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Abstract

In human conversations, short backchannel ut-
terances such as “yeah” and “oh” play a cru-
cial role in facilitating smooth and engaging
dialogue. These backchannels signal attentive-
ness and understanding without interrupting the
speaker, making their accurate prediction es-
sential for creating more natural conversational
agents. This paper proposes a novel method
for real-time, continuous backchannel predic-
tion using a fine-tuned Voice Activity Projec-
tion (VAP) model. While existing approaches
have relied on turn-based or artificially bal-
anced datasets, our approach predicts both the
timing and type of backchannels in a contin-
uous and frame-wise manner on unbalanced,
real-world datasets. We first pre-train the VAP
model on a general dialogue corpus to capture
conversational dynamics and then fine-tune it
on a specialized dataset focused on backchan-
nel behavior. Experimental results demonstrate
that our model outperforms baseline methods in
both timing and type prediction tasks, achiev-
ing robust performance in real-time environ-
ments. This research offers a promising step
toward more responsive and human-like dia-
logue systems, with implications for interactive
spoken dialogue applications such as virtual
assistants and robots.

1 Introduction

In natural human conversations, short backchan-
nels, such as “yeah” and “right,” play a crucial
role in facilitating smooth and engaging inter-
actions (Clark, 1996; Clancy et al., 1996; Mad-
drell and Watson, 2012). They function as feed-
back mechanisms, signaling attentiveness, under-
standing, and agreement without interrupting the
speaker. Accurate prediction and generation of
backchannels in spoken dialogue systems are es-
sential for creating more natural and human-like
interactions (Schroder et al., 2011; DeVault et al.,
2014; Inoue et al., 2020b). Although some defi-
nitions of backchannels include longer and more
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Figure 1: Conceptual diagram of continuous backchan-
nel prediction

linguistic tokens such as “I see,” this work focuses
on short tokens that are frequently and dynamically
used by listeners.

Backchannel modeling remains a significant
challenge due to their subtle and context-dependent
characteristics. Given the dynamic nature of
backchannels, it is essential to predict them on
a frame-by-frame basis and in real-time for live
spoken dialogue systems, as depicted in Figure 1.
However, most previous studies have focused on
utterance-based systems, or, in the case of frame-
based systems, have artificially balanced the test
data by reducing non-backchannel samples. This
data manipulation introduces a discrepancy be-
tween the training models and real-world systems.
Consequently, for practical applications, it is nec-
essary to develop models capable of real-time, con-
tinuous frame-wise prediction and evaluate them
using unbalanced, real-world datasets.

Transformer-based architectures have emerged
as powerful tools for a broad range of sequen-
tial prediction tasks, such as language modeling
and speech recognition. Among these, the Voice
Activity Projection (VAP) model, a Transformer-
based architecture, has shown its efficacy in pre-
dicting future voice activity within dialogues (Ek-
stedt and Skantze, 2022b,a). Since voice activ-
ity is closely intertwined with turn-taking dynam-
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ics and backchannel behaviors, the VAP model
seems to have the potential to enable more accurate
backchannel prediction. Furthermore, as a previous
study implemented the real-time VAP model (Inoue
et al., 2024b), a VAP-based backchannel prediction
model could serve as a promising candidate for
real-time backchannel generation systems. In its
initial application, the VAP model was employed
for backchannel prediction in a zero-shot manner.
However, this approach exhibited a sensitivity to
threshold selection and depended on a balanced
dataset. These findings suggest that while the VAP
model shows promise for backchannel prediction,
further research is necessary to refine its training
methodology for improved performance.

In this study, we propose a novel approach to
backchannel prediction by utilizing the VAP model
as a foundational framework. We first train the VAP
model on a large corpus of general dialogue data to
capture the fundamental patterns of conversational
dynamics. Subsequently, we fine-tune the model
on a specialized dataset focused on backchannel
prediction. This two-stage training process is anal-
ogous to the pre-training and fine-tuning paradigm
employed by models like BERT, aiming to demon-
strate the VAP model’s versatility as a general-
purpose base model. Moreover, to the best of our
knowledge, our model is the first to predict both the
timing and type of backchannels in a continuous
and real-time manner.

