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Abstract
The rapid proliferation of large language mod-
els (LLMs) in natural language processing
(NLP) has created a critical need for techniques
that enable efficient deployment on memory-
constrained devices without compromising per-
formance. We present a method to prune LLMs
that selectively prunes model blocks based on
an importance score and replaces them with
a low-parameter replacement strategy. Specif-
ically, we propose a principled metric to re-
place each pruned block using a weight-sharing
mechanism that leverages unpruned counter-
parts from the model and block-specific low-
rank adapters. Furthermore, we facilitate the
learning of these replacement blocks with out-
put feature normalization and an adapter ini-
tialization scheme built on low-rank SVD re-
constructions. Empirical evaluations demon-
strate substantial performance gains over exist-
ing methods, achieving state-of-the-art perfor-
mance on 5/6 benchmarks for a compression
rate of 30% and 6/6 benchmarks for a compres-
sion rate of 40%. We also demonstrate that
our approach can extend smaller models, boost-
ing performance on 6/6 benchmarks using only
≈0.3% tokens of extended training with mini-
mal additional parameter costs.

1 Introduction

The widespread adoption of LLMs has revolution-
ized NLP applications, driving significant advance-
ments in areas such as virtual assistants, automated
customer support, and real-time language transla-
tion (Minaee et al., 2024; Naveed et al., 2023).
However, deploying these models on memory-
constrained devices, such as smartphones and edge
devices, remains a formidable challenge due to
their substantial parameter sizes and computational
demands (Hadi et al., 2023; Raiaan et al., 2024).
This paper addresses this challenge by presenting
a novel approach that targets parameter efficiency
to make LLMs more suitable for on-device appli-
cations with minimal performance compromises.
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Figure 1: FlexiGPT is used for two settings: (1) pruning
a model to reduce parameters with minimal performance
cost or (2) extending a model to increase performance
with minimal parameter cost. Left: For pruning models
(setting 1), we prune entire blocks and replace them
using weight sharing and learned adapters. Right: For
extending models (setting 2), we repeat block patterns
in the model using weight sharing and learned adapters.

Parameter efficiency is particularly critical as
it directly impacts the feasibility of deploying
LLMs on devices with limited memory and stor-
age resources. Recent model pruning techniques,
such as SliceGPT (Ashkboos et al., 2024), LLM
Surgeon (van der Ouderaa et al., 2024), LLM-
Pruner (Ma et al., 2023), LaCo (Yang et al., 2024),
and ShortGPT (Men et al., 2024), reduce the num-
ber of parameters but often result in significant per-
formance degradation with minimal recovery after
pruning. This gap in existing techniques under-
scores the need for an end-to-end pruning method
that not only reduces the model size but also fa-
cilitates performance recovery. In this work, we
propose to recover performance by utilizing exist-
ing weights within the model.

Specifically, we introduce a comprehensive
pruning strategy combined with an innovative
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weight sharing technique and Low-Rank Adapters
(LoRA) (Hu et al., 2021), facilitating efficient pa-
rameter usage while preserving the model’s perfor-
mance. We begin by pruning model blocks based
on ShortGPT’s Block Influence (BI) score (Men
et al., 2024). To replace the pruned blocks, we intro-
duce a low-parameter weight-sharing mechanism
that leverages existing block modules within the
model and incorporates block-specific LoRA pa-
rameters, ensuring the selected replacement blocks
have high similarity to the pruned blocks while
maintaining block diversity. Furthermore, we intro-
duce a novel method to initialize the LoRA adapters
in weight-sharing blocks, setting them to be the
low-rank difference between the pruned block and
the weight-shared replacement block. This initial-
ization minimizes initial disruptions and facilitates
smoother model adaptation. Finally, we incorpo-
rate output feature normalization for pruned blocks
to ensure a smooth transition and adaptation, allow-
ing the model to gradually learn and stabilize its
performance over time.

Empirical evaluations of our method, which we
refer to as FlexiGPT, demonstrate substantial per-
formance gains over existing methods. Specifically,
we achieve state-of-the-art performance on 5/6
benchmarks for a compression rate of 30% and 6/6
benchmarks for a compression rate of 40% for the
popular LLaMA-2 7B model (Touvron et al., 2023).
As visualized in Figure 1, our proposed technique
not only effectively prunes large models for on-
device deployment but also extends smaller models,
improving their performance at minimal additional
parameter costs. Specifically, our method shows
that a 22-layer TinyLLaMA (Zhang et al., 2024)
model can be extended with repeated blocks, boost-
ing performance on 6/6 benchmarks using only
≈0.3% tokens of extended training with minimal
additional parameter costs. In summary, we make
the following contributions:

1. We develop a weight-sharing technique using
adapters and low-rank SVD reconstructions to
replace pruned blocks effectively.

2. We apply output normalization to maintain sta-
bility and enable gradual learning post-pruning.

3. We propose a method for extending smaller
models by repeating layers with unique adapters
and normalization parameters.

