.03 0.08843
Llama 2 13B LRQ (3-bit) 61.41 5.41 0.04789

LRQ (4-bit) 62.84 7.00 0.05621

FP16 66.77 137.95 0.29088
Llama 2 70B LRQ (3-bit) 66.21 26.72 0.10482

LRQ (4-bit) 66.95 35.28 0.12479
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H Comparison of Experimental Results before and after Per-token Asymmetric KV
Cache Quantization

Table 16, 17, 18, 20, 22, and 24 show the comparison of experimental results before and after per-token
asymmetric KV cache quantization. It can be easily seen that the performance difference before and
after per-token asymmetric KV cache quantization is nearly inconsiderable no matter which quantization
technique is chosen, as mentioned in Section 3.2. Furthermore, even without per-token asymmetric KV
cache quantization, LRQ still outperforms prior state-of-the-art LLM post-training weight-activation
quantization methods in most cases.

Table 16: Zero-shot performance of Llama on common sense reasoning tasks (BoolQ, PIQA, HellaSwag, Wino-
Grande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization, per-tensor
asymmetric static activation quantization, and per-token asymmetric KV cache quantization (if applied). Please
refer to Figure 8. The accuracy (%) is reported for common sense reasoning tasks. The number of bits used for
weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 7B 16/16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 60.97

RTN 8/8/16 71.56 73.72 65.86 63.93 49.49 36.43 38.80 57.11
SmoothQuant 8/8/16 69.63 73.12 68.88 65.43 48.70 38.57 38.00 57.48
FlexRound 8/8/16 73.76 76.66 71.75 67.01 52.31 40.02 42.20 60.53
LRQ (Ours) 8/8/16 73.03 77.64 72.10 66.77 52.95 40.87 41.60 60.71
RTN 8/8/8 69.76 73.72 65.95 62.75 48.91 37.12 37.60 56.54
SmoothQuant 8/8/8 69.42 72.63 69.07 64.72 48.61 37.12 39.20 57.25
FlexRound 8/8/8 72.54 76.50 71.88 66.77 53.03 39.76 42.00 60.35
LRQ (Ours) 8/8/8 72.84 77.37 72.04 67.01 53.03 40.53 41.60 60.63

Llama 13B 16/16/16 68.53 79.11 76.23 70.01 59.89 44.54 42.20 62.93

RTN 8/8/16 66.06 71.82 65.70 62.98 50.97 35.58 36.60 55.67
SmoothQuant 8/8/16 68.29 75.30 71.82 68.03 55.18 40.19 41.20 60.00
FlexRound 8/8/16 68.59 78.67 75.21 70.64 58.88 43.60 41.20 62.40
LRQ (Ours) 8/8/16 68.99 79.22 75.61 71.19 58.92 43.52 43.00 62.92
RTN 8/8/8 65.87 72.25 62.52 62.19 51.81 35.41 38.40 55.49
SmoothQuant 8/8/8 67.34 75.19 71.78 69.06 54.92 40.44 38.80 59.65
FlexRound 8/8/8 68.78 78.51 75.23 70.56 58.46 44.03 41.00 62.37
LRQ (Ours) 8/8/8 68.84 78.78 75.56 70.80 59.13 44.62 41.60 62.76

Llama 33B 16/16/16 68.38 80.09 79.21 72.93 58.92 45.48 42.00 63.86

RTN 8/8/16 69.02 76.01 69.11 66.54 57.07 41.64 41.40 60.11
SmoothQuant 8/8/16 71.04 75.24 71.01 69.38 54.38 43.34 40.60 60.71
FlexRound 8/8/16 69.08 79.16 77.43 72.53 56.61 44.97 44.00 63.40
LRQ (Ours) 8/8/16 68.44 80.03 78.37 74.19 58.16 46.33 42.20 63.96
RTN 8/8/8 68.81 76.55 68.76 66.06 56.48 42.49 42.40 60.22
SmoothQuant 8/8/8 71.31 75.30 71.29 68.98 53.66 43.26 41.00 60.69
FlexRound 8/8/8 69.05 79.49 77.49 70.88 56.86 43.60 42.00 62.77
LRQ (Ours) 8/8/8 68.84 79.98 78.52 73.72 58.21 45.73 43.00 64.00

Llama 65B 16/16/16 82.32 80.85 80.71 77.19 58.71 46.33 44.60 67.24

RTN 8/8/16 79.48 77.04 74.15 71.19 52.48 43.52 43.80 63.09
SmoothQuant 8/8/16 78.72 78.84 79.12 74.03 56.23 45.22 43.20 65.05
FlexRound 8/8/16 81.31 79.33 79.16 73.56 57.83 46.08 44.60 65.98
LRQ (Ours) 8/8/16 82.45 80.69 79.92 76.64 58.92 46.67 45.60 67.27
RTN 8/8/8 79.51 75.79 74.13 71.35 51.85 44.03 43.60 62.89
SmoothQuant 8/8/8 78.78 79.54 79.11 73.32 56.23 45.90 43.80 65.24
FlexRound 8/8/8 80.46 79.38 79.23 74.98 57.20 46.42 45.00 66.10
LRQ (Ours) 8/8/8 82.35 81.12 79.96 75.61 58.96 46.59 45.40 67.14
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Table 17: Five-shot performance of Llama on Massive Multitask Language Understanding with per-channel
asymmetric weight quantization, per-tensor asymmetric static activation quantization, and per-token asymmetric KV
cache quantization (if applied). Please refer to Figure 8. The accuracy (%) is reported for four groups of disciplines
(STEM, Humanities, Social Science, and Other). The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 7B 16/16/16 30.58 33.88 38.19 38.25 35.12

