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Abstract

The rise of generative chat-based Large Lan-
guage Models (LLMs) over the past two years
has spurred a race to develop systems that
promise near-human conversational and rea-
soning experiences. However, recent studies in-
dicate that the language understanding offered
by these models remains limited and far from
human-like performance, particularly in grasp-
ing the contextual meanings of words—an es-
sential aspect of reasoning. In this paper, we
present a simple yet computationally efficient
framework for multilingual Word Sense Disam-
biguation (WSD). Our approach reframes the
WSD task as a cluster discrimination analysis
over a semantic network refined from BabelNet
using group algebra. We validate our methodol-
ogy across multiple WSD benchmarks, achiev-
ing a new state of the art for all languages and
tasks, as well as in individual assessments by
part of speech. Notably, our model significantly
surpasses the performance of current alterna-
tives, even in low-resource languages, while
reducing the parameter count by 72%.

1 Introduction

In 2022, OpenAl fine-tunned their previously re-
leased GPT-3 (Brown et al., 2020) model us-
ing Reinforcement Learning from Human Feed-
back (RLHF), resulting in the InstructGPT model
(Ouyang et al., 2022). Using this model and a mas-
sive dataset as a base, in November of the same
year, OpenAl released a sibling model, the now
famous ChatGPT. The release served as the start-
ing pistol for the ongoing race of chat-based Large
Language Models. During the last two years, we
have seen a consistent improvement in capabili-
ties on different tasks (Minaee et al., 2024; Chiang
et al., 2024) from bigger and newer models like
LLama (Touvron et al., 2023), PALM-2 (Google,
2023) Falcon (Penedo et al., 2023), Mistral (Jiang
et al., 2023) or GPT-4 (OpenAl, 2023). However,
recent studies (Kocon et al., 2023; Qin et al., 2023;

Balloccu et al., 2024; Liu et al., 2023) suggest that
these models struggle in logic reasoning tasks when
the data is out of distribution from their train cor-
pus and fail to match the performance of previously
introduced specialized solutions. The difference in
performance is particularly noticeable in the tasks
requiring to assess the meaning in which words
are used in a sentence, where we observe that re-
cent chat-based models lag behind much smaller
fine-tuned architectures (Eisenschlos et al., 2023;
Kocon et al., 2023; Sumanathilaka et al., 2024;
Qorib et al., 2024).

The Word Sense Disambiguation (WSD) task
consists in identifying the sense in which a word
is used in some given context from a pool of pos-
sible senses (Bevilacqua et al., 2021), e.g., in the
sentence "The crane was lifting a concrete block.",
a crane refers to a lifting machine used in con-
struction rather than a large, long-necked bird. Far
from the massive chat-based language models that
we can find today, the state-of-the-art models for
this task are considerably smaller and were intro-
duced during the last five years (e.g. (Barba et al.,
2021b,a; Blevins and Zettlemoyer, 2020; Huang
et al., 2019; Kumar et al., 2019)) . In general,
these models address the WSD problem by as-
sessing the semantic similarity between the target
word or its neighbouring context and the candi-
date definitions, using a fine-tuned encoder-based
model (Barba et al., 2021b,a; Blevins and Zettle-
moyer, 2020; Huang et al., 2019) or external re-
sources (Blevins and Zettlemoyer, 2020; Kumar
et al., 2019). Although these approaches generally
provide remarkable results, they show a signifi-
cant decrease in performance for verbs compared
to other parts of speech, rare glosses, and under-
represented languages (Maru et al., 2022; Liu and
Liu, 2023; Barba et al., 2021b). These problematic
cases suggest that current solutions struggle to accu-
rately model word senses in low-resource settings,
as verbs often have multiple possible senses that
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are unevenly distributed across different contexts,
rare glosses are typically endemic to specialized
domains, and training data for underrepresented
languages is generally scarce. Addressing these
deficiencies is crucial for improving generaliza-
tion across out-of-distribution domains, where the
traditional approach of training on large batches
of annotated general-domain examples often fails
to produce satisfying results (Maru et al., 2022;
Navigli et al., 2023) and bridging the WSD per-
formance gap between English and low-resource
languages. Ideally, a general solution to the WSD
problem should reduce the dependency of perfor-
mance on the frequency of senses and contexts
present in the training data (Kilgarriff, 2004), while
addressing the issue at a structural level shared by
all languages. Under this premise, we hypothesize
that reframing the WSD task as a cluster discrimina-
tion task over a semantic network (e.g., BabelNet
(Navigli and Ponzetto, 2010)) could address the
aforementioned challenges.