4. We achieve significant empirical performance
gains, achieving state-of-the-art performance on
several benchmarks for a variety of models.

2 Background and Related Work

Pruning - Pruning selectively removes less im-
portant parameters, reducing model size and com-
putational complexity while maintaining perfor-
mance. Its greatest benefit lies in optimizing LLMs
for deployment in resource-constrained environ-
ments such as mobile devices, facilitating faster
inference. Several works have been proposed to re-
duce the size of LLMs by pruning model structures.
LLM-Pruner (Ma et al., 2023) removes unimpor-
tant coupled structures and the importance is cal-
culated from Taylor expansions. SliceGPT (Ashk-
boos et al., 2024) applies orthogonal projections to
the feature maps and then it performs pruning in the
projected space. LLM Surgeon (van der Ouderaa
et al., 2024) periodically updates model weights
and structures, resulting in a higher cost compared
to other methods. Besides reducing the width of
the model, ShortGPT (Men et al., 2024) is pro-
posed to remove blocks by using Block Influence
scores, and LaCo (Yang et al., 2024) is proposed to
collapse layers. Existing pruning methods primar-
ily focus on removing redundant model weights,
often neglecting the loss of model capacity. Our ap-
proach addresses this limitation by sharing weights
from the pruned model to restore its capacity.
PEFT - Parameter-Efficient Fine-Tuning (PEFT)
methods aim to mitigate the extensive computa-
tional and memory demands of fine-tuning large
models by focusing on a smaller subset of parame-
ters. One prominent category of PEFT methods is
adapters, which involves adding trainable modules
to the existing frozen layers of the model (He et al.,
2021; Houlsby et al., 2019). Another significant
category is prompt methods, which augment the
initial input sequence with additional trainable vec-
tors known as prompts. This technique focuses on
fine-tuning these added tokens rather than the en-
tire model, as demonstrated in works such as Lester
et al. (2021); Liu et al. (2021).

Recently, LoRA (Hu et al., 2021) has emerged
as the most efficient and highest-performing PEFT
approach. LoRA introduces the use of low-rank
matrices to adjust model weights efficiently, merg-
ing with pre-trained weights before inference to
maintain the model’s operational speed. Building
on this, DoRA (Liu et al., 2024a) decomposes pre-
trained weights into magnitude and direction com-
ponents for fine-tuning, focusing on fine-tuning the
directional components using LoRA. Our research
extends these low-rank PEFT methods by incorpo-
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rating LoRA and normalization for efficient weight
sharing. Similar to DoRA, our method involves a
normalization stage; however, we normalize in the
feature-space instead of the weight-space.
Weight-Sharing - For GPT LLMs, Dehghani et al.
(2018) proposed to share all the layers with a dy-
namic halting mechanism to improve accuracy on
the downstream tasks. However, it requires the
number of parameters of the base layer (unshared)
to match the number of parameters of all layers of
vanilla transformers (Vaswani et al., 2017). Sub-
former (Reid et al., 2021) applies a sandwich-like
method of parameter sharing where only middle
layers are shared but it does not use any adapter.
(Takase and Kiyono, 2021) developed efficient
cyclic sharing patterns to increase the accuracy,
however their sharing patterns are mainly based on
ablation studies. MobileLLM (Liu et al., 2024b)
proposed sub-billion parameter architectures for
mobile devices and adopted immediate block-wise
weight sharing for further accuracy improvement.
However, they do not use any pruning and adapters.
Cao et al. (2024) introduced matching functions to
develop head-wise shareable attention in a princi-
pled fashion. Although they use pretrained weights
for faster convergence, their matching functions
are only applied to share weights among multiple
heads of the same layer.
SVD - The Singular Value Decomposition (SVD)
of a matrix W ∈ Rm×n is, W = UΣVT , where
U ∈ Rm×m and V ∈ Rn×n are orthogonal ma-
trices, and Σ ∈ Rm×n is a diagonal matrix of
singular values. SVD is widely used to obtain a
low-rank representation of W by selecting the k
most significant singular values and their corre-
sponding singular vectors, where k < min(m,n).
Hence, the low-rank representation of W is given
as: Wk = UkΣkV

T
k , where Uk ∈ Rm×k, Σk ∈

Rk×k, and Vk ∈ Rn×k, have lower dimensions
than U,Σ,V, respectively. SVD has been applied
for model compression (Denton et al., 2014; Hsu
et al., 2022) and is closely related to LoRA methods
for reducing fine-tuning overhead.

