Hephaestus: Improving Fundamental Agent Capabilities of Large
Language Models Through Continual Pre-Training
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Abstract

Due to the scarcity of agent-oriented pre-
training data, LLM-based autonomous agents
typically rely on complex prompting or exten-
sive fine-tuning, which often fails to introduce
new capabilities while preserving strong gener-
alizability. We introduce Hephaestus-Forge,
the first large-scale pre-training corpus de-
signed to enhance the fundamental capabilities
of LLM agents in API function calling, intrin-
sic reasoning and planning, and adapting to
environmental feedback. Hephaestus-Forge
comprises 103B agent-specific data encom-
passing 76,537 APISs, including both tool doc-
umentation to introduce knowledge of API
functions and function calling trajectories to
strengthen intrinsic reasoning. To explore ef-
fective training protocols, we investigate scal-
ing laws to identify the optimal recipe in data
mixing ratios. By continual pre-training on
Hephaestus-Forge, Hephaestus outperforms
small- to medium-scale open-source LLMs and
rivals commercial LLMs on three agent bench-
marks, demonstrating the effectiveness of our
pre-training corpus in enhancing fundamental
agentic capabilities and generalization of LLMs
to new tasks or environments.

1 Introduction

Large language models (LLMs) are rapidly evolv-
ing beyond traditional natural language processing
tasks (Ouyang et al., 2022; Brown et al., 2020;
Achiam et al., 2023), demonstrating increasing in-
telligence and autonomy by exhibiting capabili-
ties in perception, reasoning, planning, and action
within complex real-world environments (Yao et al.,
2023; Lu et al., 2024; Sun et al., 2024a). Through
well-crafted prompting or extensive post-training,
LLM-based autonomous agents augmented with
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Figure 1: Training paradigms of LLM agents. Prompt-
ing alone fails to introduce new knowledge and capabil-
ities, while heavy fine-tuning can hinder generalization
and degrade performance in non-agent use cases, poten-
tially suppressing the original base model capabilities.

external tools (e.g., APIs) have demonstrated excep-
tional instruction-following capabilities in a wide
range of tasks (Schick et al., 2024; Qin et al., 2024;
Srinivasan et al., 2023; Zeng et al., 2023).

Despite their remarkable task-specific perfor-
mance, existing LLM agents often face the follow-
ing challenges: (1) Overemphasis on instruction
fine-tuning while ignoring the pre-training stage.
LLMs typically undergo a two-stage training pro-
cess: pre-training to learn general knowledge and
instruction fine-tuning to align to specific tasks
and user preferences. The Superficial Alignment
Hypothesis (Zhou et al., 2024; Gudibande et al.,
2024; Lin et al., 2024b) posits that LLMs acquire
most of their knowledge during pre-training, which
is more important than instruction fine-tuning in
terms of obtaining generalizable fundamental ca-
pabilities. However, the majority of existing agent
frameworks (Figure 1) focus on instruction fine-
tuning to align with specific patterns or formats,
rather than fundamentally enhancing model knowl-
edge or capabilities (e.g., API function calling).
(2) Scarcity of agent-oriented pre-training data.
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Agent instructions and trajectories significantly dif-
fer from general instructions and responses (Zhang
et al., 2024b). Thus, function-calling knowledge
is difficult to derive directly from web archives,
the primary pre-training data source. This notable
lack of agent-specific pre-training corpora con-
strains LLMs from effectively acquiring new agen-
tic knowledge and capabilities (Table 1). (3) Lim-
ited generalization across multiple tasks. LLM
agents often struggle to generalize to new scenarios
(e.g., from single to multiple tools) that differ from
their original fine-tuning data distributions (Qin
etal., 2024).

To address these challenges, we introduce
Hephaestus-Forge, a large-scale pre-training cor-
pus specifically designed to enhance the fundamen-
tal capabilities of LLM agents in API function call-
ing, intrinsic reasoning and planning, and adapta-
tion to environmental feedback. Specifically, we
focus on two primary objectives: (a) improving
comprehension of individual function calls, and
(b) strengthening intrinsic reasoning capabilities
for solving problems requiring multiple function
calls. To enhance (a) comprehension of API func-
tions and alignment with their formats, we collect
a large-scale dataset of tool documentation tailored
for LLM pre-training on API function calls. Given
the expanding range of tasks with growing com-
plexity, we incorporate a vast number of function
calling trajectories to improve (b) intrinsic reason-
ing abilities in sequencing API function calls. We
then integrate this meticulously curated tool doc-
umentation and function-calling data with code
(to bolster reasoning capabilities) and text data (to
maintain robust text generation capabilities), cre-
ating a multi-source, large-scale, and high-quality
training corpus, Hephaestus-Forge.

Building upon Hephaestus-Forge, we intro-
duce a continual pre-trained open-source LLM,
Hephaestus, an LLM with strong agentic and
autonomous capabilities across domains, bring-
ing open-source models closer to the capabili-
ties of commercial LLMs. Our empirical eval-
uations demonstrate that Hephaestus-8B outper-
forms open-source LLMs at small to medium scales
(e.g., 9.6% over LLaMA-3-8B and 17.6% over
Mixtral-8x22B) and performs comparably to API-
based large commercial LLMs (e.g., 18.9% over
Claude-3-Haiku and 4.1% over GPT-3.5-turbo)
across three agent benchmarks. Our large-scale ab-
lation studies further demonstrate the effectiveness
of retrieved agent data in scaling up and diversify-

ing the coverage of scenarios in pre-training. Our
contributions can be summarized as follows:

* We curate Hephaestus-Forge, a large-scale
pre-training corpus designed to enhance under-
standing of API function calls and guide action-
able trajectories for LLM agents. Remarkably,
through exhaustive scaling law experiments,
we discover a pioneering pre-training recipe
with an empirically optimal data mix ratio.

* We propose Hephaestus, a foundation model
that exhibits enhanced fundamental agentic ca-
pabilities, including API function calling, in-
trinsic reasoning and planning, and adaptation
to environmental feedback, achieved through
continual pre-training on Hephaestus-Forge.

* We extensively compare Hephaestus with
strong baselines across three agent benchmarks,
verifying its enhanced fundamental agentic ca-
pabilities and superior generalization derived
from Hephaestus-Forge.

