
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 7132–7157

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Markov Chain of Thought for Efficient Mathematical Reasoning

Wen Yang*, Minpeng Liao*†, Kai Fan*†

Alibaba Tongyi Lab
{hechu.yw, minpeng.lmp, k.fan}@alibaba-inc.com

Abstract

Chain of Thought (CoT) of multi-step benefits
from the logical structure of the reasoning steps
and task-specific actions, significantly enhanc-
ing the mathematical reasoning capabilities of
large language models. As the prevalence of
long CoT, the number of reasoning steps ex-
ceeds manageable token limits and leads to
higher computational demands. Inspired by the
fundamental logic of human cognition, “derive,
then reduce”, we conceptualize the standard
multi-step CoT as a novel Markov Chain of
Thought (MCoT). In this study, we consider
the mathematical reasoning task, defining each
reasoning step as text accompanied by a Python
code snippet. To facilitate a longer reasoning
path, self-correction is enabled through inter-
actions with the code interpreter. Our MCoT
aims to compress previous reasoning steps into
a simplified question, enabling efficient next-
step inference without relying on a lengthy
KV cache. In our experiments, we curate the
MCoTInstruct dataset, and the empirical re-
sults indicate that MCoT not only significantly
enhances efficiency but also maintains com-
parable accuracy. While much remains to be
explored, this work paves the way for exploring
the long CoT reasoning abilities of LLMs.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), these models have demonstrated re-
markable progress in a wide range of language
tasks (Brown et al., 2020; Ouyang et al., 2022;
Taori et al., 2023; Yang and Klein, 2021). However,
they still face significant challenges when engaging
in complex and symbolic reasoning tasks, particu-
larly in mathematical reasoning (Cobbe et al., 2021;
Hendrycks et al., 2021).

Most existing works have sought to enhance
the mathematical reasoning capabilities of LLMs.

* Equal contribution
† Corresponding author

1 2 3 4 5 6 7 8

1

2

3

4

5

6

𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝒔𝒕𝒆𝒑𝒔

𝒓
𝒆
𝒂
𝒔𝒐
𝒏
𝒊𝒏
𝒈
𝒄
𝒐
𝒔𝒕

𝒐
𝒇
𝒔
𝒕𝒆
𝒑
𝒊

𝒓
𝒆
𝒂
𝒔𝒐
𝒏
𝒊𝒏
𝒈
𝒄
𝒐
𝒔𝒕

𝒐
𝒇
𝒔
𝒕𝒆
𝒑
𝟏

MCoT

Multi-Step Reasoning

Figure 1: Comparison of reasoning efficiency between
MCoT and Multi-Step Reasoning (MSR), showing the
variation in reasoning time costs for both methods rela-
tive to step 1 as the number of reasoning steps increases.

These efforts can be broadly categorized into two
approaches: single-step reasoning (Yu et al., 2023;
Yue et al., 2023) and multi-step reasoning (Gou
et al., 2023; Wang et al., 2023a; Liao et al., 2024;
Lu et al., 2024; Chen et al., 2024a,b). Single-step
reasoning completes the reasoning task through one
inferential step; Multi-step reasoning, which uti-
lizes the reasoning traces (CoT) and task-specific
actions (Code Interpreter), has been empirically
demonstrated to boost the complex reasoning abil-
ities of LLMs. Nevertheless, as the number of
reasoning steps increases, Levy et al. (2024) finds
that multi-step reasoning may become suscepti-
ble to accumulative errors or hallucinations. Fur-
thermore, multi-step reasoning involving process-
ing long CoT demands greater computational re-
sources, which renders the inference process prac-
tically inefficient.

To address the inefficiency inherent in multi-step
reasoning, our approach is deeply influenced by
understanding how humans navigate complex rea-
soning tasks. Research on human cognition (Simon
and Newell, 1971; Polya, 2004; Meadows, 2008)

7132

Solutionn-1

Question

Solution1

Answer

...

Question

Sub
Question1

Sub
Question2

Sub
Questionn

...

Answer

Multi-Step Reasoning Question Decomposition Reasoning Markov Chain of Thought Reasoning

q1
s1
s2

a
q1 s1 as2

q1
s1
s2

a
q1 s1 as2

Solution1 Solution2 Solutionn...

Decomposition

Iterative solution

q1
s1
q2

a
q1 s1 aq2

visible
unvisible

Question

Answer

P(S1 | Q1)

P(Q2 | Q1, S1)

P(A | Qt, St)

Derivation1

Question2

Repeat t times

state1

action1

state2

stateT

P(S2 | Q2)

Derivation2
action2

Solutionn

Figure 2: Schematic illustrating various approaches to mathematical reasoning with LLMs and their reasoning
efficiency. The masked demonstrations across different approaches show that the efficiency of MCoT is similar to
that of the blockwise masking approach, while the efficiency of MSR and question decomposition reasoning is more
akin to that of the vanilla masking.

highlights two pivotal phases: derivation and re-
duction. When tackling a complex problem, the
process often starts with deriving intermediate vari-
ables or partial solutions, rather than seeking an
immediate full solution. These intermediate steps
help clarify key aspects of the problem, which can
then be simplified through reduction. The process
of derivation and reduction is not linear but rather it-
erative. After each reduction, the newly simplified
problem becomes an independent question, prompt-
ing further exploration for solutions. These new so-
lutions could facilitate further reductions, gradually
simplifying the problem and moving it toward the
final answer. To formalize this reasoning process,
we utilize the Markov chain to model the entire
sequence of reasoning. This innovative approach
is termed Markov Chain of Thought (MCoT).

The Markovian property has been explored in
the mathematical proof of formal languages (FL),
such as Lean (Moura and Ullrich, 2021). For ex-
ample, executing a Lean tactic—equivalent to a
reasoning step—transforms an original hypothesis
(which may be none) into a new one while dis-
carding the original. We aim to extend this idea
to natural language (NL) for mathematical reason-
ing. Figure 2 illustrates the principle of MCoT
approach. In MCoT, we initially frame the ques-
tion as a particular state and consider the first
derivation step as an associated action, then en-
vision the complete solution as a sequential series
of transitions between states. In contrast to ques-
tion decomposition approaches (Zhou et al., 2022;
Dua et al., 2022; Huang et al., 2023; Radhakrish-
nan et al., 2023), the Markov property inherent in
MCoT framework guarantees that any state (ques-
tion) can directly lead to the final answer. However,
question decomposition breaks down a problem

into multiple sub-questions, each yielding only a
partial answer. It is the cumulative aggregation of
these partial answers that ultimately generates the
final answer. Unlike multi-step reasoning, MCoT
clears the KV cache of the context after simplify-
ing questions, enabling it to support longer CoT.
Therefore, MCoT offers the notable advantage that
the reasoning’s time or memory demands do not
linearly or quadratically increase with the number
of reasoning steps.

Empirically, we have developed a dataset
specifically designed for MCoT reasoning, called
MCoTInstruct. In order to maximize the utiliza-
tion of existing data resources, we provide a repro-
ducible pipeline starting from the multi-step reason-
ing datasets to construct the MCoT dataset. This
dataset, originating from GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021), has
been further refined through a combination of GPT-
4 annotations and self-distillation processes.

In summary, Our contributions are as follows:
1. We propose an innovative framework Markov
Chains of Thought (MCoT), by exploiting the
Markov property and envisioning the solution pro-
cess as a series of transitions between states.
2. We constructed a MCoTInstruct dataset on
mathematical reasoning task to facilitate research
community.
3. Extensive experiments demonstrate that, with a
maximum number of eight steps, MCoT achieves
an average reasoning efficiency that is 1.90× faster
than traditional multi-step reasoning and maintains
superior to multi-step reasoning accuracy.
4. As MCoT provides a new pathway for exploring
advanced reasoning abilities, we will release our
dataset and code to facilitate further research and
development within the community.

7133

Algorithm 1 Construction of the MCoT Seed Dataset

1: Dorigin ← Load initial GSM8K and MATH dataset
2: Define data format in Dorigin: τ1 = (q1, s1:T ,a), where

T ≥ 1.
3: Train model Mverify using Dorigin
4: Dseed = []

5: D̃origin = []
6: for each instance in Dorigin do
7: if T = 1 then
8: Add (q1, s1,a) to Dseed
9: else

10: Use GPT-4 to generate reduced question q2 from
(q1, s1)

11: Inference mode: Mverify(q2) to obtain (s′1:T ′ ,a′)
12: if a′ = a then ▷ Independence Test
13: Add (q1, s1,q2) to Dseed
14: Add new multi-step reasoning path τ2 =

(q2, s
′
1:T ′ ,a) to D̃origin

15: Dorigin ← D̃origin then go to Line 5

2 Markov Chain of Thought Enable
Mathematical Reasoning

2.1 Markov Chain of Thought Reasoning
For mathematical problem q, we assume that with
each successful derivation step, the original prob-
lem can be incrementally simplified into a series
of less complex problems, eventually leading to
the final answer a. Concretely, if we denote the
original problem by q1 and the first derivation step
as s1, we can define the generation of new prob-
lems as p(qt|qt−1, st−1). Consequently, the subse-
quent derivation step relies entirely on the newly
formulated question. This indicates that the pro-
cess adheres to the Markov property, which implies
memorylessness (i.e., the future state depends only
on the current state and not on the sequence of
events that preceded it).

p(st|qt′≤t, st′<t) = p(st|qt) (1)

For a question with T derivation steps, we are inter-
ested in maximizing the log-likelihood of the joint
distribution of all steps. With the above assumption,
we have the following objective.

