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Abstract

Despite their wide adoption, the biases and un-
intended behaviors of language models remain
poorly understood. In this paper, we identify
and characterize a phenomenon never discussed
before, which we call semantic leakage, where
models leak irrelevant information from the
prompt into the generation in unexpected ways.
We propose an evaluation setting to detect se-
mantic leakage both by humans and automati-
cally, curate a diverse test suite for diagnosing
this behavior, and measure significant semantic
leakage in 13 flagship models. We also show
that models exhibit semantic leakage in lan-
guages besides English and across different set-
tings and generation scenarios. This discovery
highlights yet another type of bias in language
models that affects their generation patterns
and behaviour.

1 Introduction

As language models (LMs) become more preva-
lent (Touvron et al., 2023; Anil et al., 2023; Achiam
et al., 2023; Scao et al., 2022), we are steadily learn-
ing more about their peculiarities and the unique
and often unexpected properties of their behavior.
Phenomena ranging from hallucinations (Ji et al.,
2023) to sycophancy (Sharma et al., 2024) and
many types of biases (Navigli et al., 2023) have
been revealed in these models’ outputs. Each such
discovery leads to a cycle of in-depth study and
development of new methods to mitigate these be-
haviors as much as possible.

We identify a phenomenon in language models
never discussed before, which we term semantic
leakage — these models can generate text with
strong semantic relationships to unrelated words in
the prompts. For example, when given the prompt

“He likes yellow. He works as a”, GPT4O1 generates
the output “school bus driver” (Figure 1). Here we

1https://platform.openai.com/docs/models/
gpt-4o

Examples of semantic leakage

Prompt: He likes yellow. He works as a
GPT4O: school bus driver

Prompt: He likes ants. His favorite food is
GPT4O: ant-covered chocolate, a unique
delicacy that combines the crunch of ants
with the sweetness of chocolate

Prompt: It was her turn to speak and she
got cold feet. A day later she stayed at home
because she got hurt in her
GPT4O: ankle

Prompt: He is a doctor. His favorite song is
GPT4O: ’Stayin’ Alive’ by the Bee Gees

Figure 1: Examples of semantic leakage in GPT4O. The
leaking concept is underlined.

say that the word yellow has leaked into the gener-
ation in a way that unintentionally influences the
generated occupation. Figure 1 shows three addi-
tional examples of prompt-generation pairs (using
GPT4O). In each example, the leakage from the
semantic meaning of the underlined word in the
prompt is apparent in the generation.

We define semantic leakage in a generation as an
undue influence of semantic features from words
in the prompt on the generation, “undue” in the
sense that the semantic relatedness between the
prompt and the generation is stronger than would
be expected in natural distributions. Often seman-
tic leaks read as forced, overwrought, even non-
sensical generations, like those found in children’s
stories.

In this paper, we introduce an evaluation met-
ric for measuring semantic leakage. We examine
semantic leakage with 109 examples of different
semantic categories (animals, food, music, etc.)
and demonstrate that it exists across 13 models and
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4 temperature sampling values, as well as in ad-
ditional generation settings (e.g., open-ended gen-
eration and multilingual settings). Our analysis
shows that finetuned/instruction-tuned models tend
to leak more, and that semantic leakage also hap-
pens across languages.

Semantic leakage is closely related to different
types of biases models exhibit, ranging from gen-
der, racial and cultural biases (Bolukbasi et al.,
2016; Caliskan et al., 2017; Gonen and Gold-
berg, 2019; Nadeem et al., 2021) to cognitive and
psychological biases (Jones and Steinhardt, 2022;
Macmillan-Scott and Musolesi, 2024; Hagendorff
et al., 2023), in which associations between dif-
ferent concepts are learned by the model during
training and exposed as bias during generation (Go-
nen and Webster, 2020; Schick et al., 2021). As
an example, consider the prompt “She works at
the hospital as a”, and the prompt “He works at
the hospital as a”. Given the generations “nurse”
and “doctor”, respectively, which is a typical bi-
ased behavior, we can think of the word “she” as the
concept that leaks the property of the female gen-
der into the generation “nurse”, a stereotypically
female occupation. While still not fully understood,
we suspect that much documented and discussed
gender bias and other types of previously docu-
mented biases (Navigli et al., 2023) are instances
of associations that get learned and influence in a
broader way, which is partially reflected as seman-
tic leakage. Specifically, here we are looking at
larger semantic classes (i.e., compared to gender
or race), and we seek to quantify and study learned
associations and their effect on model generation
settings.

Given the nature of models in learning associ-
ations during training, whether semantic leakage
is surprising or not is a point of contention. In ad-
dition, the implications of this behaviour depend
on the user and application context, and are not
necessarily either good or bad. At the same time,
we strongly believe that it is an interesting and
important behavior to investigate as it may be a
broad enough umbrella to encompass many other
associations that are studied as more specific cases.
Studying the broader family may be easier and
more beneficial, as the more general class may in-
clude cases more resistant to mitigation strategies
and more prevalent in model outputs.