In this work, we introduce SANDWICH!, a
word disambiguation framework that leverages the
close relationship between a candidate sense and
its neighbors in a semantic network to shift the task
from discriminating individual senses to discrim-
inating semantically-close clusters. To this end,
SANDWICH incorporates additional elements into
the two-level framework introduced in Barba et al.
(2021b), which consists of coarse sense retrieval
followed by a fine-tuned encoder-based model.
Specifically, we introduce the processing of the
semantic network to ensure it is sense-separated
[C1], the inclusion of neighboring key concepts as
part of the training data for the encoder-based mod-
els [C2], the separation of models by part of speech
(POS) [C3], and the definition of a context-cluster
score [C4].

Through extensive experimentation on the En-
glish all-words WSD task (Raganato et al., 2017a),
we establish a new state of the art, achieving a
8% improvement in F1 score across all datasets,
consistently outperforming existing solutions in ev-
ery subset, including those defined by individual
datasets and parts of speech. We further evaluate
our framework on the more challenging dataset
introduced by Maru et al. (2022), achieving an im-
provement over the previous state of the art ranging
between 10-30% depending on the dataset. Addi-

'We release all the code for reproducing the paper results
in https:www.github.com/danielguzmanolivares/sandwich

tionally, on the multilingual dataset (Pasini et al.,
2021), we improve state-of-the-art results for all
languages, with particularly notable gains in under-
represented ones.

Therefore, the key contributions of this work are
as follows:

* SANDWICH framework: We introduce a
novel word sense disambiguation framework
that shifts the focus from individual sense dis-
crimination to cluster-based sense discrimina-
tion, utilizing sense-separated semantic net-
works and neighboring key concepts to im-
prove performance and robustness.

* State-of-the-art results on English datasets:
Our system achieves a 8% improvement in F1
score on the English all-words WSD task, con-
sistently surpassing the state of the art across
all datasets and parts of speech, including the
challenging dataset introduced by Maru et al.
(2022).

* Multilingual generalization: The proposed
framework generalizes effectively to multilin-
gual settings, achieving state-of-the-art results
across all languages in the multilingual WSD
dataset (Pasini et al., 2021), with significant
improvements in underrepresented languages.

2 Related Work

Historically, the WSD problem was introduced in
the second half of the twentieth century as part of
machine translation efforts (Weaver, 1949/1955;
Bar-Hillel, 1960), later evolving into a standalone
problem. Early successful approaches primarily
relied on rule-based algorithms, statistical methods,
and unsupervised techniques (Gale et al., 1992;
Yarowsky, 1992; Lesk, 1986; Cowie et al., 1992;
Yarowsky, 1995). The development of large-scale
structured language resources like Wikipedia and
BabelNet (Navigli and Ponzetto, 2010) enabled
models to use gloss similarity heuristics and graph
proximity metrics to address the WSD problem
(Moro et al., 2014; Wang et al., 2015; McCarthy
et al., 2016; Jain and Lobiyal, 2015).

The introduction of the first word embedding
algorithms (e.g., Word2Vec (Mikolov et al., 2013),
fastText (Bojanowski et al., 2017), or GloVe (Pen-
nington et al., 2014)) significantly advanced WSD
performance by leveraging seq-to-seq supervised
approaches (Kagebick and Salomonsson, 2016;
Taghipour and Ng, 2015; Yuan et al., 2016; Luo
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et al., 2018). The use of word embeddings as a
foundation for neural approaches led to substantial
performance gains, which became even more pro-
nounced with the adoption of dynamic embeddings
from encoder models (e.g., BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), or DeBERTa
(He et al., 2020)), derived from the transformer
architecture (Vaswani et al., 2017). Fine-tuning
an encoder model has since then become the cor-
nerstone of top-performing systems, which can be
broadly categorized into two variants based on their
approach to the WSD problem.