L = log p(a, s1:T |q1)

= log
(
p(s1|q1)Eq2:T

[
p(a|qT , sT)

×
T∏

t=2

p(st|qt) p(qt|qt−1, st−1)
])

(2)

However, this objective is intractable due to the re-
quirement of integrating latent variables q2:T . As a
surrogate, we turn to Monte Carlo integration, em-
ploying sampling techniques for feasibility. When

we set the sampling size to 1, and if q̃2:T represents
the sequence of sampled reduction questions of in-
termediate derivation steps, the objective L can be
approximated as follows.

log

(
p(s1|q1)p(a|q̃T , sT)

T∏

t=2

p(st|q̃t)p(q̃t|qt−1, st−1)

)

Denote q1 = q̃1,

= log p(a|q̃T , sT) +
T∑

t=1

log p(st|q̃t)

+

T−1∑

t=1

log p(q̃t+1|qt, st)

= log p(sT ,a|q̃T) +

T−1∑

t=1

log p(st, q̃t+1|q̃t)

Denote a = q̃T+1,

=
T∑

t=1

log p(st, q̃t+1|q̃t)

(3)

In Eq. (3), the first equation unfolds the approx-
imated loss into the summation of 2T indepen-
dent log-likelihoods. The second equation ap-
plies expression re-organization with the rule of
conditional probability p(st|qt)p(qt+1|qt, st) =
p(st,qt+1|qt), resulted in T new independent log-
likelihoods, signifying that these components can
be optimized independently. The third equation is
to rewrite the loss into a more concise represen-
tation. To sum up, if multi-step reasoning can
be transformed into multiple independent single-
step reasoning, the training and inference become
very efficient. This is also the core intuition to build
our dataset.

2.2 MCoTInstruct Dataset
Our MCoTInstruct dataset is comprised of two
components: the seed data, denoted as Dseed,
and the augmented self-distillation data, referred
to as Dself. To construct our dataset, we start
from an available multi-step reasoning dataset, de-
noted as Dorigin, which includes the multi-step
solutions from GSM8k and MATH datasets that
have been further refined through GPT-4 annota-
tions, e.g., MathCodeInstruct (Wang et al., 2023a).
The data format of Dorigin is represented as τ1 =
(q1, s1:T ,a), where a stands for the final answer,
and st signifies the intermediate derivation step at
time t. Particularly, we assume that T ≥ 1, imply-
ing the solution includes at least one derivation step.
Furthermore, this derivation step adheres to the
REACT (Yao et al., 2022) style, with customized
<Text, Code, Observation> format that inte-

7134

grates text analysis with executable code blocks
within the process of crafting a response, effec-
tively enhancing the precision of reasoning.

Seed data To fully leverage available data
resources, we have established a reproducible
pipeline that iteratively extracts the required seed
training instance and updates the multi-step reason-
ing dataset Dorigin. Algorithm 1 presents the overall
pipeline designed to generate seed dataset.

First, we train a model based on DeepSeekMath
7B base model, denoted as Mverify, using the ini-
tially original dataset Dorigin. This model serves
dual purposes: generation and verification. In the
generation phase, Mverify produces multiple multi-
step solution samples for a given reduction ques-
tion. During verification, if any final answer within
these sampled solutions aligns with the answer to
the original question, the corresponding reduction
question is deemed acceptable.

Then, given an instance (q1, s1:T ,a) in Dorigin,
if T = 1, we directly incorporate this triplet
(q1, s1,a) into our seed dataset. For other cases,
we employ GPT-4-1106-preview (Achiam et al.,
2023) to produce the reduction question q2 from
(q1, s1). The details of GPT-4 prompt can be found
in Appendix I. We employ Mverify to assess whether
q2 can yield the correct answer. If the outcome is
accurate, it demonstrates that the reduction ques-
tion is independent and does not rely on informa-
tion from the previous questions and derivation
steps, satisfying the required Markovian property.
In this case, we include triplet (q1, s1,q2) in the
seed dataset, and a new multi-step reasoning path-
way is generated as τ2 = (q2, s

′
1:T ′ ,a), which is

then updated to the original dataset for the next
round construction. This implies that we continu-
ously iterate through the process to generate triplet
data until we no longer obtain any multi-step rea-
soning solutions with a length exceeding two. Un-
like previous works (Yue et al., 2023; Gou et al.,
2023; Wang et al., 2023a; Liao et al., 2024), our
approach relies solely on GPT-4 for generating a
new question, typically a single sentence, instead of
crafting a complete solution that includes text anal-
ysis and code snippets. Consequently, this method
incurs significantly lower additional costs.

Self-distillation We fine-tune the DeepSeekMath
7B base model on the above seed data to obtain
the MCoTModel-initial. Recognizing the lim-
ited scope of our seed data on the MATH dataset,
we have adopted a self-distillation approach to

substantially enhance the coverage and diversity
of the dataset. We employ MCoTModel-initial
due to its capability to generate MCoT paths,
achieving accuracy rates of 77.10% and 53.48%
on the GSM8K and MATH datasets, respectively.
Given <Question, Answer> pairs from the train-
ing sets of GSM8K and MATH, the initial model
can generate Markov reasoning paths and obtain
answers. We will verify the answers to form
a self-distillation dataset Dself. Furthermore, by
utilizing MCoTModel-initial with <Question,
Answer> pairs from any dataset, we can create a
self-distillation dataset. In the Appendix F.1, we
provide a detailed analysis of the impact of self-
distillation.

Combining seed data Dseed and self-distilled
data Dself, we remove duplicate entries to form
the MCoTInstruct dataset, which is denoted as
D = filter({Dseed,Dself}). The dataset comprises
82k Markov chains, totaling around 160k entries,
data format is shown in Appendix D.2. Uniquely,
in contrast to prior studies, each training instance
corresponds to the step level rather than the solution
level that may include multiple steps, while Table 6
in the Appendix D compares our dataset with re-
cently proposed mathematical reasoning datasets.

3 Discussion

The insight of MCoT is Markov chain, which
frames the question as a particular state and con-
siders the derivation step as an associated action.
Unlike Multi-Step Reasoning (MSR), the MCoT
does not depend on historical derivation steps; Fur-
thermore, while question decomposition reasoning
requires aggregating partial answers from each sub-
question, any reduction question within MCoT can
directly yield the final answer.

The core of MCoT lies in the Markov property,
which implies memorylessness, the future state de-
pends only on the current state, not on the sequence
of events that preceded it. On one hand, we uti-
lize Markov property to ensure that any state (or
question) within a Markov Chain of Thought can
directly lead to the final answer, significantly boost-
ing efficiency within MCoT. On the other hand,
when an error arises in an intermediate state, the
memoryless feature of MCoT might propagate it,
leading to errors in subsequent states as well. In
contrast, traditional MSR is capable of accessing all
previous historical contexts, potentially allowing it
to correct intermediate errors. However, in our ex-

7135

periments, we empirically observed that MSR does
not necessarily correct more intermediate errors
than our proposed MCoT approach.

The motivation of MCoT, which introduces
the Markov property into natural language math-
ematical reasoning, is inspired by the successful
application of the Markov property in formal lan-
guage systems, such as the lean programming lan-
guage (Moura and Ullrich, 2021). In formal lan-
guage systems, a statement consists of conditions
and a conclusion, e.g., h1, h2, h3 → c. The proof
process involves stepwise reductions, where each
step simplifies the statement by eliminating old
conditions and adding new ones, e.g., h3, h4 → c.
This allows us to focus only on the updated state-
ment, ensuring that if the new statement is proven
or solved, the original one is verified as well.

While the Markov property is theoretically
sound in formal language mathematical reasoning,
formal languages like lean are not easily accessi-
ble to non-experts. Therefore, we explore applying
Markov property to natural language mathematical
reasoning, which is more user-friendly. Our future
work will also investigate combining natural lan-
guage and formal language to balance rigor and
readability.

4 Experiments

4.1 Experimental Setup

Implementation Details We fine-tune
DeepSeekMath-Base (Shao et al., 2024),
LLemma (Azerbayev et al., 2023), and LLama-
3 (AI@Meta, 2024) series (ranging from 7B
to 70B) on the MCoTInstruct to evaluate the
efficacy and accuracy of our MCoT framework.
The implementation details are described in
Appendix E.3.

