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Abstract

Existing large language models (LLMs) show
exceptional problem-solving capabilities but
might struggle with complex reasoning tasks.
Despite the successes of chain-of-thought and
tree-based search methods, they mainly depend
on the internal knowledge of LLMs to search
over intermediate reasoning steps, limited to
dealing with simple tasks involving fewer rea-
soning steps. In this paper, we propose RAG-
Star, a novel RAG approach that integrates the
retrieved information to guide the tree-based
deliberative reasoning process that relies on
the inherent knowledge of LLMs. By lever-
aging Monte Carlo Tree Search, RAG-Star it-
eratively plans intermediate sub-queries and
answers for reasoning based on the LLM itself.
To consolidate internal and external knowledge,
we propose an retrieval-augmented verifica-
tion that utilizes query- and answer-aware re-
ward modeling to provide feedback for the in-
herent reasoning of LLMs. Our experiments
involving Llama-3.1-8B-Instruct and GPT-4o
demonstrate that RAG-Star significantly outper-
forms previous RAG and reasoning methods.
Our codes and data are publicly available at
https://github.com/RUCAIBox/RAG-Star.

1 Introduction

Despite the excellent capabilities of large language
models (LLMs) (Zhao et al., 2023b), they still face
significant challenges in complex reasoning tasks
(e.g., multi-hop question answering), which often
go beyond simple, single-step problem-solving,
demanding a deeper level of cognitive reasoning
across multiple facts, sources, or contexts (Huang
et al., 2024; Suzgun et al., 2023). Great efforts have
been made to improve the reasoning effectiveness
of LLMs by conducing step-by-step reasoning, ex-
emplified by chain-of-thought (CoT) (Wei et al.,
2022). However, as the number of reasoning steps

∗ Equal contributions.
† Corresponding author.

grows, LLMs are often prone to introduce logical
errors, factual hallucinations, or inconsistent state-
ments (Wei et al., 2022; Lyu et al., 2023).

In fact, step-by-step reasoning in the auto-
regressive generation paradigm can be described
as akin to “System 1”, a mode of thinking which is
fast, instinctive but less accurate (Kahneman, 2011).
Conversely, solving complex reasoning problems
requires more in-depth, deliberative, and logical
thinking, known as the “System 2” mode, which re-
quires conscious effort to conduct massive strategic
decision-making (Kahneman, 2011). To enhance
the “System 2” reasoning capabilities of LLMs,
prior studies have proposed to conduct deliberative
generation by leveraging basic tree search algo-
rithms (e.g., Monte Carlo Tree Search (Silver et al.,
2017)). However, LLMs in these studies mainly
depend on their internal knowledge to search over
intermediate reasoning steps, limited to handling
problems with relatively simple reasoning process.
To leverage external knowledge in model reasoning,
extensive research has sought to augment LLMs
with external information sources (a.k.a. retrieval-
augmented generation, RAG) (Lewis et al., 2020b;
Yao et al., 2022), while existing efforts mainly con-
sider sequential reasoning structure, which cannot
naturally support more complex reasoning structure
like MCTS. Thus, we raise the following research
question: Can RAG enhance the deliberative rea-
soning capabilities of LLMs?

In light of this, in this paper, we propose RAG-
Star, a novel RAG-enhanced framework designed
to improve multi-step reasoning capabilities of
LLMs with deliberative planning. As the major
technical contribution, RAG-Star can fully exploit
the internal knowledge of LLMs to plan the multi-
step reasoning, and meanwhile integrating the ex-
ternal retrieval to guide the internal reasoning pro-
cess. To achieve this goal, we first introduce a
tree-based search algorithm (i.e., Monte Carlo Tree
Search, MCTS) with LLMs to search over possible
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plans for solving the problem at hand where a com-
plete plan is composed of a sequence of sub-queries
and corresponding answers. Starting from the input
question (root node), RAG-Star iteratively gener-
ates and selects an appropriate sub-query and its an-
swer (intermediate node), which aims to maximally
explore the optimal sub-query path towards the fi-
nal answer solely based on the inherent knowledge
of LLMs. Second, different from existing delibera-
tion methods (Wang et al., 2024a; Yao et al., 2023),
RAG-Star proposes retrieval-augmented verifica-
tion that involves both query- and answer-aware
reward modeling, fully exploiting external sources
to guide the internal deliberative reasoning. In our
approach, instead of directly interfering in the rea-
soning process of LLMs, we consider employing
RAG to refine the derived reasoning steps in MCTS,
which can effectively reduce the conflicts between
inherent and external knowledge, which has been
a common issue when using RAG methods (Wang
et al., 2024b; Gao et al., 2023).

We conduct extensive experiments to verify the
effectiveness of RAG-Star based on Llama-3.1-8B-
Instruct and GPT-4o. Our method outperforms the
baselines by up to 18.98% and 16.19% on average
for Llama-3.1-8B and GPT-4o, respectively.