The contributions of this paper are twofold.

* Real-Time Continuous Backchannel Pre-
diction: A method for real-time, continuous
backchannel prediction based on the VAP
model is developed and evaluated on real-
world, unbalanced test data.

¢ Two-Stage Training for Generalization: A
two-stage training process is introduced for
the VAP model, demonstrating its potential as
a fundamental model for predicting conversa-
tional dynamics.

Note that the source codes and trained models are
publicly available '.

2 Related Work

Effective backchannel generation necessitates ac-
curate prediction of three key elements: tempo-
ral placement (timing), linguistic form (type), and
prosodic patterns. The majority of prior studies

'We will put the link here after the reviewing process.

have focused exclusively on predicting the tim-
ing and types of backchannels. The definition
and functions of backchannel types have been
explored in conversational analysis and linguis-
tic studies (Drummond and Hopper, 1993; Wong
and Peters, 2007; Tang and Zhang, 2009; Den
et al., 2011). Despite the critical role of prosody
in entrainment, existing research on this remains
scarce (Kawahara et al., 2015; Ochi et al., 2024).
This review primarily summarizes the current state
of research on predicting the timing and form of
backchannels.

Before recent advances in machine learning tech-
nologies, backchannel prediction models were pri-
marily based on hand-crafted features with heuris-
tic rules or simpler models (Koiso et al., 1998;
Ward and Tsukahara, 2000; Fujie et al., 2005;
Morency et al., 2008, 2010; Ozkan and Morency,
2011; Blache et al., 2020). With the advent of
dataset creation paradigms and machine learn-
ing advancements, deep learning models began to
be employed for backchannel prediction. Initial
models were built using long-short-term memory
(LSTM) networks (Ruede et al., 2017a,b; Adiba
et al., 2021; Jain et al., 2021), while more recent ap-
proaches leverage Transformer-based models (Jang
et al., 2021; Liermann et al., 2023).

Most previous studies focused on timing predic-
tion, with some also addressing type prediction.
The most conventional approach involves framing
the prediction task as a three-class classification
problem: non-backchannel, continuer, and assess-
ment (Choi et al., 2024), as described in Section 4.2.
The present work adopts this three-class classifi-
cation scheme for both timing and type predic-
tion. Other research has explored a four-type clas-
sification system, encompassing non-backchannel,
continuer, understanding, and empathy backchan-
nels (Jang et al., 2021). Another study introduced
a five-type classification for single continuer, dou-
ble continuers (e.g., "yeah yeah"), triple continuers,
assessment, and non-backchannel (Kawahara et al.,
2016). Furthermore, a different approach proposed
a two-step classification method where the first
model predicts the timing, followed by a second
model that determines the type (Adiba et al., 2021).

In terms of prediction unit, utterance-based or
continuous, utterance-based models tend to incor-
porate linguistic features such as word embed-
dings (Jang et al., 2021; Park et al., 2024). Con-
versely, previous continuous models were generally
restricted to using prosodic features (Ruede et al.,
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Figure 2: Setup for dialogue recording

2017a,b). Recent models have begun utilizing au-
dio encoders that can theoretically capture both
linguistic and prosodic information in an end-to-
end manner (Park et al., 2024; Choi et al., 2024).
The VAP model used in this study similarly em-
ploys a pre-trained contrastive predictive coding
(CPC) model as its audio encoder.

To address the issue of imbalanced data, re-
cent studies have integrated multi-task learning
with the primary task of backchannel prediction.
For instance, subtasks such as turn-taking predic-
tion (Hara et al., 2018; Ishii et al., 2021), senti-
ment score analysis (Jang et al., 2021), dialogue act
recognition (Liermann et al., 2023), and streaming
automatic speech recognition (ASR) (Choi et al.,
2024) have been considered. Notably, a recent
model (Choi et al., 2024) was evaluated on a real-
world imbalanced dataset, demonstrating reason-
able performance with F1-scores of 26% and 22%
for continuer and assessment backchannels, respec-
tively, in a frame-wise manner. This work also
proposes the incorporation of multi-task learning
for both backchannel prediction and VAP tasks.