Datasets We have selected diversity evaluation
datasets, encompassing both in-domain and out-
of-domain datasets from various mathematical
fields, to assess the models’ capabilities in math-
ematical reasoning. For the in-domain test sets,
we choose GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). For the out-
of-domain test sets, we choose the open-source
OCWCourses (Lewkowycz et al., 2022) dataset and
GaoKao2023-Math-En (Liao et al., 2024) dataset.
A comprehensive overview of these datasets is pre-
sented in Appendix E.1.

Metrics We evaluate from two perspectives: rea-
soning efficiency and reasoning accuracy. To en-
sure fairness when evaluating reasoning efficiency,
we measure the average amount of cached GPU
memory used per sample during inference and de-
sign a metric E to measure the decoding time of
each token in the average step.

E =
1

T

T∑

t=1

timet
#{st}

(4)

where T is the number of steps, timet is the de-
coding time for step t, and #{st} is the number
of tokens at step t. For assessing reasoning accu-
racy, we utilize the mathematics evaluation toolkit
in Zhang et al. (2024).

Baselines We compared proprietary, open-
source, and math-specific models fine-tuned on
mathematical reasoning datasets. Details are in
Appendix E.2.

4.2 Main Results
Accuracy Table 1 demonstrates our models
outperform other open-source competitive math-
solving models, exhibiting a clear advantage
across both in-domain datasets and out-of-domain
datasets. Our model MCoT-DeepSeek is fine-
tuned from the DeepSeekMath-Base7B on the
MCoTInstruct dataset. Compared to the base
model, our model achieves substantial gains on the
GSM8k and MATH datasets, with improvements of
about 12% and 24%, respectively. MCoT-DeepSeek
achieve state-of-the-art results across all datasets,
in 7B models.

Moreover, our model MCoT-DeepSeek achieves
55.8% on MATH dataset, which surpasses all 34B
and 70B models on MATH dataset without any
extra strategies, such as majority voting (Wang
et al., 2022b). Notably, during the training phase in
MCoT, the model is exposed only to triplet data like
(qt−1, st−1,qt) or (qT , sT ,a). It has never been
trained on the complete solution data. However,
when a question is presented to the model during
the inference stage, it first attempts a single-step
solution before deciding whether to further reduce
the problem or deliver the final answer. In the rea-
soning stage, the model leverages the fragmented
knowledge acquired during training to construct
a complete Markov chain reasoning process from
question to final answer.

Efficiency To intuitively evaluate the efficiency
of different reasoning methods, we compare the

7136

Model Size Data Tool Zero In-domain Out-of-domain
Size Shot GSM8K MATH OCW GK2023∗

Proprietary Models

GPT-4 - - ✗ ✗ 92.0 42.5 - -
GPT-4-Code - - ✓ ✗ 92.9 69.7 30.1 43.6
ChatGPT - - ✗ ✗ 80.8 35.5 - -
ChatGPT(PAL) - - ✓ ✗ 78.6 38.7 - -
PaLM-2 540B - ✗ ✗ 80.7 34.3 - -

Open-Source Models

Llama-2 7B - ✗ ✗ 13.3 4.1 3.7 -
Llama-2 SFT 7B - ✗ ✓ 41.3 7.2 - -
Llama-2 RFT 7B - ✗ ✓ 51.2 - - -
Llemma 7B - ✗ ✗ 36.4 18.0 7.7 -
Llemma(PAL) 7B - ✓ ✗ 40.1 21.5 - -
CodeLlama 7B - ✗ ✗ 10.5 4.5 4.4 -
CodeLlama(PAL) 7B - ✓ ✗ 27.1 17.2 - -
DeepSeekMath-Base(PAL) 7B - ✓ ✗ 66.9 31.4 - -
Llama-3 8B - ✗ ✗ 54.8 21.3 - -
CodeLlama 34B - ✗ ✗ 29.6 12.2 7.0 -
CodeLlama(PAL) 34B - ✓ ✗ 53.3 23.9 - -
Llemma 34B - ✗ ✗ 51.5 25.0 11.8 -
Llemma(PAL) 34B - ✓ ✗ 62.6 27.1 - -

Single-step reasoning Models

WizardMath Llama2-7B 96k ✗ ✓ 54.9 10.7 - -
MAmmoTH-Coder CodeLlama-7B 260k ✓ ✗ 59.4 33.4 11.0 15.3
WizardMath Llama2-70B 96k ✗ ✓ 81.6 22.7 - -
MAmmoTH Llama2-70B 260k ✓ ✗ 76.9 41.8 11.8 24.7

Multi-step reasoning Models

MathCoder CodeLlama-7B 80k ✓ ✓ 67.8 30.2 - -
ToRA-Code CodeLlama-7B 69k ✓ ✓ 72.6 44.6 4.8 23.9
MARIO Llemma-7B 82k ✓ ✓ 70.1 47.0 21.7 34.5
MathGenie Llemma-7B 250k ✓ ✓ 76.0 48.3 - -
MathCoder Llama2-70B 80k ✓ ✓ 83.9 45.1 - -
ToRA Llama2-70B 69k ✓ ✓ 84.3 49.7 9.6 30.9
MathGenie Llama2-70B 250k ✓ ✓ 88.4 51.2 - -

MCoT reasoning Models

MCoT-DeepSeek DeepSeekMathBase-7B 82k† ✓ ✓ 78.8 55.8 31.6 41.3
MCoT-Llemma Llemma-7B 82k† ✓ ✓ 69.3 48.1 18.0 33.3

MCoT-Llama3 Llama3-8B 82k† ✓ ✓ 76.9 47.4 8.8 32.7
Llama3-70B 82k† ✓ ✓ 83.1 54.7 19.9 38.7

Table 1: Results on different datasets. The best results of 7B open-source models are bold. ∗GK2023 represents
Gaokao-2023-Math-En dataset. 82k† represents the count of Markov chains, encompassing approximately 160k
step-wise entries. Conversely, data size in prior methods are accounted for by enumerating the complete trajectories
of multi-step reasoning.

performance of multi-step reasoning (MSR) and
MCoT reasoning. To ensure a fair compari-
son, all reasoning approaches utilize an external
tool - Python code interpreter. The MSR model
is fine-tuned on our initial multi-step reasoning
dataset, Dorigin. The MCoT model is fine-tuned
on our MCoTInstruct dataset. The MCoTInstruct
dataset is extended from Dorigin, with both the
source data and solutions preserved as consistently
as possible to minimize the impact of dataset varia-
tions. Moreover, the maximum number of reason-
ing steps is set to 8.

Table 2 presents the comparative results of MSR
and MCoT regarding reasoning efficiency and ac-

curacy. Our observations are as follows: (1) Com-
pared to single-step reasoning in Table 1, MSR and
MCoT indeed significantly enhance reasoning accu-
racy. (2) Compared to MSR, MCoT demonstrates
notable improvements in reasoning accuracy and
efficiency. For instance, in the Llemma7B model,
MCoT achieves improvements over MSR on both
the MATH (+2.1%) and GSM8K (+2.2%) datasets.
Furthermore, MCoT’s inference efficiency from E
is 1.90 times greater than that of MSR.

Different base models and model sizes We eval-
uated the effectiveness of the MCoT approach us-
ing three base models: DeepSeek, Llemma, and the

7137

Base Model Methods GSM8K(↑) MATH(↑) E§(↓) Cache Memory (GB)† (↓)

DeepSeekMath-Base7B
MSR 77.3 54.9 1.12 48.7
MCoT 78.8 55.8 0.60 30.2

Llemma7B
MSR 67.1 46.0 1.18 37.9
MCoT 69.3 48.1 0.62 25.7

Llama38B
MSR 73.4 45.1 1.23 55.6
MCoT 76.9 47.4 0.69 37.9

Table 2: The comparison between multi-step reasoning (MSR) and MCoT on Accuracy and Efficiency. E§ means
the metric defined in Eq. (4). † indicates the average amount of cached GPU memory used per sample.

llama3 series. Tables 1 and 2 show that MCoT out-
performs multi-step reasoning in accuracy across
all models, with significantly smaller cache mem-
ory usage. To investigate the effectiveness across
varying model scales, we scale up the Llama3
model size from 8B to 70B, observing notable per-
formance improvements on all benchmarks. Specif-
ically, we found that the Llama3 series performs
poorly overall on the OCW dataset. In our analy-
sis of the OCW dataset, detailed in Appendix E.1,
we found that its format causes Llama3 to mistak-
enly interpret it as in-context learning, even after
fine-tuning with MCoTInstruct dataset.