RTN 8/8/16 27.40 27.16 29.18 30.38 28.40
SmoothQuant 8/8/16 28.36 27.89 32.63 30.41 29.61
FlexRound 8/8/16 28.30 29.20 30.13 33.47 30.20
LRQ (Ours) 8/8/16 29.69 32.48 37.63 38.80 34.47
RTN 8/8/8 27.04 27.23 29.28 30.38 28.36
SmoothQuant 8/8/8 28.40 28.69 32.79 30.48 29.94
FlexRound 8/8/8 27.60 28.71 29.61 31.99 29.43
LRQ (Ours) 8/8/8 29.72 32.79 37.44 38.16 34.39

Llama 13B 16/16/16 36.35 44.97 54.14 53.15 47.02

RTN 8/8/16 26.61 25.53 27.40 24.52 25.94
SmoothQuant 8/8/16 27.80 29.31 31.04 30.88 29.73
FlexRound 8/8/16 35.06 41.68 49.37 49.81 43.82
LRQ (Ours) 8/8/16 34.72 44.65 51.71 52.28 45.83
RTN 8/8/8 26.38 25.33 27.95 24.83 26.01
SmoothQuant 8/8/8 27.24 30.12 30.58 31.31 29.87
FlexRound 8/8/8 33.63 42.81 48.65 49.26 43.60
LRQ (Ours) 8/8/8 35.16 44.55 51.74 52.04 45.83

Llama 33B 16/16/16 46.69 56.39 67.40 63.60 58.38

RTN 8/8/16 32.14 32.22 37.11 38.25 34.67
SmoothQuant 8/8/16 38.17 41.45 50.37 51.08 44.92
FlexRound 8/8/16 43.94 52.31 62.14 60.21 54.49
LRQ (Ours) 8/8/16 45.13 52.99 64.12 61.88 55.79
RTN 8/8/8 32.47 32.37 38.35 40.59 35.60
SmoothQuant 8/8/8 37.94 41.64 50.57 51.48 45.07
FlexRound 8/8/8 43.47 52.20 61.94 59.90 54.24
LRQ (Ours) 8/8/8 45.26 52.58 63.99 61.26 55.51

Llama 65B 16/16/16 51.95 61.87 73.32 67.58 63.57

RTN 8/8/16 42.25 46.74 61.13 54.57 50.73
SmoothQuant 8/8/16 44.70 50.54 63.99 57.28 53.79
FlexRound 8/8/16 46.52 54.30 66.36 60.83 56.78
LRQ (Ours) 8/8/16 50.89 61.15 72.64 66.04 62.59
RTN 8/8/8 41.22 47.23 61.39 54.69 50.76
SmoothQuant 8/8/8 44.83 50.82 63.34 57.09 53.72
FlexRound 8/8/8 46.32 54.60 65.06 62.49 56.94
LRQ (Ours) 8/8/8 50.96 61.28 71.99 66.66 62.65
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Table 18: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag,
WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization,
per-tensor asymmetric static activation quantization, and per-token asymmetric KV cache quantization (if applied).
Please refer to Figure 8. The accuracy (%) is reported for common sense reasoning tasks. The number of bits used
for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/16 60.86 67.19 57.53 59.43 45.50 32.00 34.20 50.96
SmoothQuant 8/8/16 67.09 72.03 67.34 65.43 50.88 37.12 38.20 56.87
FlexRound 8/8/16 71.99 77.04 71.23 65.11 54.42 40.44 38.80 59.86
LRQ (Ours) 8/8/16 67.49 77.58 72.19 67.96 54.76 39.59 40.40 60.00
RTN 8/8/8 60.58 67.08 57.66 60.54 45.83 31.57 34.40 51.09
SmoothQuant 8/8/8 67.65 73.29 67.52 62.90 51.35 37.80 37.60 56.87
FlexRound 8/8/8 72.05 77.26 71.30 65.98 54.88 39.16 39.20 59.98
LRQ (Ours) 8/8/8 67.86 76.99 71.97 67.01 54.71 40.19 40.00 59.82

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/16 63.12 73.99 62.60 58.80 52.15 36.26 36.40 54.76
SmoothQuant 8/8/16 64.19 76.28 70.75 66.06 54.42 40.78 39.60 58.87
FlexRound 8/8/16 66.70 78.56 75.63 69.06 58.33 43.26 40.00 61.65
LRQ (Ours) 8/8/16 68.65 78.45 75.79 71.74 59.34 43.94 41.40 62.76
RTN 8/8/8 62.97 73.72 62.60 57.77 52.86 36.77 37.00 54.81
SmoothQuant 8/8/8 63.55 75.95 70.99 66.30 53.96 40.10 40.60 58.78
FlexRound 8/8/8 66.94 79.00 75.32 69.38 58.54 42.92 40.40 61.79
LRQ (Ours) 8/8/8 68.59 78.67 75.83 70.64 58.16 43.34 39.80 62.15

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/16 73.27 78.18 76.89 69.69 57.91 45.90 41.60 63.35
SmoothQuant 8/8/16 76.82 76.82 79.35 72.77 56.06 45.39 43.20 64.34
FlexRound 8/8/16 75.81 80.25 79.03 74.59 59.43 46.42 43.40 65.56
LRQ (Ours) 8/8/16 77.71 80.69 79.83 74.11 57.91 45.99 43.60 65.69
RTN 8/8/8 72.39 78.51 76.49 69.61 57.74 44.62 40.40 62.82
SmoothQuant 8/8/8 76.21 76.55 79.30 74.11 55.85 46.25 45.60 64.84
FlexRound 8/8/8 76.18 80.36 79.09 75.06 60.10 46.42 43.80 65.86
LRQ (Ours) 8/8/8 77.95 81.23 79.78 74.82 57.83 46.33 43.60 65.93