3 FlexiGPT

In this section, we detail our approach, FlexiGPT
(Figure 3), which prunes and extends LLMs using
LoRA adapters, weight sharing techniques, and out-
put feature normalization. Our method focuses on
achieving parameter efficiency while minimizing
performance degredation, particularly for memory-

constrained devices.
Our method is based on the transformer architec-

ture (Vaswani et al., 2017), which consists of Multi-
Head Self-Attention (MHSA) and Multi-Layer Per-
ceptron (MLP) layers. However, our approach is
not constrained to this architecture. In general, we
refer to blocks (MHSA+MLP), layers (MHSA or
MLP), and weights (denoted as W ), as our method
affects the weights in a uniform manner.

3.1 Pruning Strategy

Our pruning strategy aims to identify and remove
blocks that minimally impact the model’s perfor-
mance. To achieve this, we leverage the Short-
GPT (Men et al., 2024) Block Influence (BI) score,
which has been shown to effectively measure the
importance of each block. The Block Influence
(BI) score (Men et al., 2024) BIi for a block i is
defined as follows:

BIi = 1− EX,t

XT
i,tXi+1,t

||Xi,t||2||Xi+1,t||2
, (1)

where Xi,t denotes the tth row of Xi, and Xi

represents the hidden states matrix at block i,
with dimensions T × d, where T is the sequence
length and d is the hidden dimension. This score
captures the extent to which each block transforms
its input, with higher scores indicating more
significant changes. We calculate the BI score
for each block in our model using the validation
MiniPile (Kaddour, 2023) subset of the Pile
dataset (Gao et al., 2020), and prune the blocks
with the lowest BI scores.

We tried other criteria to select blocks for prun-
ing that considered a block’s replaceability by an-
other block in the model. However, we found that
the BI score results in higher performance on down-
stream tasks. Our intuition is that the BI score
prunes blocks deeper along the model’s depth in a
sequence, leaving much of the model intact and in
the same order, which may explain how it retains
strong downstream performance.

3.2 Selection of Weight Sharing Bases

To replace pruned blocks, we aim to find similar
unpruned blocks in the model which, when paired
with adapters, can recover much of the performance
lost after pruning. We aim to select each pruned
block’s weight sharing ‘base’ by identifying similar
unpruned weights. However, a naïve approach such
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(a) Eq. (2) with high-rank pruning (b) Eq. (2) without high-rank pruning (c) Frobenius norm of Wi −Wj

Figure 2: Comparison of block distance score versus block index distance (i− j) for different metrics. (a) Using the
proposed metric in Eq. (2) with high-rank pruning, showing that closer blocks score lower (better), matching our
intuition that weights close in the model have similar function. (b) Ablation of high-rank pruning, where there is no
clear trend except that blocks closer to 0 are lower and those closer to 31 are higher. (c) Simple Frobenius norm,
showing a similar lack of clear trend as in (b). We found that using the score in (a) as the weight-sharing selection
metric results in a much higher performing model compared to using the scores in (b) and (c).

as the Frobenius norm in the weight space often
results in suboptimal selections. Specifically, we
find that all blocks ‘choose’ a single block, whereas
intuition suggests a diverse selection of base blocks
would work better1.

Instead, we employ a selection metric based on
low-rank SVD reconstructions to achieve a more
effective and intuitive solution. Utilizing low-rank
approximations, namely Ŵi and Ŵj , instead of
directly using Wi and Wj helps avoid the pitfall
where all pruned blocks are replaced by a single
block. We believe high-rank elimination is ben-
eficial because low-rank approximations capture
the most significant components of the weights,
thereby simplifying the process of identifying suit-
able replacements by eliminating high-rank ‘noise’.
Our method reveals that blocks nearest to the
pruned blocks in the model tend to have the lowest
scores, indicating higher similarity.

The distance metric d(Wi,Wj) for selecting
the replacement block is defined as:

d(Wi,Wj) =
∥∥∥Ŵi −

(
Ŵj +∆i−j

)∥∥∥
F

(2)

where:

• Ŵi and Ŵj are the low-rank SVD reconstruc-
tions of Wi and Wj , respectively, using the
first r ranks.

• ∆i−j ≜ (Ui−jΣi−j)[1 : r](Vi−j [1 : r])T

is the rank-r approximation of the difference
Ŵi − Ŵj . We used a rank of r = 256.

• ∥ · ∥F denotes the Frobenius norm.
1We empirically demonstrate this in the experiments sec-

tion in the first row of Table 4

These low-rank approximations Ŵi and Ŵj are
obtained via:

Ŵi = (UiΣi)[1 : r](Vi[1 : r])T (3)

Ŵj = (UjΣj)[1 : r](Vj [1 : r])T (4)

Finally, for each pruned block i, we select its
base for weight sharing as the candidate block j
with the minimum score in (2):

j = argmin
j′ ̸=i

d(Wi,Wj′) (5)

This approach is highly intuitive, as proximal
blocks are naturally more alike. In Figure 2(a), the
proposed metric with high-rank pruning, Eq. (2),
shows that blocks closer in the model score lower
(better), confirming our intuition that proximate
blocks have similar functions. Figures 2(b) and
2(c), which respectively ablate high-rank pruning
and use simple Frobenius norm, lack this clear
trend, and furthermore we found that they result in
significantly weaker models. An alternative version
of this Figure is available in the Appendix, where
the x-axis is candidate block index j instead of
block index distance (i− j).