4.3 Analysis 1: Efficiency
Efficient Training Figure 3a illustrates the dis-
tribution of token length for the MCoTInstruct
dataset and the multi-step reasoning instruction
dataset Dorigin. In comparison, the token length
of MCoT is noticeably shorter than that of MSR,
with an average reduction of 135.91 tokens. The
underlying reason is that MCoT is only trained on
the (qt−1, st−1,qt) triplets, whereas MSR requires
training on the entire trajectory.

Efficient Inference To investigate the efficiency
of MCoT during inference, we compare the average
prompt length of MCoT and MSR as the number
of reasoning steps increases on the MATH test set,
using DeepSeekMath-Base as the base model. As
shown in Figure 3b, there is a stark contrast in the
average prompt length between MCoT and MSR.
MCoT maintains a stable prompt length, unaffected
by the increasing reasoning steps, while MSR ex-
hibits a growing prompt length.

In MCoT, the average token length during the
derivation stage remains under 128 tokens, while
in the reduction stage, it stays below 512 tokens.
This indicates that MCoT can tackle complex math-
ematical reasoning problems, such as those in the
MATH dataset, using only a 512-token context

window. This significantly reduces memory and
computational demands. In contrast, the average
prompt length surpasses 2048 tokens by the sev-
enth step in MSR, indicating a substantial increase
in memory and computational requirements as the
reasoning process progresses.

4.4 Analysis 2: Problem Solving

To assess MCoT’s problem-solving capabilities,
we analyze its performance on the MATH test set
across various difficulty levels and subjects, cal-
culating the success rate for each category. In
Figure 4a, it is demonstrated that MCoT achieves
a higher success rate in solving more challeng-
ing problems compared to MSR. We attribute
this superior performance to MCoT’s training
method, which emphasizes derivation and reduc-
tion techniques rather than the complete reasoning
path from question to answer. This approach en-
hances the model’s generalization ability through
autonomous and iterative problem-solving. Fig-
ure 4b shows that MCoT consistently excels in
solving a broader range of problems across various
subjects. More details and results w.r.t. other base
models, such as Deepseek and Llama, are shown
in Figure 8 and 9 in Appendix F.2.

4.5 Analysis 3: Hybrid training strategy

The MCoT approach notes that the model is not
trained on full solution datasets, limiting its ability
to generate complete solutions independently. To
address this, we explore a hybrid training method
that partially exposes the model to full solutions
to assess performance improvements. We used
the DeepSeekMath-Base-7B model, starting with
a 2-epoch warm-up on a 27.4k multi-step reason-
ing dataset from GSM8K and MATH, followed by
training on the MCoTInstruct dataset.

Table 3 shows that the hybrid training improves
in-domain performance but performs worse on

7138

MCoT MSR
Dataset

0

100

200

300

400

500

600

700
To

ke
n

Le
ng

th

Average: 264.56

Average: 400.47

(a) Token length distribution on training

1 2 3 4 5 6 7 8
Reasoning steps

0

500

1000

1500

2000

2500

Av
er

ag
e

pr
om

pt
 le

ng
th

512

1024

2048

79.9 82.2 87.1 98.2 114.3 108.0 105.5 109.2

349.5 355.0
385.4 413.7 437.1 410.3 427.4 454.7

82.9

366.9

653.7

1005.5

1364.1

1736.6

2085.2

2381.3MCoT: derivation
MCoT: reduction
MSR

(b) Average Prompt token Length on test set

Figure 3: Comparison of token Length in MCoT and MSR on training and test set.

Level 1 Level 2 Level 3 Level 4 Level 50

10

20

30

40

50

60

70

80

So
lv

e
Ra

te
 (%

)

MSR
MCoT

(a) Difficulty Level

Algebra Counting
& Probability

GeometryIntermediate
Algebra

Number
Theory

Prealgebra Precalculus0

10

20

30

40

50

60

70

So
lv

e
Ra

te
 (%

)

MSR
MCoT

(b) Different Subject

Figure 4: Comparison of problem solving between MCoT and MSR on MATH test set, with Llemma7B as base
model.

OOD datasets compared to direct MCoT training.
This may be due to overfitting caused by the inclu-
sion of complete solution data, leading to weaker
generalization. We will leave more exploration on
how to train the LLM with mixed data as future
work.

GSM8K MATH OCW GK2023

DeepSeekMath-Base 66.90 31.40 - -
MSR-DeepSeek 77.30 54.90 27.94 38.96
MCoT-DeepSeek 78.80 55.80 31.60 41.30
Hybrid Training
MSR-DeepSeekwarm-up 75.97 52.12 25.37 37.40

+ Continue w.r.t. MCoT 79.30 56.60 29.41 39.48

Table 3: The results on hybrid training strategy within
DeepSeekMath-Base7B model.

4.6 Case study: Self-correction in MCoT
We provide a detailed case study in Appendix H
to illustrate the reasoning process, highlighting
MCoT’s self-correction capabilities. Our experi-
ments demonstrate that MCoT does not empirically
propagate errors more significantly than traditional
MSR frameworks. This is largely because MCoT

incorporates a self-correction mechanism, as illus-
trated in Figure 10 and case study in Appendix H.
Specifically, MCoT can summarize prior errors into
the context of the next reasoning step and address
them without needing to retain the full historical
context.

5 Related Work

Chain of Reasoning LLMs have exhibited strong
reasoning capabilities by utilizing Chain of
Thought (Wei et al., 2022; Brown et al., 2020)
prompting. Tree of Thoughts (ToT) (Yao et al.,
2024) enables exploration over coherent units of
thoughts that serve as intermediate steps toward
problem-solving. Program of Thought (PoT) (Chen
et al., 2022) enhances the capabilities of LLMs
to use programs as thought processes. Several
works (Zhou et al., 2022; Wang et al., 2022a; Li
et al., 2023; Wang et al., 2023c,b) have developed
CoT or PoT technology to employ LLMs to tackle
reasoning tasks by allowing intermediate steps. It
is important to note that in these methods, the in-
termediate steps are preserved as historical context,
making them dependent. In contrast, our approach

7139

leverages the inherent independence of the Markov
chain to separate the intermediate steps.

Mathematical Reasoning Recent works (Wang
et al., 2023a; Gou et al., 2023; Liao et al., 2024; Lu
et al., 2024) have made significant advancements
in enhancing reasoning capabilities within LLMs
through the implementation of step-by-step natural
language reasoning, achieving better results than
single-step reasoning (Luo et al., 2023; Yu et al.,
2023; Yue et al., 2023). In single-step reasoning,
(Luo et al., 2023) and (Yu et al., 2023) utilize tex-
tual content as solutions, and (Yue et al., 2023)
introduces a unique hybrid of CoT and PoT ratio-
nales. In multi-step reasoning, Wang et al. (2023a)
and Gou et al. (2023) incorporate code snippets
or tools within each step of the reasoning process,
Liao et al. (2024) also adds text analysis based on
the code snippets at each step. Nevertheless, as
the number of reasoning steps increases, the multi-
step reasoning involves processing long contexts
demands greater computational resources and a de-
cline in reasoning drops (Levy et al., 2024). In our
work, we utilize a process of derivation, then re-
duction in MCoT. This reduction step simplifies the
historical questions and solutions into independent
questions, enhancing clarity and efficiency.

6 Conclusion

This paper presents MCoT, an innovative Markov
Chain of Thought framework for efficient multi-
step reasoning. Our framework leverages the inde-
pendence of Markov chains, conceptualizing the
solution process as a series of state transitions. This
approach enables LLMs to address complex reason-
ing tasks more efficiently and intelligently. MCoT
achieves superior performance on diverse mathe-
matical reasoning tasks, substantially outperform-
ing existing multi-step reasoning approaches in
both efficiency and accuracy. Our work provides a
new pathway for solving complex reasoning tasks.

Limitations

The limitation of Markov Chain of Thought
(MCoT) models primarily arises when an error oc-
curs at an intermediate step, which can cascade and
lead to failures in subsequent steps. This is due to
the Markov property, which assumes that each step
depends only on the current state, rather than on the
sequence of events that preceded it. Consequently,
errors are not corrected and may propagate through
the chain, resulting in flawed conclusions.

To address this limitation, integrating Monte
Carlo Tree Search (MCTS) (Browne et al., 2012;
Silver et al., 2016, 2017) could be a robust solu-
tion. By integrating MCTS with MCoT, we equip
the reasoning models with the capacity for back-
tracking and learning from simulated explorations.
This synergy not only addresses the original limi-
tation of the MCoT concerning the independence
assumption but also fortifies the model’s ability to
navigate complex problems more effectively. This
potential direction is what we intend to explore in
future work.

Ethical Considerations

The MCoT framework introduces a novel paradigm
for efficiently and intelligently handling complex
reasoning tasks. Currently, our focus is on mathe-
matical reasoning, Therefore, this work does not
have direct negative social impacts. In our experi-
ments, we used publicly available datasets widely
employed in prior research, containing no sensitive
information to the best of our knowledge. The au-
thors have followed ACL ethical guidelines, and
the application of this work poses no apparent ethi-
cal risks.