The first variant comprises purely transformer-
based architectures that leverage the representa-
tional power of large encoder models. These mod-
els often frame the problem by jointly encoding all
candidate definitions alongside the given sentence
to extract the correct sense of a target word (Scar-
lini et al., 2020; Huang et al., 2019; Hadiwinoto
et al., 2019). Notable examples include ConSec
(Barba et al., 2021b), the previous state-of-the-art,
which encodes not only the candidate senses of the
target word but also non-ambiguous or already dis-
ambiguated words in the sentence; BEM (Blevins
and Zettlemoyer, 2020), which separates the en-
coding of glosses and context to compute similar-
ity through a dot product; and ESC (Barba et al.,
2021a), which redefines the WSD problem as a
span extraction task, analyzing the concatenation
of all possible senses to determine the start and end
indices of the correct sense.

The second variant includes transformer models
that integrate external information, usually from
a lexical knowledge base or semantic network
(Loureiro and Jorge, 2019; Conia and Navigli,
2021; Song et al., 2021). Notable examples in-
clude EWISE (Kumar et al., 2019) and its improved
version EWISER (Bevilacqua and Navigli, 2020),
which incorporate WordNet information into the
neural model; DHEM (Liu and Zeng, 2024), which
enriches pretrained embeddings with graph encod-
ings of senses; and Mizuki and Okazaki (2023),
which use synonyms and hypernyms from Word-
Net to train an encoder via a triplet loss over se-
mantically related glosses. Recent approaches have
started exploring parallel alternatives, such as Dong
and Sifa (2024), which propose using neurosym-
bolic embeddings that reach 90% F1 for target
senses with an explicit class structure (about 70%
of the Raganato et al. (2017a) dataset), and Zhang
et al. (2023), which use a representation based
on superposition states to eliminate dependency

on training set size and improve accuracy for rare
senses.

Although both variants produce competitive re-
sults, to the best of our knowledge, no system has
surpassed the 82% F1 score on the unified bench-
mark (Raganato et al., 2017a). Additionally, Maru
et al. (2022) highlighted that generalization to out-
of-domain tasks remains a challenge, complicating
the ability of current solutions to scale to special-
ized domains. Moreover, most modern systems rely
heavily on encoder models predominantly trained
in English, limiting their applicability to under-
represented languages (Barba et al., 2021b). To
address these challenges, we propose reframing
the WSD problem as a semantic cluster discrimi-
nation task within a semantic network (BabelNet)
and, in the next section, introduce the SANDWiCH
framework as a comprehensive solution to the mul-
tilingual word sense disambiguation problem.

3 The SANDWICH framework

3.1 Theoretical motivation

Formally, a written language £, can be defined by
the generator £ :=< V, € >, where V is a vocab-
ulary and € is the word concatenation operation.
Using this notation we denote the dictionary space,
that contains the definitions of every word sense
as D C L. Naturally, we can define a function
n : V — P(D), mapping each word to a set of
possible definitions. Additionally, given a sentence
s € L, and a target word w € s, we can define a
function ¢ that selects the correct definition from
n(w). The disambiguation process can be then
formalized as:

won:VxLLPD)xVxLESD

(w, ) = ({di}imr, w, 5) = dy,

Where d’, is a definition associated with the word
w, n is the total possible definitions associated
with w, and d¥ is the correct definition for w in s.
Usually 7 is provided and the WSD task consists
in approximating ¢.

The SANDWIiCH framework assumes that we
are additionally given a graph structure G :=
(D, ) over the definitions space D, in which an
edge (di,d;) € £ C D x D connecting the defi-
nitions d;, d; € D exists if d; is semantically re-
lated with d; (e.g. apple (Fruit.) ~ fruit (The
ripened reproductive body of a seed plant.)). Using
this notation, we can define the sense neighbour-
hood of d; € D as N(dz) = {dj : (di,dj) S g},
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Figure 1: Ilustration of the SANDWICH architecture in the processing of the word bank in context.

and the union set of all neighbourhoods of can-
didate definitions given a word w as Dy, =
Ui, en(u) AN (di)}-

The graph that SANDWIiCH uses is a modified
version of the semantic graph to ensure that the
graph is sense-separable:

Sense-Separability Condition: Given the se-
mantic graph G := (D, £), defined as above, we
say that the graph is sense-separable if and only if
for any given word w we have that:

Ve, di,, € n(w) : N(dy,) NN (d,) = 0

In practice, its enough with eliminating the edges
connecting neighborhoods in the graph G. Given a
word w if the sense-separability condition holds,
and we consider the subgraph defined by D,
and its connecting edges &, (), the relation ~,:
d; ~u dj <— dk: di,dj S N(dfu C Dn(w))
defines an equivalence relation over D, and
therefore we have that:

P(D) x V x L —F—— n(w)

JU / )W
Dn(w) xVx L5 (Dn(w)/ ~y XV X ,C)
Where ¢* is the natural extension of ¢ to
the D, domain (ie. ¢*(di,) = di, if
cp((dq(,}),...,dq(f)),w,s> = d', otherwise

¢*(d,) = 0); 7 is the canonical projection of the
equivalence relation and A maps an equivalence

class [dfﬂ] to the correct definition. Since ¢ is
class invariant under ~,,, then ¢ =2 Ao, and there
exists a unique A satisfying this relation (Mac Lane
and Birkhoff, 1967). This means that we can
approximate the disambiguation process given by
 at the definition level by the equivalence class
of all semantically related definitions in the graph
Grw) = (Dyw)> Eyew))- To this end, we use the
following approximation:

~

A =arg max (Eo(d,) + Ex(d),)) 6

D,
i n(w) )
[ulE =07 il eldi,)

Where Ez () is an encoder-based model fine-
tuned using data including every POS except verbs
to predict the probability of a definition d?, being
semantically relevant given the word w in a given
context. Analogously, we can define E,(-) for an
encoder-based model using data including nouns
and verbs only. Finally, the weight scores J; are
defined as

2[Eu () +Ex(dd)—1]
5; =
Zd&e[dg‘u]

e2|Ey () +Ex(dl,) 1]

3.2 Implementation Details

From a theoretical perspective, the Word Sense
Disambiguation (WSD) task consists of two main
components. The first is an information retrieval
step, where the goal is to estimate 7, the top-K
sense candidates associated with a given word. For
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certain parts of speech, such as adjectives and ad-
verbs, this retrieval may not be necessary due to
their limited number of possible senses. However,
for nouns and especially verbs, which often have a
wide range of senses, this step is critical to narrow-
ing down the candidate definitions and ensuring
a manageable input size for the disambiguation
process.

In the SANDWICH framework, this retrieval is
managed by a coarse sense retrieval module (see
Figure 1), which fine-tunes a DeBERTa-v3-xsmall
model as a cross-encoder (Reimers and Gurevych,
2019) to estimate the relevance of a candidate defi-
nition given the sentence and target word. We train
this model using the SemCor corpus (Miller et al.,
1993) combined with datasets from Raganato et al.
(2017a), following established methods to classify
candidate definitions as relevant or not. The top-K
candidate senses are ranked by probability, and we
set K=30 as per Barba et al. (2021b), achieving a
recall of 98-99% across all datasets.

The second step selects the most appropriate
definition from the retrieved candidates. Instead
of directly estimating , we focus on composing
equivalence classes through X\ o 7, reducing re-
liance on specific word-level data by estimating at
the equivalence class level. For this approach to
work, the sense-separability condition must hold,
meaning the semantic clusters in the graph must be
disjoint. We extract the sense graph from BabelNet
(Navigli and Ponzetto, 2010) and remove edges
connecting senses of the same word to ensure clean
separability. The equivalence classes are defined as
the immediate neighborhoods of the target word’s
senses.

Initial experiments revealed a significant perfor-
mance boost by partitioning the training data into
two groups: one for nouns and verbs, and another
for nouns, adjectives, and adverbs. Training sep-
arate cross-encoders for these groups further en-
hanced performance, even beyond a standard en-
semble of models, as discussed in Section 4.3.

For training, we generate positive and negative
examples by sampling from the neighborhoods of
correct and incorrect senses. Unlike the coarse re-
trieval step, all elements within a neighborhood
share the same label. The input consists of a con-
catenated sentence-definition pair (s, d’,), where
the word w in sentence s is marked with special
tokens [d]. We use DeBERTa-v3-small as the back-
bone model for the cross-encoders, training with
a batch size of 64, 10 epochs, a learning rate of

2¢~°, and gradient clipping at 1. A cosine anneal-
ing scheduler (Loshchilov and Hutter, 2017) and
binary cross-entropy with logits are used as opti-
mization methods.