Our main contributions can be summarized as:
• We propose RAG-Star that leverages external

retrieval to enahnce the deliberative reasoning of
LLMs based on their internal knowledge.
• We design an effective retrieval-augmented

verification and refinement to evaluate and correct
the inherent reasoning process.
• We conduct extensive experiments on sev-

eral datasets, where RAG-Star significantly out-
performs existing RAG and reasoning methods.

2 Related Work

Retrieval-Augmented LLMs. Augmenting large
language models (LLMs) with retrieval has been
extensively studied in existing literature (Lewis
et al., 2020a; Borgeaud et al., 2022; Guu et al.,
2020), which incorporates a differentiable retriever
to provide external sources for LLMs. Further-
more, LLMs have made significant advancements
in many reasoning tasks, such as code genera-
tion (OpenAI, 2023), math word problems (Zhu
et al., 2023) and question answering (Brown et al.,
2020). Chain-of-thought (CoT) has been reported
as an emergent ability of LLMs when they are large
enough (Wei et al., 2022), which encourages LLMs

to generate explicit intermediate reasoning steps
in reasoning rather than simply providing answers
directly. To elicit or improve the multi-step reason-
ing capability of LLMs, several approaches seek
to harness the strengths of both CoT and retrieval
on knowledge-intensive complex reasoning tasks,
such as multi-hop question answering (Yao et al.,
2022; Zhao et al., 2023a). The rationales gained
from reasoning enhance the retrieval of more rel-
evant information, while the retrieved knowledge
improves the factuality of intermediate reasoning
steps. However, these approaches primarily take
retrieved documents as direct input to the model,
easily suffering from knowledge conflicts between
the parametric knowledge of LLMs and the exter-
nal sources. In contrast, our RAG-Star framework
integrates tree-based search to fully explore the so-
lution space and repurpose the retrieval information
as external guidance to the reasoning process.

Enhancing LLMs with Search. Applying search
on top of LLMs has been a topic of much inter-
est. Several recent works have explored search
algorithms to improve the performance of LLMs
during the inference stage (Wang et al., 2024a;
Zhang et al., 2024). The bitter lesson (Sutton,
2019) famously suggests that two forms of scal-
ing, i.e., learning and search, supersede all other
approaches. Many studies have proven that scal-
ing the inference-time computation can lead to
substantial improvements in the performance of
LLMs without training (Brown et al., 2024; Snell
et al., 2024). These search algorithms, where
multiple branches of outcomes are explored dur-
ing search, have been widely applied in reinforce-
ment learning algorithms (Hart et al., 1968; Silver
et al., 2017) and many real-world applications such
as AlphaGo (Silver et al., 2016) for their good
exploration-exploitation trade-off. However, these
approaches mainly rely on the internal knowledge
of LLMs to search potential solutions, which might
not be optimal and leads to a amount of rollouts,
significantly slowing down the decoding process.
In this paper, we leverage the external retrieval
sources to enhance the deliberative search process
with LLMs, effectively differentiate the internal
reasoning and external retrieval.

3 Preliminary

In this section, we will first formally define our task
and then introduce Monte Carlo Tree Search which
is used in our proposed RAG-Star approach.
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Task Formulation. In this work, we mainly fo-
cus on open-domain multi-hop question answer-
ing (Chen et al., 2019; Yang et al., 2018), which
requires multiple steps of reasoning across differ-
ent documents to answer questions. Previous work
typically adopts an iterative reason-then-generate
pipeline (Wei et al., 2022; Huang and Chang, 2023).
At each step, the LLM first infers an intermediate
sub-query based on the current situation and then
generates possible answers to the query. Formally,
given a natural language input question, at the t-th
step, the LLM Mθ (parameterized by θ) first de-
liberately reasons about a sub-query qt, followed
by generating an answer at based on its inherent
knowledge. In some literature (Yao et al., 2022;
Asai et al., 2024), retrieval-augmented generation
(RAG) has been employed to improve the factual-
ity of intermediate reasoning steps. For each sub-
query qt, the retriever retrieves top-K documents
Dt = {dt,k}Kk=1 from an external large-scale cor-
pus, e.g., Wikipedia, supplying them to the LLM
to generate more accurate answers.

Monte Carlo Tree Search (MCTS). In existing lit-
erature (Zelikman et al., 2024; Zhang et al., 2024),
MCTS builds a search tree T based on a policy
model πθ, which is usually the target LLM Mθ.
Each node st = [qt, at, N(st), V (st)] represents a
state comprising the sub-query qt, its answer at,
the number of visits N(st), and the value function
(expected reward) V (st) for accurately answering
questions, except that the root node s0 = [q0] only
contains the original input question q0, and each
edge is an action aiming to generate the next sub-
query. During the search process, MCTS runs for
multiple simulations. For the t-th simulation, it
conducts four operations to expand the tree:
• Selection aims to select a node with the highest

UCT (Upper Confidence bounds applied to Trees)
score (Kocsis and Szepesvári, 2006) starting from
the root node s0. The UCT score of a child node
with state st is calculated as follows:

UCT (st) = V (st) + w

√
lnN(p)

N(st)
, (1)

where w controls the exploration and exploitation,
and p is the parent node of the current node st.
• Expansion explores multiple child nodes

{st+1} from the selected node st through repeated
sampling based on the policy model πθ.
• Simulation aims to perform rollout for each

expanded child node st+1 until the task is solved
and obtain a reward r based on the rollout results.
• Backpropagation operation leverages the re-

ward r of the child node to update the expected
reward V (st) of nodes along the path from the root
node to the current node:

Nnew(st) = Nold(st) + 1, (2)

Vnew(st) =
Vold(st)Nold(st) + r

Nnew(st)
, (3)

where Nold(st) and Vold(st) are the number of vis-
its and value function at last iteration, respectively.

4 Approach

4.1 Overview

RAG has been an indispensable technique to ad-
dress the inherent knowledge limitations of LLMs,
effectively integrating requisite information and
grounding to reliable sources (Lewis et al., 2020a;
Guu et al., 2020). However, existing work mainly
utilizes RAG to provide supplementary knowledge,
while overlooking a thorough investigation of RAG
on enhancing the inherent reasoning capabilities of
LLMs. To address this, we propose RAG-Star, a
framework to fully harness the potential of inter-
nal knowledge in LLMs for multi-step reasoning
guided by the external retrieval.

Our RAG-Star framework contains two major
technical steps. First, we propose tree-based sub-
query generation to perform deliberative reason-
ing with MCTS, totally relying on the inherent
knowledge of LLMs. Second, we design retrieval-
augmented verification capitalizing on RAG to as-
sist in guiding the reasoning based on the external
knowledge. Under this framework, RAG-Star first
selects a node from the tree to explore (Section 4.2),
then generates the next sub-query and answers for
obtaining new child nodes (Section 4.3), and com-
putes a reward to the expanded nodes (Section 4.4).
Finally, it backpropagates the reward to update their
parent nodes on the tree (Section 4.4). This process
will iterate until the task is solved. Next, we will
describe each step in detail.

4.2 Node Selection

To answer multi-hop questions, our framework will
iterate the tree-based search process multiple times
to gradually generate inference solutions in a step-
by-step way. In our work, the solution is composed
of a sequence of intermediate sub-queries and the
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Figure 1: Overall framework of our proposed RAG-Star approach.

associated answers. At each iteration, it first selects
an appropriate node from the current tree for the
next exploration or expansion. The selection opera-
tion is based on the node values computed through
the reward modeling and backpropagation steps.

Specifically, starting from the root node s0 (i.e.,
the input question q0), our RAG-Star model se-
lects one node with the highest score from its child
nodes, and then sequentially selects the next best
child node layer-by-layer along the tree until reach-
ing a leaf node, i.e., the terminal state indicating the
final answer. To better balance exploration and ex-
ploitation, we use the UCT algorithm (Kocsis and
Szepesvári, 2006) to calculate the score of each
node according to its number of visits N(s) and
expected reward V (s) in Eq. 1.

4.3 Plan Expansion

After selecting the current node, it expands the
search tree by repeatively sampling multiple child
nodes as plan based on the policy model πθ. Spe-
cially, the expansion process involves two steps,
i.e., sub-query generation and answer deduction.

Sub-query Planning. To generate the next sub-
query as plan, our approach first builds the con-
text information by concatenating states from the
root node to the current selected node, and then
instructs the policy model to sample the next sub-
query based on the context information. Formally,
given the node st, we can extract a path from the
root node s0 to the current node st, denoted by
H = {q0; ⟨q1, a1⟩; ...; ⟨qt, at⟩}, where q0 is the
original input question and each ⟨qi, ai⟩ pair de-
notes the planned sub-query and its answer veri-
fied by our retrieval-augmented varification (Sec-
tion 4.4). We convert this path into the context
information, and feed it to the policy model πθ to

generate the next sub-query qt+1 = πθ(H). During
inference, we employ repeated sampling to sample
sub-queries by mq times to fully exploit the policy
model’s inherent capabilities and obtain mq new
expanded sub-queries.

Answer Deduction. After planning the sub-query,
we further instruct the policy model to generate
an answer to explore the internal knowledge of
LLMs. Specially, for each planned sub-query qt+1,
we directly feed the historical context H and sub-
query into the policy model to generate a candidate
answer by leveraging the inherent knowledge en-
coded in its parameters as follows:

at+1 = πθ(H, qt+1). (4)

In this process, we do not consider the external
knowledge from RAG to avoid knowledge con-
flicts. We aim to fully exploit the potential of the
internal knowledge of LLMs without interference
from external information, differing from previous
retrieval-augmented work (Lewis et al., 2020b; Yao
et al., 2022) that might suffer from knowledge con-
flicts and interference. After obtaining the answer,
we can store each ⟨qt+1, at+1⟩ pair in the corre-
sponding node state, which will be subsequently
used for reward modeling.