Acknowledgement

This work was supported by Alibaba Research In-
tern Program.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

AI@Meta. 2024. Introducing Meta Llama 3: The most
capable openly available LLM to date.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

7140

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and AI in games,
4(1):1–43.

Avi Caciularu, Matthew E Peters, Jacob Goldberger,
Ido Dagan, and Arman Cohan. 2023. Peek
across: Improving multi-document modeling via
cross-document question-answering. arXiv preprint
arXiv:2305.15387.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
2024a. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai
Fan. 2024b. Step-level value preference optimiza-
tion for mathematical reasoning. arXiv preprint
arXiv:2406.10858.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. 2023. Longlora:
Efficient fine-tuning of long-context large language
models. arXiv preprint arXiv:2309.12307.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and
Matt Gardner. 2022. Successive prompting for
decomposing complex questions. arXiv preprint
arXiv:2212.04092.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023a. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023b. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Xiang Huang, Sitao Cheng, Yiheng Shu, Yuheng Bao,
and Yuzhong Qu. 2023. Question decomposition tree
for answering complex questions over knowledge
bases. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 37, pages 12924–12932.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024.
Same task, more tokens: the impact of input length on
the reasoning performance of large language models.
arXiv preprint arXiv:2402.14848.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024. Mario: Math reasoning with code
interpreter output–a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. Mathgenie: Generating synthetic
data with question back-translation for enhancing
mathematical reasoning of llms. arXiv preprint
arXiv:2402.16352.

7141

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Donella H Meadows. 2008. Thinking in systems: A
primer. chelsea green publishing.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language. In
Automated Deduction–CADE 28: 28th International
Conference on Automated Deduction, Virtual Event,
July 12–15, 2021, Proceedings 28, pages 625–635.
Springer.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

George Polya. 2004. How to solve it: A new aspect
of mathematical method. 246. Princeton university
press.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen,
Carol Chen, Carson Denison, Danny Hernandez, Esin
Durmus, Evan Hubinger, Jackson Kernion, Kamilė
Lukošiūtė, et al. 2023. Question decomposition im-
proves the faithfulness of model-generated reasoning.
arXiv preprint arXiv:2307.11768.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. In Proceedings of the international
conference for high performance computing, network-
ing, storage and analysis, pages 1–14.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Y Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676):354–359.

Herbert A Simon and Allen Newell. 1971. Human
problem solving: The state of the theory in 1970.
American psychologist, 26(2):145.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Boshi Wang, Xiang Deng, and Huan Sun. 2022a. Itera-
tively prompt pre-trained language models for chain
of thought. arXiv preprint arXiv:2203.08383.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023a. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023b. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai
Lin, Yunbo Cao, Tianyu Liu, and Zhifang Sui. 2023c.
Making large language models better reasoners with
alignment. arXiv preprint arXiv:2309.02144.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
et al. 2023. Effective long-context scaling of founda-
tion models. arXiv preprint arXiv:2309.16039.

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. arXiv
preprint arXiv:2104.05218.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

7142

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Boning Zhang, Chengxi Li, and Kai Fan. 2024. Mario
eval: Evaluate your math llm with your math llm–
a mathematical dataset evaluation toolkit. arXiv
preprint arXiv:2404.13925.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, and Zheyan Luo. 2024. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

7143

Appendix

A Future Work 14

B Real-world Applications 14

C The reasoning process of Multi-step reasoning and MCoT 14

D MCoTInstruct Dataset 14
D.1 Overview . 14
D.2 Data Format . 14

E Experimental Details 14
E.1 Test Dataset . 14
E.2 Baselines . 14
E.3 Fine-tuning Details . 15

F Additional Results and Analyses 15
F.1 The Impact of Self-distillation . 15
F.2 The Analysis on Problem-Solving . 15

G Dataset License 16

H Case Study 19
H.1 Case 1: Self-correction . 19
H.2 Case 2: Self-correction . 20
H.3 Case 3: Bad case . 21

I Prompt Template in GPT-4 23

7144

A Future Work

MCoT is a framework that empowers LLMs to
more efficiently and intelligently in multi-step rea-
soning. MCoT framework can be applied to com-
plex reasoning tasks, such as long context reason-
ing (Xiong et al., 2023; Caciularu et al., 2023; Chen
et al., 2023). MCoT is capable of effectively re-
ducing context information, thereby providing a
practical and feasible approach for long context
reasoning. This method filters and concentrates
historical information, significantly improving the
efficiency of processing and analyzing long con-
text. Moreover, when integrated with the Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020;
Gao et al., 2023b) technology, MCoT holds signifi-
cant potential in understanding long context.

B Real-world Applications

Inspired by the strict adherence to the Markov
property in formal languages like lean, this work
presents significant potential for real-world ap-
plications in formal reasoning processes. Our
method aligns seamlessly with the detailed, step-
by-step nature of formal proofs, such as the tac-
tics used in lean. By generating natural language
annotations for each step, our approach enhances
the interpretability of complex formal arguments,
showcasing its relevance to practical scenarios
where both precision and human comprehension
are paramount. In particular, this method could
be applied in fields such as automated theorem
proving, legal reasoning, and software verification,
where clear, interpretable reasoning steps are cru-
cial for both validation and decision-making.

C The reasoning process of Multi-step
reasoning and MCoT

Figure 5 illustrates the reasoning process using the
Markov chain of thought and multi-step reasoning
approaches. In multi-step reasoning, the KV cache
is retained throughout, causing time and memory
demands to increase linearly or quadratically with
the number of steps. In contrast, MCoT clears the
KV cache after each step, enabling longer chains
of thought without a corresponding rise in resource
usage. This makes MCoT more efficient, as its
time and memory requirements do not scale with
the number of reasoning steps.

D MCoTInstruct Dataset

D.1 Overview

Table 6 presents the detail information of different
mathematical reasoning datasets. We list recently
popular mathematical reasoning datasets. The #An-
notation Num refers to the number of samples
annotated during the dataset construction process.
The #Annotation Type represents three categories:
solution, trajectory, question. “solution” denotes
the annotation of a solution, “trajectory” refers to
the multi-step reasoning path, and “question” sig-
nifies the annotation of the reduced question.

Unlike previous works (Yue et al., 2023; Gou
et al., 2023; Wang et al., 2023a; Liao et al., 2024),
our approach requires only the use of GPT-4 for
generating a new question, instead of crafting the
complete solution that includes text analysis and
code snippets. The number of questions that need
to be generated is 29k.

D.2 Data Format

Figure 6 displays the format of Markov Chain of
Thought reasoning. We decompose the Markov
chain into tuples of (q1, s1,q2) and (q2, s2,a) to
form the MCoTInstruct dataset.

E Experimental Details

E.1 Test Dataset

We report the information of four test datasets in
Table 4. Notably, the four datasets have obvious dif-
ferences in difficulty and question types and MATH
dataset has diverse categories, thereby ensuring the
richness and diversity of the testsets. OCWCourses
is a set of 272 STEM problems designed for col-
lege students, with most questions needing a few
steps to solve. The GaoKao2023-Math-En dataset
includes 385 math problems drawn from the 2023
Chinese National College Entrance Examination,
the 2023 American Mathematics Competitions, and
the 2023 American College Testing. These two
OOD datasets are even more tricky to solve than
the MATH dataset.

Notably, OCW dataset has a somewhat unique
question format, which includes a premise, along-
side sub problem and their respective solutions, as
shown in Figure 7.

E.2 Baselines

This comparison included notable models such
as OpenAI’s GPT-4 (Achiam et al., 2023) and

7145

To find $f(g(-3))$, we first need to calculate $g(-3)$ and
then apply the result to the function $f(x)$. The function
$g(x) = 3x + 4$ will be evaluated at $x = -3$, and then the
result will be squared as per the definition of $f(x) = x^2$.
```python
def g(x):
    return 3*x + 4
# Calculate g(-3)
result_g = g(-3)
print(result_g)
```

If $f(x) = x^2$ and $g(x) = 3x + 4$, what is $f(g(-3))$?

What is $f(-5)$ if $f(x) = x^2$?

To find $f(-5)$ when $f(x) = x^2$, we need to substitute -5
into the function $f(x)$ and calculate the result.
```python
f_x = lambda x: x**2
result = f_x(-5)
print(result)
```

After executing the code, we observe that $f(-5)$ is
equal to 25. Final Answer: 25Question2

Question1

What is $f(-5)$ if $f(x) = x^2$?

Question2

Derivation2

Answer

>>> "-5"
>>> "25"

Derivation1

If $f(x) = x^2$ and $g(x) = 3x + 4$,
what is $f(g(-3))$?

