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Abstract

Zero-shot named entity recognition (NER) is
the task of detecting named entities of specific
types (such as PERSON or MEDICINE) with-
out any training examples. Current research
increasingly relies on large synthetic datasets,
automatically generated to cover tens of thou-
sands of distinct entity types, to train zero-shot
NER models. However, in this paper, we find
that these synthetic datasets often contain en-
tity types that are semantically highly similar
to (or even the same as) those in standard eval-
uation benchmarks. Because of this overlap,
we argue that reported F1 scores for zero-shot
NER overestimate the true capabilities of these
approaches. Further, we argue that current eval-
uation setups provide an incomplete picture of
zero-shot abilities since they do not quantify
the label shift (i.e., the similarity of labels) be-
tween training and evaluation datasets. To ad-
dress these issues, we propose FAMILIARITY,
a novel metric that captures both the seman-
tic similarity between entity types in training
and evaluation, as well as their frequency in
the training data, to provide an estimate of la-
bel shift. It allows researchers to contextualize
reported zero-shot NER scores when using cus-
tom synthetic training datasets. Further, it en-
ables researchers to generate evaluation setups
of various transfer difficulties for fine-grained
analysis of zero-shot NER.

1 Introduction

Zero-shot named entity recognition (NER) is the
task of recognizing instances of named entities of
specific types (such as PERSON, ORGANIZATION,
or MEDICINE) without any training examples.
Current state-of-the-art models, such as GLiNER
(Zaratiana et al., 2023) and GoLLIE (Sainz et al.,
2024), are initially trained on datasets that con-
tain a large set of different entity types (Aly et al.,
2021; Ma et al., 2022a). This allows the models to
identify mentions of previously unseen entity types
by leveraging their general language understand-

Figure 1: Impact of training data on zero-shot per-
formance of the current state-of-the-art approach
(GLiNER). Each synthetic dataset is characterized by
the label overlap (yellow column) and the total num-
ber of entity mentions (purple column). While zero-
shot performance (red line, macro-averaged F1 across 7
benchmarks) has significantly improved, we note a con-
cerning increase in entity type overlaps between training
and testing data.

ing capabilities (Golde et al., 2024). Finally, these
models are evaluated on zero-shot benchmarks that
were excluded from the training process (Yang and
Katiyar, 2020; Das et al., 2022; Yang et al., 2022).

Advent of large synthetic training datasets. Re-
cent research has developed methods that can auto-
matically produce training datasets with over tens
of thousands of distinct entity types, using avail-
able knowledge bases (Vrandečić and Krötzsch,
2014) or large language models (LLMs, Brown
et al., 2020). Examples include PileNER (Zhou
et al., 2024), NuNER (Bogdanov et al., 2024), and
AskNews (Törnquist and Caulk, 2024). This rep-
resents a paradigm shift for zero-shot NER, which
classically relied on hand-labeled training datasets
with a much smaller set of entity types, such as
Ontonotes (18 types, Hovy et al., 2006).

As Figure 1 shows, the advent of large syn-
thetic training datasets has significantly improved
reported zero-shot F1 scores. However, as the fig-
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Figure 2: With LLMs now capable of generating
datasets that cover thousands of entity types, models
trained on different datasets are subject to varying label
shifts, making comparisons between them challenging.
To address this, we introduce FAMILIARITY, a metric
that quantifies and accounts for label shift, enabling
more accurate and fair comparisons across models.

ure also shows, there is a concerning increase in the
overlap between entity types in synthetic datasets
and the evaluation benchmarks (cf. Figure 1, yel-
low bars). This means that evaluated models have
indeed seen many instances of highly similar (or
even the same) entity types during training, rais-
ing the question of whether the reported F1 scores
overestimate their true zero-shot capabilities.
Broader implications. Naturally, we could strive
to ensure a fair zero-shot comparison by proposing
training and evaluation splits that have no overlap-
ping entity types at all. However, ensuring no over-
lap is in fact not trivial since the same or highly sim-
ilar entity types might have different labels (such as
CORPORATION and ORGANIZATION). But more
crucially, using fixed training and evaluation splits
would potentially limit process driven by advance-
ments in generating synthetic datasets.

We rather argue that given the advancements
of LLMs and their potential to generate high-
quality datasets, accepting custom synthetic train-
ing datasets is inevitable. We therefore propose to
measure the transfer difficulty between the labels
of a training and an evaluation dataset, referred to
as label shift (Lipton et al., 2018; Wu et al., 2021).
Contributions. With this paper, we identify a
critical issue with current zero-shot NER evalu-

ations caused by the growing availability of large-
scale synthetic training datasets. To address this
issue, we propose FAMILIARITY, a novel metric
that quantifies the similarity between the sets of en-
tity types in training and evaluation data, allowing
us to assess the transfer difficulty of an evaluation
setup (cf. Figure 2). We summarize our contribu-
tions as follows:

1. We empirically demonstrate that label over-
laps introduce undesirable biases in current
zero-shot evaluation setups (Section 2).