After training, the class score is computed using
the formula outlined in Section 3.1. The d;; weights
are derived from the softmax of the absolute differ-
ence between the model’s predictions for relevance
and non-relevance, which represents its confidence
in assigning the correct sense cluster. Additional
training details can be found in Appendix A

4 Experimentation

In this section, we present and discuss the results of
our experiments to evaluate the SANDWiCH frame-
work against existing alternatives. In Section 4.1,
we first assess our model’s performance on the En-
glish all-words benchmark (Raganato et al., 2017a),
breaking down results by individual datasets and
parts of speech. Following this, in Section 4.2, we
examine how well SANDWiCH generalizes to pre-
viously unseen domains and rare senses, using the
more challenging dataset from Maru et al. (2022),
and compare it to the current state of the art. We
then perform an ablation study in Section 4.3 to
evaluate the individual contribution of each sys-
tem component. In Section 4.4, we investigate
the framework’s adaptability to other languages.
Finally, in Section 4.5, we explore alternative back-
bone models for the cross-encoders and analyze
the trade-off between model size and performance.

4.1 All-words English WSD

Introduced in 2017, the all-words English WSD
benchmark is the most widely used standard
for evaluating WSD systems. It comprises five
datasets: Senseval-2002 (SE2) (Edmonds and
Cotton, 2001), Senseval-2003 (SE3) (Snyder and
Palmer, 2004), Semeval-2007 (SE7) (Pradhan et al.,
2007), Semeval-2013 (SE13) (Navigli et al., 2013),
and Semeval-2015 (SE15) (Moro and Navigli,
2015). Following prior work (Raganato et al.,
2017b; Huang et al., 2019; Blevins and Zettle-
moyer, 2020; Barba et al., 2021b), we use Semeval-
2007 as the development set and train on the Sem-
Cor corpus. Our results, reported by individual
dataset and POS, are summarized in Table 1.

The SANDWIiCH framework significantly out-
performs previous state-of-the-art methods across
all datasets and parts of speech, improving the over-
all F1 score by seven points. Notably, noun disam-
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biguation sees an eight-point increase, highlighting
the effectiveness of the equivalence class approxi-
mation for the WSD task.

4.2 A More Challenging Dataset

In this experiment, we reproduce and evaluate the
performance of the SANDWICH framework on the
rare senses benchmark introduced by Maru et al.
(2022). This benchmark consists of four parts:
a dataset designed to test WSD systems on rare
and out-of-domain senses (42D); a collection of
the most frequent errors made by state-of-the-art
models on the all-words English WSD benchmark
(hardEN); a WSD task similar in nature to those
found in the all-words English WSD benchmark
(S10); and (softEN), which is the opposite of the
hardEN dataset.

We present the results of previous reported sys-
tems alongside the ConSeC model, which repre-
sented the state of the art in the all-words English
WSD benchmark, in Table 2. Notably, SAND-
WiCH significantly outperforms all models, achiev-
ing improvements of over 10 F1 points in S10, 22
F1 points in 42D, 45 F1 points in hardEN, and two
F1 points in softEN.

4.3 Ablation Study

In this section, we assess the individual contribu-
tions of each component within the SANDWiCH
framework to better understand their interrelations.
To do this, we first explore the practical and the-
oretical contributions that enable the architecture
to function effectively. As introduced in Section 1,
the three main pillars supporting the SANDWiCH
framework are: the use of equivalence classes in-
stead of single senses, the sense-separability condi-
tion in the semantic graph, and the part-of-speech
(POS) separation of the cross-encoders for comput-
ing class scores.

In this ablation study, we first analyze the ef-
fect of using equivalence classes instead of senses
directly, observing the expected decrease in per-
formance. This decline occurs because the sys-
tem loses robustness against the frequency bias in
the training data (Maru et al., 2022; Navigli et al.,
2023), making it overly dependent on the training
distribution and limiting its ability to generalize
beyond the training domain.

If we maintain the use of classes but cannot en-
sure the semantic graph is sense-separable, we in-
troduce noise into the training set, particularly with

word-definition pairs labeled both positively and
negatively for the same sentence.

Finally, we find that employing POS separation
in the cross-encoders leads to a considerable per-
formance increase compared to using a standard
ensemble of two cross-encoders trained on the en-
tire dataset. This gain may stem from the differing
disambiguation strategies for each POS: verbs typ-
ically rely on objects, subjects, actions, and tense
information (Hashimoto and Tsuruoka, 2015; Wag-
ner, 2009), while nouns, adjectives, and adverbs
focus more on their interrelations (Rosso et al.,
2005). All results are reported in Table 3 in which
we evaluate the performance in the all-words En-
glish dataset in the aforementioned cases.