2 Related Work

Prompting-based LLLM Agents. Due to the lack
of agent-specific pre-training corpus, existing LLM
agents rely on either prompt engineering (Hsieh
et al., 2023; Lu et al., 2024; Yao et al., 2023; Wang
et al., 2023) or instruction fine-tuning (Chen et al.,
2023; Zeng et al., 2023) to understand human in-
structions, decompose high-level tasks, generate
grounded plans, and execute multi-step actions.
However, prompting-based methods mainly de-
pend on the capabilities of backbone LLMs (usu-
ally commercial LLMs), failing to introduce new
knowledge and struggling to generalize to unseen
tasks (Sun et al., 2024a; Zhuang et al., 2024a).
Instruction Finetuning-based LLM Agents. Con-
sidering the extensive diversity of APIs and the
complexity of multi-tool instructions, tool learning
inherently presents greater challenges than natu-
ral language tasks, such as text generation (Qin
et al., 2024). Post-training techniques focus more
on instruction following and aligning output with
specific formats (Patil et al., 2023; Hao et al., 2024;
Qin et al., 2024; Schick et al., 2024), rather than
fundamentally improving model knowledge or ca-
pabilities. Moreover, heavy fine-tuning can hinder
generalization or even degrade performance in non-
agent use cases, potentially suppressing the original
base model capabilities (Ghosh et al., 2024).
Pretraining-based LLLM Agents. While pre-
training serves as an essential alternative, prior
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Training |# PT Data # IFT Data Nat. |Action API|Func. Multi. Plan Multi.
Methods Datasets Paradigm| (Tokens) (Samples) # APIs| Code Lang.| Traj. Doc.| Call Step Refine Turn
Instruction Finetuning-based LLM Agents for Intrinsic Reasoning
FireAct (Chen et al., 2023) FireAct IFT - 2.1K o | X v I|v X|v X v X
ToolAlpaca (Tang et al., 2023) ToolAlpaca IFT - 4.0K 400 | X vV | vV X|v X v X
ToolLLaMA (Qin et al., 2024) ToolBench IFT - 127K 16464 X v X|v Vv v v
AgentEvol (Xi et al., 2024) AgentTraj-L IFT - 14.5K u | X vV |V X|v X X VvV
Lumos (Yin et al., 2024) Lumos IFT - 20.0K 6 | X v |v X|v v X V
Agent-FLAN (Chen et al., 2024b) Agent-FLAN IFT - 247K 0 | X v | v X|v v X V
AgentTuning (Zeng et al., 2023) AgentInstruct IFT - 35.0K - X 4 4 X | v X X 4
Instruction Finetuning-based LLM Agents for Function Calling
NexusRaven (Srinivasan et al., 2023) NexusRaven IFT - - 116 v 4 4 X| v X X X
Gorilla (Patil et al., 2023) Gorilla IFT - 60K 1645V X | X vV |v X X X
OpenFunctions-v2 (Patil et al., 2023) | OpenFunctions-v2 IFT - 65.0K - v v X v |v X X X
API Pack (Guo et al., 2024b) API Pack IFT - LM 23| v X | v X | v X X X
LAM (Zhang et al., 2024a) AgentOhana IFT - 42.6K - v v | v X|v X v Vv
XxLAM (Liu et al., 2024¢) APIGen IFT - 600K 3673 | ¢V v X|v X v v

Pretraining-based LLM Agents

Hephaestus ‘Hephaestus—Forge‘ PT ‘ 103B

950K 76537V Vv | v VvV |v v v V

Table 1: Summary of existing instruction finetuning-based LLM agents for intrinsic reasoning and function calling,
along with their training resources and sample sizes. "PT" and "IFT" denote "Pre-Training" and "Instruction

Fine-Tuning", respectively.

works (Nijkamp et al., 2023; Roziere et al., 2023;
Xu et al., 2024; Patil et al., 2023) have primar-
ily focused on improving task-specific capabilities
(e.g., code generation) instead of general-domain
LLM agents, due to single-source, uni-type, small-
scale, and poor-quality pre-training data. Existing
tool documentation data for agent training either
lacks diverse real-world APIs (Patil et al., 2023;
Tang et al., 2023) or is constrained to single-tool or
single-round tool execution. Furthermore, trajec-
tory data mostly imitate expert behavior or follow
function-calling rules with inferior planning and
reasoning, failing to fully elicit LLMs’ capabili-
ties and handle complex instructions (Qin et al.,
2024). Given a wide range of candidate API func-
tions, each comprising various function names and
parameters available at every planning step, identi-
fying globally optimal solutions and generalizing
across tasks remains highly challenging.

3 Preliminaries

Problem Formulation. We conceptualize lever-
aging LLMs as autonomous agents for problem-
solving as a planning process. Initially, we
augment the LLM agent with access to a pool
of candidate API functions, denoted as A =
{APIy, APIy, - - - , APL,, }, along with a natural lan-
guage task description g € G from the task space
G. The objective of the LLM agent is to translate
the task description g into an ordered sequence of
T, API function calls p; = {ao, - - , ar, }. Specif-

ically, considering the task description g as the
initial state sp, we then sample the plan p, by
prompting the LLM agent with the API defini-
tions Z and demonstration samples D as follows:
pg ~ plao,a1,--- ,ar,|s0;Z,D) : G X I xD —
A(ATs), where A(-) denotes a probability simplex
function. The final output is derived after execut-
ing the entire plan y ~ 7(y|so, a1, a2, -- ,ar,),
where 7(-) denotes a plan executor.

During this procedure, we focus on three funda-
mental capabilities of LLM agents:

Accurate Function Calling. It involves accurately
understanding the API definitions and demon-
stration samples to generate correct API func-
tion calls with corresponding parameters in a
given scenario. Specifically, the model should
accurately understand the API definitions Z and
demonstration samples D, as well as generate
an accurate API function call in the given sce-
nario p(a¢|so, a1, -+ ,a;—1,Z, D), where a; is the
ground-truth API function call with corresponding
parameters at ¢-th step.

Intrinsic Reasoning and Planning. It refers to
the intrinsic reasoning and planning ability to de-
vise a sequence of multiple tool functions as a
solution when addressing complex (multi-step)
real-world problems. In such cases, LLMs are
often required to generate a sequence of API
function calls, p(a1,az,- - - ,ar,|s0;Z, D), where
{a1,a2,--- ,ar,} constitutes the ground-truth so-
lution plan of length T},. This process relies on
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Figure 2: Data composition of (a) the entire Hephaestus-Forge, (b) seed data collection (§ 4.1), and (c) retrieved
agent data from the open web (§ 4.2). A t-SNE visualization (d) depicts seed data (colorful points, with each color
representing different data sources), retrieved data (black), and general text (gray) within the semantic space, where
retrieved data is closer to the selected seed data than to the general text. Detailed data sources are in appendix A.1.

intrinsic reasoning embedded within the model pa-
rameters; enhanced reasoning capabilities lead to a
solution plan with a higher chance of success.
Adaptation with Environment Feedback. It
focuses on adapting the current plan or action
based on environmental feedback when the envi-
ronments support interaction with the LLM agent.
When such feedback is available, it is crucial
for the agent to adjust its actions accordingly:
plat|so, a1,01, a2, ,0i-1;Z, D), where oy, rep-
resents the feedback from the environment after the
k-th action. Incorporating environmental feedback
allows the agent to take reflections to refine its plan
and improve task performance iteratively.