When completing the plan expansion process,
we can obtain mq child nodes for every parent node,
each of which contains a sub-query qt+1 and its
answer at+1.

4.4 Reward Modeling and Backpropagation
Traditional MCTS methods require to perform ex-
pensive rollout from the current node until the task
ends to evaluate the expanded nodes. In our work,
following previous work on process-supervised re-
ward modeling (Setlur et al., 2024; Lightman et al.,
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2024), we propose retrieval-augmented verifica-
tion and refinement by using external knowledge
to verify the consistency between the model output
and retrieved information. Specifially, we employ
reward models to assign an estimated reward r to
the expanded node, which effectively quantifies the
effectiveness of the policy model in successfully
answering the input question if continually reason-
ing from the current node. Next, we introduce
the involved two kinds of reward scores, namely
answer-aware reward and query-aware reward.

Answer-aware Reward. We first introduce the
answer-aware reward in the verification process.
First, given a sub-query qt+1, we follow existing
methods (Lewis et al., 2020a) to retrieve top-K
documents Dt+1 = {dt+1,k}Kk=1 from the exter-
nal corpus. Based on the retrieved documents, we
then employ the reward model to assign an answer-
aware reward ra to the currently generated answer
at+1 from the internal knowledge of LLMs. Specif-
ically, there are overall three cases for the knowl-
edge consistency between at+1 and Dt+1 with dif-
ferent rewards:

ra =





1, if at+1 cannot be verified by Dt+1

2, if at+1 is in conflict with Dt+1

3, if at+1 is aligned with Dt+1

Note that in the second case (i.e., at+1 is in conflict
with Dt+1), we assign a moderate score 2 to the an-
swer because we will refine at+1 with a new poten-
tial answer ãt+1 from the external knowledge Dt+1

to support the policy model to continually reason
from the current node. However, if the answer at+1

cannot be verified by the external knowledge, we
will assign the lowest score 1 to the answer, avoid-
ing the policy model from exploring the potentially
risky solution space.

Query-aware Reward. In addition to evaluating
the consistency of the generated answer with ex-
ternal knowledge, we employ the reward model
to provide a query-aware reward rq for mea-
suring the plausibility of the planned sub-query
qt+1 based on the historical context information
from the root node to current node, i.e., H =
{q0; ⟨q1, a1⟩; ...; ⟨qt, at⟩}. If the sub-query evalu-
ated by the reward model is logically inconsistent
with the history plan, the score rq is set to 0; other-
wise, it is set to 1. Therefore, the final reward r for
the expanded node st+1 is computed as r = ra · rq.
This step aims to prevent the policy model from

continuing to reason along illogical sub-queries.
After obtaining the final reward for the newly

expanded node, we backpropagate the reward to up-
date the value of nodes from the root node s0 to the
current node st+1. For each node s0, s1, ..., st+1 in
the path, its number of visits N(s) and the value
V (s) will be updated according to Eq. 2. These up-
dated values are used in the UCT algorithm in Eq. 1
to guide the node selection at the next iteration.

4.5 Reward Model Training

In the reward modeling process, the capacity of the
reward model critically influences the search pro-
cess and ultimate answer accuracy. However, uti-
lizing close-source model API or very large LLMs
incurs substantial computational costs for deploy-
ment. Hence, we adopt a knowledge distillation
technique to transfer capabilities from an advanced
LLM, which usually has more parameters, to a rel-
atively smaller model. This involves two phases:
data synthesis and instruction fine-tuning.

During data synthesis, we mix up training sets
from our evaluation datasets to maintain diversity.
First, we adopt in-context learning to instruct the
policy model to generate a CoT format solution
and then break down into multiple sub-steps, each
incorporating the input question, accumulated rea-
soning paths, and a sub-query specific to the current
step. To further ensure diversity, only one random
step from each sample is selected for subsequent
instruction data creation. We then employ a more
advanced LLM (i.e., GPT-4o-mini) combined with
a retrieval system to evaluate the sub-query and its
answer for each step (Section 4.4), and filter the
output that fails to meet the format criteria. Finally,
we compile a dataset of intermediate steps and their
query and answer rewards from an advanced LLM.
In the instruction fine-tuning phase, we utilize the
synthetic samples to fine-tune a smaller LLM (i.e.,
Llama-3.1-8B-Instruct), thereby enhancing its ca-
pabilities in reward modeling.

5 Experiments

5.1 Experimental Setup

Datasets and Evaluation Metrics. We select
four typical complex multi-hop question-answering
datasets, i.e., HotpotQA (Yang et al., 2018), 2Wiki-
MultihopQA (Ho et al., 2020), MusiQue (Trivedi
et al., 2022), and StrategyQA (Geva et al., 2021).
For evaluation metrics, we use Exact Match (EM),
F1 score, and Cover Exact Match (Cover EM),
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where Cover EM measures whether the ground
truth answer is covered in the generated answer.
We randomly select 100 samples from the whole
validation sets of each dataset as our final test set
for all baselines and our method.