4.4 Multilingual WSD

In this setting, we explore the adaptability of the
SANDWIiCH pipeline to other languages. Specif-
ically, we assess the performance of our solution
across nine languages in the XL-WSD dataset
(Pasini et al., 2021). Since the DeBERTa-v3 model
is trained exclusively in English, we use mBART-
50 (Liu et al., 2020) as the backbone model. For
each language, we also adapt the BabelNet seman-
tic network to ensure it meets the sense-separability
assumption.

In this context, SANDWIiICH outperforms the
current state of the art in every tested language. The
improvements are consistent across all language
groups, with gains exceeding nine F1 points in
Germanic languages (English, German, and Dutch),
eight F1 points in Romance languages (Spanish,
Italian, and French), 18 F1 points in Finno-Ugric
languages (Estonian), and 25 F1 points in Japonic
languages (Japanese).

Additionally, we evaluated our system in Croa-
tian, representing a low-resource language in the
Slavic language group, achieving a competitive
performance of 84.1 F1 points. For the other
low-resource languages (Estonian, Dutch, and
Japanese) in our tests, SANDWiCH’s reduced de-
pendency on individual senses resulted in the most
significant improvements, surpassing the next best
approach by over 20 F1 points.

4.5 Backbone model efficiency analysis

As mentioned in Section 3.2, we use DeBERTa-
v3-small as the backbone system in the SAND-
WiCH architecture. To evaluate the trade-off
between parameter count and performance, we
modify the backbone model and analyze its im-

7024



Model SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL
MEFS - SemCor 545 656 660 638 67.1 67.7 498 73.1 805 655
BERT(base) 68.6 759 744 706 752  75.7 63.7 78.0 858 73.7
SVC - Ensemble 69.5 775 774 760 783 79.6 659 795 855 76.7
GlossBERT 725 777 752 76.1 804  79.8 67.1 79.6 874 77.0
ARES 71.0 78.0 77.1 787 75.0 80.6 683 805 835 779
EWISER 71.0 789 784 789 793 81.7 66.3 81.2 858 783
WMLC 722 784 778 7677 782 80.1 67.0 80.5 862 77.6
BEM 745 794 774 797 81.7 81.4 68.5 830 879 79.0
ESCHER 763 817 77.8 822 832 83.9 69.3 83.8 86.7 80.7
CoNSeC 774 823 799 832 852 85.4 70.8 84.0 873 82.0
QR-WSD 745 80.6 79.1 80.0 84.7 83.7 714 828 86.7 80.5
GPT40 - 763 732 79.7 837 81.2 663 790 713 774
GPT4 - 743 700 774 795 78.6 59.7 795 740 746
GPT-3.5 - 63.1 59.2 63.8 705 68.1 46.7 66.6 64.8 63.3
SANDWiCH 81.2 885 849 925 917 940 74.6 86.8 91.6 89.0

Table 1: Performance (F1 score) of various models, broken down by task and POS in the all-words English WSD
benchmark. The best results are highlighted in bold. The compared systems include MFS, which selects the most
common sense from SemCor, BERT base (Devlin et al., 2019), SVC (Vial et al., 2019), GlossBERT (Huang et al.,
2019), ARES (Scarlini et al., 2020), EWISER (Bevilacqua and Navigli, 2020), WMLC (Conia and Navigli, 2021),
BEM (Blevins and Zettlemoyer, 2020), ESCHER (Barba et al., 2021a), ConSeC (Barba et al., 2021b), QR-WSD
(Zhang et al., 2023), GPT40, GPT4, and GPT-3.5. are the most recent versions of the ChatGPT model available at
the time of writing.

#Dataset ARES BEM ESC EWS GEN GBT SYN CSC SandWiCH
S10 77.9 771 780 76.1 723 758 64.0 775 87.5
42D 41.8 532 589 439 502 457 328 56.6 77.1
softEN 78.7 80.3 83.7 792 764 771 634 817 89.4
hardEN 0.0 0.0 0.0 0.0 0.0 0.0 00 735 534

Table 2: F1 performance metrics on the Maru et al. (2022) benchmark. The compared models are ARES (Scarlini
et al., 2020), BEM (Blevins and Zettlemoyer, 2020), ESC (Barba et al., 2021a), EWS (Bevilacqua and Navigli,
2020), GEN (Bevilacqua et al., 2020), GBT (Huang et al., 2019), SYN (Scozzafava et al., 2020), and CSC(Barba
et al., 2021b). Best scores are highlighted in bold.