4 Hephaestus-Forge

To scale and diversify the pre-training corpus for
LLM agents, we introduce a three-stage construc-
tion process for Hephaestus-Forge (see Figure 2):
(1) Seed Data Collection (§ 4.1), where we gather
initial high-quality samples; (2) Web Data Re-
trieval (§ 4.2), which expands the seed data by
retrieving relevant data from the web; and (3) Data
Quality Control (§ 4.3), where we ensure the in-
tegrity and relevance of the collected data.

4.1 Seed Data Collection

For seed data collection, we first traverse available
public resources to gather high-quality API doc-
umentation and action trajectories, including: (1)
Public APIs. High-quality API documentation is
collected from over 1,400 public APIs and official
websites, including detailed function definitions
and parameter descriptions. (2) Public Reposito-
ries. To improve intrinsic reasoning, we integrate
action trajectories from over 60 public repositories
across diverse domains, such as programming code
and web interactions. (3) Code-to-Text Synthesis.

Given the limited coverage of curated data, we use
LLMs to synthesize additional API documentation
from StarCoder-API, generating examples based
on code snippets. (4) Simulated Agent Data. We
gather simulated action sequences with observa-
tional data to facilitate adaptation to environmen-
tal feedback. Importantly, we offer step-by-step
details of the seed data collection process in ap-
pendix D.1 for reproducibility.

4.2 'Web Data Retrieval

Given the limited availability of agent-oriented
data, we use the high-quality data described in
§ 4.1 as seed data for further expansion. To en-
hance agentic capabilities, we retrieve a diverse
set of examples from web crawls, focusing on con-
tent relevant to API documentation and action tra-
jectories. Our retrieval process involves the fol-
lowing steps: (1) Web Data Corpus Creation.
Similar to CommonCrawl (Raffel et al., 2020) and
FineWeb (Penedo et al., 2024), we first compile a
large-scale web data corpus. (2) Semantic Match-
ing. We utilize COCO-DR (Yu et al., 2022) to en-
code semantic representations of documents in the
seed data and the large-scale web corpus. We then
retrieve the top-K similar documents by calculat-
ing the cosine similarity between the corresponding
embeddings. It allows us to identify and retrieve
documents from the web corpus that are semanti-
cally similar to our seed data, effectively enriching
our dataset with relevant and diverse information.
(3) Quality Control. To ensure the quality of the re-
trieved corpus, we perform data pruning to remove
semantically redundant content and maintain the
diversity of knowledge, preventing overrepresenta-
tion of certain topics and ensuring generalization
and robustness across domains.
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Figure 3: Scaling law of the relationship between agent
data mixing ratio (%) and benchmark loss.

4.3 Data Quality

After retrieving semantically relevant data from the
web corpus, we obtain a collection of noisy agent
data. To ensure the integrity and relevance of our
dataset, it is essential to consistently monitor data
quality and filter out content that resembles general
text rather than agent-specific data. First, we em-
ploy Claude-3-Sonnet (Anthropic, 2024) as the
data annotator to annotate a total of 71,473 sam-
ples from the retrieved data, identifying 37,714
as agent-relevant and 33, 767 as general text para-
graphs. Using the annotated samples, we train a
fastText (Joulin, 2016) model to effectively re-
call additional agent-relevant web data. This fil-
tering process then reduces the data volume from
approximately 200B to 80B tokens, ensuring that
the preserved data maintains high relevance and
quality. See details in appendix D.2.

5 Scaling Laws for Data Composition

When designing LLMs, the scaling law (Kaplan
et al., 2020; Hoffmann et al., 2022) is an important
predictive tool that can estimate the performance
(e.g., benchmark loss) of a large-sized target model
using a scaling curve fitted over much smaller mod-
els (referred to as sampling models). We develop
scaling laws to determine the optimal data propor-
tion among agent data, text data, and code data.
With the total budget of the data volume fixed, our
scaling law experiments show that the effect of
agent data ratio = on the loss £ of a pre-trained
model follows power laws:

L=c+ kx“,

where ¢, k, and « are parameters to be fitted. By
fitting these parameters using a collection of small

models, training data, or computational resources,
scaling laws can extrapolate to precisely predict the
test loss of larger cases over orders of magnitude.
Scaling Law Experiments. Concretely, we con-
struct our scaling laws by pre-training models rang-
ing in 45M to 0.65B parameters. To simulate the
continual pre-training setting, we amplify the tar-
get data volume used for training each small model
to 50x model parameters. Consequently, the total
compute budgets for the scaling law experiments
span from 7 x 10'7 to 2 x 10?° FLOPs. Regarding
data proportions, we begin with the seed agent data
and progressively incorporate the retrieved web
corpus to increase the agent data ratio. Concur-
rently, as the agent data ratio increases, we propor-
tionally decrease the volumes of general text and
code data to maintain the fixed total data volume.
Following Dubey et al. (2024), we leverage the
benchmark loss of Nexus (Srinivasan et al., 2023),
API-Bank (Li et al., 2023b), API-Bench (Patil
et al., 2023) to monitor the agent capabilities, and
MMLU (Hendrycks et al., 2020) to monitor the
general capabilities of LLMs.

Optimal Data Mixing Ratio. Figure 3 illustrates
that the optimal mixture of agent data within the
entire pre-training corpus is approximately 36%, in-
dicating that the proportion of agent data, text data,
and code data should be roughly 1 : 1 : 1. This bal-
anced distribution promotes both specialized agent
capabilities and general language understanding,
ensuring that the model remains versatile and ro-
bust across diverse tasks and domains.

Remark. The established scaling laws provide
critical insights into the data composition for pre-
training LL.M agents. By identifying the optimal
ratio of agent data, we ensure that the model ef-
fectively balances specialized agentic capabilities
with general language proficiency.