Table 19: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag,
WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization,
per-tensor asymmetric static activation quantization, and per-token asymmetric KV cache quantization (if applied).
Please refer to Figure 8. The accuracy (%) is reported for common sense reasoning tasks. The number of bits used
for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/8 60.58 67.08 57.66 60.54 45.83 31.57 34.40 51.09
SmoothQuant 8/8/8 67.65 73.29 67.52 62.90 51.35 37.80 37.60 56.87
FlexRound 8/8/8 72.05 77.26 71.30 65.98 54.88 39.16 39.20 59.98
LRQ (Ours) 8/8/8 67.86 76.99 71.97 67.01 54.71 40.19 40.00 59.82

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/8 62.97 73.72 62.60 57.77 52.86 36.77 37.00 54.81
SmoothQuant 8/8/8 63.55 75.95 70.99 66.30 53.96 40.10 40.60 58.78
FlexRound 8/8/8 66.94 79.00 75.32 69.38 58.54 42.92 40.40 61.79
LRQ (Ours) 8/8/8 68.59 78.67 75.83 70.64 58.16 43.34 39.80 62.15

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/8 72.39 78.51 76.49 69.61 57.74 44.62 40.40 62.82
SmoothQuant 8/8/8 76.21 76.55 79.30 74.11 55.85 46.25 45.60 64.84
FlexRound 8/8/8 76.18 80.36 79.09 75.06 60.10 46.42 43.80 65.86
LRQ (Ours) 8/8/8 77.95 81.23 79.78 74.82 57.83 46.33 43.60 65.93
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Table 20: Five-shot performance of Llama 2 on Massive Multitask Language Understanding with per-channel
asymmetric weight quantization, per-tensor asymmetric static activation quantization, and per-token asymmetric KV
cache quantization (if applied). Please refer to Figure 8. The accuracy (%) is reported for four groups of disciplines
(STEM, Humanities, Social Science, and Other). The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/16 28.26 24.65 31.39 24.68 26.91
SmoothQuant 8/8/16 28.99 29.14 35.33 34.98 31.81
FlexRound 8/8/16 32.70 38.38 43.58 45.77 40.01
LRQ (Ours) 8/8/16 34.36 40.02 46.64 47.32 41.94
RTN 8/8/8 29.66 24.06 30.45 24.49 26.76
SmoothQuant 8/8/8 30.42 27.95 34.29 34.27 31.33
FlexRound 8/8/8 33.40 36.96 43.13 46.30 39.70
LRQ (Ours) 8/8/8 34.82 39.91 46.47 47.62 42.04

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/16 29.16 24.38 30.52 29.49 27.93
SmoothQuant 8/8/16 28.76 29.46 34.68 35.44 31.83
FlexRound 8/8/16 41.95 51.20 60.90 59.65 53.29
LRQ (Ours) 8/8/16 42.78 52.65 61.85 59.25 54.07
RTN 8/8/8 29.06 24.23 29.93 29.03 27.62
SmoothQuant 8/8/8 30.98 29.29 35.36 35.29 32.37
FlexRound 8/8/8 41.09 51.58 61.39 59.41 53.28
LRQ (Ours) 8/8/8 42.88 51.97 62.14 59.93 54.08

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/16 45.99 52.69 65.52 59.16 55.58
SmoothQuant 8/8/16 48.11 54.05 68.12 63.23 57.98
FlexRound 8/8/16 53.64 61.36 77.35 71.90 65.64
LRQ (Ours) 8/8/16 54.41 62.78 77.48 71.56 66.23
RTN 8/8/8 46.82 53.37 66.23 58.51 55.97
SmoothQuant 8/8/8 47.51 53.84 68.35 63.94 57.99
FlexRound 8/8/8 54.27 61.11 77.45 71.31 65.57
LRQ (Ours) 8/8/8 54.44 62.61 76.99 71.78 66.12

Table 21: Five-shot performance of Llama 2 on Massive Multitask Language Understanding with per-channel
asymmetric weight quantization, per-tensor asymmetric static activation quantization, and per-token asymmetric KV
cache quantization (if applied). Please refer to Figure 8. The accuracy (%) is reported for four groups of disciplines
(STEM, Humanities, Social Science, and Other). The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/8 29.66 24.06 30.45 24.49 26.76
SmoothQuant 8/8/8 30.42 27.95 34.29 34.27 31.33
FlexRound 8/8/8 33.40 36.96 43.13 46.30 39.70
LRQ (Ours) 8/8/8 34.82 39.91 46.47 47.62 42.04

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/8 29.06 24.23 29.93 29.03 27.62
SmoothQuant 8/8/8 30.98 29.29 35.36 35.29 32.37
FlexRound 8/8/8 41.09 51.58 61.39 59.41 53.28
LRQ (Ours) 8/8/8 42.88 51.97 62.14 59.93 54.08