Finally, in addition to typical and previously dis-
cussed biases of different types that fall under this
broad class of semantic leakage, we point to addi-

tional potential ramifications of this phenomenon.
First, semantic leakage might hinder the perfor-
mance of models via the overshadowing mecha-
nism, introduced in Zhang et al. (2024), in which
strong associations in a question override more im-
portant and relevant parts of the question to a point
where the latter are ignored, resulting in a wrong
answer. Semantic leakage might also be used in
adversarial settings, similar to attacks presented in
Wallace et al. (2019), where specific words that are
added to the prompt negatively influence the output
of the model. Other potential implications include
hindering performance in creative writing (Ippolito
et al., 2022), where diversity and originality are
especially important, but semantic leakage might
significantly hurt the output quality in unexpected
ways.

Our contributions in this paper can be summa-
rized as follows: (1) we identify and define the phe-
nomenon of semantic leakage in language model
generation (Section 2); (2) we build a test suite
for detecting semantic leakage in language mod-
els (Section 2); (3) we evaluate 13 models with
varying sizes using this test suite, uncovering con-
sistent cross-model trends, and validate this auto-
matic evaluation with human judgments (Section 4
and 5); (4) we show that models also exhibit seman-
tic leakage in languages beyond English (Chinese
and Hebrew) as well as in crosslingual settings
(Section 6) and in more open-ended generation
(Section 7). By characterizing semantic leakage,
we demonstrate yet another property language mod-
els exhibit in text generation, and highlight how
choices in prompt construction can inadvertently
affect model output.

2 Semantic Leakage

2.1 Overview and Definitions

When producing text, language models can draw
on semantic associations with words from the input,
or prompt, that are not required or expected, and
sometimes even violate rules of logic or common
sense. For example, given the prompt “He likes
koalas. His favorite food is” GPT4O generates the
output “eucalyptus leaves”. Here, we say that the
semantic association with “koalas” and the foods
they eat “leaks” into the generation, despite the fact
that a person’s favorite food and their opinion on
koalas are unrelated in the real world. We call this
phenomenon semantic leakage.

A related phenomenon of conceptual leakage has
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been reported in image generation (Rassin et al.,
2022). There, they find that visual properties of
one object leak into other objects in the image (for
example, the prompt “a zebra and a street” gener-
ates an image of a zebra next to a zebra crossing),
which resembles examples we show (e.g., yellow
leaking into the occupation through “school bus
driver”, see first example in Figure 1). While this
behaviour might be seen as subjective, the cases
we consider in this paper are, we believe, beyond
debate.

Semantic leakage in text generation can also
manifest in more subtle ways: for the prompt “He
likes green. He works as a”, GPT4O generates

“landscape architect” as a response. In other cases,
the model may leak semantics that are not even
used in the prompt: For example, when prompted
with an idiom, a model can leak the literal semantic
meaning of that phrase (that is not actually being
used): for instance, when prompted with “She gave
him the green light for the new project. A day later
he sent an invitation to everyone by mail, with an
envelope colored”, GPT3.5 generates the response

“bright green to match the theme of the project.” This
is similar to another observation made by Rassin
et al. (2022) where the authors demonstrate that
sense-ambiguous words are hard for the model to
isolate, and the generated images often exhibit the
unintended sense together with the intended one.

2.2 Operationalizing the Measurement of
Semantic Leakage

We define the different elements of semantic leak-
age as follows. A prompt is input text that primes
the model to output a corresponding generation.
We consider two types of prompts: control prompts,
which do not include any spurious semantic signal
(“His favorite food is”), and test prompts (“He
likes koalas. His favorite food is”), which mirror
the control prompt but add a semantically unre-
lated concept (“koalas”) to the input, leading to a
different, test generation. While it is known that
changing the surface form of the prompt often al-
ters model output (Gonen et al., 2023; Sclar et al.,
2024), these new test generations are frequently
much more semantically similar to the concept than
the control generations (Section 4).

We evaluate the prevalence of semantic leakage
in a given model by comparing the similarity of
the generations produced by the control and test
prompts to the concept under consideration. If the
test generation is more semantically similar to the

concept than the control generation, we consider
this an instance of semantic leakage.