2. We propose FAMILIARITY, a metric that quan-
tifies label shift between training data and eval-
uation benchmarks, providing insights into
transfer difficulty (Section 3).

3. We conduct a thorough analysis of FAMIL-
IARITY, showing that it effectively mitigates
the evaluation bias and can be used to gener-
ate training splits of varying difficulty levels
(Section 4).

To enable the research community to efficiently
compute FAMILIARITY and incorporate it into fu-
ture research, we make all code publicly available
as open source1. Further, we publish three bench-
mark scenarios on the Hugging Face hub2 for dif-
ferent levels of transfer difficulty to aid researchers
in fine-grained analysis of zero-shot NER.

2 The Impact of Synthetic Datasets on
Current Evaluations

As shown in Figure 2, we hypothesize that label
shift between fine-tuning and evaluation datasets af-
fects transfer performance, particularly in zero-shot
NER settings. We define this transfer as the process
of fine-tuning a model Θ on a dataset D with entity
types LD and subsequently evaluating it on one or
more benchmarks Z1,...,n, each with its own set of
entity types LZ1,...,n , such that Z = ∪n

i=1Zi and
LZ = ∪n

i=1LZi . The datasets themselves do not
overlap: Z ∩ D = ∅.

However, the entity type sets of the training and
evaluation datasets may overlap due to the broad
coverage of entity types, particularly in synthetic
training datasets: LZ ⊆ LD.

We further note that it is possible that LZ∩LD =
∅. However, given that LLMs can generate fine-
tuning datasets with thousands of entity types, we

1https://github.com/flairNLP/familiarity
2https://huggingface.co/flair

821

https://github.com/flairNLP/familiarity
https://huggingface.co/flair


Dataset # Sent. # Ent. ∅ Ment.
Types per Sent.

NERetrieve 3,437.6k 0.5k 2.6
LitSet 972.6k 242.9k 0.8
NuNER 971.8k 192.1k 4.5
PileNER 45.9k 12.6k 20.5
AskNews 49.4k 12.6k 20.2

Table 1: Overview of synthetic fine-tuning datasets used
in our experiments with their total number of sentences,
distinct number of entity types, and average number of
entity mentions per sentence.

observe that in some cases, more than 80% of the
evaluation entity types are included in the train-
ing dataset (e.g., NuNER, PileNER, and AskNews
in Figure 1). This obviously distorts the genuine
zero-shot nature of transfer evaluations, and we
hypothesize that the performance for an entity type
ℓ present in both the evaluation benchmark and the
fine-tuning dataset (ℓ ∈ LZ ∩ LD) will be higher
than for an entity type not present in the fine-tuning
data (ℓ ∈ LZ \ LD).

2.1 Experimental Setup

First, we examine the extent to which label over-
laps are a problem, and second, whether synthetic
datasets can be scaled to enhance performance
through increased examples, considering the po-
tential risk that LLMs may generate duplicate train-
ing data, which could lead to performance satura-
tion. To address these questions, we train univer-
sal NER models on five large-scale datasets and
evaluate them on seven widely used benchmarks.
We then analyze the transfer performance for each
entity type, classifying them as either overlapping
(ℓ ∈ LZ∩LD) or true zero-shot (ℓ ∈ LZ \LD). For
entity types present in both the evaluation and fine-
tuning datasets, we perform a log-linear regression
to examine whether the number of entity mentions
is positively correlated with the performance on
those types.
Synthetic fine-tuning datasets. We consider five
synthetic or automatically derived datasets specifi-
cally designed for training zero-shot NER mod-
els. NERetrieve (Katz et al., 2023) and LitSet
(Golde et al., 2024) are automatically derived
from the knowledge bases CaLiGraph (Heist and
Paulheim, 2022) and WikiData (Vrandečić and
Krötzsch, 2014)). NuNER (Bogdanov et al., 2024)
and PileNER (Zhou et al., 2024) use gpt-3.5

Dataset # Sent. # Ent. ∅ Ment.
Types per Sent.

Movie 2.4k 12 2.2
Restaurant 1.5k 8 2.1
AI 431 14 4.2
Literature 416 12 5.4
Music 465 13 7.1
Politics 650 9 6.5
Science 543 17 5.7

Table 2: Overview of the 7 zero-shot benchmarks used
in our experiments. Abbreviations are identical to the
ones used in Table 1.