Question1

To find $f(g(-3))$, we first need to calculate
$g(-3)$ and then apply the result to the
function $f(x)$. The function $g(x) = 3x +
4$ will be evaluated at $x = -3$, ...

Derivation1

To find $f(-5)$ when $f(x) = x^2$ and $g(x)
= 3x + 4$, we need to substitute -5 into
the function $f(x)$... Derivation2

Clear KV cache of context

After executing the code, we observe that
$f(-5)$ is equal to 25. Final Answer: 25

Answer

Multi-step ReasoningMarkov Chain of Thought Reasoning

Figure 5: The reasoning process of two reasoning approachs for mathematical reasoning.

Dataset #Training #Test Category Domain

GSM8K 7473 1319 ✗ In-domain
MATH 7500 5000 ✓ In-domain
OCW - 272 ✗ Out-of-domain
GaoKao2023 - 385 ✗ Out-of-domain

Table 4: The details of four datasets.

ChatGPT, Google’s PaLM-2 (Anil et al., 2023),
along with Llama3, Llama2 (Touvron et al., 2023),
Llemma (Azerbayev et al., 2023), and CodeL-
lama (Roziere et al., 2023). To establish a fun-
damental reasoning method baseline, we initially
considere Chain of Thought (CoT) prompts (Wei
et al., 2022). Additionally, given our methodol-
ogy’s reliance on the Python code interpreter, we
also evaluate the Program of Thought (PoT) (Chen
et al., 2022) and Program-aided Language (PAL)
model (Gao et al., 2023a).

For supervised fine-tuning (SFT) models,
we categorize them into single-step reasoning:
Mammoth (Yue et al., 2023), DeepSeekMath-
Instruct (Shao et al., 2024) and multi-step reason-
ing: MathCoder (Wang et al., 2023a), ToRA (Gou
et al., 2023), MARIO (Liao et al., 2024) and Math-
Genie (Lu et al., 2024).

E.3 Fine-tuning Details

In this work, we finetune all models using the
LLaMA-Factory (Zheng et al., 2024) repository.
During this optimization phase, we set the global
batch size at 512, the learning rate at 2e-5, and
used a cosine learning rate scheduler that included
a warm-up phase constituting 3% of the total train-
ing duration, spread over 3 epochs. All models
are optimized employing AdamW (Kingma and
Ba, 2014). Training for all models was launched
with the accelerate (Gugger et al., 2022) in Deep-

Speed ZeRO Stage2 (Rajbhandari et al., 2021) and
Flash-Attention 2 (Dao, 2023) mechanism. The
7B/8B and 70B models are fine-tuned on 8 and 32
NVIDIA A100 80GB GPUs, respectively.

F Additional Results and Analyses

F.1 The Impact of Self-distillation

Table 5 illustrates the impact of self-distillation. It
can be observed that self-distillation enhances the
coverage of the training sets and elevates the accu-
racy of the test sets. Specifically, the application
of self-distillation led to a 5.5% increase in data
coverage on the MATH training dataset. Further-
more, it achieved a notable 2.5% improvement in
accuracy on the MATH test set and a 0.83% boost
in accuracy on the GSM8K test set.

Methods Trainset Coverage Testset Accuracy

Self-Distillation GSM8K MATH GSM8K MATH

w/o† 99.75% 77.97% 77.94% 53.32%
w/‡ 99.85% 83.46% 78.77% 55.78%

Table 5: The impact of Self-distillation on trainset cov-
erage and testset accuracy. Trainset coverage indicates
the proportion of the dataset that encompasses questions
from the original training sets of GSM8K and MATH, re-
spectively. † denotes the stage in which self-distillation
is not employed, signifying the utilization of seed data.
‡ represents the stage that employs self-distillation.

F.2 The Analysis on Problem-Solving

Figure 8 and Figure 9 illustrate the problem-
sloving capabilities of MCoT-DeepSeek and
MCoT-Llama3, respectively. In terms of difficulty
levels as shown in 8a and 9a, MCoT outperforms
MSR on levels 1 through 4 and is nearly on par

7146

with MSR at level 5. In terms of different sub-
jects as shown in 8b and 9b, We discovered that,
when using DeepSeek and Llama3 as base models,
MCoT consistently outperforms MSR, particularly
in the fields of Algebra, Counting & Probability,
and Intermediate Algebra.

G Dataset License

The MCoTInstruct dataset is built
on GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). We strictly abide
by the corresponding data licenses.

7147

Methods #Annotation #Annotation Step LLM Source
Num Type Used

MetaMATH (Yu et al., 2023) 395k solution Single ChatGPT MATH & GSM8K
WizardMath (Luo et al., 2023) >96k solution Single ChatGPT MATH & GSM8K
MAmmoTH (Yue et al., 2023) 260k solution Single GPT4 14 Datasets with MATH & GSM8K
MathCoder (Wang et al., 2023a) 49k trajectory Multi GPT4 MATH & GSM8K
ToRA (Gou et al., 2023) 16k trajectory Multi GPT4 MATH & GSM8K
MARIO (Liao et al., 2024) 27k trajectory Multi GPT4 MATH & GSM8K
MathGenie (Lu et al., 2024) 80k trajectory Multi GPT4 MATH & GSM8K

MCoTInstruct 29k question Multi GPT4 MATH & GSM8K

Table 6: Compared with mathematical reasoning datasets.Note that MCoTInstruct dataset instance corresponds to
the step level rather than the solution level that may include multiple steps.

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝟐

𝑫𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝟏

To find the constant t, we need to expand the product of the two quadratic expressions and compare the coefficients of the
resulting polynomial to the given polynomial $20x^4 -54x^3 +114x^2 -102x +70$. The coefficient of x^3 in the expanded
expression will give us the value of t.
```python
from sympy import symbols, expand

# Define the variable and the constant t
x, t = symbols(‘x t’)

# Define the two quadratic expressions
expr1 = 5*x**2 - 6*x + 7
expr2 = 4*x**2 + t*x + 10

# Expand the product of the two expressions
expanded_expr = expand(expr1 * expr2)

# Print the expanded expression
print(expanded_expr)
```
Observation: 5*t*x**3 - 6*t*x**2 + 7*t*x + 20*x**4 - 24*x**3 + 78*x**2 - 60*x + 70

Given the expanded expression $5tx^3 - 6tx^2 + 7tx + 20x^4 - 24x^3 + 78x^2 - 60x + 70$, what value of t will make the
coefficient of x^3 equal to -54?

𝑫𝒆𝒓𝒊𝒗𝒂𝒕𝒊𝒐𝒏𝟐

To find the value of t that makes the coefficient of x^3 equal to -54, we need to collect the terms that contain x^3
and set their sum equal to -54. The expanded expression contains terms with x^3, x^2, and x. We can ignore the
constant term for now and focus on the terms that will contribute to the coefficient of x^3 when we collect like terms.

The terms that will contribute to the coefficient of x^3 are $5tx^3$, $-6tx^2$, and $-24x^3$. We need to find the
coefficient of x^3 by combining these terms. The coefficient of x^3 from $5tx^3$ is $5t$, the coefficient of x^3 from
$-6tx^2$ is 0, and the coefficient of x^3 from $-24x^3$ is -24. We can set up the equation $5t + 0 - 24 = -54$ to
solve for t.
```python
from sympy import symbols, Eq, solve

t = symbols(‘t’)
equation = Eq(5*t - 24, -54)
solution = solve(equation, t)
print(solution)
```
Observation: [-6]

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏𝟏Find the constant t such that \\[(5x^2 - 6x + 7)(4x^2 +tx + 10) = 20x^4 -54x^3 +114x^2 -102x +70.\\]

The solution to the equation $5t - 24 = -54$ is $t = -6$. This means that when $t = -6$, the coefficient of x^3 in the
expanded expression will be -54. Final Answer: -54 Final Answer

Figure 6: The format of Markov Chain of Thought reasoning.

7148

Preamble: A very hot star is detected in the galaxy M31 located at a distance of $800 \\mathrm{kpc}$. The star has a temperature $T = 6 \\times
10^{5} K$ and produces a flux of $10^{-12} \\mathrm{erg} \\cdot \\mathrm{s}^{-1} \\mathrm{cm}^{-2}$ at the Earth. Treat the star's surface as
a blackbody radiator.

Subproblem 0: Find the luminosity of the star (in units of $\\mathrm{erg} \\cdot \\mathrm{s}^{-1}$).

Solution: \\[\n L=4 \\pi D^{2} \\text { Flux }_{\\text {Earth }}=10^{-12} 4 \\pi\\left(800 \\times 3 \\times 10^{21}\\right)^{2}=\\boxed{7e37}
\\mathrm{erg} \\cdot \\mathrm{s}^{-1}\n\\]

Final answer: The final answer is 7e37. I hope it is correct.

Subproblem 1: Compute the star's radius in centimeters.