Baselines. We compare RAG-Star to the follow-
ing two types of baselines based on GPT-4o and
Llama-3.1-8B-Instruct:

• Vanilla prompting methods including direct
prompting, Chain-of-Thought (CoT), and standard
RAG. Direct prompting instructs the model to di-
rectly generate answers and CoT incorporates in-
termediate reasoning steps, which are all based on
the inherent knowledge of LLMs. Standard RAG
first retrieves documents from Wikipedia based on
DPR (Karpukhin et al., 2020) as prompts and then
generates the final answers.

• Improved RAG methods including Iterative
RAG (Xu et al., 2024), Judge-then-retrieve (Asai
et al., 2024), and Generate-then-retrieve (Wang
et al., 2023). We reimplement all of these baselines
in our experiments. Iterative RAG iteratively de-
composes the input question into sub-queries for
retrieval and generation, ultimately ensembling all
intermediate answers; Judge-then-retrieve first de-
cides whether the retrieval is needed, autonomously
deciding to utilize either internal or external knowl-
edge to aid in generation; Generate-then-retrieve
first generates an initial answer used for retrieving
more documents relevant to the question and then
generates the final answer based on documents.

Implementation Details. We use a closed-source
model (GPT-4o) and an open-source model (Llama-
3.1-8B-Instruct) as our policy models to measure
the performance of the RAG-Star framework. For
the reward models, we use GPT-4o-mini and a
fine-tuned Llama-3.1-8B-Instruct. For HotpotQA,
we only use the abstract of articles in Wikipedia
2017 dump as the retrieval corpus following Yang
et al. (2018), while for other datasets, we use the
whole articles in Wikipedia 2018 dump (Karpukhin
et al., 2020). Moreover, for the retrieval model, we
use FAISS for index building and BGE-large-en-
v1.5 (Xiao et al., 2023) for dense passage retrieval.
For all retrieval-based baselines, we retrieve top-5
documents and employ greedy search for decoding
with a temperature of 0. For RAG-Star, we set the
maximum number of simulations to 50 and a maxi-
mum of 6 layers. In UCT algorithm, the weight w
to control the exploration and exploitation is set to

0.2. We also retrieve top-5 documents and sample
three sub-queries at a time (mq = 3) with temper-
ature 1.0 and top-p sampling where p = 1.0. For
answer generation, we sample an answer using a
temperature of 0.9 and top-p sampling set to 1.0.

5.2 Main Results

Table 1 shows the results of RAG-Star and other
baselines across four representative multi-hop ques-
tion answering datasets.

Firstly, it can be observed that relatively smaller
models (e.g., Llama-3.1-8B-Instruct) show limited
performance on these knowledge-intensive reason-
ing tasks, achieving below 10% across three met-
rics in MusiQue. Although the Chain-of-Thought
technique can slightly improve the answer recall
(e.g., Cover EM scores of Llama-3.1-8B-Instruct
and GPT-4o in MusiQue increase from 3.0% and
19.0% to 16.0% and 27.0%, respectively), the
model is prone to generating substantial irrele-
vant information in the output, decreasing the over-
all performance (e.g., F1 score of Llama-3.1-8B-
Instruct drops from 21.9% to 7.1% on 2WikiMulti-
hopQA).

Secondly, based on the standard RAG, GPT-4o
achieves substantial improvement in HotpotQA
(e.g., Cover EM increases from 47.0% to 57.0%)
but exhibits a large decline in StrategyQA (e.g.,
Cover EM from 73.0% to 62.0%), suggesting a po-
tential conflict between external sources and inter-
nal knowledge of LLMs. We speculate the reason
might be that using the retrieved information di-
rectly as input incorporates some noises and makes
the LLM lost in the useful information. There-
fore, by controlling the utilization of internal and
external knowledge, Judge-then-Retrieve can sig-
nificantly alleviate this issue (e.g., Cover EM from
62.0% to 74.0% in StrategyQA). However, these
approaches still present limited or even negative im-
provements in complex tasks (e.g., Cover EM from
19.0% to 16.0% in MusiQue), necessitating effec-
tive methods to consolidate external and internal
knowledge.