(Brown et al., 2020) to annotate large-scale corpora.
AskNews (Törnquist and Caulk, 2024) extends
NuNER with real-world, diverse news articles ob-
tained from the AskNews API3. An overview of
these datasets is provided in Table 1.
Zero-shot benchmarks. For evaluation, we use
the MIT Movie and Restaurant datasets (Liu et al.,
2013), as well as the CrossNER dataset (Liu et al.,
2021), as they are frequently used in zero-shot
transfer settings (Zhou et al., 2024; Zaratiana et al.,
2023; Sainz et al., 2024). CrossNER includes five
domains: Movies, AI, Literature, Politics, and Sci-
ence. An overview of these datasets is provided
in Table 2.
Training details. We use the GLiNER architecture
(Zaratiana et al., 2023), which represents the cur-
rent state-of-the-art. We reuse all hyperparameters
as reported in the original paper. For each of the
five datasets, we train a model using three differ-
ent seeds. To ensure that no model benefits from
being trained on significantly more data, we train
every model for a fixed number of 60,000 steps
with a batch size of 8. The authors of the AskNews
model do not train their model from scratch; in-
stead, they continue fine-tuning a model that was
initially trained on the NuNER dataset. We follow
this approach and further fine-tune our NuNER-
trained model for 25 epochs with a batch size of 5,
as reported in their paper. We use Hugging Face’s
Transformers library (Wolf et al., 2020) and Py-
Torch (Ansel et al., 2024) for our implementations.

2.2 Results

We present the results in Figure 3, where each sub-
plot’s legend displays the parameters of the log-
linear regression for entity types that overlap be-

3https://asknews.app/
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Figure 3: Transfer performance is higher on entity types that occur in both evaluation and fine-tuning datasets
compared to unseen types. Further, we observe a positive, log-linear correlation between the number of entity
mentions for some entity type and its final performance.

tween the training dataset and evaluation bench-
marks, as well as the average zero-shot F1 score
for non-overlapping entity types. We make several
observations:
Better performance for overlapping entities.
Evaluation entity types that are also present in
the synthetic fine-tuning datasets consistently per-
form better than those that are absent from the fine-
tuning data. However, we note one exception: with
LitSet, true zero-shot performance is higher when
there are fewer than 100 support examples of an
entity type. As Golde et al. (2024) explain, this can
be attributed to the sparse NER annotations in their
dataset, as the original annotations are intended for
entity linking rather than named entity recognition.
Better performance for frequent entities. A sec-
ond important factor is the number of training in-
stances for overlapping entity types. We observe
a positive correlation between the number of en-
tity mentions and the performance of individual
entity types across all models. The correlation
ranges from 0.04 log10(x) (NERetrieve, AskNews)
to 0.08 log10(x) (LitSet), indicating that the bene-
fits of LLM-annotated and automatically derived
datasets do not diminish at a fixed point, even
though increasingly larger amounts of data are
needed for further gains.
Discussion. Our experiment indicates that overlaps
between datasets can indeed inflate zero-shot trans-
fer performance when synthetic data is used. Fur-
ther, our findings suggest that training datasets gen-
erated by LLMs may show significant alignment
with existing evaluation benchmarks for NER.

3 FAMILIARITY

The previous experiments show two key challenges
in current zero-shot NER evaluations: (1) Overlap-
ping entity types inflate the transfer evaluations of

zero-shot models, and (2) LLMs may generate ideal
datasets for fixed evaluation settings, undermining
the concept of low-resource evaluations. There-
fore, future evaluations must distinguish between
improvements coming from sophisticated datasets
and those achieved through new data-efficient ap-
proaches that do not depend on overlapping entity
types.

To address these challenges, we introduce FA-
MILIARITY to quantify label shift between fine-
tuning datasets and evaluation benchmarks based
on the semantic similarity of the respective entity
type sets. FAMILIARITY considers two key factors:
(1) the semantic similarity between evaluation and
training entity types, and (2) the support for each
training entity type. The core idea is that if the
evaluation entity type is “person” and the set of
training entity types contains a closely related type,
such as “human”, with substantial support, we can
expect strong performance. In contrast, if the clos-
est training entity type to "person" is a less related
type like “location” with limited support, we can
expect a worse performance.

To compute semantic similarity, we use a
sentence-transformer (Reimers and Gurevych,
2019) to embed evaluation and training entity types,
calculate cosine similarity, and clip negative values
to keep the metric within a 0 to 1 range. For the
second factor, we introduce a hyperparameter, K,
which limits the number of support examples con-
sidered. In our experiments, we set K = 1000,
meaning that up to 1000 closest training entity
types are considered, measured by their support.
We further weight these similarities by a Zipfian
distribution (Zipf, 1949), prioritizing the most sim-
ilar entity types, as they are likely to have the great-
est impact on transfer performance.