3.3 Output Normalization

We apply layer normalization (Ba et al., 2016) to
the output of each MHSA and MLP layer in the
weight-sharing layers, specifically to the previously
pruned blocks. This normalization is applied across
the hidden state dimension and is initialized to a
small value set by a hyperparameter, allowing the
model to gradually learn and adjust the output mag-
nitudes over time. The normalized output hnorm is
defined as:
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Figure 3: Overview of the FlexiGPT pruning process. Left: We prune model blocks with the lowest scores based on
(1). Center: We select replacement blocks with high similarity using (5). Right: We add feature normalization and
learn adapters to recover performance.

hnorm =
h− µ(h)

σ(h)
× γ (6)

where:

• h is the output of the layer before normaliza-
tion.

• µ(h) and σ(h) are the mean and standard de-
viation of h, respectively.

• γ is a learnable scaling weight of the same
dimension as the model hidden state size.

This approach is akin to initializing the B matrix
in LoRA (Hu et al., 2021) such that ∆W = BA
is zero at the beginning of training. This similar-
ity arises because both methods aim to minimize
initial disruptions to the model and allow gradual
learning. In LoRA, initializing ∆W = BA to zero
helps avoid high initial loss, ensuring smoother
training. Similarly, by initializing the hidden states
of weight-shared blocks to small values, we avoid
significant jumps in PPL at the start of training. As
shown in Table 4, this approach is crucial for main-
taining low PPL post-pruning and ensuring stable
model performance during fine-tuning.

3.4 Adapters and Initialization

We employ LoRA to facilitate weight sharing for
the pruned blocks, providing a parameter-efficient
mechanism to adjust the weights of the replaced

blocks. The LoRA adapters consist of two low-
rank matrices, A and B, inserted into the linear
transformations of the shared weights in the model,
effectively increasing the expressive capacity of
these blocks despite the weight-sharing constraint2.
The weights of the adapters are initialized using
the SVD between the pruned block and its replace-
ment block, as described in the selection of weight-
sharing bases. Specifically, we decompose the dif-
ference between the pruned block Wi and the re-
placement block Wj into low-rank matrices:

Wi −Wj = Ui−jΣi−jV
T
i−j (7)

The adapter matrices A and B are then initial-
ized as:

A = (Ui−jΣi−j)[1 : r], B = (Vi−j [1 : r])T

(8)
where:

• (Ui−jΣi−j)[1 : r] is the product of the left
singular vectors and the diagonal matrix of
singular values, indexed to take the first r
columns.

• (Vi−j [1 : r])T is the transposed matrix con-
taining the first r columns of the right singular
vectors.

2We also ‘unlock‘ the shared weight during training.

722



Our method requires a small amount of post-
pruning fine-tuning to fully recover performance,
which is discussed in Section 4. However, we gen-
erally observe that the post-prune PPL is indicative
of which method will finish with a lower PPL. In
Table 4, we see the effect of output normalization
and LoRA initialization on post-prune PPL. While
the SVD initialization is of smaller yet significant
importance to our method, the output normaliza-
tion, initialized to a small value to minimize initial
disruptions and allow gradual learning, is crucially
important. This is evident from the drastic increase
in post-prune PPL when output normalization is
ablated. The combination of SVD initialization and
carefully tuned output normalization ensures that
our method maintains low perplexity and stable
performance during the fine-tuning phase.

3.5 Model Extension

In addition to pruning, FlexiGPT can also be used
to extend smaller models, such as a 22-layer TinyL-
LaMA (Zhang et al., 2024). In this second setting,
we repeat blocks in a sequence determined by hy-
perparameter indexes that denote the start and end
of the repetition. For instance, we might repeat lay-
ers indexed 3 through 18. Each repeated block has
unique LoRA adapters and normalization parame-
ters, and we apply output normalization to repeated
blocks after the first repetition. We explore two rep-
etition patterns: (i) block: each block is repeated a
specified number of times, and (ii) sequential: the
entire sequence of blocks is repeated in a specified
manner. This method allows for efficient extension
of smaller models, improving their performance
while introducing minimal parameter overhead.

4 Model Compression with FlexiGPT

4.1 Setup

Models - We evaluated our method using
LLaMA-2 7B (Touvron et al., 2023), OPT 1.3B
and 6.7B (Zhang et al., 2022), and LLaMA-3
8B (AI@Meta, 2024), focusing on these due to
their widespread adoption by the community.
Frameworks and resources - Our implementa-
tions were done using PyTorch, leveraging FSDP
and FP-16 mixed training for efficiency. Experi-
ments were conducted on 4 NVIDIA A100 80GB
GPUs, and we utilized the Hugging Face Trans-
formers library for model handling and training.
Detailed configurations and additional resources
are provided in the Appendix.