Figure 7: The data format of OCWCouses dataset.

Level 1 Level 2 Level 3 Level 4 Level 50

10

20

30

40

50

60

70

80

So
lv

e
Ra

te
 (%

)

MSR
MCoT

(a) Difficulty Level

Algebra Counting
& Probability

GeometryIntermediate
Algebra

Number
Theory

Prealgebra Precalculus0

10

20

30

40

50

60

70

So
lv

e
Ra

te
 (%

)
MSR
MCoT

(b) Different Subject

Figure 8: Comparison of problem-solving between MCoT and MSR on MATH test set, with DeepSeekMath-Base7B
as base model.

Level 1 Level 2 Level 3 Level 4 Level 50

10

20

30

40

50

60

70

80

So
lv

e
Ra

te
 (%

)

MSR
MCoT

(a) Difficulty Level

Algebra Counting
& Probability

GeometryIntermediate
Algebra

Number
Theory

Prealgebra Precalculus0

10

20

30

40

50

60

So
lv

e
Ra

te
 (%

)

MSR
MCoT

(b) Different Subject

Figure 9: Comparison of problem-solving between MCoT and MSR on MATH test set, with Llama37B as base
model.

7149

H Case Study

To qualitatively analyze responses from Markov Chain of Thought reasoning, we report three cases with
MCoT-DeepSeek. In cases 1 and 2, We observed that MCoT does possess some self-correction capabilities.
In case 3, during the reduction process, MCoT lost some information, causing the reduced problem to no
longer contain all the information of the original problem.

<question>
For what real value of k is $\frac{13-\sqrt{131}}{4}$ a root of $2x^2-13x+k$?
</question>
<solution>
(Skip some context..)
Define the variable and the root
x = symbols('x')
(Skip some context..)
NameError: name 'k' is not defined
</output>
<p>
Sub Question: Given the quadratic equation $2x^2-13x+k=0$, what is the correct Python code
to solve for the value of k if $\frac{13-\sqrt{131}}{4}$ is a root of the equation?
</p>
(Skip some context..)
Define the variable
k = symbols('k’)
(Skip some context..)
Final Answer: $\frac{19}{4}$

Self Correction

Code Error

Figure 10: The illustration about MCoT’s self-correction capability.

H.1 Case 1: Self-correction
The Case 1 about MCoT’s self-correcting capability

idx: "math_test_74" level: "Level 3" type: "Algebra" standard answer: "\frac{19}{4}"

<question>
For what real value of k is 13−

√
131

4
a root of 2x2 − 13x+ k?

</question>

<solution>
To find the value of k for which 13−

√
131

4
is a root of the quadratic equation 2x2 − 13x+ k = 0, we can substitute the

root into the equation and solve for k.
<code>
from sympy import symbols, sqrt, solve

Define the variable and the root
x = symbols('x')
root = (13 - sqrt(131)) / 4

Define the quadratic equation
equation = 2*x**2 - 13*x + k

Substitute the root into the equation and solve for k
k_value = solve(equation.subs(x, root), k)
print(k_value)

</code>

<output>
NameError: name ’k’ is not defined
</output>

7150

Sub Question: Given the quadratic equation 2x2 − 13x+ k = 0, what is the correct Python code to solve for the value
of k if 13−

√
131

4
is a root of the equation?

</solution>

<solution>
To find the value of k, we can use the fact that if 13−

√
131

4
is a root of the quadratic equation 2x2 − 13x+ k = 0, then

the other root must be 13+
√

131
4

. This is because the sum of the roots of a quadratic equation is given by − b
a

, where a

and b are the coefficients of x2 and x respectively. In our case, − b
a
= 13

2
, so the sum of the roots is 13

2
. Therefore, we

can find k by multiplying the roots.
<code>
from sympy import symbols, sqrt, simplify

Define the variable
k = symbols('k')

Define the roots
root1 = (13 - sqrt(131)) / 4
root2 = (13 + sqrt(131)) / 4

Calculate the product of the roots (which gives us k)
product_of_roots = simplify(root1 * root2)
print(product_of_roots)

</code>

<output>
19/8
</output>

From the result, we can see that the product of the roots is 19
8

. Since the product of the roots is also equal to k
a

, and
a = 2 for our quadratic equation, we can find the value of k by multiplying the product of the roots by a.
Since we have found that the product of the roots is 19

8
and a = 2, we can calculate k by multiplying the product of the

roots by a.
Final Answer: 19

4
</solution>

H.2 Case 2: Self-correction
The Case 2 about MCoT’s self-correcting capability

idx: "math_test_122" level: "Level 5" type: "Algebra" standard answer: "3"

<question>
For how many positive integral values of a is it true that x = 2 is the only positive integer solution of the system of
inequalities: {

2x > 3x− 33x− a > −6

</question>

<solution>
To find the positive integral values of a for which x = 2 is the only positive integer solution to the system of inequalities,
we need to solve the inequalities for x and then find the constraints on a.
The first inequality 2x > 3x− 3 simplifies to x < 3. This tells us that x must be less than 3.
The second inequality 3x−a > −6 can be simplified by adding a to both sides and then dividing by 3 to get x > a

3
−2.

For x = 2 to be the only positive integer solution, x must be greater than or equal to 2 but less than 3. This means that
2 ≤ x < 3.
Therefore, we need to find the range of a such that 2 ≤ a

3
− 2 < 3.

<code>
from sympy import symbols, solve, S

Define the variable
a = symbols('a', real=True, positive=True)

Inequality 1: 2 <= a/3 - 2
ineq1 = a/3 - 2 >= 2

Inequality 2: a/3 - 2 < 3

7151

ineq2 = a/3 - 2 < 3

Solve the inequalities
solution1 = solve(ineq1, a)
solution2 = solve(ineq2, a)

Find the intersection of the solutions
intersection = (S.Intersection(solution1, solution2)).evalf()
print(intersection)

</code>

<output>
AttributeError: Attribute ’Intersection’ was not installed on SymPy registry S
</output>

Sub Question: Given the inequalities 2 ≤ a
3
− 2 < 3, for how many positive integral values of a is a within the range

found?
</solution>

<solution>
The given inequalities are 2 ≤ a

3
− 2 < 3. To find the range of a, we need to solve these inequalities for a.

<code>
from sympy import symbols, solve, S

Define the variable
a = symbols('a')

Define the inequalities
ineq1 = 2 <= a/3 - 2
ineq2 = a/3 - 2 < 3

Solve the inequalities
solution1 = solve(ineq1, a)
solution2 = solve(ineq2, a)

print(solution1, solution2)

</code>

<output>
(12 <= a) & (a < oo) (-oo < a) & (a < 15)
</output>

Sub Question: For how many positive integral values of a is a within the range 12 ≤ a < 15?
</solution>

<solution>
The task is to determine the number of positive integral values of a that lie within the range 12 ≤ a < 15. Since a must
be an integer, we can simply list the integers within this range.
The integers that satisfy 12 ≤ a < 15 are 12, 13, and 14. There are three such integers, so the answer is 3.
Final Answer: 3
</solution>

H.3 Case 3: Bad case
The bad case

idx: "math_test_1601" level: "Level 4" type: "Counting & Probability" standard answer: "50"

<question>
In how many ways can the letters of the word BANANA be rearranged such that the new word does not begin with a B?
</question>

<solution>
To find the number of ways to rearrange the letters of the word BANANA such that the new word does not begin with
a B, we can first find the total number of rearrangements of the word BANANA and then subtract the number of
rearrangements that start with a B.

<code>

7152

from math import factorial

Total number of letters in BANANA is 6 (with A repeating 3 times)
So the total number of rearrangements is 6! / (3!)
total_rearrangements = factorial(6) // factorial(3)
print(total_rearrangements)

</code>

<output>
120
</output>

Sub Question: Given that there are 120 ways to rearrange the letters of the word BANANA, how many of these
rearrangements do not start with the letter B?

</solution>

<solution>
To find the number of rearrangements of the word BANANA that do not start with the letter B, we can first find the
total number of rearrangements and then subtract the number of rearrangements that do start with the letter B. The total
number of rearrangements of a word with repeated letters can be calculated using the formula for permutations of a
multiset, which is

n!

n1! · n2! · ... · nk!

where n is the total number of letters, and n1, n2, ..., nk are the frequencies of each distinct letter.

<code>

from math import factorial

Total number of letters in BANANA
n = 6
Frequency of each letter: A - 3 times, B - 1 time, N - 2 times
n_A = 3
n_B = 1
n_N = 2

Total number of rearrangements
total_rearrangements = factorial(n) // (factorial(n_A) * factorial(n_B) * factorial(n_N))
print(total_rearrangements)

</code>

<output>
60
</output>

Sub Question: If there are 60 ways to rearrange the letters of the word BANANA, how many of these rearrangements
start with the letter B?
</solution>

<solution>
To find the number of rearrangements of the letters of the word BANANA that start with the letter B, we can consider the
remaining 5 letters that can be arranged in any order after fixing the first letter B. Since the first letter is fixed as B, we have
5 remaining letters (A, N, A, N, A) to arrange. We need to calculate the number of unique arrangements of these 5 letters.