Definition. Let LD and LZ represent the sets of all
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entity types in the fine-tuning dataset and the zero-
shot benchmarks, respectively. Additionally, let C
denote the set of counts for each entity type ℓD ∈
LD, and let θ represent the all-mpnet-base-v2
sentence-transformer model. For any entity type
ℓZ ∈ LZ from the evaluation benchmarks and any
entity type ℓD ∈ LD from the training dataset, we
calculate the clipped cosine similarity as follows:

φclip(ℓ
Z , ℓD) = max(φ(θ(ℓZ), θ(ℓD)), 0)

where φ(·, ·) denotes the standard cosine similar-
ity. We can now calculate the similarity between
a given evaluation entity type ℓZ and all training
entity types, resulting in the set:

SℓZ = {φclip(ℓ
Z , ℓD1 ), . . . , φclip(ℓ

Z , ℓDj )}

We then repeat each element in SℓZ according to
the corresponding support ci ∈ C for the training
entity type ℓDi to account for the number of men-
tions of each training entity type:

repeat(SℓZ , C) = {s1, .., s1︸ ︷︷ ︸
c1− times

, .., sj , .., sj︸ ︷︷ ︸
cj− times

}

with si = φclip(ℓ
Z , ℓDi ). We then sort the repeated

set of all similarities between the evaluation entity
type ℓZ and all training entity types and select the
top-K similarities.

SℓZ = sort(repeat(SℓZ , C))[:K]

Once we determined the top-K similarities for eval-
uation entity type ℓZ , we compute the weighted av-
erage using the position k of each similarity value:

FAMILIARITY(ℓZ) =

∑K
k=1 SℓZ

k · 1
k∑K

k=1
1
k

Finally, we marco-average FAMILIARITY for each
ℓZ ∈ LZ , resulting in an aggregated score for the
entire transfer setting.
To account for the number of mentions of each
training entity type ℓDi , we weight each element in
SℓZ by the corresponding probability distribution
vector PℓD , which represents the relative frequency
of each training entity type:
where si = φclip(ℓ

Z , ℓDi ) and the distribution vec-
tor PℓD ensures that entity types with higher men-
tion counts contribute proportionally more to the
similarity calculation.

Train
F1 Pearson r FAMILIARITYDataset D

NERetrieve 0.287 0.517 0.563
LitSet 0.380 0.340 0.695
NuNER 0.551 0.299 0.893
PileNER 0.568 0.310 0.887
AskNews 0.585 0.457 0.899

Table 3: Zero-shot F1 scores and FAMILIARITY, macro-
averaged over all seven evaluation benchmarks. FAMIL-
IARITY quantifies the label shift between fine-tuning
and zero-shot benchmarks, explaining why models
trained on certain synthetic datasets result in better per-
formance.

We then sort the weighted set of all similarities be-
tween the evaluation entity type ℓZ and all training
entity types and select the top-K similarities:
Once we have determined the top-K similarities for
evaluation entity type ℓZ , we compute the weighted
average using the position k of each similarity
value:
Finally, we macro-average FAMILIARITY for each
ℓZ ∈ LZ , resulting in an aggregated score for the
entire transfer setting.

4 Experiments

We evaluate FAMILIARITY in various settings to
assess its ability to measure label shift in zero-shot
NER transfer scenarios. We examine its correlation
with traditional transfer performance, the impact
of design choices (embedding model and top-K
similarities), and how FAMILIARITY can be used
to create NER tasks of varying difficulty.

4.1 FAMILIARITY in Current Evaluations

Setup. We reuse the models from Section 2 and
compute FAMILIARITY for each setup to evalu-
ate whether our metric correlates with transfer per-
formance of models trained on different synthetic
datasets. We report the values of our metric along-
side the macro-averaged F1 scores across all seven
zero-shot benchmarks, as well as the percentage
of overlapping entity types between each training
dataset and the combined entity types of all evalua-
tion benchmarks.
Results. We present the average zero-shot transfer
results, Pearson correlation values r (between FA-
MILIARITY and F1, macro-averaged over all evalu-
ation entity types), and FAMILIARITY scores in Ta-
ble 3. Our analysis shows that models trained on
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Figure 4: FAMILIARITY for different values of k and using different rank weights.

NuNER, PileNER, and AskNews achieve the high-
est F1 scores (> 55.0) and high FAMILIARITY val-
ues (> 0.88), suggesting strong alignment between
these models and the evaluation entity types. In
contrast, the automatically derived datasets, NERe-
trieve and LitSet, have lower F1 scores (28.7 and
38.0, respectively) and correspondingly lower FA-
MILIARITY values (0.563 and 0.695), reflecting
a greater label shift between training and evalu-
ation sets. Additionally, the Pearson correlation
coefficients (r) are consistently positive but moder-
ate (0.299–0.517). This suggests that the semantic
similarity between entity types in the training and
evaluation sets is correlated with transfer perfor-
mance, though it is not the only factor influencing
the final results.

We can summarize that a smaller label shift (sim-
ilar sets of entity types in training and evaluation
datasets) results in higher zero-shot transfer perfor-
mance. Therefore, considering this factor is cru-
cial for making fair comparisons between different
models or architectures in zero-shot NER settings.
We further note that FAMILIARITY complements
existing metrics like F1 by making the impact of
entity type overlaps explicitly visible, leading to a
more interpretable comparison.

4.2 Impact of K

In this experiment, we explore the effect of the hy-
perparameter K, which controls how many entity
types (measured by their support) are considered
when computing FAMILIARITY for a given evalua-
tion entity type. Thus, K can be seen as the number
of support examples from which we expect a model
to learn a specific entity concept. We recall that we
use K = 1000 to include not only the closest types
but also a variety of similar types that may help in
learning the class definition of certain entity types.