6 Hephaestus

In this section, we propose Hephaestus, a foun-
dation model with enhanced fundamental capa-
bilities of LLM agents. Hephaestus undergoes
a two-stage continual pre-training process, fol-
lowed by instruction fine-tuning (see Figure 4):
(1) Stage I, continual pre-training stage on the en-
tire Hephaestus-Forge corpus to inject general
agent knowledge (§ 6.1); (2) Stage I1, continual
pre-training stage on the high-quality seed set of
Hephaestus-Forge to further enhance specific ca-
pabilities (§ 6.1); and (3) Stage III, instruction
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Figure 4: Overview of the pre-training (Stages I & II) and instruction fine-tuning (III) framework in Hephaestus.

fine-tuning to follow general instructions and down-
stream task requirements (§ 6.2).

6.1 Stage I & II: Continual Pre-Training

Following Caccia et al. (2022); Lange et al. (2023),
we revisit the concept of stability gap, which de-
scribes the phenomenon where the performance on
old tasks initially drops and then recovers when
learning a new task. Specifically, in the continual
pre-training of LLMs, if the data distribution shifts
too significantly between the initial pre-training
and the continual pre-training stages, the model’s
capabilities can deteriorate markedly until it as-
similates knowledge from the new data distribu-
tion (Guo et al., 2024a). To this end, we propose a
two-stage continual pre-training framework:
Stage I: Injecting General Agent Knowledge.
Stage I infuses general agent knowledge, accom-
panied by commonsense knowledge and code
snippets. We pre-train Hephaestus on the en-
tire Hephaestus-Forge, whose data distribution
is carefully balanced between general corpus and
agent-specific data, facilitating a smooth and grad-
ual integration of agent knowledge.

Stage I1: Enhancing Agent-Specific Capabilities.
Stage II leverages high-quality agent data to fur-
ther enhance the specific capabilities of an agent
LLM, including user interaction, function calling,
planning, plan refinement, and coding capabilities.
We continually pre-train the model obtained from
Stage I on the high-quality seed data in § 4.1 to fur-
ther align the behavior with agent-specific require-
ments, ensuring that the specialized functionalities
are robustly learned and integrated.

Pre-Training Objectives. For both stages, we em-
ploy language modeling as the primary pre-training
task. The objective is to auto-regressively predict

the next token, defined as follows:

n
£PT = _EXGDPT Zp($i|x<i)7
=1

where Dpr denotes the pre-training data, and z;
represents the ¢-th token in the training sample x.

6.2 Stage III: Instruction Fine-Tuning

To further improve its instruction-following capa-
bilities to align with complex agent environments,
Hephaestus undergoes instruction fine-tuning on
a blend of high-quality instruction-completion
datasets, including ShareGPT (Chiang et al., 2023),
ToolACE (Liu et al., 2024c), and AgentFlan (Chen
et al., 2024b). The Stage III employs a negative
log-likelihood loss function, defined as:

n
Lirr = —E(x,y)eDir Zp(yi!}’q, x),
i=1
where x represents the given instruction, and y is
the expected solution to fill. Here, (x,y) € Dipr
indicates that the data pairs are sampled from the
instruction-tuning dataset.

7 Experiments

7.1 Experiment Setup

Tasks and Datasets. We mainly evaluate our
Hephaestus on the following benchmarks: (1)
AgentBench (Liu et al., 2024d) for intrinsic rea-
soning and adaptation to environment feedback; (2)
Berkeley Function Calling Leaderboard (BFCL)-
v3 and (3) BFCL-v2 (Patil et al., 2023) for accurate
function calling. To test generalizability instead of
memorization, we intentionally exclude all evalua-
tion benchmarks from pre-training corpora. Task
and dataset details are available in appendix A.3.

6046



—— Hephaestus-88 (IFT)

Loss

Hephaestus-8B (PT-1)
2.0 Hephaestus-88 (PT-2)
217
Q
s
@16
@15
S
¥ 14
s
£13

212

" Mt

18 Hephaestus-88 (PT-1)
Hephaestus-88 (PT-2)

LLaMA-3-8B-Base

8 I LLaMA-3.1-8B-Base
Hephaestus-8B-Base (PT-1)

[ Hephaestus-8B-Base (PT-2)

Il

iy = g N
o 7] o 2

Benchmark Loss (Byte PPL)

o
@

1.1

0 20 40 60 80 100
(a) Training Loss

o
o

20 40 60 80
(b) Benchmark Loss

API Bench API-Bank ~ MMLU Nexus
(c) Benchmark Loss Comparison

Figure 5: Training and benchmark loss. (a) Training loss of Hephaestus during continual pre-training and instruction
fine-tuning. (b) Benchmark loss at periodic training checkpoints and (c) a comparison across base models.

Baselines. We mainly compare to the following
baselines: (1) Base LLMs and (2) Open-Source
Instruction Fine-Tuned LLMs with varying model
sizes. We also show the performance of (3) API-
based Commercial LLMs as reference. We exclude
prompting and instruction fine-tuned agent frame-
works from our main experiments to focus on evalu-
ating the fundamental agentic capabilities of LLMs.
Details of baseline models are in appendix B.
Evaluation. Following Liu et al. (2024d); Patil
et al. (2023), for AgentBench, we report success
rate for the OS, DB, HH, and WB environments,
F1 score for the KG environment, and reward score
for the WS environment; for BFCL-v2 and -v3, we
use accuracy as the primary metric for all scenarios
to assess correct function calls. Implementation
details can be found in appendix E.

7.2 Main Experiments: Hephaestus-8B-Base

Following Shao et al. (2024); Dubey et al.
(2024), we evaluate our two-stage pre-trained
Hephaestus-8B-Base on three agent-specific
benchmarks (API-Bank, API-Bench, NexusRaven)
and one general benchmark (MMLU). We ob-
serve that incorporating more agent data during
pre-training consistently reduces benchmark loss
on agent tasks in Figure 5 (b). Additionally, Fig-
ure 5 (c) demonstrates that Hephaestus-8B-Base
achieves significantly lower benchmark loss com-
pared to the LLaMA-3-8B series of base models.
Furthermore, Table 2 reports the benchmark scores,
where Hephaestus-8B-Base leads in performance
across all benchmarks among the open-source base
models. Our findings indicate that both pre-training
stages (I & II) enhance Hephaestus’s fundamen-
tal capabilities across a wide range of agent tasks
without compromising general capabilities.

7.3 Main Experiments: Hephaestus-8B-IFT

Table 2 presents the main experimental results
of instruction fine-tuned Hephaestus and base-
lines. Hephaestus consistently outperforms small

to medium size open-source LLMs. Moreover,
Hephaestus-8B-IFT remains competitive com-
pared to baseline models with significantly more
parameters or commercial LLMs.