Finally, our approach outperforms all baselines
across most metrics in four datasets. RAG-Star
introduces a “System 2”-like slow and delibera-
tive thinking process and employs RAG to verify
and guide the multi-step reasoning process. By
employing retrieval-augmented verification, the re-
ward model can effectively encourage the model
towards plausible sub-query nodes or avert from
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Method
HotpotQA 2WikiMultihopQA MusiQue StrategyQA

EM CEM F1 EM CEM F1 EM CEM F1 EM CEM F1

Llama-3.1-8B-Instruct 14.0 25.0 26.0 9.0 29.0 21.9 2.0 3.0 3.9 63.0 65.0 63.0

+ Chain-of-Tought 20.0 38.0 26.3 4.0 32.0 7.1 4.0 16.0 6.6 55.0 69.0 55.0
+ Standard RAG 40.0 48.0 52.8 17.0 23.0 26.1 11.0 11.0 15.5 63.0 64.0 63.0
+ Iterative RAG 26.0 31.0 36.9 22.0 23.0 26.0 7.0 11.0 15.9 61.0 63.0 61.0
+ Generate-then-Retrieve 34.0 44.0 49.4 21.0 30.0 26.6 13.0 17.0 19.4 63.0 67.0 63.0
+ Judge-then-Retrieve 39.0 48.0 53.9 18.0 26.0 26.8 10.0 10.0 16.0 58.0 63.0 58.0

+ RAG-Star w Llama RM 42.0 44.0 54.4 34.0 38.0 42.0 13.0 18.0 22.2 71.0 72.0 71.0
+ RAG-Star w GPT RM 46.0 49.0 60.0 38.0 43.0 46.8 22.2 27.0 30.7 67.6 69.0 67.6

GPT-4o 43.0 47.0 56.7 36.0 42.0 45.7 13.0 19.0 24.3 70.0 73.0 70.0

+ Chain-of-Tought 36.0 49.0 56.8 38.0 55.0 53.9 20.0 27.0 29.6 37.0 79.0 37.0
+ Standard RAG 47.0 57.0 63.7 25.0 26.0 31.2 14.0 18.0 20.6 45.0 62.0 45.0
+ Iterative RAG 47.0 59.0 63.3 19.0 24.0 26.3 15.0 26.0 25.5 32.0 74.0 32.0
+ Generate-then-Retrieve 44.0 57.0 62.0 29.0 36.0 37.5 23.0 28.0 31.0 50.0 68.0 50.0
+ Judge-then-Retrieve 44.0 50.0 58.6 28.0 29.0 32.2 14.0 16.0 22.8 72.0 74.0 72.0

+ RAG-Star w Llama RM 48.0 54.0 66.3 47.0 68.0 62.8 25.0 36.0 39.0 61.0 86.0 61.0
+ RAG-Star w GPT RM 48.0 57.0 68.6 48.0 63.0 61.7 29.0 40.0 43.5 60.0 81.0 60.0

Table 1: Evaluation results on four representative multi-hop question answering tasks. “RM” is short for reward
model. The bold and underline fonts denote the best and second best results in each dataset, respectively.

Method
GPT-4o Llama3.1-8B

CEM F1 CEM F1

RAG-Star (Ours) 84.0 68.3 75.0 73.3

w/o Query Score 82.0 68.0 71.0 69.0
w/o Answer Score 80.0 66.3 66.0 65.3
w/o Retrieval 78.0 67.3 67.0 66.0
w/o Refine 77.0 68.2 70.0 68.1

Table 2: Ablation study in StrategyQA.

potential risky nodes. For example, equipped with
our RAG-Star framework, Llama-3.1-8B-Instruct
achieves higher scores in two challenging reason-
ing datasets, i.e., 2WikiMultihopQA and MusiQue,
significantly beyond all baseline methods.

5.3 Further Analysis
We report further analysis in StrategyQA with ran-
domly selected 100 samples – we have similar find-
ings in other datasets.

Ablation Study. To validate the effectiveness of
our proposed framework, we conduct an ablation
analysis of its key design elements. We design
four variants: (1) w/o Retrieval removes the re-
trieved documents in reward modeling; (2) w/o
Refine does not refine the conflict answer with re-
trieved documents in reward modeling; (3) w/o
Query Reward removes the query-aware reward rq
for scoring; and (4) w/o Answer Reward removes
the answer-aware reward ra for scoring. We show
the results in Table 2. It is clear that all the vari-

Figure 2: Cover EM performance on the StrategyQA
w.r.t. the number of simulations (Left) or the number of
training data (Right).

ants perform worse than the original method, in-
dicating the effectiveness of each component in
our framework. Specifically, the performance of
w/o Retrieval drops significantly for Llama-3.1-8B,
indicating that using external knowledge for ver-
ification can be highly beneficial for the inherent
reasoning of LLMs. Similarly, w/o Refine leads to a
decline in model performance, which highlights the
importance of repurposing external sources for cor-
recting the errors in the model’s reasoning process.
Moreover, both w/o Query Reward and w/o Answer
Reward variants lead to a substantial performance
decline, which suggests that the consistency and
logical plausibility of intermediate sub-queries and
answers are both critical for the model to plan the
correct path towards the final answer.

Effect of Simulation Scaling. Typically, scal-
ing the simulation iterations will lead to a higher
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Was Christian 
born earlier?
Reward: 0

Christian, born 14
December 1972,
is a Danish …

It’s in the Air is … 
comedy directed
by Anthony …

Anthony 
(10 November 1901
to 19 May 1964) …

Which film has the 
director born later, Life 
Hits or It’s In The Air?