Setup. We reuse the models trained in Section 2
and recompute FAMILIARITY using various values
of K, ranging from 100 to 10,000. Additionally,
we compare our default Zipfian weighting with two
other approaches: linear decay (p(k) = |K|−k

|K| ),
which gradually reduces the influence of lower-
ranked entity types, and an unweighted approach,
which treats all entity types equally. This compar-
ison helps us understand how different weighting
strategies interact with K and influence FAMILIAR-
ITY scores.
Results. We present the results in Figure 4. We
observe that FAMILIARITY values are higher for
smaller values of K and decrease as K increases.
This is expected, as smaller K values emphasize
entity types most similar to the evaluation types,
while larger K values incorporate more distant, less
similar types. In particular, the unweighted results
reveal that most datasets have a few highly similar
entity types, but the similarity declines rapidly be-
yond those. Applying weighting schemes such as
linear decay or Zipf smooths this decline, which
is desirable because it makes FAMILIARITY less
sensitive to variations in K. Crucially, the relative
ranking of datasets remains stable across different
values of K and weighting methods. Based on
these observations, we argue that the optimal con-
figuration for FAMILIARITY uses K = 1000 with
Zipf weighting.

4.3 Different Embedding Models

Another important hyperparameter is the embed-
ding model θ. In this experiment, we examine how
the choice of embedding model affects the values
of FAMILIARITY and the potential impact on our
metric’s outcomes.
Setup. We reuse the models trained in Sec-
tion 2 but change the underlying embedding model
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Fine-Tuning on:
NERetrieve LitSet NuNER PileNER AskNews

� Zero-Shot F1 28.7 38.0 55.1 56.8 58.5

fasttext-crawl-300d-2M 0.595 0.712 0.898 0.857 0.874
fasttext-wiki-news-300d-1M 0.718 0.791 0.920 0.892 0.904
glove-6B-300d 0.654 0.743 0.910 0.879 0.893

bert-base-uncased 0.823 0.872 0.956 0.948 0.954
distilbert-base-uncased 0.883 0.917 0.973 0.968 0.972

all-mpnet-base-v2 0.563 0.695 0.893 0.887 0.899
all-miniLM-L6-v2 0.605 0.701 0.901 0.893 0.905

Table 4: FAMILIARITY using different embedding models. Underscored values indicate cases where FAMILIARITY
matches the ranking of the macro-averaged F1 score.

to compute FAMILIARITY. One potential lim-
itation of transformers is that they encode to-
kens in context, which may be less effective for
short entity type descriptions, often consisting of
single words. Therefore, we compare our cho-
sen model with standard transformers, additional
sentence-transformers, and classical word embed-
dings. Specifically, we consider:
Classical Word Embeddings: We in-
clude two fasttext models (Bojanowski
et al., 2017), fasttext-crawl-300d-2M and
fasttext-wiki-news-300d-1M, along with the
largest GloVe embedding (Pennington et al., 2014),
glove-6B-300d.
Classical Transformers: We include two widely
used transformers: bert-base-uncased (Devlin
et al., 2019) and distilbert-base-uncased
(Sanh et al., 2020), which are not specifically
trained for semantic similarity measurement.
Sentence Transformers: We compare the se-
lected all-mpnet-base-v2 with another sentence-
transformer model, all-miniLM-L6-v2 (Reimers
and Gurevych, 2019).
Results. We present results in Table 4. First,
all embedding models show similar trends: low-
performing models, such as those trained on NERe-
trieve or LitSet, consistently achieve the lowest
similarity scores across all embedding models. For
high-performing models (NuNER, PileNER, and
AskNews), all embedding models provide reason-
able results, with high F1 scores and FAMILIARITY

values, accurately reflecting the overall low label
shift. Despite the small absolute differences, FA-
MILIARITY remains close across our trained mod-
els, capturing the overall label shift effectively.

Our results indicate that FAMILIARITY performs

well with various embedding models. However,
the choice of embedding model affects the scale
of similarity scores: classical transformer mod-
els tend to consistently produce high FAMILIAR-
ITY scores (> 82.3) across all settings, which is
not ideal. We are interested in an embedding
model that can clearly distinguish between differ-
ent label shifts. We argue that classical word em-
beddings, particularly fasttext-crawl-300d-2M,
and the all-mpnet-base-v2 sentence-transformer
perform best in this regard. Given that la-
bel descriptions may become more detailed
with future synthetic datasets, we argue using
all-mpnet-base-v2 is the best option. How-
ever, if computational efficiency is a priority,
fasttext-crawl-300d-2M is a viable alternative.