<code>

import math

Calculate the number of unique arrangements of 5 letters
arrangements = math.factorial(5) // (math.factorial(2) * math.factorial(3))
print(arrangements)

</code>

7153

<output>
10
</output>

From the result, we can see that there are 10 unique arrangements of the 5 remaining letters after fixing the first letter B.

Final Answer: 10
</solution>

I Prompt Template in GPT-4

We provide prompts for generating simplified questions using GPT-4 on the MATH dataset and the
GSM8K dataset, respectively.

Listing 1: Prompts of reduced question for GPT-4 on MATH dataset.
You will be provided with an original math problem and its intermediate thought, action and
observation. Please generate a sub question that should utilize the results of the intermediate
thought, action and observation to replace the related information of original problem and delete
redundant irrelevant information. The sub question should be wrapped by <subquestion> and </
subquestion>.
Here are some examples you may refer to:

The following are 2 demonstration examples.

<original problem>
Let $f(x)=x^3+3$ and $g(x) = 2x^2 + 2x +1$. What is $g(f(-2))$?
</original problem>
<intermediate thought>
To find $g(f(-2))$, we first need to calculate $f(-2)$ and then substitute this result into $g(x)$.
</intermediate thought>
<intermediate action>
```python
f_x = lambda x: x**3 + 3
result_f = f_x(-2)
result_f
```
</intermediate action>
<intermediate observation>
-5
</intermediate observation>
<subquestion>
what is $g(-5)$ if $g(x) = 2x^2 + 2x + 1$?
</subquestion>

<original problem>
The perimeter of a rectangular garden is 60 feet. If the length of the field is twice the width, what
is the area of the field, in square feet?
</original problem>
<intermediate thought>
he perimeter (P) of a rectangle is given by the formula $P = 2l + 2w$, where l is the length and
w is the width of the rectangle. We are given that the perimeter is 60 feet and the length is twice
the width, which can be expressed as $l = 2w$. We need to find the area (A) of the rectangle, which
is given by the formula $A = l \times w$.
</intermediate thought>
<intermediate action>
```python
from sympy import symbols, Eq, solve

# Define symbols
l, w = symbols('l w')

# Given perimeter
P = 60

# Length is twice the width
length_eq = Eq(l, 2*w)

7154



# Perimeter equation
perimeter_eq = Eq(2*l + 2*w, P)

# Solve the system of equations for l and w
solution = solve((length_eq, perimeter_eq), (l, w))
print(solution)
```
</intermediate action>
<intermediate observation>
{l: 20, w: 10}
</intermediate observation>
<subquestion>
Given that the length of a rectangle is 20 feet and the width is 10 feet, what is the area of the
rectangle, in square feet?
</subquestion>

Now! It's your turn.

<original problem>
A rectangular band formation is a formation with m band members in each of r rows, where m and
r are integers. A particular band has less than 100 band members. The director arranges them in a
rectangular formation and finds that he has two members left over. If he increases the number of
members in each row by 1 and reduces the number of rows by 2, there are exactly enough places in the
new formation for each band member. What is the largest number of members the band could have?
</original problem>
<intermediate thought>
The problem describes two different rectangular formations. In the first formation, there are m
members in each of r rows with 2 members left over. In the second formation, there are $m+1$
members in each of $r-2$ rows, and there are no members left over. This means that the total number
of band members can be expressed in two ways:

1. $mr + 2$ (first formation)
2. $(m+1)(r-2)$ (second formation)

Since these two expressions represent the same total number of band members, we can set them equal to
each other and solve for one variable in terms of the other. We also know that the total number of
band members is less than 100.
</intermediate thought>
<intermediate action>
```python
from sympy import symbols, Eq, solve

m, r = symbols('m r', integer=True)
eq = Eq(m*r + 2, (m+1)*(r-2))
solution = solve(eq, m)
print(solution)
```
</intermediate action>
<intermediate observation>
[r/2 - 2]
</intermediate observation>

Listing 2: Prompts of reduced question for GPT-4 on GSM8K dataset.
You will be provided with an original math problem and its intermediate thought, action and
observation. Please generate a sub question that should utilize the results of the intermediate
thought, action and observation to replace the related information of original problem and delete
redundant irrelevant information. The sub question should be wrapped by <subquestion> and </
subquestion>.
Here are some examples you may refer to:

The following are 2 demonstration examples.

<original problem>
Alexis is applying for a new job and bought a new set of business clothes to wear to the interview.
She went to a department store with a budget of $200 and spent $30 on a button-up shirt, $46 on suit
pants, $38 on a suit coat, $11 on socks, and $18 on a belt. She also purchased a pair of shoes, but
lost the receipt for them. She has $16 left from her budget. How much did Alexis pay for the shoes?
</original problem>

7155

<intermediate thought>
To find out how much Alexis paid for the shoes, I need to calculate the total amount spent on the
other items she bought and subtract this from her initial budget. The initial budget is $200, and she
has $16 left after all her purchases. The equation for this calculation is:

\[\text{Cost of shoes} = \text{Initial budget} - (\text{Cost of shirt} + \text{Cost of pants} + \
text{Cost of coat} + \text{Cost of socks} + \text{Cost of belt} + \text{Money left}) \]
</intermediate thought>
<intermediate action>
```python
initial_budget = 200
cost_shirt = 30
cost_pants = 46
cost_coat = 38
cost_socks = 11
cost_belt = 18
money_left = 16

other_items = cost_shirt + cost_pants + cost_coat + cost_socks + cost_belt + money_left
print(other_items)
```
</intermediate action>
<intermediate observation>
143
</intermediate observation>
<subquestion>
Alexis had a budget of $200 for her business attire and after purchasing several items, she was left
with $16. If the total cost of the other items was $143, how much did she spend on the pair of shoes?
</subquestion>

<original problem>
James creates a media empire. He creates a movie for $2000. Each DVD cost $6 to make. He sells it for
2.5 times that much. He sells 500 movies a day for 5 days a week. How much profit does he make in 20
weeks?
</original problem>
<intermediate thought>
To calculate the profit James makes, we need to consider the initial cost of creating the movie, the
cost of producing each DVD, the selling price of each DVD, the number of DVDs sold per day, the
number of days he sells per week, and the total number of weeks. The profit for each DVD sold is the
selling price minus the cost to make it. The total profit is the sum of the profit from each DVD sold
minus the initial cost of creating the movie.

The profit per DVD can be calculated as follows:
Profit per DVD = Selling price per DVD - Cost to make per DVD

The total profit can be calculated as follows:
Total profit = (Profit per DVD * Number of DVDs sold per day * Number of days per week * Number of
weeks) - Initial cost of creating the movie

Let's calculate the profit per DVD first.
</intermediate thought>
<intermediate action>
```python
cost_per_dvd = 6
selling_price_per_dvd = 2.5 * cost_per_dvd
profit_per_dvd = selling_price_per_dvd - cost_per_dvd
print(profit_per_dvd)
```
</intermediate action>
<intermediate observation>
9.0
</intermediate observation>
<subquestion>
Given that James makes a profit of $9.0 per DVD, sells 500 DVDs a day for 5 days a week, and the
initial cost of creating the movie was $2000, how much total profit does he make in 20 weeks?
</subquestion>

Now! It's your turn.

<original problem>

7156

James creates a media empire. He creates a movie for $2000. Each DVD cost $6 to make. He sells it for
2.5 times that much. He sells 500 movies a day for 5 days a week. How much profit does he make in 20
weeks?
</original problem>
<intermediate thought>
To calculate the profit James makes, we need to consider the initial cost of creating the movie, the
cost of producing each DVD, the selling price of each DVD, the number of DVDs sold per day, the
number of days he sells per week, and the total number of weeks. The profit for each DVD sold is the
selling price minus the cost to make it. The total profit is the sum of the profit from each DVD sold
minus the initial cost of creating the movie.

The profit per DVD can be calculated as follows:
Profit per DVD = Selling price per DVD - Cost to make per DVD

The total profit can be calculated as follows:
Total profit = (Profit per DVD * Number of DVDs sold per day * Number of days per week * Number of
weeks) - Initial cost of creating the movie

Let's calculate the profit per DVD first.
</intermediate thought>
<intermediate action>
```python
cost_per_dvd = 6
selling_price_per_dvd = 2.5 * cost_per_dvd
profit_per_dvd = selling_price_per_dvd - cost_per_dvd
print(profit_per_dvd)
```
</intermediate action>
<intermediate observation>
9.0
</intermediate observation>

7157