Datasets and Benchmarks - We used 1B tokens
from the SlimPajama (Soboleva et al., 2023) pre-
training dataset for post-prune recovery. For zero-
shot performance evaluations, we use the ARC-
e, ARC-c (Clark et al., 2018), PIQA (Bisk et al.,
2020), WinoGrande (Sakaguchi et al., 2021), and
HellaSwag (Zellers et al., 2019) zero-shot bench-
marks, utilizing the LM Evaluation Harness (Gao
et al., 2021). For perplexity performance evalu-
ations, we use the validation MiniPile (Kaddour,
2023) subset of the Pile dataset (Gao et al., 2020)3.
Baselines - We compared our method against sev-
eral baselines, including LLM Surgeon (van der
Ouderaa et al., 2024), SliceGPT (Ashkboos et al.,
2024), ShortGPT (Men et al., 2024), and ShortGPT
+ LoRA (an improved version of ShortGPT for a
fair comparison with our method). LLM Surgeon
and SliceGPT are presented for additional context
for experiment results which overlapped with our
setting (we use the original results presented in
their papers), whereas we implement ShortGPT
from scratch for a direct comparison in our setting.
LLM-Pruner (Ma et al., 2023) and LaCo (Yang
et al., 2024) are not included in our tables as Short-
GPT has been found to outperform both methods.

4.2 Results
Main Results - Table 1 summarizes the perplexity
(PPL) and zero-shot task performance of various
pruning methods on the Llama-2 7B model. Our
method, FlexiGPT, shows the lowest PPL of 6.55 at
a 30% pruning ratio, outperforming both ShortGPT
and ShortGPT + LoRA. In terms of zero-shot task
performance, FlexiGPT achieves the highest scores
in ARC-c (38.62%), PIQA (74.12%), WinoGrande
(66.78%), and HellaSwag (69.02%), with an av-
erage performance of 62.68%. This represents a
significant improvement over the other methods,
demonstrating the effectiveness of our approach.
For the 40% pruning ratio, similar trends are ob-
served as FlexiGPT consistently shows superior
performance over other methods, achieving the
highest score in every benchmark task.

Table 2 summarizes the perplexity (PPL) and
zero-shot task performance of various pruning
methods on the Llama-3 8B model, and Table 3
summarizes the perplexity (PPL) of various prun-
ing methods on the OPT 6.7B and OPT 1.3B mod-
els (Zhang et al., 2022). These trends also align
with those seen in the Llama-2 7B models, further

3We avoid the SlimPajama validation set to avoid giving
an unfair advantage to methods trained on the this dataset.
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Table 1: Perplexity (PPL) and zero-shot task performance of compressed Llama-2 7B models. * indicates the model
underwent recovery training for 1B tokens after pruning using the SlimPajamas dataset (Soboleva et al., 2023). The
results for SliceGPT (Ashkboos et al., 2024) and LLM Surgeon (van der Ouderaa et al., 2024) are taken from their
papers. Two variants of results are given for LLM Surgeon which correspond to pruning with Wikitext-2 (Merity
et al., 2016) and C4 (Raffel et al., 2019).

Method Ratio PPL ARC-e ARC-c PIQA WinoG. HellaS. Average
Unpruned 0.0% 5.11 74.58% 46.25% 79.11% 69.14% 76.00% 69.02%
SliceGPT 30% N/A 51.77% 31.23% 63.55% 61.33% 49.62% 51.50%

LLM Surgeon (C4) 30% N/A 62.16% 34.47% 72.85% 56.83% 58.11% 56.88%
LLM Surgeon (Wikitext-2) 30% N/A 63.09% 36.69% 73.56% 61.09% 60.72% 59.03%

ShortGPT 30% 22.76 48.61% 32.68% 64.42% 64.33% 56.15% 53.24%
ShortGPT + LoRA* 30% 6.71 62.50% 37.54% 73.17% 66.61% 68.19% 61.40%

FlexiGPT* 30% 6.55 62.84% 38.62% 74.12% 66.78% 69.02% 62.68%
LLM Surgeon (C4) 40% N/A 51.56% 27.99% 68.93% 55.64% 48.10% 50.44%

LLM Surgeon (Wikitext-2) 40% N/A 52.31% 30.29% 69.26% 54.38% 48.04% 50.86%
ShortGPT 40% 42.69 41.29% 30.03% 60.17% 60.54% 43.72% 47.15%

ShortGPT + LoRA* 40% 7.69 55.85% 33.11% 70.51% 65.27% 62.02% 57.35%
FlexiGPT* 40% 7.35 57.03% 33.62% 71.44% 66.61% 63.22% 58.38%

Table 2: Perplexity (PPL) and zero-shot task performance of compressed Llama-3 8B models. * indicates the model
underwent recovery training for 1B tokens after pruning using the SlimPajamas dataset (Soboleva et al., 2023).