(Answer: Life Hits)

Sub-query: When was the 
director of “Life Hits” born?
Answer: 1889    Reward: 0

Sub-query: Who is the 
director of It’s In The Air?
Answer:
Reward: 2 Anthony

Claude

Sub-query: When 
was Anthony born?
Answer: 1901
Reward: 3

…

Life Hits is a 2006
drama film directed

by Christian…

Sub-query: Who is the 
director of “Life Hits” ?
Answer: Christian 
Reward: 3

Sub-query: When was
Christian born?
Answer:
Reward: 2

1998
1972

…
Input Question

✅ ❎ refine

What's Christian's 
date of birth? 
Reward: 1

Verification by
Retrieved Documents

❎ refine ✅

Therefore, the final 
answer is Life HitsOutputFailed Node

Success Node

Answer Node

Figure 3: A qualitative example showing the deliberative reasoning process of RAG-Star in 2WikiMultihopQA.

level of task-solving capability. To explore the re-
lationship between simulation scaling and the final
performance of RAG-Star, we test our model under
different maximum simulation iterations. Specifi-
cally, we vary the maximum simulation rounds in
a set {10, 20, 30, 40, 50, 60}, and evaluate Llama
and GPT-4o in StrategyQA with GPT-4o-mini as
the reward model. The results are presented in the
Figure 2. We can see that as the maximum number
of simulation increases, the model’s performance
gradually improves, although the average time con-
sumed also rises to some extent. This highlights
that scaling the test-time computation can further
promote more thorough exploration and exploita-
tion by the policy model within the search space.
However, as the number of simulations further in-
creases, the performance of the policy model tends
to be saturated. Due to the limitation of inherent
knowledge, the policy model cannot benefit a lot
from conducting more simulations.

Effect of Reward Model. In our framework, the
reward model is used to assess the logical plausibil-
ity of the sub-query and the consistency between
the output answer and external sources. In this part,
we aim to explore how to train open-source reward
models (i.e., Llama-3.1-8B-Instruct) to achieve per-
formance comparable to closed-source LLMs (i.e.,
GPT-4o-mini) by varying amounts of training data
from 20K to 80K. Specifically, we employ different
amounts of training data to fine-tune Llama-3.1-8B-
Instruct and use the fine-tuned model to evaluate
the sub-query and its answer. As shown in Fig-
ure 2, we can see that as the amount of training
data increases, the reward model can achieve more
accurate verification quality, significantly benefit-
ing the planning and reasoning of the policy model.
However, the performance gains tend to saturate at
later stages, necessitating instruction tuning data

Method NS TT RT CEM

CoT - 30.48 0.00 34%
RAG - 10.38 8.44 24%
Iterative RAG - 33.73 28.51 20%
Judge-then-Retrieve - 24.18 11.55 28%
Generate-then-Retrieve - 17.25 10.54 28%

RAG-Star (Ours)

10 96.30 66.54 32%
30 143.23 99.83 36%
50 157.29 103.62 40%
80 200.37 130.92 42%

Table 3: Comparison of time costs per question and
the final achieved performance. Here, NS represents
the number of simulations per question, TT and RT
represent the total inference time and retrieval time per
question, respectively.

with higher diversity and quality.

Analysis of Computational Expenses. We con-
duct further analysis of computational costs con-
cerning different numbers of simulations on 2Wiki-
MultihopQA. We randomly sample 50 questions to
compute the average time and performance. Specif-
ically, we compute the total inference time and
retrieval time separately. We show the results in Ta-
ble 3. Firstly, our proposed method obtains the best
performance when scaling the inference-time. Sec-
ondly, we observe that the overall time increases
with the number of simulations, and performance
continually improves, aligning with the recent test-
time scaling law (Snell et al., 2024). Thirdly, re-
trieval time accounts for more than half of the total
time. Further analysis indicates that retrieval can
be optimized at the hardware level, such as through
GPU acceleration and distributed retrieval. We plan
to enhance this aspect in future versions.

5.4 Case Study
To facilitate understanding of the entire workflow
of our proposed RAG-Star, we present a qualita-
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tive analysis in 2WikiMultihopQA. Throughout
the search process, the LLM initializes the input
question as root node and conducts multiple simu-
lations, eventually reaching the terminal leaf node,
which can be vividly represented as a tree. As
shown in Figure 3, after selecting the first query
(i.e., Who is the director of “Life Hits”?), the model
expands multiple children nodes by repeated sam-
pling. At the next iteration, the model refines the
generated answer (i.e., 1998) for the sub-query
(“When was Christian born?”) based on retrieved
documents and the reward model returns an overall
score of 2. By iterating the multi-step reasoning
and retrieval-augmented verification processes for
several rounds, the model outputs the final answer
(i.e., Life Hits). In the task-solving process, the pol-
icy model generates an answer to the current sub-
query based on its internal knowledge, which might
be erroneous due to the limited pre-training corpus
in time or the memorization mistakes. Therefore,
the external knowledge can be beneficial to validate
the correctness of inherent knowledge of LLMs, ef-
fectively guiding the model to plan a reasonable
path.