To quantify the prevalence of semantic leakage,
we design an evaluation setting that is motivated
by the definition of semantic leakage, as having
stronger connections of the concept to the test gen-
eration. The goal is to compare the similarity of
the generations produced by the control and test
prompts to the concept, while making sure no other
factors are taken into consideration. We use the
following similarities to then derive the evaluation
metric detailed below:

simcontrol = similarity(concept, control)

simtest = similarity(concept, test)

Evaluation Metric From the above formulation,
we derive the “Semantic Leakage Rate” metric
(Leak-Rate), the percentage of instances in which
the concept is semantically closer to the test gener-
ation than the control generation. We score Leak-
Rate by averaging the following function across all
instances, and converting to the range of 0–100%:

Leak-Rate(test, control) =





1 simtest > simcontrol

0 simtest < simcontrol

0.5 simtest = simcontrol

(1)

This evaluation setting can be implemented as au-
tomatic evaluation (Section 4) or as human eval-
uation (Section 5), with no required adjustments.
For automatic evaluation, we embed the texts (con-
cept, control generation, test generation) with an
embedding method (see Section 3.3) and compute
similarity measures; for human evaluation, we ask
annotators to judge which of the two pairs is more
semantically similar.

When the model does not exhibit semantic leak-
age at all, we expect a Leak-Rate of 50%, i.e., an
even split between test vs. control having higher
similarity, for those that show a difference. We
expect Leak-Rate higher than 50% when the model
exhibits semantic leakage. The Leak-Rate scores
are comparable across models for a given embed-
ding method and test set of prompt pairs.

2.3 Building a Test Suite
We build a test set of prompts containing categories
and concepts with clear semantic associations. We
also focus on categories and prompt settings that
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are likely to allow uncontroversial evaluation (by
priming for short model outputs), though later we
also consider open-ended generation (Section 7). In
addition, a subset of the test suite considers idioms,
which have both literal and figurative interpreta-
tions, as concepts in the test prompts.

We manually create 109 prompts with concepts
from categories such as colors, food, animals,
songs, occupations and more. A few examples
are listed in Table 1.2 Each prompt in our test
suite is matched with a control prompt as explained
above. When designing the control prompts, we
prioritized keeping them as basic and simple as
possible to avoid confounding factors. In some
cases, more elaborate prompts required us to in-
clude richer control prompts that are more similar
to the test prompts in their length and structure.3

Both types of control prompts are included in our
evaluation.

3 Experimental Setup

We present the experimental setup for automati-
cally evaluating semantic leakage in a wide range
of models and model sizes.

3.1 Experimental Details

We evaluate semantic leakage in multiple language
models from two families: GPT4 and LLAMA mod-
els (Touvron et al., 2023), as detailed below. For
all models, we explore several temperature values
(0, 0.5, 1, 1.5), and run each prompt 10 times to get
variation in the generations, when possible.

Before evaluation, for cases where the prompt is
repeated in the model generation, we remove the
repeated prompt. We also truncate the generations
after the first period since the main piece of infor-
mation is generated before it, and because LLAMA

models tend to generate unrelated sentences or
phrases that might interfere with the evaluation.

3.2 Models

We experiment with 13 models of two different
state-of-the-art model families to explore semantic
leakage in a diverse inventory of models.

2The full list can be found at https://gonenhila.
github.io/files/semantic_leakage_prompts.txt

3An example is the prompt “She went on a field trip to the
zoo. Her sister got a gift from a friend: a shirt with a print of”
for which we design the control prompt: “She went on a field
trip. Her sister got a gift from a friend: a shirt with a print
of”.

4https://platform.openai.com/docs/models

GPT models We use OpenAI’s API and send
requests to GPT models by calling GPT3.5,
GPT4 (Achiam et al., 2023), and GPT4O.5 With
GPT models, for sentence completion prompts we
prepend “Complete the sentence:”, as we find the
model performs the task better this way.

LLAMA models We run all LLAMA variations
using Huggingface (Wolf et al., 2019).6 We cap the
generation in LLAMA models at 100 tokens (300
tokens for open generation, Section 7).

3.3 Embedding Methods

For automatic evaluation, we aim to use basic em-
bedding methods that are able to detect and reflect
semantic similarities, and are ideally detached from
the models we evaluate to avoid confounding fac-
tors. We consider the following embedding meth-
ods. BERT-SCORE directly provides a similarity
score, for the others we apply cosine-similarity.

BERT-SCORE (BS) BERT-SCORE (Zhang et al.,
2020) is an automatic evaluation metric for text gen-
eration, that computes a similarity score for each
token in the candidate sentence with each token in
the reference sentence, where token similarity is
computed using contextual embeddings. We use
the distilbert-base-uncased model.7

For the multilingual experiments, where
we expect generations in non-English lan-
guages (Section 6), we use the respective
models: bert-base-chinese for Chinese, and
bert-base-multilingual-cased for Hebrew.
Crosslingual settings still use the English model as
the generations there are mainly in English.

SENTENCEBERT EMBEDDINGS (SB) SEN-
TENCEBERT (Reimers and Gurevych, 2019) is
a modification of BERT (Devlin et al., 2019) that
uses Siamese and triplet network structures to de-
rive semantically meaningful sentence embeddings
that can be compared using cosine-similarity. We
use the huggingface implementation.8

OPENAI EMBEDDINGS (OAI) We use
text-embedding-3-large,9 OpenAI’s best

5gpt-3.5-turbo-0125, gpt-4-turbo-2024-04-09 and
gpt-4o-2024-05-13, respectively.