Enhanced Capabilities Through Pre-training.
We conduct a direct comparison between
Hephaestus and LLaMA-3-8B-Base (Dubey et al.,
2024), both instruction-tuned using the same
instruction fine-tuning data. Hephaestus-8B-IFT
outperforms LLaMA-3-8B-IFT across all three
benchmarks, indicating that the observed improve-
ments can be attributed to the pre-training stage.
Moreover, incorporating more domain-specific
knowledge during the pre-training stage leads to
better performance, without requiring additional
instruction fine-tuning data.

Excelling in Complex Multi-turn Tasks. BFCL-
v3, the latest benchmark, emphasizes multi-turn
tool function-calling tasks requiring intrinsic rea-
soning capabilities and function-calling proficiency.
Due to its recent introduction, the limited avail-
ability of task-specific data for instruction-tuning
has led to suboptimal performance, particularly in
multi-turn function-calling accuracy, as observed
with models like Grog-8B-Tool-Use (Groq, 2024).
In contrast, Hephaestus exhibits significantly bet-
ter performance on BFCL-v3, suggesting that its
improvements in core agentic capabilities and gen-
eralization stem from pre-training on our large-
scale, diverse agent-oriented corpus.

7.4 Ablation Studies

Table 3 presents the ablation results of Hephaestus
on AgentBench and BFCL-v2.

Effect of Pre-Training Stages. Removing the sec-
ond pre-training stage results in a slight perfor-
mance decline for both base and instruction-tuned
models across all tasks. Although the Stage-I pre-
training data, comprising a large volume of general
and retrieved agent data from the web, brings the
Hephaestus-Forge closer to the general data dis-
tribution, it still differs from the data used in down-
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Datasets (—) Model AgentBench BFCL-v3 BFCL-v2
Models ({) Size Type OA OS DB HH KG WB WS OA NL-AST Exec L-AST MT OA
Base LLMs
LLaMA-3-8B (Dubey et al., 2024) 8B OSS 056 28 120 00 89 11.0 14 17.73 43 2.5 39.1 0.0 17.77
LLaMA-3.1-8B (Dubey et al., 2024) 8B OSS 105 153 53 8.0 127 18.0 419 19.50 16.3 107 375 0.0 21.08
Hephaestus-8B-Base 8B OSS 1.87 20.8 32.3 30.0 16.0 16.0 60.5 22.12 18.1 121 422 4.0 25.18
Open-Source Instruction Fine-Tuned LLMs (Small)
LLaMA-2-7B-Chat (Touvron et al., 2023) 7B OSS 036 42 80 00 21 7.0 116 - - - - - -
Vicuna-7B-v1.5 (Chiang et al., 2023) 7B OSS 043 97 87 00 25 9.0 22 - - - - - -
CodeLLaMA-7B-Instruct (Roziere et al., 2023) 7B OSS 0.65 49 127 00 82 120 252 - - - - - -
CodeLLaMA-13B-Instruct (Roziere et al., 2023) 13B  OSS 0.74 3.5 9.7 0.0 104 14.0 43.8 - - - - - -
LLaMA-2-13B-Chat (Touvron et al., 2023) 13B 0SS 0.66 42 11.7 6.0 3.6 13.0 253 - - - - - -
Vicuna-13B-v1.5 (Chiang et al., 2023) 13B OSS 086 104 6.7 80 94 120 41.7 - - - - - -
Grog-8B-Tool-Use (Groq, 2024) 8B OSS 127 153 11.7 40 17.6 23.0 534 3044 428 355 455 0.0 89.06
LLaMA-3-8B-Instruct (Dubey et al., 2024) 8B OSS 1.51 181 123 24.0 159 19.0 56.1 3579  60.6 662 484 0.5 59.57
LLaMA-3.1-8B-Instruct (Dubey et al., 2024) 8B OSS 1.74 21.5 53 34.0 184 25.0 595 46.76 703 765 622 25 61.39
LLaMA-3-8B-IFT 8B 0SS 2.07 222 29.7 32.0 253 19.0 66.1 48.52 72.5 81.8 668 2.6 62.12
Hephaestus-8B-IFT 8B OSS 2.29 20.8 41.7 46.0 21.2 17.0 639 50.59 843 86.2 60.1 9.6 70.78
For Reference: Open-Source Instruction Fine-Tuned LLMs (Medium to Large) and API-based Commercial LLMs
LLaMA-2-70B-Chat (Touvron et al., 2023) 70B OSS 066 9.7 130 20 80 190 56 - - - - - -
CodeLLaMA-34B-Instruct (Roziere et al., 2023) 34 OSS 1.13 2.8 14.0 4.0 235 20.0 52.1 - - - - - -
Gemini-1.5-Flash (Reid et al., 2024) - API 1.81 20.1 46.0 22.0 142 17.0 39.1 53.01 77.1 712 712 13.1 70.75
text-davinci-003 (Ouyang et al., 2022) - API 190 20.1 163 20.0 349 26.0 61.7 - - - - - -
DeepSeek-v2 (Liu et al., 2024a) 236B OSS 1.97 20.8 21.7 38.0 21.7 22.0 574 - - - - - -
Mixtral-8x22B (Jiang et al., 2024) 176B  OSS 2.00 243 257 140 31.1 28.0 62.8 43.00 56.1 59.7 653 89 63.26
gpt-3.5-turbo-0125 (OpenAl, 2022) - APl 2.12 32.6 36.7 16.0 259 20.0 64.1 5190 84.5 81.7 59.0 19.1 66.53
Claude-3-Haiku (Anthropic, 2024) - APl 2.13 14.6 41.0 42.0 27.3 14.0 57.8 38.39 62.6 60.7 58.1 1.6 55.47
Command-R-Plus-FC (Cohere, 2024) - API - - - - - - - 4522 77.7 774 542 6.1 76.29
LLaMA-3-70B-Instruct (Dubey et al., 2024) 70B  OSS 2.73 28.6 503 44.0 39.5 22.0 53.6 49.55 87.2 874 634 1.1 84.95
gpt-4-0613 (Achiam et al., 2023) - API 452 424 320 78.0 58.8 29.0 6l.1 - - - - - 89.26

Table 2: Main experiments on three agent benchmarks across various model scales. Bold and underlined texts
represent the best and the second-best results, respectively. Notations are consistent throughout all tables. “OSS”,
“APTI”, and “OA” denote “Open-Sourced LLMs”, “API-based Commercial LLMs”, and “Overall”, respectively.