3 Dataset

We employ two types of datasets: one specialized
for backchannel prediction and the other for pre-
training the proposed model. Note that all the dia-
logue datasets were in Japanese.

3.1 Attentive Listening Dataset

We have collected spoken dialogue data using a
Wizard-of-Oz (WOZ) setup. In this experiment,
the android ERICA (Inoue et al., 2016) was em-
ployed, with a human operator remotely controlling
it, which was transmitted and played through ER-
ICA’s speaker system (Figure 2).

The dialogue task focused on attentive listen-
ing, where human participants (speaker) shared
personal experiences, and ERICA actively engaged
as a listener (Inoue et al., 2020b; Lala et al., 2017).
This task was advantageous because it allowed for

the collection of numerous backchannel responses
by ERICA. The participants comprised two demo-
graphic groups: students and older adults. Each
group was provided with a prompt to guide their
conversation; for instance, students discussed “chal-
lenges during the COVID-19 pandemic,” while the
elderly participants reflected on “memorable travel
experiences and recent favorite meals.”

ERICA’s operators were three actresses, who
had experiences of our past attentive listening dia-
logue experiments. While backchannel behaviors
can be subjective and vary among individuals, the
few operators were selected for their experience,
ensuring the collection of high-quality backchan-
nel data. Furthermore, the operators participated
in a sufficient number of dialogue sessions in this
experiment, ensuring both the quantity and quality
of the training data, despite the varying speakers in
each session.

In total, we recorded 109 dialogue sessions, each
lasting approximately 7 to 8 minutes. The data
were randomly divided into 87, 11, and 11 ses-
sions for training, validation, and testing purposes,
respectively. We subsequently transcribed the di-
alogues and annotated ERICA’s backchannel re-
sponses.

3.2 Pre-training Data for VAP

In this study, we introduce a two-step training ap-
proach where the original VAP model is initially
trained, followed by fine-tuning for backchannel
prediction. The first step requires a larger dataset
to train the VAP model effectively to continuously
predict future voice activities. To support this, in
addition to the attentive listening dialogue dataset
mentioned earlier, we incorporated additional train-
ing data at this stage. Using the same configuration
as ERICA, we recorded data across various scenar-
i0s, such as job interviews (Inoue et al., 2020a) and
first-meeting dialogues (Inoue et al., 2022). These
diverse tasks provide different dialogue styles, en-
hancing the VAP model’s robustness and enabling
it to adapt to various behaviors, including backchan-
nels. In total, the pre-training data amounted to
about 35 hours, which includes the training set
from the aforementioned backchannel prediction
dataset.

4 Task Definition

In this work, we address two distinct backchannel
prediction tasks as outlined below.
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4.1 Timing Prediction

The primary objective of this task is to predict the
occurrence of a backchannel, framing it as a binary
classification problem. We manually annotated
the backchannels in the aforementioned dialogue
dataset, identifying two distinct types of short to-
kens as backchannels: continuer and assessment.
The continuer tokens include expressions such as
“un” and “hai” in Japanese, which correspond to
“yeah” and “right” in English. On the other hand,
the assessment tokens include utterances such as
“he-" and “oh” in Japanese, equivalent to “wow”
and “oh” in English. It is important to note that in
the current task, we do not differentiate between
these two token types, whereas such a distinction is
made in the second task. To facilitate the implemen-
tation of the model in real-time spoken dialogue
systems, we marked the positive sample frames
as occurring 500 milliseconds before the actual
backchannel utterances, as illustrated in Figure 3.

The total number of annotated backchannel ut-
terances amounted to 13,601, with a cumulative
duration of 5,912.6 seconds. These were split into
11,371 utterances for training, 1,139 for validation,
and 1,091 for testing. For the negative samples, the
cumulative time of non-backchannel segments was
56,467.3 seconds, resulting in a ratio of approxi-
mately 10% for positive samples.