6LLAMA2: 7B, 7B-chat, 13B, 13B-chat, 70B, 70B-chat.
LLAMA3: 8B, 8B-Instruct, 70B, 70B-Instruct.

7https://huggingface.co/spaces/evaluate-metric/bertscore
8https://huggingface.co/efederici/sentence-bert-base
9https://platform.openai.com/docs/guides/

embeddings/embedding-models
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Model Prompt and generation

LLAMA2 John likes dolphins. John’s father is working as a marine biologist
7B-CHAT John likes tigers. John’s father is working as a tiger in a zoo

LLAMA2 He likes pandas. His favorite food is bamboo
13B-CHAT He likes mice. His favorite food is cheese

LLAMA2 His name is Cedar. His friend lives in a treehouse
70B-CHAT His name is Ocean. His friend lives in a houseboat

LLAMA3 He watched a polka concert. For dinner he had a plate of pierogies and a side of sauerkraut
8B-INS He watched a flamenco concert. For dinner he had a delicious paella

LLAMA3 Mercedes has a friend. The friend’s hobby is collecting Mercedes cars because he loves the Mercedes brand
70B-INS Forest has a friend. The friend’s hobby is gardening, to her home in a way which makes it a forest

GPT3.5 He is a firefighter. His favorite song is “Ring of Fire” by Johnny Cash
He is a postman. His favorite song is “Signed, Sealed, Delivered” by Stevie Wonder

GPT4

The woman was as cold as ice. Afterwards, I went to the library and read about the fascinating science of
cryogenics, which explores the process of freezing and preserving organic matter at extremely low temperatures
It was her turn to speak and she got cold feet. A day later she stayed at home because she got hurt in her ankle
during a morning jog

GPT4O
She is a music lover. Her nephew was accused of stealing her prized vinyl collection
She is a cinema lover. Her nephew was accused of pirating movies

Table 1: Examples of instances that lead to semantic leakage, taken from different models. The prompt is in green
(italic) and the generation is in blue.

performing embeddings. There is no public
documentation of the model training.

In addition to these metrics, we validate our ex-
periments with a manual evaluation of semantic
leakage on a subset of the models (Section 5). This
also serves as a validation of our automatic metrics.

4 Results

Significant semantic leakage across various use
cases and models. Table 2 depicts the average
leakage for each model, across multiple samplings
and temperature values, as detailed in Section 3.1.
We see that semantic leakage is exhibited by all
model variations, and is detected by all embedding
models we use. Leak-Rate values are all well above
the 50% random mark and statistically significant10

with p < 10−100, validating the semantic related-
ness of the prompt and the test generation.

Table 1 lists a few examples of semantic leakage
from the different models, showcasing leakage in
diverse use cases and styles and with respect to
a variety of leaking concepts. In many cases we
explore, the generations do not make sense in the
context, or are very limited and focused on the
leaking concept from the prompt.

Leakage is more pronounced in certain model
variations. The results in Table 2 show that cer-
tain model variations tend to exhibit more semantic

10Using a t-test for the lists of the Leak-Rate values to test
that their mean is significantly greater than 50%.

Leak-Rate
Model BS SB OAI
GPT3.5 74.3 68.6 85.5
GPT4 70.8 61.2 84.4
GPT4o 76.9 70.4 85.0

2-7b 66.8 64.9 72.8
2-7b-chat 72.6 71.7 77.8
2-13b 70.4 65.1 73.6
2-13b-chat 71.5 65.2 78.4
2-70b 71.9 63.2 75.9
2-70b-chat 75.4 66.8 78.2

3-8b 69.6 65.9 75.5
3-8b-ins 78.1 68.8 81.5
3-70b 71.6 68.1 75.2
3-70b-ins 76.3 71.2 77.3

Table 2: Semantic Leak-Rate averaged across 10 sam-
ples for each of 4 temperature values. No semantic leak-
age would correspond to a Leak-Rate of 50% (random
guessing), with higher values indicating more leakage.
The bottom sections present the LLAMA2 and LLAMA3
models, respectively. The model showing the most leak-
age in each <model family, metric> setting is bolded.

leakage than their counterparts. We now analyze
the differences within the 2 model families.

GPT models Figure 8 in the Appendix shows
the leakage estimation in the three different GPT
models across different temperature values. GPT4O

789



consistently leaks more than GPT4 and GPT-3.5.11

LLAMA models For LLAMA models we consis-
tently see that the instruction-tuned models (CHAT

version in LLAMA2 and INSTRUCT version in
LLAMA3) leak more than their pretrained-only
counterparts. A detailed comparison is presented
in Figure 2 where we plot the average leakage of
each model (averaged across temperature values),
as measured with Leak-Rate with BERT-score em-
beddings. All the differences are statistically sig-
nificant12 with p < 0.002 except for Llama-2-13b.
We see similar trends with all other metrics as well.
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Figure 2: Semantic leakage in LLAMA models, averaged
across temperature values (measured with Leak-Rate
using BERT-score).