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/8 46.82 53.37 66.23 58.51 55.97
SmoothQuant 8/8/8 47.51 53.84 68.35 63.94 57.99
FlexRound 8/8/8 54.27 61.11 77.45 71.31 65.57
LRQ (Ours) 8/8/8 54.44 62.61 76.99 71.78 66.12
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Table 22: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag,
WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization,
per-token asymmetric activation quantization, and per-token asymmetric KV cache quantization (if applied). Please
refer to Figure 9. The accuracy (%) is reported for common sense reasoning tasks. The number of bits used for
weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 8/8/16 69.54 76.93 72.21 67.17 53.24 41.04 40.60 60.10
SmoothQuant 8/8/16 70.73 77.04 72.67 66.77 53.37 40.78 41.60 60.42
FlexRound 8/8/16 72.26 76.88 72.57 66.93 53.70 40.36 40.40 60.44
LRQ (Ours) 8/8/16 72.54 77.15 72.58 67.09 53.70 41.04 40.40 60.64
RTN 8/8/8 69.60 77.20 72.26 67.09 53.62 39.85 41.00 60.09
SmoothQuant 8/8/8 70.61 77.42 72.62 66.54 53.37 40.27 40.80 60.23
FlexRound 8/8/8 72.02 77.09 72.50 67.40 54.17 40.19 40.80 60.60
LRQ (Ours) 8/8/8 72.45 77.04 72.70 67.09 53.66 40.61 41.60 60.74
RTN 4/8/16 67.95 74.32 65.84 62.12 46.68 37.20 35.80 55.70
SmoothQuant 4/8/16 42.54 64.15 41.15 54.06 35.61 27.99 32.00 42.50
FlexRound 4/8/16 71.96 77.04 72.17 65.59 53.58 39.85 40.20 60.06
LRQ (Ours) 4/8/16 72.94 76.88 71.85 65.27 53.96 39.85 40.80 60.22
RTN 4/8/8 68.13 75.14 65.89 62.67 46.42 36.52 36.20 55.85
SmoothQuant 4/8/8 43.03 63.71 41.08 54.30 35.69 27.99 32.60 42.63
FlexRound 4/8/8 71.71 76.77 72.24 66.14 53.49 40.02 40.40 60.11
LRQ (Ours) 4/8/8 73.00 76.99 71.90 65.98 54.38 39.68 41.20 60.45

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 8/8/16 67.80 78.89 75.61 68.90 58.08 43.69 41.60 62.08
SmoothQuant 8/8/16 68.99 79.33 76.47 70.64 57.53 44.71 41.80 62.78
FlexRound 8/8/16 69.27 78.73 76.62 69.69 57.62 44.71 42.20 62.69
LRQ (Ours) 8/8/16 69.24 78.67 76.48 69.30 57.79 44.03 42.40 62.56
RTN 8/8/8 67.46 78.73 75.57 68.51 58.12 44.28 41.40 62.01
SmoothQuant 8/8/8 68.81 78.78 76.39 70.72 57.11 44.20 41.60 62.52
FlexRound 8/8/8 69.36 79.16 76.67 69.53 57.83 44.37 42.80 62.82
LRQ (Ours) 8/8/8 69.02 78.78 76.48 69.93 57.83 43.86 42.00 62.56
RTN 4/8/16 65.20 73.61 60.00 58.80 49.12 36.18 34.80 53.96
SmoothQuant 4/8/16 61.74 57.07 37.17 52.09 31.61 24.40 31.40 42.21
FlexRound 4/8/16 69.14 78.67 75.67 68.98 58.92 44.20 41.00 62.37
LRQ (Ours) 4/8/16 71.10 78.29 75.75 69.30 57.74 43.69 41.00 62.41
RTN 4/8/8 65.23 74.05 60.04 58.64 49.07 35.92 35.20 54.02
SmoothQuant 4/8/8 61.62 56.53 37.31 51.38 31.57 24.74 30.60 41.96
FlexRound 4/8/8 69.05 78.51 75.51 69.53 58.75 43.60 41.20 62.31
LRQ (Ours) 4/8/8 71.13 78.29 75.79 68.90 57.83 43.34 41.20 62.35

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 8/8/16 76.02 81.07 80.37 76.01 60.14 48.04 44.40 66.58
SmoothQuant 8/8/16 75.75 80.96 80.60 77.90 59.34 47.70 45.20 66.78
FlexRound 8/8/16 75.72 81.56 80.60 75.77 60.19 48.89 44.80 66.79
LRQ (Ours) 8/8/16 75.84 81.66 80.64 75.93 60.40 48.38 44.00 66.69
RTN 8/8/8 76.02 81.07 80.45 75.61 60.31 47.87 43.80 66.45
SmoothQuant 8/8/8 76.06 81.07 80.63 76.32 59.51 47.61 45.20 66.63
FlexRound 8/8/8 75.93 81.45 80.48 75.85 60.06 48.55 44.80 66.73
LRQ (Ours) 8/8/8 75.99 81.50 80.61 75.77 59.97 49.49 45.20 66.93
RTN 4/8/16 75.63 78.73 71.28 69.61 53.24 43.34 40.20 61.72
SmoothQuant 4/8/16 49.79 70.95 48.43 54.70 44.74 32.51 37.80 48.42
FlexRound 4/8/16 77.80 80.90 80.06 74.66 60.31 47.61 43.60 66.42
LRQ (Ours) 4/8/16 77.92 80.74 80.38 75.14 60.35 47.95 42.80 66.47
RTN 4/8/8 75.90 79.22 71.39 70.56 53.11 43.60 40.40 62.03
SmoothQuant 4/8/8 50.46 71.60 48.35 55.09 44.87 32.17 37.40 48.56
FlexRound 4/8/8 77.31 80.96 79.89 75.30 60.19 48.21 43.40 66.47
LRQ (Ours) 4/8/8 77.92 81.28 80.42 75.06 60.94 48.04 42.60 66.61
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Table 23: Zero-shot performance of Llama 2 on common sense reasoning tasks (BoolQ, PIQA, HellaSwag,
WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization,
per-token asymmetric activation quantization, and per-token asymmetric KV cache quantization (if applied). Please
refer to Figure 9. The accuracy (%) is reported for common sense reasoning tasks. The number of bits used for
weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 2 7B 16/16/16 71.07 76.99 72.96 67.25 53.58 40.53 40.80 60.45