Method Ratio PPL ARC-e ARC-c PIQA WinoG. HellaS. Average
Unpruned 0.0% 6.30 77.69% 55.33% 80.79% 72.85% 79.17% 73.17%
ShortGPT 30% 1.4e4 38.80% 31.83% 60.83% 57.93% 31.62% 44.20%

FlexiGPT* 30% 8.67 64.02% 41.21% 74.76% 70.09% 69.12% 63.85%
ShortGPT 40% 9.1e4 36.99% 30.20% 58.60% 54.85% 30.72% 42.27%

FlexiGPT* 40% 10.25 55.60% 37.88% 69.31% 66.14% 59.60% 57.70%

Table 3: Perplexity (PPL) of compressed OPT mod-
els. * indicates the model underwent recovery train-
ing for 1B tokens after pruning using the SlimPajamas
dataset (Soboleva et al., 2023).

Method Ratio OPT 6.7B OPT 1.3B
Unpruned 0.0% 7.46 9.29
ShortGPT 30% 8.61e2 6.26e2

ShortGPT + FT* 30% 8.66 11.04
FlexiGPT* 30% 8.39 10.81
ShortGPT 40% 2.38e3 1.19e3

ShortGPT + FT* 40% 10.12 13.25
FlexiGPT* 40% 9.18 11.54

validating the robustness of our method across dif-
ferent model sizes and pruning ratios. We note
that Llama-3 8B is much more sensitive to pruning
compared to Llama-2 7B, which underscores the
need for post-pruning recovery such as our weight-
sharing and adapters scheme.

Ablation Results - Table 4 presents the results of
our ablation studies, highlighting the importance of
each component in our pruning method. Removing
the weight-sharing score, output normalization, or
LoRA initialization leads to higher PPL, confirm-

Table 4: Ablation Perplexity (PPL) of 30% compressed
Llama-2 7B models. The models underwent recovery
training for 1B tokens after pruning using the SlimPa-
jamas dataset (Soboleva et al., 2023). We include post-
prune PPL (denoted as Start PPL) to show the effect of
output feature normalization and adapter initialization
on starting PPL.

Method Start PPL PPL
Ablate high-rank prune (3.2) 22.54 6.77

Ablate output norm. (3.3) 8648.94 6.68
Ablate LoRA init. (3.4) 19.69 6.63

Full Method 21.82 6.55

ing that each component contributes to the overall
effectiveness of our approach.
Analysis - Computation and Throughput - Ta-
ble 6 shows the normalized computation costs and
throughputs for running our method compared to
ShortGPT (Men et al., 2024) and the unpruned
Llama-2 7B model on a single A100 GPU. The
unpruned model serves as the baseline with 100%
computation time and throughput. Our method in-
curs a marginal increase in compute cost compared
to the unpruned model but achieves a reduction
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Table 5: Perplexity (PPL) and zero-shot task performance of extended TinyLlama 1.1B models. All models
underwent continued pre-training on 10B tokens from the SlimPajamas dataset (Soboleva et al., 2023).

Method Layers PPL ARC-e ARC-c PIQA WinoG. HellaS. Average
Base 22 6.84 55.34% 30.11% 73.29% 59.11% 59.20% 55.41%

FlexiGPT (Block) 36 6.73 56.90% 31.48% 73.23% 59.28% 59.77% 56.13%
FlexiGPT (Sequential) 36 6.76 56.94% 30.72% 73.78% 57.85% 59.32% 55.72%

Table 6: Normalized computation costs and through-
puts for 1xA100 running FlexiGPT vs ShortGPT vs
Unpruned on the Llama-2 7B model.

Method Norm. Time Throughput
Unpruned 100.0% 100.0%
ShortGPT 65.4% 152.8%
FlexiGPT 105.1% 95.1%

in the number of stored parameters by approxi-
mately 30%. Although our method is slower than
ShortGPT, this is expected, as our approach in-
volves replacing the pruned blocks with weight-
sharing techniques. However, as shown in Table 1,
our method offers significant performance gains
over ShortGPT. These gains come at the expense
of compute savings but are crucial for on-device
applications that cannot tolerate the performance
drop associated with methods like ShortGPT. Our
method strikes a balance between computational
efficiency and high performance, making it suit-
able for memory-constrained environments where
performance is a critical factor.

In order to increase computational efficiency,
we implemented a simple self-speculative decod-
ing where the drafting stage uses FlexiGPT with-
out the weight-sharing replacement layers (i.e., the
same architecture as ShortGPT), and the verifica-
tion stage uses the full FlexiGPT model. Impor-
tantly, no extra parameters or heads are needed,
and our full model performance is retained. We
achieved the same outputs as our model with a
speedup of 30.11% compared to our naïve Flex-
iGPT decoding. We note that the speedup can be
improved by combining our self-speculative decod-
ing with other methods such as Medusa (Cai et al.,
2024), Jacobi decoding (Santilli et al., 2023), or
speculative decoding (Leviathan et al., 2023) with
a smaller, separate model.