Leakage across different temperatures. We
now inspect the way sampling temperature affects
semantic leakage. For the GPT models, we see no
clear trends (Figure 8 in the Appendix).13

For LLAMA models, we see that greedy sam-
pling (t = 0) leads to the highest semantic leakage
measures (see Figure 3). Generally, lower tempera-
ture values lead to more leakage—this is consistent
for most models and across all metrics.

5 Human Evaluation

We now perform a manual evaluation of semantic
leakage, which will also validate our automatic
metrics and experiments.

11This is not true for the OpenAI embedding model, which
may be due to confounding model training factors; however,
how the embeddings are constructed is not publicly available.

12t-tests on the Leak-Rate values show that the mean in
finetuned models is significantly higher than vanilla versions.

13It is unclear whether temperature behaves as expected
in the GPT API. We note that a temperature setting of zero
(which should mean greedy, deterministic decoding) will give
different outputs on repeated calls to the API.
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Figure 3: Semantic leakage in LLAMA at different tem-
peratures (measured with Leak-Rate using BERT-score).

Human Evaluation Setup Human evaluation is
based on the same setting as automatic evaluation,
described in Section 2.2.

We recruit two native English speakers who are
not involved with the project. These annotators
are not provided with the objective of this experi-
ment, but instead are given the following annota-
tion guidelines: Consider the word or phrase X.
Which of the following texts (A or B) is more se-
mantically related to X? (A/B/Neither). We map
the annotator’s choice of (A/B/Neither) to (test,
control, neither) and then score Leak-Rate (Eq. 1).

Using these guidelines, the annotators are asked
to label 109 test-control generation pairs from each
model (ordered randomly). For the human eval-
uation, we consider the largest model from each
model family at the temperature t found to leak the
most by automatic metrics: GPT4O (t = 1) and
LLAMA3-70B Instruct (t = 0).

Analysis Figure 4 compares the semantic leak-
age detected by the human evaluation for GPT4O

against the automatic metric. The values in the
human evaluation row are percentages for each cat-
egory: test is more similar to the concept, control
is more similar to the concept, or neither.

We expect humans to have higher tolerance
for similar scores, i.e., more cases falling under
simtest = simcontrol in the human evaluation than in
the automatic evaluation, where it occurs almost
solely when the test and control generations are
the same (see Equation 1). To visually account for
this difference we plot the automatic metric results
by using colored gradient to depict the difference
in similarity values simtest − simcontrol, with posi-
tive values (shades of blue on the right) implying

790



semantic leakage. The results account for all ten
generations sampled from each model.

We find similar trends on LLAMA3-70B Instruct
with an average human-annotated Leak-Rate of
66.7 and automatic evaluation of Leak-Rate that
range from 71.2 to 77.3 across the different embed-
ding types.

We also calculate Kendall’s τ on the human an-
notations. We find high interannotator agreement
between the human annotators (τ = 0.68), indi-
cating that humans generally agree on the cases
that constitute semantic leakage. We also compute
Kendall’s τ on the human evaluation vs. similarity
differences calculated using BERTScore embed-
dings to evaluate how well these methods corre-
late,14 and get a moderate correlation of τ = 0.39
when averaged between the two annotators.15

0 20 40 60 80 100
Percentage

Human

BS

SB

OAI

71.8

78.6

70.5

84.9Control
Same
Test

0.1 0.0 0.1
Similarity difference (in automatic metrics)

Figure 4: Human detection of semantic leakage com-
pared to automatic methods. Leak-Rate is reported on
the right for each method.

6 Multilingual and Crosslingual Semantic
Leakage

In the previous sections we established that seman-
tic leakage is exhibited in various scenarios in En-
glish, across different models and model sizes. We
now inspect semantic leakage in languages outside
of English, as well as in crosslingual settings, by
focusing on Hebrew and Chinese, Hebrew-English
and Chinese-English. As in the previous section,
we consider the largest model from each model
family at the temperature t found to leak the most:
GPT4O (t = 1) and LLAMA3-70B Instruct (t = 0).
Since we found that LLAMA is struggling with
Hebrew, especially with Hebrew generation, we
exclude these results.

14We introduce a slack variable of ϵ = 0.03 to account for
the different levels of similarity tolerance between humans
and embedding-based similarity.

15While we use all model generations per example when
obtaining label distributions and computing Leak-Rate, to
calculate τ we use the generations shown to the human anno-
tators, as this requires example-level alignments.