Active Components Score ALL pact on the all-words English WSD dataset. In
Classess 335 Table 5, we compare several models: BERT-
Classes + Encoders 66.6 base, BERT-large, BART-large (Lewis et al,
Classes + Separability 79.5 2020), RoBERTa-base, RoBERTa-large, DeBERTa-
Encoders + Separability 57.5 xsmall, DeBERTa-small, DeBERTa-base, and
Classes + Encoders (No sep.) 35.1 DeBERTa-large. Our results indicate that the
Whole Pipeline 89.0 DeBERTa family offers the highest overall per-

formance, with performance gains diminishing

Table 3: Ablation study on different components of as model size increases. For instance, the ]eap

the SANDWICH pipeline, Classes denotes using the
equivalence class structure instead of senses directly,
Encoders refers to the splitting of the cross-encoders by
POS as described in Section 3.1, Separability is whether
the separability condition holds or not, and Encoders
(No sep.) is an ensemble of cross-encoder non-separted
by POS. The F1 ALL score refers to the score in the
all-words English dataset.

from DeBERTa-xsmall to DeBERTa-large (with a
1300% increase in parameter count) yields substan-
tial improvements (4.5 F1 points), but moving from
DeBERTa-small to DeBERTa-large results in only
a 0.1 F1 point gain. This suggests that DeBERTa-
small provides the optimal balance between pa-
rameter count and performance, outperforming the

7025


https://chatgpt.com/

Language

SyntagRank EWISER XLMR ConSeC SANDWiICH

English 70.0 73.3
Dutch 56.0 57.5
Estonian 56.3 66.0
French 70.0 80.9
German 76.0 80.9
Italian 69.6 74.6
Japanese 57.5 55.8
Spanish 68.6 71.9
Croatian - -

76.3 79.0 88.9
59.2 63.3 83.7
66.1 69.8 89.5
83.9 84.4 92.8
83.1 84.2 93.2
77.6 79.3 86.6
61.9 63.0 85.7
75.9 77.4 84.0

- - 84.1

Table 4: Comparison of F1 scores across different languages in the XL-WSD (Pasini et al., 2021) for SyntagRank
(Scozzafava et al., 2020), EWISER (Bevilacqua and Navigli, 2020), XLMR (Pasini et al., 2021), ConSeC (Barba

et al., 2021b), and SANDWiCH.

Model N° Params. F1 Score
DeBERTa v3 xsmall 22M 84.6
DeBERTa v3 small 44M 89.0
DeBERTa v3 base 86M 89.0
DeBERTa v3 large 304M 89.1
BERT base 110M 78.7
BERT large 340M 80.2
BART large 406M 83.3
RoBERTa base 125M 80.5
RoBERTza large 355M 81.9

Table 5: Performance of the SANDWiCH framework in
the all-words English dataset (Raganato et al., 2017a)
changing the backbone model.

ConSec model by six F1 points while using just
28% of its parameters.

5 Results Analysis

The performance of the proposed SANDWiCH
framework across existing datasets demonstrates
that reframing the WSD problem as a discrimina-
tion task over semantically related clusters effec-
tively addresses the limitations of current solutions,
confirming our initial hypothesis. Specifically, in
the all-words English benchmark, we surpass the
previous state of the art across each dataset and
in the combined total (ALL). This improvement
extends to rare senses and out-of-domain data, as
shown by results on the Maru et al. (2022) dataset,
where SANDWICH significantly outperforms prior
solutions. This success includes cases where words
have a large number of possible senses (see Ap-
pendix B), indicating that our approach mitigates
challenges in such scenarios.

Additionally, we analyze the individual contribu-

tions of each component in the architecture, con-
cluding that the key to SANDWiCH’s success is the
creation of separable clusters over the semantic net-
work. Furthermore, separating cross-encoders by
POS leads to considerable performance gains. We
also extend the framework to multiple languages,
outperforming all existing alternatives and making
significant strides in low-resource language disam-
biguation. Notably, we demonstrate that SAND-
WIiCH achieves these results with only 28% of
the parameters used by the previous state-of-the-
art, proving the robustness of the sense-cluster ap-
proach.