5 Model Extension with FlexiGPT

5.1 Setup
In the previous section, we showed that FlexiGPT is
a powerful solution for pruning and recovering

LLMs. In this section, we show that FlexiGPT can
also be used to extend an off-the-shelf LLM and
introduce performance gains with marginal param-
eter overhead. We evaluated our method for model
extension using TinyLLaMA (Zhang et al., 2024)
due to its suitability for demonstrating the effective-
ness of our approach in extending smaller models.
The resources, framework, datasets, and bench-
marks are the same as the previous section.

5.2 Results

Main Results - Table 5 shows the perplexity (PPL)
and zero-shot task performance of extended TinyL-
LaMA 1.1B models after continued pre-training on
1B tokens from the SlimPajamas dataset. The base
model with 22 layers serves as our baseline.

Our method, FlexiGPT, was evaluated with two
extension strategies: Block and Sequential. Both
strategies extend the model to 36 layers. FlexiGPT
(Block) achieves the lowest PPL of 6.73, compared
to the base model’s 6.84, indicating a more effi-
cient model. In terms of zero-shot task perfor-
mance, FlexiGPT (Block) consistently outperforms
the base model across most tasks, with notable im-
provements in ARC-e (56.90% vs. 55.34%), ARC-
c (31.48% vs. 30.11%), and HellaSwag (59.77% vs.
59.20%). FlexiGPT (Sequential) also shows com-
petitive results with a PPL of 6.76. It achieves the
highest performance in ARC-e (56.94%) and PIQA
(73.78%) among the extended models. While
it slightly underperforms compared to FlexiGPT
(Block) in ARC-c and HellaSwag, its overall av-
erage performance of 55.72% still surpasses the
baseline. While the downstream task accuracy mar-
gins are not as large as the last section, these results
are highly significant in that we are able to boost
performance on all tasks using only 10B training
tokens for a model which as already been trained
on 30T tokens (≈0.3% extended training).
Analysis - Computation and Throughput - Ta-
ble 7 compares the normalized computation costs
and throughputs for running our method against
TinyLlama 1.1B on a single A100 GPU. The base
model serves as the baseline with 100% computa-
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Table 7: Normalized computation costs and through-
puts for 1xA100 running FlexiGPT vs Unpruned on the
TinyLlama 1.1B model.

Method Norm. Time Throughput
Base 100.0% 100.0%

FlexiGPT 139.1% 71.9%

tion time and throughput. As expected, our method
introduces an increased computation cost due to
the extended effective length of our model, which
is over 50% longer. However, these costs can be
mitigated through strategies such as speculative de-
coding (Leviathan et al., 2023) or early-exit (Chen
et al., 2023; Elhoushi et al., 2024; Pan et al., 2024),
where the model is only extended when encounter-
ing particularly difficult tasks or data, effectively
reducing the overall computation burden.

6 Conclusion

In this paper, we presented an approach to prun-
ing and extending LLMs using LoRA and weight-
sharing techniques. Our method targets memory-
constrained devices by selectively pruning model
blocks based on an importance score and replac-
ing them with a low-parameter replacement strat-
egy. Empirical evaluations show substantial perfor-
mance gains over existing methods, highlighting
our technique’s effectiveness. Furthermore, our
approach can extend smaller models, achieving sig-
nificant performance improvements with minimal
additional parameters. This work paves the way
for more accessible and efficient on-device NLP
applications, leveraging our novel combination of
pruning, weight-sharing, and parameter-efficient
adapters, thereby bringing the power of LLMs to a
broader range of memory-constrained devices and
use cases.

7 Limitations

Our method, while effective in achieving parameter
efficiency, does not provide gains in computational
efficiency. The focus is primarily on reducing the
model size for memory-constrained environments,
which means that the computational load remains
similar to the unpruned model during inference.
Additionally, our approach involves a small post-
pruning recovery phase where the model undergoes
fine-tuning to regain performance. While this phase
is crucial for restoring performance, it does require
additional computational resources and time.

Our study was limited to evaluating three popu-
lar models, which may not cover the full spectrum
of LLM architectures. However, the principles of
our method are broadly applicable, and we have no
reason to believe the results would not extrapolate
to other models with similar architectures. Future
work could involve testing our method on a wider
variety of models to further validate its generaliz-
ability.

8 Broader Impact

Our method emphasizes parameter efficiency over
computation efficiency, making it particularly
valuable for on-device settings where memory and
storage constraints are critical. By reducing the
model size without significantly impacting perfor-
mance, our approach enables the deployment of
powerful LLMs on devices with limited resources,
such as smartphones and edge devices. This can
democratize access to advanced NLP capabilities,
bringing sophisticated language understanding and
generation tools to a broader range of users and
applications.