RTN 4/8/8 68.13 75.14 65.89 62.67 46.42 36.52 36.20 55.85
SmoothQuant 4/8/8 43.03 63.71 41.08 54.30 35.69 27.99 32.60 42.63
FlexRound 4/8/8 71.71 76.77 72.24 66.14 53.49 40.02 40.40 60.11
LRQ (Ours) 4/8/8 73.00 76.99 71.90 65.98 54.38 39.68 41.20 60.45

Llama 2 13B 16/16/16 69.02 79.05 76.62 69.61 57.95 44.28 42.00 62.65

RTN 4/8/8 65.23 74.05 60.04 58.64 49.07 35.92 35.20 54.02
SmoothQuant 4/8/8 61.62 56.53 37.31 51.38 31.57 24.74 30.60 41.96
FlexRound 4/8/8 69.05 78.51 75.51 69.53 58.75 43.60 41.20 62.31
LRQ (Ours) 4/8/8 71.13 78.29 75.79 68.90 57.83 43.34 41.20 62.35

Llama 2 70B 16/16/16 76.70 80.85 80.85 76.95 59.72 47.95 44.40 66.77

RTN 4/8/8 75.90 79.22 71.39 70.56 53.11 43.60 40.40 62.03
SmoothQuant 4/8/8 50.46 71.60 48.35 55.09 44.87 32.17 37.40 48.56
FlexRound 4/8/8 77.31 80.96 79.89 75.30 60.19 48.21 43.40 66.47
LRQ (Ours) 4/8/8 77.92 81.28 80.42 75.06 60.94 48.04 42.60 66.61
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Table 24: Five-shot performance of Llama 2 on Massive Multitask Language Understanding with per-channel
asymmetric weight quantization, per-token asymmetric activation quantization, and per-token asymmetric KV cache
quantization (if applied). Please refer to Figure 9. The accuracy (%) is reported for four groups of disciplines
(STEM, Humanities, Social Science, and Other). The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 8/8/16 36.41 42.49 50.31 52.47 45.20
SmoothQuant 8/8/16 37.01 43.04 51.64 52.13 45.73
FlexRound 8/8/16 36.38 42.91 51.80 52.87 45.76
LRQ (Ours) 8/8/16 36.91 43.27 52.19 52.78 46.05
RTN 8/8/8 36.15 42.85 50.34 52.31 45.24
SmoothQuant 8/8/8 36.22 43.19 51.25 52.22 45.54
FlexRound 8/8/8 36.98 42.91 51.87 52.28 45.76
LRQ (Ours) 8/8/8 36.88 43.12 51.67 52.53 45.83
RTN 4/8/16 27.63 25.87 27.82 28.32 27.24
SmoothQuant 4/8/16 27.07 24.72 22.49 25.88 25.00
FlexRound 4/8/16 37.01 42.40 50.80 50.34 44.92
LRQ (Ours) 4/8/16 36.78 42.66 51.19 51.73 45.36
RTN 4/8/8 28.00 25.80 27.53 28.01 27.16
SmoothQuant 4/8/8 26.77 24.87 22.81 25.85 25.05
FlexRound 4/8/8 37.81 42.55 50.47 50.65 45.14
LRQ (Ours) 4/8/8 36.88 42.53 50.80 52.22 45.36

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 8/8/16 43.57 52.88 61.88 61.17 54.76
SmoothQuant 8/8/16 44.04 53.69 63.21 61.35 55.47
FlexRound 8/8/16 43.84 53.65 63.37 61.10 55.39
LRQ (Ours) 8/8/16 44.80 53.75 63.47 60.73 55.57
RTN 8/8/8 43.87 52.88 62.33 60.67 54.81
SmoothQuant 8/8/8 44.10 53.58 63.11 60.95 55.33
FlexRound 8/8/8 44.17 52.88 63.76 61.29 55.33
LRQ (Ours) 8/8/8 44.50 53.07 63.24 61.26 55.35
RTN 4/8/16 30.55 26.08 33.51 35.07 30.74
SmoothQuant 4/8/16 27.04 24.23 25.48 26.16 25.55
FlexRound 4/8/16 42.91 50.80 62.11 60.27 53.77
LRQ (Ours) 4/8/16 43.24 52.41 61.78 60.24 54.30
RTN 4/8/8 30.95 26.31 32.92 34.58 30.67
SmoothQuant 4/8/8 27.07 24.25 25.22 26.43 25.57
FlexRound 4/8/8 42.88 50.71 61.94 59.93 53.77
LRQ (Ours) 4/8/8 43.90 52.56 62.07 59.96 54.49