4.4 Using FAMILIARITY to Generate Training
Splits of Varying Difficulty

In this section, we explore how FAMILIARITY can
be applied to create training splits (subsets of the
original datasets) with varying levels of difficulty.
If FAMILIARITY effectively captures and explains
label shift in NER transfer settings, it should enable
us to generate splits with either low or high label
shifts accordingly.
Setup. We create a similarity matrix M using
our embedding model θ containing the similarities
between each pair of training entity type ℓD ∈ LD

and evaluation entity type ℓZ ∈ LZ :

Mij = φclip(θ(ℓ
D), θ(ℓZ))

such that M ∈ R|LD|×|LZ |. We assign a single
value to each training label (row of M) by either
(1) taking the maximum similarity or (2) comput-
ing the entropy over all evaluation labels, which
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D Agg. Label Shift FAMILIARITY F1
N

uN
E

R Entropy
low 0.806 45.8
medium 0.630 33.6
high 0.530 28.0

Max. φ
low 0.865 42.5
medium 0.637 30.9
high 0.364 23.7

Pi
le

N
E

R Entropy
low 0.880 45.8
medium 0.534 30.8
high 0.596 33.3

Max. φ
low 0.896 43.5
medium 0.551 26.2
high 0.389 29.8

Table 5: Using FAMILIARITY, we generate subsets of
PileNER and NuNER with varying levels of difficulty.
These splits can be produced using either entropy-based
selection or maximum similarity-based selection.

indicates how well a training entity type aligns with
the evaluation entity type set. Based on this, we cre-
ate training splits with low, random, or high label
shifts by selecting training entity types according
to quantiles of M. For example, the top 1% quan-
tile in the maximum similarity matrix M includes
training entity types that are highly similar to at
least one evaluation entity type. A split consist-
ing solely of these entity types would result in a
training split with low label shift. Details of the
selection process are provided in Appendix B.

For these experiments, we use NuNER and
PileNER, as they show the best performance and
are standalone datasets (unlike AskNews, which
requires a pre-fine-tuned model). For each dataset,
we filter it to include only entity types with low,
medium, or high label shifts, removing all others.
We then train models as described in previous sec-
tions, but for 10,000 steps instead of 60,000, as the
filtered subsets are significantly smaller than the
original datasets, reducing the risk of overfitting.
Results. The results in Table 5 show that FAMIL-
IARITY can successfully create training splits of
varying difficulty, regardless of the aggregation
method (entropy or maximum similarity). Mod-
els trained on splits with low label shifts consis-
tently achieve higher FAMILIARITY values and F1
scores, indicating better alignment with the eval-
uation data. For instance, in the low label shift
setting for NuNER with entropy aggregation, FA-
MILIARITY reaches 0.806 and the F1 score is 45.8,
whereas in the high label shift setting, these values

drop to 0.530 and 28.0, respectively. Similarly, for
PileNER, the F1 score decreases by 17.8 points
between the low and high label shift settings using
entropy aggregation.

Interestingly, entropy aggregation yields better
results in low label shift settings compared to max-
imum similarity, while maximum similarity pro-
duces lower scores in high label shift settings. This
suggests that entropy aggregation is more effective
for capturing low label shift, whereas maximum
similarity is better suited for generating high label
shift splits.

5 Related Work

The problem of NER can be formulated in many
ways such as span classification (Yu et al., 2020),
question answering (Li et al., 2020), and text gen-
eration (Cui et al., 2021; Ma et al., 2022b). The
emergence of large language models has recently
transformed many downstream NLP tasks through
natural language prompting (Min et al., 2022; Dong
et al., 2023), including NER (Aly et al., 2021;
Nguyen et al., 2021; Li et al., 2022; Ma et al.,
2022a; Chen et al., 2023; Shen et al., 2023). Our
work contributes to this line of research by measur-
ing the label shift of entity type prompts.

Similarity Metrics. Many works exist on evaluat-
ing outputs generated by a model with the target se-
quence using similarity metrics such as BERTscore
(Zhang et al., 2020), BARTscore (Yuan et al., 2021),
or SEMscore (Aynetdinov and Akbik, 2024) as well
as task-specific similarity metrics such as SEM-F1
(Bansal et al., 2022) or SAS (Risch et al., 2021).
We follow this idea by comparing the semantic
similarity between fine-tuning and zero-shot entity
types.

Zero-Shot NER. We have recently observed in-
creasingly capable NER systems trained on large-
scale datasets (Wang et al., 2023; Lou et al., 2023;
Zhou et al., 2024; Sainz et al., 2024). These works
stand out because they have been fine-tuned on
datasets covering thousands of entity types. Con-
sidering the progress of LLMs, we expect more
contributions generating tailored datasets (Schick
and Schütze, 2021; Ye et al., 2022a,b; Li et al.,
2023) for downstream tasks. Our work supports
this line of research to better evaluate future contri-
butions by explicitly measuring the label shift.
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6 Conclusion

This paper explores how the label shift between
synthetically produced training datasets affects the
performance of zero-shot NER as evaluated in cur-
rent benchmark scnearios. As LLMs advance, cre-
ating improved datasets that align with the cho-
sen zero-shot benchmarks to enhance transfer per-
formance becomes more accessible. As a conse-
quence, evaluation settings become less compara-
ble. Thus, we introduce FAMILIARITY to quantify
the connection between fine-tuning and zero-shot
datasets and show how it can achieve fairer com-
parisons. Although the automatic generation of
datasets holds promise for future NER research, it
is crucial to foster data-efficient research by con-
ducting zero-shot NER in scenarios where fine-
tuning datasets do not contain closely related entity
types.