4.2 Timing and Type Prediction

In the second task, the prediction process becomes
more refined by incorporating different types of
backchannels. Although numerous definitions of
backchannel types or categories exist in prior re-
search, we adopt the two basic types: continuers
and assessments, as defined earlier. This distinc-
tion is crucial for conveying different listener in-
tentions, and most previous studies have primarily
addressed continuers, as assessment backchannels
may require comprehension of both the prosodic
and linguistic aspects of the user’s utterances.
After reclassifying the previously annotated
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Figure 4: Architecture of the VAP model

backchannels into these two categories, we found
that there were 10,081 instances of continuers
and 3,506 instances of assessment backchannels.
This ratio means that the prediction of assessments
seems to be more difficult than those for continuers.
It is important to note that 14 tokens could not be
classified into either category, and thus they were
excluded from this task. Consequently, the classifi-
cation problem in this task becomes a three-class
classification: continuers, assessments, and non-
backchannels. The definition of timing remains
consistent with the previous task, as illustrated in
Figure 3.

S Proposed Method

In this section, we begin by explaining the voice
activity projection (VAP) model, which serves as
the foundational model and is trained to predict
future voice activities by using the largest spoken
dialogue dataset explained in Section 3.2. Follow-
ing that, we discuss how to adapt a pre-trained VAP
model for use in the current backchannel prediction
task, using the data introduced in Section 3.1.

5.1 Voice Activity Projection

The VAP model employed in this study is con-
structed upon a Transformer-based architecture de-
signed to emulate human-like predictive capabil-
ities. As illustrated in Figure 4, the architecture
of the VAP model processes stereo audio signals
originating from two participants”, consistent with

%A detailed explanation of the model’s architecture is pro-
vided in a previous work (Inoue et al., 2024a)
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the operation of full-duplex spoken dialogue sys-
tems. Note that this model integrates the listener’s
audio as one of the input channels. This allows
self-generated backchannels to be fed back into the
model, distinguishing it from other existing models.
This functionality plays a crucial role in prevent-
ing multiple consecutive backchannels, which may
appear unnatural.

Each audio channel is initially processed inde-
pendently through a Contrastive Predictive Coding
(CPC) audio encoder and a channel-wise Trans-
former. The CPC was pre-trained with the Lib-
rispeech dataset (Riviere et al., 2020) and is frozen
during the VAP training. The resulting outputs
are then input into a cross-attention Transformer,
where one channel serves as the query, while the
other functions as the key and value. The output,
a concatenation of both channels, produces a 512-
dimensional vector. Note that we used the same
parameters as defined in the original work (Inoue
et al., 2024a) where the numbers of layers for the
channel-wise and the cross-attention Transformers
were 1 and 3, and the number of attention heads
was 4, respectively.

The concatenated vector is subsequently pro-
cessed by linear layers for two distinct tasks: voice
activity projection (VAP) and voice activity detec-
tion (VAD). The primary task, voice activity pro-
jection, yields a 256-dimensional state vector that
predicts the voice activity of the two participants
over the next two seconds (Ekstedt and Skantze,
2022b), as illustrated in Figure 5. This two-second
period is divided into four time intervals: 0-200
ms, 200-600 ms, 600-1200 ms, and 1200-2000 m:s.
Consequently, there are eight binary bins in total,
four for each participant, resulting in 256 (= 2%)
possible combinations of speaking/non-speaking
states for each participant within these bins. The
voice activity detection task, conversely, focuses
on the current frame, producing two binary vec-
tors representing the present voice activity of each

participant. Both tasks are trained using the cross-
entropy loss function, denoted as Lyqp and Lyqq in
the following subsection.

5.2 Fine-Tuning for Backchannel Prediction

Following the pre-training of the VAP model, an
additional training phase is conducted using data
specific to backchannel prediction. To facilitate
this, a new linear layer is introduced on top of the
VAP model, complementing the existing layers for
VAP and VAD, as depicted in Figure 4. The loss
function for this fine-tuning process, denoted as L,
is formulated as follows:

L=« Lvap + B Lyaa + vLpe (D

where «, 3, and ~ are the hyperparameters used
to adjust the balance between the three tasks, with
~ typically assigned a higher value due to the pri-
mary focus on backchannel prediction. The first
two terms are consistent with those used in the
original VAP model (Ekstedt and Skantze, 2022b),
while the final term, Ly, is newly introduced in
this work. This term represents the cross-entropy
loss associated with backchannel prediction and is
defined as:

Ly = —log o (0pe(7pe)) » )

where oy, represents the output from the linear
head associated with backchannel prediction, and
rpe denotes the reference label. It is important
to note that the dimensionality of these vectors
is dependent on the specific task. For instance,
in binary classification tasks, such as predicting
the presence or absence of a backchannel (Sec-
tion 4.1 and Section 6.1), the dimensionality would
be 2. Conversely, in multi-class classification tasks,
which involve predicting both the timing and type
of backchannel (Section 4.2 and Section 6.2), the
dimensionality would exceed 3.