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 8/8/16 56.06 63.00 78.32 73.10 67.20
SmoothQuant 8/8/16 58.02 64.53 80.21 74.21 68.80
FlexRound 8/8/16 57.69 63.80 79.98 73.63 68.30
LRQ (Ours) 8/8/16 57.95 64.48 80.21 73.90 68.70
RTN 8/8/8 56.23 63.55 78.39 73.01 67.41
SmoothQuant 8/8/8 57.49 64.68 80.37 74.43 68.82
FlexRound 8/8/8 57.22 63.97 79.62 73.81 68.22
LRQ (Ours) 8/8/8 57.95 63.85 80.34 73.94 68.52
RTN 4/8/16 41.12 45.72 56.78 53.49 48.95
SmoothQuant 4/8/16 26.84 24.08 26.55 25.88 25.63
FlexRound 4/8/16 59.96 62.98 79.04 73.23 67.56
LRQ (Ours) 4/8/16 56.46 64.59 79.07 72.83 67.92
RTN 4/8/8 41.19 45.74 57.52 53.61 49.16
SmoothQuant 4/8/8 27.37 24.59 27.59 25.94 26.16
FlexRound 4/8/8 56.26 62.89 78.78 72.92 67.26
LRQ (Ours) 4/8/8 55.57 64.65 78.97 72.52 67.65
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Table 25: Five-shot performance of Llama 2 on Massive Multitask Language Understanding with per-channel
asymmetric weight quantization, per-token asymmetric activation quantization, and per-token asymmetric KV cache
quantization (if applied). Please refer to Figure 9. The accuracy (%) is reported for four groups of disciplines
(STEM, Humanities, Social Science, and Other). The number of bits used for weights, activations, and KV cache is
expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 2 7B 16/16/16 37.04 43.38 51.84 52.44 45.96

RTN 4/8/8 28.00 25.80 27.53 28.01 27.16
SmoothQuant 4/8/8 26.77 24.87 22.81 25.85 25.05
FlexRound 4/8/8 37.81 42.55 50.47 50.65 45.14
LRQ (Ours) 4/8/8 36.88 42.53 50.80 52.22 45.36

Llama 2 13B 16/16/16 44.27 54.43 63.41 60.76 55.68

RTN 4/8/8 30.95 26.31 32.92 34.58 30.67
SmoothQuant 4/8/8 27.07 24.25 25.22 26.43 25.57
FlexRound 4/8/8 42.88 50.71 61.94 59.93 53.77
LRQ (Ours) 4/8/8 43.90 52.56 62.07 59.96 54.49

Llama 2 70B 16/16/16 57.79 65.16 80.44 74.61 69.11

RTN 4/8/8 41.19 45.74 57.52 53.61 49.16
SmoothQuant 4/8/8 27.37 24.59 27.59 25.94 26.16
FlexRound 4/8/8 56.26 62.89 78.78 72.92 67.26
LRQ (Ours) 4/8/8 55.57 64.65 78.97 72.52 67.65
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In Table 16 and 18, LRQ exhibits a slightly superior zero-shot performance on common sense reasoning
tasks compared to FlexRound, which we believe is noteworthy since FlexRound already achieves the zero-
shot performance on common sense reasoning tasks comparable to FP16 baselines. The close proximity
in zero-shot performance between FlexRound and FP16 baselines on common sense reasoning tasks
limits the potential for a substantial performance disparity between FlexRound and LRQ. Despite LRQ
approaching the zero-shot performance of FP16 baselines more closely than FlexRound, the difference in
zero-shot performance between FlexRound and LRQ cannot be anticipated to be large after all.

Nevertheless, as expounded in Section 1, it is crucial to emphasize that LRQ demonstrates competitive
performance relative to FP16 baselines on both common sense reasoning tasks and Massive Multitask
Language Understanding (MMLU), a feat not accomplished by FlexRound that excels solely on common
sense reasoning tasks. Given the comprehensive evaluation of large language models (LLMs) across
diverse benchmarks, the proficiency of LRQ in excelling across both common sense reasoning tasks and
MMLU holds significant implications in the field of LLM quantization.

Regarding the 8-bit weight quantization presented in Table 22 and 24, the adoption of a per-token
asymmetric activation quantization scheme results in even naive rounding-to-nearest (RTN) performing
closely to the levels of FP16 baselines on both common sense reasoning tasks and MMLU. As a result,
while LRQ exhibits slightly higher accuracy compared to SmoothQuant and FlexRound for most Llama 2
models, it can be concluded that SmoothQuant, FlexRound, and LRQ are nearly evenly matched.

In the context of 4-bit weight quantization as presented in Table 22, FlexRound achieves zero-shot
accuracy levels comparable to FP16 baselines on common sense reasoning tasks, resulting in a relatively
small zero-shot performance gap between FlexRound and LRQ, like the scenario depicted in Table 16
and 18. However, in the case of 4-bit weight quantization in Table 24, LRQ surpasses FlexRound by a
margin ranging from 0.2 to 0.7 percent. Although these increments in five-shot accuracy on MMLU in
Table 24 may seem modest compared to those in Table 17 and 20, we believe that the rise in five-shot
accuracy by 0.2 to 0.7 percent on MMLU is significant. This is particularly noteworthy as it brings the
five-shot accuracy gap between LRQ and FP16 baselines to less than 1.5 percent on MMLU, while the
corresponding gap between FlexRound and FP16 baselines remains more or less at two percent for Llama
2 13B and 70B.
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I Implementation Details

Figure 8: Illustration of a quantized Transformer block with per-channel asymmetric weight quantization, per-tensor
asymmetric static activation quantization, and per-token asymmetric KV cache quantization. We remain the inputs
of softmax and normalization layers in FP16.

Table 26: Learning rate and batch size for FlexRound and LRQ when employing a per-tensor asymmetric static
activation quantization scheme (see Figure 8) in Table 1, 2, 3, 4, 16, 17, 18, and 20.