6 Conclusion

In this paper, we introduced the SANDWiCH
framework, a novel approach to the WSD problem,
which arose from the hypothesis that reframing the
disambiguation task as sense cluster discrimination
over a semantic network could address the chal-
lenges faced by previous state-of-the-art solutions
when generalizing to low-resource languages and
domains. Through extensive experimentation, we
confirmed our hypothesis, surpassing the state of
the art across all benchmarks, including rare senses
and multiple languages. Furthermore, we evalu-
ated various alternatives for the backbone model
and demonstrated the efficiency of our architecture,
achieving a 72% reduction in model size while still
surpassing the state of the art.

In future work, it would be valuable to explore
alternative methods for creating sense clusters, ex-
tend our approach to additional languages, and in-
vestigate whether SANDWiCH’s disambiguation
capabilities can serve as a baseline or be combined
with existing solutions for translation into low-
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resource languages and specialized text analysis.

Limitations

As detailed in Section 3.2, the implementation of
the SANDWiICH framework requires of a previ-
ously given semantic network. However depend-
ing on the language, this might be a complicated
resource to get or not as complete as needed for en-
suring a reasonable accuracy (e.g. for low-resource
languages). Our architecture also depends on the
performance of the cross-encoders used to calcu-
late the score of the equivalence classes, even if
we manage to greatly improve the performance for
some underrepresented languages, the backbone
models used are not available for every language
and that can limit the usability of our proposed
solution.
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A Additional Implementation details

A.1 Hardware Specifications

All experiments were performed in a machine with
the technical capabilities reported in Appendix A.1.

CPU | AMD Ryzen Threadripper 3975WX
RAM | 256 GB

Cores | 64

GPU | 2x Nvidia A100 160GB

Table 6: Specifications of the machine in which the
experiments were executed.

A.2 Training Hyperparameters

The full table of hyperparameters used in the train-
ing of the system can be found in Table 7. Different
options for the settings of the system appear be-
tween curly braces, while the selected ones appear
in bold. The only hyperparameter endemic to the
SANDWICH system is the number K of candidate
senses returned in the coarse search (see Figure 1).

A.3 Transforming from WordNet Synset to
BabelNet Synsets

Our system uses a dump of BabelNet 5.0 as its
information source. The graph we employ is a post-
processed version that is restricted to a specific lan-
guage. Given that we work with the version from
the Raganato et al. (2017b) dataset, implemented
by Pasini et al. (2021), for the all-English WSD
task, we had to adapt our comparison across mod-
els to accommodate BabelNet. This involves map-
ping the WordNet-based results of some systems
(like ConSec) to BabelNet synsets. Since WordNet
differentiates synsets at a finer level, we adjust the
predictions from WordNet-based systems by asso-
ciating all related BabelNet synsets to the predicted
WordNet synset. These are then treated as a single
unit when compared to the gold standard group. If
there is any overlap between the predicted and the
gold standard synsets, the prediction is considered
correct. To ensure the accuracy of our compari-
son method, we reproduced all results reported in
the ConSec paper, validating the correctness of our
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Parameter

Value

Optimizer

Learning Rate

Gradient Accumulation Steps
Maximum Gradient Norm
Batch Size

Epochs

Evaluation Steps
Scheduler

Weight Decay

Maximum Gradient Norm
Loss Function

Max Tokens

K (Top K retrieval SANDWiCH)

Table 7: Training hyperparameters for the proposed system. Between curly braces are all values tested during

optimization, the one selected are marked in bold.

mapping methodology and ensuring that no system
has an unfair advantage.

B Polysemic Words accuracy comparison

In this section, we compare the performance of
ConSec, the previous state-of-the-art model, with
the SANDWIiCH framework on the all-words En-
glish WSD dataset, focusing on polysemic words
grouped by their number of possible meanings (see
Figure 2). SANDWICH consistently reduces the
error across all polysemic words, with this reduc-
tion becoming more pronounced as the number of
possible senses increases. This suggests that the
clustering approach employed by SANDWICH is
more effective in managing words with multiple
senses and is less dependent on the frequency with
which a particular sense appears in the training
data.

C Licensing and BabelNet derived data

BabelNet is covered under a license that does not
permit the usage of the resource or any derived
products from it for other purposes than scientific
research. For this reason, following the terms stated
in BabelNet’s license, we explicity prohibit the us-
age of the derived sense networks or the model
trained with them for any usage different than sci-
entific research.
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Figure 2: Error rate difference between ConSec (in salmon) and SANDWiCH (in light blue) for words with different
number of glosses.
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