6 Experiment

To evaluate the effectiveness and applicability of
the proposed method, we conducted the four exper-
iments described below.

6.1 Timing Prediction

The first experiment focuses on the initial tasks out-
lined in Section 4.1, which involve a binary classi-
fication of backchannels or non-backchannels. We
prepared several comparative methods, including
random classification (always outputs positive), as
detailed below:
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Figure 6: Example of backchannel timing prediction. The top section represents the listener’s activity (orange:
backchannel), the middle shows the speaker’s speech, and the bottom section illustrates the model’s predicted

probabilities for backchannel occurrence.

(i) Baseline consists solely of the audio encoder
CPC and a linear head. While other meth-
ods in this study freeze the CPC during train-
ing, this baseline approach fine-tunes the CPC
model itself. As the two input audio chan-
nels are separately fed into the CPC, their dis-
tinct output vectors are concatenated and then
passed to the linear head.

(i1) Zero-shot is based on the direct use of the
VAP output proposed in the original VAP
work (Ekstedt and Skantze, 2022b). It is a
normalized value obtained by adding the prob-
ability of immediate voice activity of the lis-
tener (system) (0.0 to 1.2 seconds) and the
probability of slightly later voice activity of
the speaker (user) (1.2 to 2.0 seconds). A
higher value indicates that the immediate sys-
tem utterance would be short, corresponding
to a backchannel.

@iii)) ST w/o PT refers to the single-task (ST)
model, where the loss function only includes
Ly, from Equation (1). Moreover, this model
does not involve any pre-training (PT) of the
VAP model.

(iv) ST w/ PT introduces pre-training of the VAP
model in addition to the single-task learning.

(v) MT-ASR performs another type of multi-
task learning, where backchannel prediction is
trained together with automatic speech recog-
nition, inspired by a recent backchannel pre-
diction model (Choi et al., 2024). This sub-
task was trained to recognize phonemes (19
phones) using the CTC loss function.

(vi) MT w/ PT represents the proposed method,
which incorporates both multi-task (MT)
learning, as described in Equation 1, and the
pre-training of the VAP model.

Table 1: Result on timing prediction (ST: Single-task,
MT: Multi-task, PT: Pre-training)

Method Fl-score Precision Recall
Random 13.76 7.39 100.00
Zero-shot 15.11 8.22 93.11
Baseline 36.37 26.43 58.32
ST w/o PT 36.34 25.04 66.24
ST w/ PT 41.65 31.31 62.18
MT-ASR 39.34 28.25 63.39
MT w/ PT 42.85 32.52 62.80

The evaluation metrics used are F1-score, preci-
sion, and recall, calculated in a frame-wise manner,
and the F1-score is the most priority indicator. For
the hyperparameters in Equation (1), to emphasize
the importance of backchannel prediction, we em-
pirically set themas « = 1, 8 = 1, and v = 5. Ad-
ditionally, to mitigate the impact of the imbalanced
dataset, we adjusted the loss weight, assigning a
weight five times larger to positive (backchannel)
samples compared to negative (non-backchannel)
samples.

Table 1 presents a summary of the results for
this task. Firstly, all trained methods demonstrated
significantly higher scores when compared to the
random and zero-shot approaches. In particular, the
proposed method (MT w/ PT) achieved the highest
scores in both the F1 score and precision metrics.
These findings suggest that both pre-training and
multi-task learning play a crucial role in improv-
ing backchannel prediction performance, indicat-
ing that this task requires a more robust approach
than conventional target-specific training or fine-
tuning. Moreover, the VAP model, along with its
original loss function, exhibits better generalizabil-
ity and applicability to other non-linguistic behav-
ior predictions, such as the current backchannel
prediction task.