To enable the research community to efficiently
compute FAMILIARITY and incorporate it into fu-
ture research, we make all code publicly available
as open source. Further, we publish three bench-
mark scenarios for different levels of transfer diffi-
culty to aid researchers in fine-grained analysis of
zero-shot NER.

Limitations

FAMILIARITY is specifically designed for trans-
fer settings in the NER domain, but addresses a
broader issue: label shift in transfer learning. Al-
though we validated our metric only for NER, it is
possible - if not likely - that the metric could yield
different results when applied to other downstream
tasks.

Furthermore, our FAMILIARITY metric is de-
signed for models trained from scratch and does
not account for the extensive pre-training of LLMs.
Since pre-trained models may already contain im-
plicit knowledge of certain entities and phrases,
such as “Google is a technology company,” our
method does not currently measure the impact of
such prior knowledge. Future work could explore
complementary evaluation techniques to assess the
impact of pre-training more accurately.

Our metric is designed for datasets that contain
precise and clearly defined entity types, which is es-
pecially important in the context of the increasing
use of synthetic datasets. Synthetic datasets of-
ten leverage structured knowledge bases and large
language models to generate fine-grained entity la-
bels. However, the reliance of the metric on such

detailed annotations means that it is less effective
when applied to simpler, high-resource datasets
where multiple concepts might be grouped into a
single broad entity class. For example, in datasets
where a general category like “organization” en-
compasses various subtypes (e.g., companies, non-
profits and government agencies), FAMILIARITY

may not accurately capture the true difficulty of
transfer learning. This limitation suggests that the
metric is best suited for evaluations where entity
types are well-defined and separated, rather than
for datasets where broad classes mask underlying
distinctions.

Additionally, our metric does not account for
the actual context in which entity mentions oc-
cur, which can significantly impact final model
performance, especially in the presence of label
noise. FAMILIARITY measures semantic similarity
between entity types based on their descriptions or
definitions, but it does not evaluate how these enti-
ties are annotated in practice within the training and
evaluation datasets. As a result, the metric might
yield a high similarity score when entity types ap-
pear closely related based on their definitions, even
if the actual annotations differ considerably in con-
text. For instance, two entity types might be se-
mantically similar (e.g., “artist” and “musician”),
but if one dataset consistently annotates "musician"
while another uses "artist" for the same context, the
differing annotation standards could lead to perfor-
mance inconsistencies. This discrepancy means
that while FAMILIARITY offers insight into type
overlap, it may not fully capture the practical chal-
lenges of adapting to label noise and annotation
inconsistencies during model evaluation.
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Appendix

A Detailed Results

The results in Table 6 compare the zero-shot trans-
fer performance of all trained models and bench-
marks considered. Overall, AskNews achieves the
highest average performance (58.5), demonstrating
strong results in most benchmarks, including top
scores in AI (57.0) and Science (65.9). PileNER
closely follows with an average score of 56.8, ex-
celling particularly in Politics (70.7), Literature
(61.3), and Music (68.1). NuNER also performs
well, achieving an average score of 55.1, with
consistent performance across most domains, in-
cluding a strong result in Science (57.4). In con-
trast, LitSet and NERetrieve achieve lower average
scores, with 38.0 and 28.7, respectively. NERe-
trieve shows weaker performance across all bench-
marks, especially in the Restaurant domain (16.8).
These results highlight the variability in transfer
performance depending on the fine-tuning dataset,
with datasets like AskNews and PileNER gener-
ally providing more robust coverage across diverse
domains compared to LitSet and NERetrieve.

Further, Figure 5 illustrates the overlap between
entity types present in all considered fine-tuning
datasets and those in the evaluation benchmarks.
We simply measures whether each entity type in
the benchmarks is also found in the fine-tuning
datasets. NERetrieve displays notably low scores,
indicating that it lacks many of the entity types
present in the evaluation benchmarks. In contrast,
the other datasets—NuNER, PileNER, LitSet, and
AskNews—show high overlap scores, with values
exceeding 80% and reaching up to 100%. This sug-
gests that these datasets contain all or nearly all the
entity types considered in the benchmarks. How-
ever, despite this high overlap, our experiments
highlight the importance of considering the seman-
tic similarity and the amount of entity mentions for
each entity type. For example, LitSet, despite hav-
ing a high overlap, performs worse than NuNER,
PileNER, and AskNews. This result emphasizes
that merely having the same entity types is insuf-
ficient; the quality and contextual understanding
of those types matter. Additionally, the figure rein-
forces that no benchmark can be considered truly
zero-shot, as all show significant overlap with the
fine-tuning datasets.