Datasets (—) AgentBench BFCL-v2 Models (])/Datasets (—) AgentBench BFCL-v3 BFCL-v2
Models () OA OS DB HH KG WB WS OA Hephaestus-8B-IFT 2.29 51.59 70.78
LLaMA-3-8B-IFT 2,07 (9.6%) 48.52 (:6.0%) 62.12 (-12.2%)
Hephaestus-8B-Base 1.87 20.8 32.3 30.0 16.0 16.0 60.5 25.18
w/ Stage-1 PT Only 1.76 20.1 29.0 28.0 17.5 14.0 56.1 23.88 Grog-8B-Tool-Use (Grog, 2024) 1.27 (-44.5%) 30.44 (-41.0%) 89.06 (+25.8%)
. AgentLM-7B (Zeng et al., 2023) 2.36 (+3.1%) 16.67 (-67.7%) 19.18 (-72.9%)
w/o Data Filtering - 1.85 208 36.3 28.0 17.5 14.0 540~ 2108 ToolACE-8B (Liu ctal., 2024c) 148 (353%) 58.20 (+12.8%) 9141 (+29.2%)
w/o Retrieval Data  1.84 22.9 16.7 48.0 54 16.0 664 19.35
HEFECSTS IR 220 208 Ly b 202 170 G Ak Table 4: Generalization across three agent benchmarks.
w/ Stage-1 PT Only 2.00 20.8 41.7 34.0 184 100 639 64.23
wlo Data Filtering  2.10 23.6 28.3 44.0 17.2 18.0 64.0 59.34 .
wlo Retrieval Data  1.99 21.5 30.3 38.0 17.2 17.0 60.7 49.86 Hephaestus-Forge can lead to model overfitting

Table 3: Ablation studies on the effect of (1) different
pre-training stages and (2) retrieved data.

stream applications and evaluations. The Stage-II
pre-training is essential for effectively bridging the
gap between the pre-training corpus and the instruc-
tion fine-tuning data, thereby enhancing overall
model performance.

Effect of Retrieved Data. Degrading the re-
trieved data to unfiltered, low-quality data or re-
moving it entirely negatively impacts overall per-
formance. For tasks with numerous hand-crafted
instructions and simulated trajectories available on
the open web (e.g., HH and WS), the seed data of

on specific patterns. When the large volume of re-
trieval data is removed, the seed data predominates,
leading to improved performance on these specific
tasks but reduced performance on others.

7.5 Cross-Task Generalization

Table 4 compares Hephaestus with several in-
struction fine-tuned agent frameworks across three
agent benchmarks for cross-task generalization.
While models fine-tuned on task-specific data ex-
cel in corresponding tasks (Groq, 2024; Zeng et al.,
2023; Liu et al., 2024c), they struggle to general-
ize across different agent benchmarks. In contrast,
Hephaestus performs consistently well across all
tasks, suggesting that the large and diverse pre-
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Benchmark Metrics (1)

Benchmark Loss ()

Models () / Datasets (—)

GSMS8K HumanEval HumanEval+ BBH

OA IFEval hellaswag MMLU BBH OA

LLaMA-3-8B (Dubey et al., 2024) 0.420 0.372 0.317 0.613 0.431 0.648 0.759 0.526 0.361 0.573
Hephaestus-8B-Base 0.460 0.411 0.356 0.584 0.453 0.683 0.769 0.536 0.374 0.591
LLaMA-3-8B-IFT 0.695 0.343 0.337 0.596 0.493 1.046 0.908 0.725 0.503 0.795
Hephaestus-8B-IFT 0.686 0.373 0.373 0.567 0.500 0.657 0.784 0.559 0.369 0.592
ToolACE-8B (Liu et al., 2024¢) 0.623 0.385 0.324 0.120 0.363 0.774 0.848 0.602 0.442 0.666
AgentLM-7B (Zeng et al., 2023) 0.549 0.122 0.110 0.071 0.213 0.783 0.915 0.657 0.450 0.701
LLaMA-3-8B-Instruct (Dubey et al., 2024)  0.797 0.646 0.573 0.660 0.669 0.619 0.769 0.533 0.361 0.570

Table 5: Comprehensive evaluation of general model capabilities across diverse benchmarks. Hephaestus maintains
general capabilities while achieving competitive performance against baseline and specialized models.

training corpora, Hephaestus-Forge, effectively
enhance function calling and agentic reasoning,
leading to better generalization. Furthermore, the
compared methods are based on continued instruc-
tion fine-tuning of LLaMA-3-8B-Instruct, which
inherently possesses strong instruction-following
and understanding capabilities due to its meticu-
lously curated post-training data. Unlike models
relying solely on instruction fine-tuning, the pre-
training of Hephaestus effectively improves its
fundamental capabilities, thereby offering a more
robust foundation for diverse agentic applications.

7.6 Preservation of General Capabilities

To evaluate the preservation of general capabilities,
we further conduct comprehensive experiments
across seven additional benchmarks (Table 5) be-
sides MMLU, spanning mathematics (Cobbe et al.,
2021), software development (Chen et al., 2021;
Liu et al., 2024b), logical reasoning (Suzgun et al.,
2022), and broad language model abilities (Zhou
et al., 2023; Zellers et al., 2019; Hendrycks et al.,
2020). Our results demonstrate that Hephaestus
maintains comparable performance to the base
model across these diverse domains while signifi-
cantly enhancing agent-specific capabilities.

8 Conclusion

In summary, Hephaestus-Forge and Hephaestus
collectively advance open-source LL.M-based au-
tonomous agents by addressing critical gaps in pre-
training corpora. Through exhaustive scaling law
experiments, we identify an empirically optimal
data mix ratio of approximately 1:1:1 for agent,
code, and text data, maximizing the fundamental
and generalization capabilities of LLM agents. Em-
pirical evaluations underscore the efficacy and va-
lidity of Hephaestus-Forge in fostering enhanced
fundamental agentic capabilities and superior gen-
eralization in LLM-based autonomous agents.

Limitations

Data Composition. While knowledge of the com-
position of pre-training or instruction fine-tuning
data would further enhance the effectiveness of
Hephaestus, most prominent open-source LLMs
(e.g., LLaMA-3-8B-Instruct) do not disclose de-
tailed data information. Nevertheless, our continual
pre-training experiments with LLaMA-3-8B demon-
strate that significant improvements are achievable
even without this knowledge.

Model Scalability. Computational constraints cur-
rently restrict our ability to extend these experi-
ments to larger models. In future work, we aim to
validate our findings and methodologies on more
expansive LLM architectures, pending access to
increased computational resources.