Figure 6 illustrates a sample output generated by
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Figure 7: Example of model predictions for backchannel timing and type. The top two sections show the listener
(orange: continuer, pink: assessment) and speaker activities. The third section displays the model’s prediction
probabilities for continuer (orange), while the bottom section shows the probabilities for assessment (pink).

Table 2: Result on time and type prediction on contin-
uer (ST: Single-task, MT: Multi-task, PT: Pre-training)

Method Fl-score Precision Recall
Random 10.19 5.37 100.00
Baseline 34.13 26.59 47.63
STw/oPT  36.10 28.65 48.77
ST w/ PT 36.47 29.08 48.90
MT-ASR 33.45 25.33 49.26
MT w/ PT 38.11 29.89 52.58

the model. As shown in the graph, even while the
Blue speaker is still speaking, the model is capable
of predicting multiple backchannel points just prior
to their occurrence.

6.2 Timing and Type Prediction

The second experiment involves the prediction of
backchannel types, as outlined in Section 4.2. We
employed the same comparative methods as in the
previous experiment, but adjusted the output dimen-
sion of the linear head from 2 to 3 to accommodate
the classification of continuers, assessments, and
non-backchannels. The evaluation metric remained
unchanged; however, we conducted separate evalu-
ations for continuers and assessments. Note that the
zero-shot approach (defined in Section 6.1) was not
applicable to this task and was therefore excluded.

Table 2 and Table 3 present the outcomes of
this task. As with the previous results, both ta-
bles demonstrate that the combination of multi-task
learning and pre-training significantly enhanced
performance, with the proposed method (MT w/
PT) achieving the highest F1-score. When compar-
ing these two types, as anticipated, the prediction
of assessment backchannels yielded lower scores.
While random prediction offers no meaningful in-

Table 3: Result on time and type prediction on as-
sessment (ST: Single-task, MT: Multi-task, PT: Pre-
training)

Method Fl-score Precision Recall
Random 3.57 1.82 100.00
Baseline 19.74 32.71 14.13
STw/o PT  23.72 26.11 21.73
ST w/ PT 30.09 30.36 29.82
MT-ASR 20.27 25.33 16.90
MT w/ PT 31.76 29.95 33.81

sight, the proposed method exceeded an F1-score
of 30.

Figure 7 illustrates a sample output generated
by the model. In this example, the listener uttered
two continuer backchannels (orange) followed by
an assessment (pink). The model can correctly pre-
dict the first two continues and then also properly
predict the assessment. From this result, the model
can be trained properly to predict both two types
of backchannels.

6.3 Prosody Sensitivity

We further examined the extent to which the model
depends on prosodic information. Previous work
on the VAP model conducted a similar experiment
by flattening the pitch (Figure 8) and intensity (Fig-
ure 9) of the test input (Ekstedt and Skantze, 2022a).
In this study, we similarly utilized Praat® to flatten
both pitch and intensity, respectively. If such ma-
nipulations significantly degrade performance, it
would suggest that the model both relies on and
effectively captures the prosodic information. We
subsequently analyzed the performance changes

3https://www.fon.hum.uva.nl/praat/
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Figure 8: Input example of pitch flattening test (Top:
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Figure 9: Input example of intensity flattening test

before and after applying the flattening manipula-
tions across the three classification models. Due to
space limitations, we report only the F1-score of
the proposed model (MT w/PT).

Table 4 presents the results of this experiment.
Overall, neither manipulation significantly de-
graded performance, suggesting that the model
may rely more heavily on other factors, such as
linguistic information. Both types of backchannels
exhibited a similar trend, with intensity flattening
causing greater degradation than pitch flattening.
This finding indicates that the current backchannel
prediction model captures the intensity dynamics of
preceding user utterances more effectively. When
comparing the two types of backchannels, the as-
sessment revealed a higher dependence on intensity,
though the difference was not substantial.