B Creating Splits of Varying Difficulty
using FAMILIARITY

We compute a similarity matrix M where each
row represents a training entity type from LD and
each column represents an evaluation entity type
from LZ . To aggregate the similarity scores for
each training entity type ℓD, we apply two different
strategies:

Maximum Similarity Selection. For each row i,
we take the maximum similarity score across all
columns j, which captures the highest similarity be-
tween a training entity type ℓDi and any evaluation
entity type ℓZj :

Mmax
i = max

j
Mij , ∀ i ∈ {1, . . . , |LD|}.

Entropy-Based Selection. For each row i, we cal-
culate the entropy over the similarity values to
measure how evenly distributed the similarities are
across all evaluation entity types. Lower entropy in-
dicates that the similarities are concentrated around
one or a few evaluation types, while higher entropy
suggests a more uniform distribution:

Ment
i = −

|LZ |∑

j=1

pij log(pij), ∀ i ∈ {1, . . . , |LD|},

where the probability pij is defined as:

pij =
exp

(
Mij

T

)

∑|LZ |
j=1 exp

(
Mij

T

) , T = 0.01.

The low temperature value (T = 0.01) forces the
distribution to peak around the highest similarity
scores, emphasizing the most meaningful align-
ments between training and evaluation types.

After aggregating, the resulting scores Mmax

and Ment are in R|LD|, representing the relevance
for each training entity type considering the entire
evaluation entity types.

In the subsequent analysis, we select quantiles
from the aggregated scores:

• For Mmax, we select the top 1% of similarity
values to represent the low label shift transfer
setting, as these training entity types exhibit
the highest similarity to any evaluation entity
type. Conversely, the lowest 1% of scores
correspond to a high label shift transfer setting,
as these training types have low similarity to
all evaluation entity types.
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FT-Dataset Movie Restaurant AI Science Politics Literature Music Average

NERetrieve 35.8 16.8 24.2 34.6 28.5 27.1 34.1 28.7
LitSet 46.9 29.3 33.8 31.2 43.6 47.2 34.2 38.0
NuNER 43.7 46.7 47.7 57.4 64.5 59.9 65.5 55.1
PileNER 51.0 36.4 52.6 57.3 70.7 61.3 68.1 56.8
AskNews 56.6 41.8 57.0 65.9 62.9 60.4 65.2 58.5

Table 6: Transfer results for each evaluation benchmark considered. Results are averaged over three different seeds.

Figure 5: Overlapping entity types between considered synthetic training datasets and all evaluation benchmarks.

• Conversely, for Ment, we select the lowest 1%
of entropy scores for the low label shift trans-
fer setting, indicating training entity types that
have a concentrated similarity with one or a
few evaluation labels. The top 1% represent
the high label shift transfer setting, as these
scores reflect a uniform distribution over all
evaluation entity types.

By using these quantile selections, we can distin-
guish between training entity types that are more
likely to yield better performance given the eval-
uation types and those that are presumably less
suitable for the evaluation entity types.
Quantile Selection. The quantile selection for gen-
erating training splits is adapted based on both the
training dataset and the metric used, taking into
account the number of labels in each dataset.

For the maximum similarity-based selection:

• We focus on the highest quantiles for the low
label shift setting and on the lowest quan-
tiles for the high label shift setting, as higher
similarity scores indicate closer alignment be-
tween training and evaluation entity types.

• For PileNER, we select the low 5% quantile
for the high label shift setting and the top 99%
quantile for the low label shift setting.

• For NuNER, we use the low 0.5% quantile for
the high label shift setting and the top 99.5%
quantile for the low label shift setting.

For the entropy-based selection:

• We focus on the lowest quantiles for the low
label shift setting and the highest quantiles for
the high label shift setting. This is because a
lower entropy score indicates that the similar-
ity between the training and evaluation entity
types is concentrated around a few specific
evaluation types, indicating the training label
is valuable for training.

• For PileNER, which contains around 15,000
labels, we select the low 1% quantile for the
low label shift setting and top 95% quantile
for the high label shift setting. This broader
range is chosen due to the relatively smaller
number of labels.

• For NuNER, which has over 190,000 labels,
we select the low 0.5% quantile for the low la-
bel shift setting and top 99.5% quantile for the
high label shift setting. This narrower selec-
tion focuses only on the most highly relevant
or irrelevant labels, ensuring that we do not
include too many labels in the training split.

Further, we consider the medium label shift set-
ting to be the 49.5% - 50.5% quantile, independent
of the dataset. We show an overview of the distri-
bution of max. similarity scores in Figure 6 and
indicate the quantile selection.
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Figure 6: Distribution of maximum similarities between all fine-tuning datasets and evaluation benchmarks. Entity
types selected for the high label shift setting are indicated in red, those for the label shift setting in blue, and those
for the low label shift setting in green.
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