Multilingual Semantic Leakage We translate
all the prompts into Chinese and Hebrew (see ex-
amples in Table 4 in the Appendix, rows 1, 3) with
the help of native speakers (including the authors).
The translation is mostly straightforward with the
exception of idioms and names. For English idioms
that do not exist in the target language, we write
a new example using an idiom in that language
(together with a matching context and a control
prompt). For names, in Chinese we choose a plau-
sible Chinese name with that meaning (e.g., 小
麦, meaning little wheat, for Rye). In Hebrew, we
make an attempt to translate to an existing frequent
name in Hebrew, or to substitute it with a name with
a related meaning (e.g., Lake instead of River). If
that is not an option (e.g., Rye), we come up with a
different name that has a clear semantic field.

Crosslingual Semantic Leakage We create
mixed prompts that begin with Chinese/Hebrew
and end with English (see examples in Table 4 in
the Appendix, rows 2, 4). We use the translations
to Chinese and Hebrew, and mix with English: for
the first part of the prompt we use the translation
to Chinese/Hebrew, and for the rest of it we use
the original part in English. For evaluation pur-
poses, we use the English concepts, since we ex-
pect the generation to be in English. For names
or idioms that are used in Chinese/Hebrew parts
of the prompt, we use their literal translations into
English.

Results Figure 5 shows the human evaluation
results for the multilingual and crosslingual ex-
periments (with GPT4O). We can see significant
semantic leakage in multilingual and crosslingual
settings, with Leak-Rate values that range from
70.6 to 78.4 for the 4 different settings, similar to
the Leak-Rate values we got for English.16

The generation quality with the LLAMA model
is generally much lower, and we get Leak-Rates
of 66.5 and 61.5 for Chinese and Chinese-English,
respectively, according to human annotation. As
noted above, the quality of generation in Hebrew
and Hebrew-English did not allow for evaluation
of semantic leakage.

Table 3 shows the automatic evaluation of the
multilingual and crosslingual experiments. The re-
sults for the multilingual settings are not as reliable
as in the English setting since we cannot determine

16In 6 examples of the crosslingual prompts (Zh-En), the
generations are just translations because of the way the prompt
is designed - we annotate those cases as “neutral”.
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Figure 5: Human detection of semantic leakage in mul-
tilingual and crosslingual settings.

the quality of the underlying embedding methods
for Hebrew and Chinese.17 In the crosslingual set-
ting we mainly compare English generations with
English concepts, thus the results are more reliable.

Leak-Rate
Model Language BS SB OAI

GPT4o

Heb 60.6 53.5 67.2
Heb-En 62.1 58.2 74.9
Zh 67.6 48.9 80.8
Zh-En 61.6 60.5 71.3

3-70b-ins
Zh 73.4 54.1 82.8
Zh-En 79.4 81.2 85.6

Table 3: Semantic leakage scores for multilingual and
crosslingual setting, averaged across 10 samplings and
measured by Leak-Rate.

7 Open-Ended Generation

We also examine semantic leakage in open-ended
scenarios that encourage the model to generate mul-
tiple sentences or paragraphs. It is less clear how
to quantify the semantic leakage in this setting, as
it can manifest in more ways within the longer out-
put; we therefore rely on more qualitative analysis
in addition to the automatic metrics. This section
focuses on generations from GPT4O with t = 1, as
this model with this temperature was most prone to
leakage in previous experiments (Section 4).

Stories A popular setting for open-ended text
generation is storytelling: we ask the model to
write a story about a child, with the child’s name
being the concept we expect to leak. Figure 6 gives
the story that GPT4O generates when prompted to
create a story about a child named Coral (and also
Melody in Figure 9 in the Appendix). These gen-
erated stories contain many words and elements
directly related to the semantics of each name, and

17To the best of our knowledge, the model underlying sen-
tenceBERT was trained (predominantly) on English. This is
why the metric detects more leakage in cross-lingual settings
(with evaluations on English) compared to other languages.

the narrative of each story is tailored to those mean-
ings. When measuring semantic leakage in this
setting automatically for 23 different names,18 we
get Leak-Rates of 78.7, 60.9 and 76.1 with BS,
SB and OAI embeddings respectively, suggesting
similar rates of leakage to the other examples.

Semantic leakage in story generation

Prompt: Tell me a short story about a child
named Coral.
Model: Sure, here is a short story about a
child named Coral: In the bustling coastal
town of Seaview, ... and the waves danced
upon the shore, ... Coral spent most of her
days exploring the wonders of the seaside. ...
She grabbed her seashell-collecting basket
and marched down to the beach, ... Along
the way, she encountered friendly crabs,
playful dolphins ... telling stories of the
ocean’s many secrets. ... From that day
on, Coral became known as the child who
brought the ocean’s magic to the town. She
shared the shells, ... the mysteries of the sea
...

Figure 6: Example of story generation, exhibiting se-
mantic leakage based on the name in the prompt.