6.4 Real-time Processing Performance

To validate the applicability of live spoken dia-
logue systems, we also examined the relationship
between the model’s input context length and its
prediction performance. As the CPC audio encoder
is composed of an autoregressive model, we pro-
vided the entire context audio input to the encoder.
Subsequently, we constrained the input length for
the Transformer layers. In addition, we adjusted
the frame rate to 10 Hz, which is sufficient for real-
time prediction systems, and retrained the models
accordingly. Therefore, note that the results in this
section would be different from the ones so far.

Table 4: Pitch and intensity flattening result

Manipulation - Fl-score
Continuer Assessment
None (original) 38.11 31.76
Pitch flat 37.20 (-0.91) 31.09 (-0.67)

Intensity flat 35.48 (-2.63) 28.73 (-3.03)

Table 5: Real-time processing performance (RTF: Real-
time factor)

Context F1-score

[sec.] “Continuer Assessment RTE
20 36.17 28.75 0.229
10 36.51 30.46 0.220

5 36.57 30.08 0.194
3 35.79 29.51 0.172
1 35.25 27.67 0.157

In this experiment, we employed the second task,
which involves predicting both the timing and type
of backchannels. For this evaluation, only a CPU
was utilized, specifically an Intel Core i7-11700 @
2.50 GHz.

The result for the continuer and assessment
backchannels in the different input context lengths
is presented in Table 5. Also, in this experiment, we
only reported the F1-score of the proposed model
(MT w/PT). Overall, due to the compact design
of the VAP model, the real-time factor (RTF) was
consistently below 1.0 in all cases, indicating that
real-time processing is achieved. Regarding the
effect of input context length on the Transformer
layers, approximately 5 seconds of input context
yielded optimal results for both types of backchan-
nels. When comparing the two types, while the
continuer backchannels could be predicted even
with a 1-second input context, the performance for
assessment backchannels decreased significantly
with shorter contexts, such as 1 or 3 seconds. This
disparity suggests that the prediction of assessment
backchannels requires a longer input context.

7 Integration with a CG Agent

Based on the results from the previous experi-
ment, we have developed a VAP-based real-time
backchannel prediction system and implemented
it with a conversational CG agent*. Figure 10 il-
lustrates the system in operation with the agent, as
well as its real-time GUI visualization tool. Note

*CG-CA Takumi (c) 2023 by Nagoya Institute of Technol-
ogy, Moonshot R&D Goal 1 Avatar Symbiotic Society
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Figure 10: A conversational agent with VAP-based backchannel prediction and its GUI visualization

that since this backchannel generation system oper-
ates independently of the interface, it can be applied
to various other interfaces, including physically em-
bodied robots. We plan to conduct a user dialogue
experiment with this dialogue system to evaluate
the naturalness and effectiveness of the backchan-
nel generation system.

8 Conclusion

This paper presents a method for real-time, con-
tinuous backchannel prediction using a fine-tuned
Voice Activity Projection (VAP) model. Our ap-
proach combines pre-training on a larger dialogue
dataset with fine-tuning on a specialized backchan-
nel dataset, leveraging the VAP architecture’s gen-
eralizability. Experimental results showed that our
two-stage and multi-task training process improves
the model’s ability to predict both the timing and
type of backchannels, demonstrating its adaptabil-
ity to real-world, unbalanced data. We also vali-
dated the model for real-time use, confirming its
effectiveness in live systems without compromis-
ing accuracy, especially for continuer backchannels.
The results also highlight the need for longer in-
put contexts for accurate assessment backchannel
predictions.

This study represents a step forward in enhanc-
ing conversational agents’ interactivity by provid-
ing a more human-like and responsive backchan-
neling system. Future research will concentrate on
evaluating the effectiveness of the backchannel gen-
eration system through user dialogue experiments,

as well as further refining backchannel prediction
for more complex conversational contexts.
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Limitations

This study was evaluated solely on a Japanese dia-
logue dataset, which limits the generalizability of
the model to other languages. Future work should
assess its performance on common other datasets
like Switchboard to ensure broader applicability.
Additionally, while our model shows promise for
real-time backchannel prediction, it has not been
evaluated in practical settings with conversational
agents or robots. Future experiments involving
user interactions with such systems are necessary
to evaluate the model’s effectiveness and user im-
pressions in real-world scenarios.
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