Method Configuration Llama 7B Llama 13B Llama 33B Llama 65B Llama 2 7B Llama 2 13B Llama 2 70B

FlexRound Learning rate 3e-3 3e-3 1e-3 2e-3 3e-3 3e-3 1e-3
Batch size 4 4 2 2 2 2 2

LRQ Learning rate 3e-3 2e-3 1.5e-3 1e-3 1e-3 1.5e-3 1e-3
Batch size 2 2 2 2 2 2 2

For the quantization scheme depicted in Figure 8, both FlexRound and LRQ are implemented in the
experimental setting of QDrop (Wei et al., 2022) with the exception of the number of iterations for
block-wise reconstruction, the batch size, and the learning rate. For all the Llama and Llama 2 models,
the number of iterations for block-wise reconstruction is set to 5000 for both FlexRound and LRQ. The
learning rate and the batch size for FlexRound and LRQ are described in 26. Notice that when applying
LRQ to Llama 2 70B, the key and value projection weights are quantized via not LRQ but FlexRound
due to the presence of GQA (Ainslie et al., 2023) in Llama 2 70B. To obtain the experimental results
in Table 1 and 3, per-token asymmetric KV cache quantization is applied after completing block-wise
reconstruction for all the Transformer blocks. For both activation quantization and KV cache quantization,
we employ rounding-to-nearest.
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Figure 9: Illustration of a quantized Transformer block with per-channel asymmetric weight quantization, per-token
asymmetric activation quantization, and per-token asymmetric KV cache quantization. We remain the inputs of
softmax and normalization layers in FP16.

Table 27: Learning rate for FlexRound and LRQ when adopting a per-token asymmetric activation quantization
scheme (see Figure 9) in Table 5, 6, 22, and 24.

Method Weight Llama 2 7B Llama 2 13B Llama 2 70B

FlexRound 8-bit 1e-4 4e-4 3e-4
4-bit 5e-4 4e-4 5e-4

LRQ 8-bit 1e-4 2e-4 4e-4
4-bit 5e-4 5e-4 4e-4

In the case of quantization scheme indicated in Figure 9, both FlexRound and LRQ are first implemented
in the experimental setting of BRECQ (Li et al., 2021) with the exception of the number of iterations for
block-wise reconstruction, the batch size, and the learning rate. The number of iterations for block-wise
reconstruction and the batch size are set to 5000 and 2 respectively, for every Llama 2 model regardless
of the number of bits used for weights. Table 27 exhibits the learning rate for FlexRound and LRQ
in the case of 8-bit and 4-bit weight quantization, respectively. As explained in the above paragraph,
when LRQ is applied to Llama 2 70B, weights in key and value projections are quantized via FlexRound.
Here, when quantizing Llama 2 7B into 4-bit via LRQ, the attention module is quantized via LRQ, but
the feed-forward module is quantized via FlexRound. In addition, when quantizing Llama 2 70B into
4-bit via LRQ, the feed-forward module is quantized via LRQ, but the attention module is quantized
via FlexRound. To gain the experimental results in Table 5 and 6, per-token asymmetric activation
quantization and per-token asymmetric KV cache quantization are sequentially applied after finishing
block-wise reconstruction for all the Transformer blocks. For both activation quantization and KV cache
quantization, we employ rounding-to-nearest.

All experiments about SmoothQuant are conducted based on the code provided in the SmoothQuant
github repository1. Following Xiao et al. (2022), we select α, the hyperparameter to determine how much
difficulty of activation quantization to shift to weight quantization, to be 0.8 for every Llama model, 0.85
for Llama 2 7B and 13B, and 0.9 for Llama 2 70B.

Table 28 displays the learning rate for LRQ employed in Table 7. For OmniQuant in Table 7, we

1https://github.com/mit-han-lab/smoothquant
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Table 28: Learning rate for LRQ when adopting per-channel weight-only quantization in Table 7.

Method Weight Llama 2 7B Llama 2 13B Llama 2 70B

FlexRound 3-bit 2.5e-3 5e-4 5e-4
4-bit 3e-3 7e-4 5e-4

LRQ 3-bit 6e-4 5e-4 5e-4
4-bit 9e-4 6e-4 5e-4

utilized pre-trained OmniQuant models provided in the OmniQuant github repository2.
For evaluation, we use Eleuther AI’s lm-evaluation-harness (Gao et al., 2021) for common sense

reasoning tasks and follow the evalution code in the MMLU github repository3 for the MMLU benchmark.

2https://github.com/OpenGVLab/OmniQuant
3https://github.com/hendrycks/test

7739

https://github.com/OpenGVLab/OmniQuant
https://github.com/hendrycks/test


J Ratio of the number of learnable parameters in LRQ to the number of pre-trained
weights

Table 29: Ratio of the number of learnable parameters in LRQ to the number of pre-trained weights for an
intermediate Transformer block of each Llama model when setting the rank r to 2048 for large language models
beyond 30B parameters or to 1024 for smaller models.

Model Number of pre-trained weights (A) Number of learnable parameters in LRQ (B) Ratio (B/A)

Llama 7B 4096× 4096× 4
+4096× 11008× 3

(4096× 1024 + 1024× 4096)× 4
+(4096× 1024 + 1024× 11008)× 3

39.51%

Llama 13B 5120× 5120× 4
+5120× 13824× 3

(5120× 1024 + 1024× 5120)× 4
+(5120× 1024 + 1024× 13824)× 3

31.57%

Llama 33B 6656× 6656× 4
+6656× 17920× 3

(6656× 2048 + 2048× 6656)× 4
+(6656× 2048 + 2048× 17920)× 3

48.60%

Llama 65B 8192× 8192× 4
+8192× 22016× 3

(8192× 2048 + 2048× 8192)× 4
+(8192× 2048 + 2048× 22016)× 3

39.51%
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K Average and Standard Deviation of FlexRound and LRQ

For common sense reasoning tasks in Table 1 and 2, LRQ slightly outperforms FlexRound in the case of
Llama 2 70B and significantly surpasses FlexRound in the case of Llama 33B, but FlexRound is better
than LRQ in the case of Llama 2 7B. To investigate how meaningful the improvement of LRQ over
FlexRound is, we carry out three random trials for Llama 2 7B, Llama 33B, and Llama 2 70B, presenting
the average and standard deviation of them.