Ethical Statement

Data Contamination. A potential concern in our
evaluations is test set contamination, which occurs
when some task-specific examples overlap with
data used during continual pre-training (Oren et al.,
2024). To mitigate this issue, we follow Wang et al.
(2024b) and conduct a string-matching analysis,
which indicates no overlap between our training
data and the datasets of the target tasks. Moreover,
we intentionally exclude all evaluation benchmark
data from both our pre-training and fine-tuning
datasets to ensure a fair comparison.
Reproducibility. To promote transparency, repro-
ducibility, and generalizability in our research, we
include all details of the dataset construction (e.g.,
data collection, processing, retrieving, filtering,
scaling law, etc.) of Hephaestus-Forge in § 4
and the training procedures for Hephaestus in § 6.
Experimental setups and results are presented in
§ 7. Additionally, we detail the pre-training, in-
struction fine-tuning, and testing tasks and datasets
in appendices A.1 to A.3, respectively.
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A Task and Dataset Information

A.1 Pre-Training Corpus: Hephaestus-Forge

Agent Data Sources. To promote transparency, reproducibility, and potential generalization to novel
domains in agent research, we publicly release the training recipe utilized for Hephaestus-Forge during
the pre-training stage. To enhance the fundamental capabilities of Hephaestus, we compile a unique,
comprehensive, and large-scale corpus of agent data sources, including API documentation, API func-
tion calling trajectories, code, and text data. Tables 9 and 10 provide a comprehensive overview of
Hephaestus-Forge used in Hephaestus, detailing the data sources, their respective sizes, and public
availability status. All data sources utilized in Hephaestus-Forge are licensed under Apache-2.9, MIT,
or LGPL-2.1, permitting non-commercial use and aligning with the research objectives of this work.
Examples of task formats in Hephaestus-Forge are available in Figure 6.

Tool Documentation Action Trajectory w/ Env Feedback Action Trajectories
{ _ Obs 0: You task is to put some spray bottle on toilet... MAP(address="Amazon Palo Alto SFO 22")
"id": "get_weather", Thought 1: First | need to find a spraybottle. A Yelp(category="restaurants")
"desc: "Get the weather for a specific cityand a ! spraybottle is more likely to appear in cabinet (1-4), Filter(org_list=rest_list, dist(rest_loc, loc)<10)
specific day", countertop (1), toilet (1), sinkbasin (1-2), garbagecan Calendar("today“f -
“parameters”:[ (1). I can check one by one, starting with cabinet 1. Calculator(date - 30 days)
{"name": "location”, Act 1: GoTo[Cabinet 1] Ranking(time > last_month)
"type": "string", Obs 1: On the cabinet 1, you see a cloth 1, a soapbar -
"desc": "The location to get the weather for"}, 1, a soapbottle 1. Code
{'name": "date", Thought 2: There is no spraybottle 2 in canbinet 1. Find }i def rectangular_to_spherical(x, y, z):
“type": "date", another place. rho = sqrt(x**2 + y**2 + z**2)
"desc": "The date to get the weather for"} Act 2: Goto[Cabinet 2] theta = atan2(y, x)
L phi =acos(z/rho)
b rho, theta, phi

Figure 6: Examples of different task formats in Hephaestus-Forge, including tool documentation, action trajectory
(w/ environmental feedback), and code data.

Text and Code Data. Since agent data typically includes detailed task descriptions, formatted function
calls, and environmental feedback, significant gaps exist between agent data and standard text and code
data. Given that current open-sourced LLMs have already been pre-trained on text and code data, and
to preserve their generalization ability, it is necessary to mix agent data with text and code data during
the continual pre-training stage. For the text data, we primarily select a corpus that covers commonsense
reasoning, mathematical reasoning, scientific reasoning, and general text.

e RedPajama_CommonCrawls' (Raffel et al., 2020) is a large-scale web text dataset collected by the
RedPajama project. It encompasses a diverse range of internet texts, including blogs, news articles,
forum discussions, and social media posts. Incorporating this dataset helps to preserve general language
understanding and generation capabilities, as it captures a wide variety of writing styles and topics, thus
offering significant linguistic diversity.

e Encyclopedic Content is a comprehensive knowledge base sourced from Wikipedia? and WikiQA (Yang
et al., 2015). This dataset includes extensively curated articles covering a wide range of human knowledge
domains. Incorporating encyclopedic content during continual pre-training helps ensure factual accuracy
and reliability in the model’s learned information.

e Textbooks from OpenStax® provide peer-reviewed, openly licensed textbooks for higher education.
These textbooks span topics such as mathematics, science, economics, and the humanities. Since textbooks
are structured with well-organized chapters and summaries, continual pre-training on this corpus exposes
the model to formal educational language and coherent knowledge representation.

e Mathematical Content from OpenWebMath (Paster et al., 2024) aggregates open-access mathematical
texts, problem sets, and explanations. This dataset spans topics ranging from pure mathematics to applied
fields, enabling the model to understand and generate mathematically rigorous content.

e arXiv Papers* include preprints hosted on arXiv in fields such as physics, mathematics, computer
science, and more. This dataset features advanced terminology, methodologies, and academic discourse.

1https ://www.together.ai/blog/redpajama-data-v2
Zhttps://www.wikipedia.org/
3https://openstax.org/

4arxiv.org
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Using this data for continual pre-training enhances the model’s ability to grasp complex scientific concepts
and fosters cross-disciplinary understanding.

e StarCoder-v2 (Lozhkov et al., 2024) is a large-scale collection of source code curated to advance
research in code generation and understanding. We select all documentation samples and randomly
sample the remaining portion for inclusion in the Hephaestus-Forge. This dataset provides knowledge
of complex programming patterns and semantics, which may benefit the tool-function-calling capabilities
of LLMs.