Furthermore, our method can be used in con-
junction with faster models, deploying the pruned
model only for more complex tasks. This hybrid
approach can virtually eliminate the computation
cost on average while boosting performance for
difficult tasks, requiring minimal parameter over-
head. This flexibility in deployment can lead to
more efficient and effective use of LLMs in various
real-world applications.

9 Potential Risks

While our work is designed to move LLMs to on-
device settings, thereby increasing security and
data privacy, there are some potential risks. One
risk is that our method involves a small post-
training phase, unlike many one-shot pruning meth-
ods. This post-training phase could contribute to
environmental impact as it requires additional com-
pute, albeit to a smaller extent compared to the
initial training of LLMs. Additionally, the ability
to deploy LLMs on a wider range of devices could
inadvertently lead to increased surveillance. Lastly,
while our method emphasizes parameter efficiency,
it does not address computational efficiency during
inference, which might still pose challenges for
extremely resource-constrained environments.
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(a) Eq. (2) with high-rank pruning (b) Eq. (2) without high-rank pruning (c) Frobenius norm of Wi −Wj

Figure 4: Comparison of block distance score versus candidate block index j for different metrics. Dotted lines
represent where candidate block index j is equal to pruning block index i, which is not a valid candidate. (a) Using
the proposed metric in Eq. (2) with high-rank pruning, showing that closer blocks score lower (better), matching
our intuition that weights close in the model have similar function. (b) Ablation of high-rank pruning, where there is
no clear trend except that blocks closer to 0 are lower and those closer to 31 are higher. (c) Simple Frobenius norm,
showing a similar lack of clear trend as in (b). We found that using the score in (a) as the weight-sharing selection
metric results in a much higher performing model compared to using the scores in (b) and (c).

Appendix

A Additional Experimental Details

Our implementations were carried out using Py-
Torch, utilizing Fully Sharded Data Parallel (FSDP)
and FP-16 mixed precision training for enhanced
efficiency. The experiments were conducted on a
setup comprising 4 NVIDIA A100 80GB GPUs
and required ≈ 192 gpu hours per experiment.
While we only report a single run per result, we
evaluate on several models and several tasks. For
model handling and training, we employed the Hug-
ging Face Transformers library. We used a learning
rate of 0.004 with a a cosine learning rate decay
schedule, with a batch size of 2 per GPU and a
total batch size of 480 achieved through gradient
accumulation. The SlimPajamas dataset (Soboleva
et al., 2023) train set was used, with 1B tokens ded-
icated to pruning experiments and 10B tokens for
model extension experiments due to the faster pro-
cessing speeds of the models. The LoRA rank uti-
lized was 256. Compared to ShortGPT, our method
incurs a 3.67% relative increase in total parameters
for the main experiment setting of Table 1.

B Additional Method Analysis

In Figure 4, we show an alternative version of Fig-
ure 2 where the x-axis is candidate block index j
instead of block index distance (i − j). The pur-
pose of this figure is to give an additional way to
visualize the metrics which better highlights the
issue in Figures 2(b) and 2(c) where all blocks i
choose candidate block j = 0.

C Licenses of Datasets and Models

We used 1B tokens from the SlimPajama (Sobol-
eva et al., 2023) pre-training dataset for post-prune
recovery. For zero-shot performance evaluations,
we used the ARC-e, ARC-c (Clark et al., 2018),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi
et al., 2021), and HellaSwag (Zellers et al., 2019)
zero-shot benchmarks, utilizing the LM Evaluation
Harness (Gao et al., 2021). For perplexity perfor-
mance evaluations, we used the validation MiniP-
ile (Kaddour, 2023) subset of the Pile dataset (Gao
et al., 2020). We confirmed that the data that was
used does not contain any information that names
or uniquely identifies individual people or offen-
sive content by checking their distribution sources.
All datasets use the English language. For the
pruning experiments, we evaluated our method
using LLaMA-2 7B (Touvron et al., 2023), OPT
1.3B and 6.7B (Zhang et al., 2022), and LLaMA-
3 8B (AI@Meta, 2024), focusing on these due
to their widespread adoption by the community.
For the model extension experiments, we evalu-
ated our method for model extension using TinyL-
LaMA (Zhang et al., 2024) due to its suitability for
demonstrating the effectiveness of our approach in
extending smaller models.

The licenses for the datasets and models used in
this paper are as follows:

• SlimPajama: Apache License 2.0

• ARC: CC BY-SA 4.0

• PIQA: Academic Free License 3.0

• HellaSwag: MIT License
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• WinoGrande: Apache License 2.0

• MiniPile: MIT License

• LLaMA: Meta LLaMA Community License
Agreement

• OPT: OPT License Agreement

• TinyLLaMA: Apache License 2.0

We used the datasets and models purely for sci-
entific research purposes to create this paper, which
is within the scope of their licenses and intended
uses.
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