Table 30: Average and standard deviation of zero-shot performance of FlexRound and LRQ over three random
trials on common sense reasoning tasks (BoolQ, PIQA, HellaSwag, WinoGrande, ARC easy and challenge,
and OpenBookQA) with per-channel asymmetric weight quantization, per-tensor asymmetric static activation
quantization, and per-token asymmetric KV cache quantization. The number of bits used for weights, activations,
and KV cache is 8-bit.

Method # Bits (W/A/KV) Llama 2 7B Llama 33B Llama 2 70B

FlexRound 8/8/8 59.72± 0.73 62.83± 0.36 65.65± 0.30
LRQ (Ours) 8/8/8 59.90± 0.18 63.81± 0.16 65.89± 0.06

As seen in Table 30, not only does the average of LRQ surpass that of FlexRound, but the standard
deviation of LRQ is also smaller than that of FlexRound, which strengthens our assertion that FlexRound
might be prone to overfitting when applied to the quantization of LLMs.
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L Combination of SmoothQuant with FlexRound and LRQ

Table 31: Zero-shot performance of Llama 7B on common sense reasoning tasks (BoolQ, PIQA, HellaSwag,
WinoGrande, ARC easy and challenge, and OpenBookQA) with per-channel asymmetric weight quantization and
per-tensor asymmetric static activation quantization, while keeping the KV cache in FP16. Here, ‘SQ + FlexRound’
and ‘SQ + LRQ’ denote FlexRound and LRQ that initially begin their own learning process from the SmoothQuant
baseline in lieu of the rounding-to-nearest baseline, respectively. The accuracy (%) is reported for common sense
reasoning tasks. The number of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Llama 7B 16/16/16 73.15 77.31 72.96 67.09 52.48 41.38 42.40 60.97

FlexRound 8/8/16 73.76 76.66 71.75 67.01 52.31 40.02 42.20 60.53
SQ+FlexRound 8/8/16 73.85 76.77 71.54 66.38 51.43 40.44 41.60 60.29
LRQ 8/8/16 73.03 77.64 72.10 66.77 52.95 40.87 41.60 60.71
SQ+LRQ 8/8/16 73.15 76.88 72.24 66.38 52.86 40.61 40.60 60.39

Table 32: Five-shot performance of Llama 7B on Massive Multitask Language Understanding with per-channel
asymmetric weight quantization and per-tensor asymmetric static activation quantization, while keeping the KV
cache in FP16. Here, ‘SQ + FlexRound’ and ‘SQ + LRQ’ denote FlexRound and LRQ that initially begin their
own learning process from the SmoothQuant baseline in lieu of the rounding-to-nearest baseline, respectively. The
accuracy (%) is reported for four groups of disciplines (STEM, Humanities, Social Science, and Other). The number
of bits used for weights, activations, and KV cache is expressed as W/A/KV.

Method # Bits (W/A/KV) STEM Humanities Social Science Other Average

Llama 7B 16/16/16 30.58 33.88 38.19 38.25 35.12

FlexRound 8/8/16 28.30 29.20 30.13 33.47 30.20
SQ+FlexRound 8/8/16 30.98 29.71 33.80 35.26 32.16
LRQ 8/8/16 29.69 32.48 37.63 38.80 34.47
SQ+LRQ 8/8/16 30.35 31.84 37.44 37.32 34.01

As SmoothQuant is orthogonal to block-wise reconstruction, one might wonder how the performance
of FlexRound and LRQ would change when FlexRound and LRQ start their own learning process
from the SmoothQuant baseline in place of the RTN baseline. Table 31 and 32 reveal the performance
of ‘SmoothQuant (SQ) + FlexRound’ and ‘SmoothQuant (SQ) + LRQ’ on common sense reasoning
benchmarks and the MMLU benchmark, respectively. Unfortunately, in most cases, SmoothQuant does
not display its efficacy when combined with FlexRound and LRQ. Although SmoothQuant enhances five-
shot performance of FlexRound on MMLU by almost two percent, ‘SQ + FlexRound’ still underperforms
LRQ as well as ‘SQ + LRQ’ on MMLU, which implies that employing low-rank weight-scaling matrices
would be a better choice than using full weight-scaling matrices with additional pre-processing like an
uniform per-channel scaling transformation in SmoothQuant.
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M Process of L2U2 + r2 + c2 in Eq. 2

Similar to the broadcasting process in Python Numpy, we add L2U2, r2, and c2.
To be more specific, let L2U2 be




LU(1,1) LU(1,2) · · · LU(1,Cin)
...

...
...

...
LU(Cout,1) LU(Cout,2) · · · LU(Cout,Cin),




r2 be 


r1
r2
...

rCout


 ,

and c2 be [
c1 c2 · · · cCin

]
.

Then, by the broadcasting process, L2U2 + r2 + c2 can be expressed as



LU(1,1) + r1 + c1 LU(1,2) + r1 + c2 · · · LU(1,Cin) + r1 + cCin

...
...

...
...

LU(Cout,1) + rCout + c1 LU(Cout,2) + rCout + c2 · · · LU(Cout,Cin) + rCout + cCin


 .
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