Recipes We also consider open-ended recipe gen-
eration. In Figure 7, we present GPT4O’s genera-
tion when asked to suggest a recipe for use with
a blue pan (or a white pan in Figure 10 in the Ap-
pendix), where we consider each color to be the
potentially leaking concept. The model suggests to
make blueberry pancakes and chicken alfredo, re-
spectively, with the foods matching the color of the
pan. When prompted with a red pan, ingredients
like peppers, tomatoes and paprika are far more
frequent, same as with asparagus in the case of a
green pan and lemon with a yellow pan.

We experiment with 5 different colors (10 sam-
ples each) that are likely to be related to types of
food (blue, green, red, white, and yellow). Auto-
matic evaluation in this setting is more challenging
since the concept might appear in the generation
in a leaky way (“red pepper”) or just as part of
the answer, with no attributed leakage (“red pan”)
and these two cases are difficult to differentiate
automatically. We decide to remove all occur-
rences of “<color> pan” from the generations
when using automatic metrics, and get Leak-Rates

18We remove any instance of the name from the generation,
even when that instance is used as a common noun.
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of 74.0/58.0/74.0 with BS/SB/OAI embeddings,
again suggesting semantic leakage here as well.

Semantic leakage in recipe generation

Prompt: I want to use my blue pan, give me
a recipe:
Model: Sure! Here’s a recipe for a delicious
Blueberry Pancake that you can prepare us-
ing your blue pan: <recipe>

Figure 7: Example of recipe generation, exhibiting se-
mantic leakage based on the color in the prompt.

8 Related Work

Rassin et al. (2022) show similar conceptual leak-
age in image generation with DALLE-2 (Ramesh
et al., 2022), a text-to-image model by OpenAI.
They find that sense-ambiguous words are hard
for the model to isolate—similar to our observa-
tion that idioms in the prompt can leak the literal
meaning into the generation. Rassin et al. (2024)
try to mitigate this issue by encouraging the cross-
attention maps to agree with the linguistic binding
reflected by the prompt syntax. Leakage of prop-
erties in DALLE-2 has also been discussed by
Ramesh et al. (2022) and Leivada et al. (2023).

As models have improved, a related line of re-
search has asked whether they match human behav-
ior, particularly with respect to cognitive biases and
priming. Prior work compares models’ behavior to
documented behavior of humans in psychological
experiments, highlighting some similarities as well
as differences from human response to given in-
formation (Jones and Steinhardt, 2022; Macmillan-
Scott and Musolesi, 2024; Hagendorff et al., 2023).
A known psychological phenomenon that is very
related to models’ semantic leakage as we present
it here, is that of priming, and specifically semantic
priming (Meyer and Schvaneveldt, 1971; Neely,
1976; Tulving et al., 1982; Tulving and Schacter,
1990), where decisions and reactions about specific
words change according to given semantic stim-
uli provided before the target word. We plan to
investigate this relationship further in future work.

Biases in Language Models There is an exten-
sive line of work investigating bias and stereotypes
of different demographic groups in NLP models,
ranging from word embeddings (Bolukbasi et al.,
2016; Caliskan et al., 2017; Gonen and Goldberg,
2019) all the way to LMs (Nadeem et al., 2021;

Kotek et al., 2023; Cheng et al., 2023), sometimes
focusing on specific end tasks (Gonen and Webster,
2020; Stanovsky et al., 2019; Kiritchenko and Mo-
hammad, 2018; Zhao et al., 2018). Existing works
in this space usually investigate specific bias types
with respect to concrete socio-demographic groups
(Kirk et al., 2021; Venkit et al., 2023, 2022; Navigli
et al., 2023), as well as toxicity in model gener-
ation (Gehman et al., 2020; Nozza et al., 2021).
Some works also point to specific input words
that cause harmful generation, such as first names
(De-Arteaga et al., 2019; Maudslay et al., 2019)
among others (Röttger et al., 2024; Attanasio et al.,
2022). In this context, semantic leakage serves as a
broader class of association bias, potentially point-
ing to the underlying mechanism that causes biases
in model generation by latching onto concrete prop-
erties in the input, resulting in toxic or stereotyped
generation.

9 Conclusion

We identified a phenomenon in generative language
models never discussed before, which we term se-
mantic leakage: language models are prone to gen-
erating text that reflects unrelated semantic infor-
mation from the prompt, leading to peculiar and
sometimes unreasonable outputs. We defined and
measured semantic leakage in a range of models,
and together with human evaluation show that it
is prevalent and consistent across all models we
test. We also found that semantic leakage occurs
in many different generation settings, including
multilingual and crosslingual ones.

This leakage reflects associations learned by the
model, similar to how different types of biases are
learned; therefore, our characterization of seman-
tic leakage broadens the scope we should consider
with respect to potential ramifications of learned
associations. While the implications of semantic
leakage are not fully clear, it is a consistent behav-
ior pattern in LMs that merits further study.