6 Conclusion

In this work, we proposed RAG-Star, a novel RAG
approach for leveraging external retrieval technique
to enhance the multi-step reasoning capabilities of
LLMs. RAG-Star employed Monte Carlo Tree
Search to search intermediate sub-queries and cor-
responding answers. Moreover, RAG-Star intro-
duced retrieval-augmented verification to evaluate
the plausibility and consistency of the planned sub-
queries and answers based on a query-aware and
an answer-aware reward. At each iteration, RAG-
Star conducted node selection, plan expansion, re-
ward modeling, and reward backpropagation se-
quentially to consolidate the internal knowledge of
LLMs and external knowledge from RAG. Exten-
sive experiments on several datasets showed that
our proposed RAG-Star outperforms the traditional
RAG and reasoning methods.

Limitations

Despite the great efforts that we have made, the
experimental analysis is still limited due to the
massive computational cost of tree-based search
approaches. We will investigate into more types
of complex reasoning tasks and datasets. In our
model, we only leverage Monte Carlo Tree Search

to conduct our deleberative reasoning process. we
may consider investigate more kinds of search algo-
rithms to verify the generalization and robustness
of our proposed framework. Moreover, the perfor-
mance of our model is affected by the feedback
quality provided by the reward model. Therefore, a
well-trained and performant reward model is impor-
tant for guiding the reasoning process. We will con-
sider other fine-tuning strategies and more LLMs
in reward modeling.
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Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006, 17th European Conference on Machine
Learning, Berlin, Germany, September 18-22, 2006,
Proceedings, volume 4212 of Lecture Notes in Com-
puter Science, pages 282–293. Springer.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020a. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik-
tus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020b. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neu-
ral Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics, IJCNLP 2023 -Volume 1: Long Papers,
Nusa Dua, Bali, November 1 - 4, 2023, pages 305–
329. Association for Computational Linguistics.

OpenAI. 2023. Gpt-4 technical report. OpenAI Blog.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar.
2024. Rewarding progress: Scaling automated pro-
cess verifiers for llm reasoning. arXiv preprint
arXiv:2410.08146.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Vedavyas
Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Has-
sabis. 2016. Mastering the game of go with deep neu-
ral networks and tree search. Nat., 529(7587):484–
489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, Timothy P. Lillicrap, Karen Simonyan, and
Demis Hassabis. 2017. Mastering chess and shogi
by self-play with a general reinforcement learning
algorithm. CoRR, abs/1712.01815.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM test-time compute optimally

7073

http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.48550/ARXIV.2408.03314


can be more effective than scaling model parameters.
CoRR, abs/2408.03314.

Richard Sutton. 2019. The bitter lesson. Incomplete
Ideas (blog), 13(1):38.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Trans. Assoc. Comput. Linguistics, 10:539–554.

Chaojie Wang, Yanchen Deng, Zhiyi Lv, Zeng Liang,
Jujie He, Shuicheng Yan, and Bo An. 2024a. Q*:
Improving multi-step reasoning for llms with deliber-
ative planning. CoRR, abs/2406.14283.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen,
and Sercan Ö Arık. 2024b. Astute rag: Overcom-
ing imperfect retrieval augmentation and knowledge
conflicts for large language models. arXiv preprint
arXiv:2410.07176.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9414–9423. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng,
and Tat-Seng Chua. 2024. Search-in-the-chain: Inter-
actively enhancing large language models with search
for knowledge-intensive tasks. In Proceedings of the
ACM on Web Conference 2024, WWW 2024, Singa-
pore, May 13-17, 2024, pages 1362–1373. ACM.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,

Brussels, Belgium, October 31 - November 4, 2018,
pages 2369–2380. Association for Computational
Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna
Jayasiri, Nick Haber, and Noah D. Goodman. 2024.
Quiet-star: Language models can teach themselves
to think before speaking. CoRR, abs/2403.09629.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yuqiang Li, et al. 2024. Llama-berry: Pair-
wise optimization for o1-like olympiad-level mathe-
matical reasoning. arXiv preprint arXiv:2410.02884.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei
Qin, and Lidong Bing. 2023a. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pages 5823–5840. Association for Com-
putational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023b. A survey of large language models. CoRR,
abs/2303.18223.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Yongfeng Huang, Ruyi Gan, Jiaxing Zhang, and Yu-
jiu Yang. 2023. Solving math word problems via
cooperative reasoning induced language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 4471–4485. Association for Computa-
tional Linguistics.

7074

https://doi.org/10.48550/ARXIV.2408.03314
https://doi.org/10.48550/ARXIV.2406.14283
https://doi.org/10.48550/ARXIV.2406.14283
https://doi.org/10.48550/ARXIV.2406.14283
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
https://doi.org/10.48550/ARXIV.2403.09629
https://doi.org/10.48550/ARXIV.2403.09629