The finding that instruction-tuned models leak
more is of special interest, given that they are the
most popular and best performing model variations
currently used. We hypothesize that semantic leak-
age is more dominant in these models because the
leaking generations are less generic and seem to
provide more information/content, which might
be a property that is incentivized under these fine-
tuning processes. We plan to explore this hypothe-
sis more formally in future work.
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Limitations

While our experimental setup spans 13 models
of different types and sizes, and explores differ-
ent sampling temperature values, the scale of the
prompts in our test suite remains limited due to
the difficulty of manually creating prompts that are
likely to leak in a way that we can detect and eval-
uate. This is also often the case when measuring
other language model biases. In addition, though
the results are consistent across all models and lan-
guages we experiment with, the trends might be
different with other models or languages we have
not tested.

Finally, we cannot guarantee that the automatic
evaluations do not include noise: in some cases,
even after our automatic post-processing of the
generations, our automatic metrics might consider
non-leaking instance as leaking (e.g., in cases of
occurrences of the concept in the generation due
to a partial repetition of the prompt). However, the
human evaluation we conduct generally agrees with
the findings we get with the automatic detection,
supporting their reliability.

Ethical Considerations

Semantic leakage is a broad umbrella that may
encompass many types of biases, and it broadens
our perception and understanding about associa-
tion biases that are being learned by models and
then exhibited in generation. As such, semantic
leakage might manifest at times as a concrete type
of bias, e.g., cultural, gender or racial biases. This
depends on the specific setting and the chosen con-
cept that leaks; while our prompts and concepts are
fairly general, these biases and stereotypes could
potentially surface in our evaluation.19

However, our main goal in this paper is not to
focus on specific types of biases (or biases that
are particularly harmful) but to characterize and
quantify the broader class of semantic leakage. We
believe that a better understanding of the greater
picture will in turn arm us with better tools to com-
bat the subset of biases and behaviors that do have
harmful consequences in practice.

Apart from that, in this paper the annotations
and translations were done by several volunteers
that were willing to help for the project. The load
of this work was very low.

19For example, some concepts in the evaluation involve
food and music associated with specific countries or ethnici-
ties.
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A Semantic Leakage in GPT Models

Figure 8 shows the leakage estimation in the three
different GPT models across different temperature
values. GPT4O consistently leaks more than GPT4
and GPT-3.5.
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Figure 8: Semantic leakage in GPT models using differ-
ent temperature values (measured with Leak-Rate using
BERT-score).

B Multilingual and Crosslingual
Semantic Leakage

Table 4 shows example multilingual and crosslin-
gual prompts and generations.

C Open-Ended Generation

Figure 9 gives the story that GPT4O generates when
prompted to create a story about a child named
Melody. The generated story contains many words
and elements directly related to the semantics of
the name, and the narrative of the story is tailored
to that meaning.

In Figure 10, we present GPT4O’s generation
when asked to suggest a recipe for use with a white
pan, where we consider the color to be the poten-
tially leaking concept. The model suggests to make
chicken alfredo, matching the color of the pan.

Semantic leakage in story generation

Prompt: Tell me a short story about a child
named Melody.
Model: Once upon a time in the bustling
town of Harmonyville, a young girl named
Melody lived with her family in a cozy,
music-filled home. Melody ... talent for
playing the violin. ... every time she
drew her bow across the strings, filling her
home with enchanting melodies. ... often
brought her violin with her. ... sorrow-
ful tune ... Melody followed the sound
... bird sang its heart out. ... decided
to play her violin for the bird. ... the
instrument, crafting a tune ... The bird
listened intently, its spirits lifting with every
note. ... as the bird sang, ... her enchanting
performances ... awaited her melody ...
always remembering that the true power of
music ...

Figure 9: Example of story generation, exhibiting se-
mantic leakage based on the name in the prompt.

Semantic leakage in recipe generation

Prompt: I want to use my white pan, give
me a recipe:
Model: Sure, I’d be happy to help you
with a recipe that makes use of your white
pan! Let’s try a classic Chicken Alfredo.
White pans are often non-stick and ideal for
making creamy dishes like this. Here’s a
simple recipe: <recipe>

Figure 10: Example of recipe generation, exhibiting
semantic leakage based on the color in the prompt.
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Language Prompt Generation

Heb הוא עליו האהוב האוכל קואלה. דובי אוהב הוא אקליפטוס

Heb-En His favorite food is קואלה. דובי אוהב הוא eucalyptus leaves

Zh 他喜欢考拉。他最喜欢吃 桉树叶

Zh-En 他喜欢考拉。 His favorite food is eucalyptus leaves

Table 4: Example prompts and generations in Hebrew, Hebrew-English, Chinese and Chinese-English, by this order.
All are translations of the prompt: “He likes koalas. His favorite food is”, and the Hebrew/Chinese generations can
be translated to “eucalyptus”/“eucalyptus leaves”, respectively.
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