A.2 Instruction Fine-Tuning Task and Dataset

The instruction fine-tuning stage empowers LLMs with instruction-following capabilities and aligns LLM
agents with task-specific requirements and user preferences. To facilitate direct and fair comparison, we
employ a diverse range of tasks for both the instruction fine-tuning baseline model, LLaMA-3-8B-IFT,
and our model, Hephaestus-8B-IFT, including (1) a general conversation dataset, ShareGPT (Chiang
et al., 2023); (b) a single-tool function-calling conversation dataset, ToolACE (Liu et al., 2024¢); and (c) a
multi-turn planning conversation dataset, AgentFlan (Chen et al., 2024b).

e ShareGPT (Chiang et al., 2023) is a general dataset comprising real-world conversations from 70K
user data, designed to fine-tune models for enhanced instruction-following capabilities. It significantly
improves LLMs’ ability to handle complex, multi-turn dialogues. The dataset encompasses a wide range
of topics and natural, human-generated prompts, enabling models to learn from authentic interactions. By
leveraging real user data, ShareGPT allows models to better generalize across diverse tasks and navigate
increasingly complex instructions, closely mimicking real-world conversational scenarios.

e ToolACE (Liu et al., 2024c) is a single-tool conversation dataset designed to enhance the function-calling
capabilities of LLM agents. It comprises 26,507 APIs across 30 primary domains (e.g., entertainment) and
is categorized into 390 coarse-grained sub-domains (e.g., music). In addition, ToolACE accommodates
complex nested parameters, manages both parallel and dependent function calls, and encompasses a wide
variety of tool-related data.

e AgentFlan (Chen et al., 2024b) is a multi-turn planning dataset that combines data in two formats:
10% in ReAct format and 90% in conversation format. It encompasses 24,703 instances derived from
Agentlnstruct and ToolBench. AgentFlan deliberately excludes format-following instructions and common
reasoning tasks from its training corpus, aiming to elicit pure agent abilities from LLMs without overfitting
to specific format protocols.

A.3 Evaluation Task and Dataset

We conduct the main experiments of Hephaestus on three widely used LLM agent benchmarks across a
wide range of scenarios, including:
e AgentBench (Liu et al., 2024d) presents six distinct environments in a multi-turn, open-ended generation
setting: Operating System (OS), Database (DB), Knowledge Graph (KG), House-Holding (HH), Web
Shopping (WS), and Web Browsing (WB). We leverage AgentBench to evaluate intrinsic reasoning and
adaptation to environmental feedback.
e Berkeley Function Calling Leaderboard (BFCL) (Patil et al., 2023) provides a rigorous framework for
assessing the function-calling proficiencies of diverse LLLM agents. This benchmark encompasses 2,000
question-function-answer triads, spanning multiple programming paradigms (Python, Java, JavaScript,
REST API) and heterogeneous application domains. The BFCL’s evaluation protocol incorporates
varying degrees of complexity, ranging from single-function selection tasks to scenarios necessitating
the concurrent execution of multiple-function calls. Notably, the latest iteration, BFCL-v3, represents
a significant methodological advancement over its predecessor by introducing a novel category that
evaluates multi-turn and multi-step function invocation, more closely simulating real-world tool usage
scenarios. We leverage BFCL-v2 and -v3 to evaluate the function-calling capability of LLM agents.
Following Dubey et al. (2024), we leverage additional three agent benchmarks (Nexus (Srinivasan
et al., 2023), API-Bank (Li et al., 2023b), and API-Bench (Patil et al., 2023)) and one general benchmark
(MMLU) (Hendrycks et al., 2020) for benchmark loss in the scaling law experiments.

6057



B Baseline Details

B.1 Base LLMs

e LLaMA-3-8B-Base (Dubey et al., 2024) is a small-scale flagship model in Meta’s LLaMA-3 series,
featuring 8 billion parameters. We compare Hephaestus with LLaMA-3-8B-Base, which also serves as
the backbone of Hephaestus-8B-Base, to demonstrate the effectiveness of continual pre-training.

e LLaMA-3.1-8B-Base (Dubey et al., 2024) is an improved version of LLaMA-3-8B, offering more efficient
parameter utilization and enhanced fine-tuning capabilities. The 3.1 series models are optimized for
multilingual support and scalability, allowing for a longer context length of up to 128K tokens. We select
LLaMA-3.1-8B-Base as the current state-of-the-art small-scale open-sourced base model for comparison.

B.2 Open-Source Instruction Fine-tuned LLMs

We compare Hephaestus-IFT with the following open-sourced instruction-tuned LLMs:

e LLaMA-2-Chat (Touvron et al., 2023) is a series of large language models developed by Meta, de-
signed for conversational Al. The models support text-based interactions and come in varying parameter
sizes, such as 7B, 13B, and 70B. For comparison, we select models of comparable scale, specifically
LLaMA-2-7B-Chat and LLaMA-2-70B-Chat.

e Vicuna-v1.5 (Chiang et al., 2023) is a collection of open-source LLMs fine-tuned from LLaMA models,
optimized for high-quality conversational abilities. These models are fine-tuned using datasets derived
from user-shared conversations and are available in sizes such as 7B and 13B parameters, both of which
are included in our comparisons.

e CodelLLaMA (Roziere et al., 2023) is a specialized extension of the LLaMA family designed for code gener-
ation and understanding. Built upon LLaMA-2, CodeLLLaMA introduces enhancements tailored to coding
tasks. We evaluate multiple sizes, including CodelLLaMA-7B-Instruct, CodeLLaMA-13B-Instruct, and
CodelLLaMA-34B-Instruct.

e Groq-8B-Tool-Use (Groq, 2024) is a specialized variant of LLaMA-3-8B, fine-tuned by Groq for
advanced tool use and function-calling tasks. It leverages post-training techniques to achieve state-of-the-
art performance in function-calling tasks, including BFCL.

e LLaMA-3-Instruct (Dubey et al., 2024) belongs to Meta’s LLaMA-3 family, optimized for instruction-
following tasks. These models excel at tasks requiring explicit instructions, making them suitable
for applications such as chatbots, virtual assistants, and task-specific text generation. We compare
LLaMA-3-8B-Instruct and LLaMA-3.1-8B-Instruct as small-scale state-of-the-art instruction-tuned
models. Additionally, we use LLaMA-3-70B-Instruct as a reference model for comparison.

o DeepSeek-v2 (Liu et al., 2024a) and Mixtral-8x22B (Jiang et al., 2024) are both cutting-edge language
models utilizing Mixture-of-Experts (MoE) architectures to optimize efficiency and performance across
various domains. We include both models as reference points in our comparisons.

B.3 API-based Commercial LLMs (for reference)

We also consider API-based commercial LLMs for reference only, including Gemini-1.5-Flash (Reid
et al.,, 2024), text-davinci-003 (Ouyang et al., 2022), gpt-3.5-turbo-0125 (OpenAl, 2022),
gpt-4-0613 (Achiam et al., 2023), Claude-3-Haiku (Anthropic, 2024), and Command-R-Plus-FC (Co-
here, 2024). We exclude prompting and instruction fine-tuned agent frameworks from our main experi-
ments to focus on evaluating the fundamental agentic capabilities of LLMs.

C Additional Related Works

LLM-based intelligent agents and autonomous entities have demonstrated proficiency in tool utiliza-
tion (Qin et al., 2024; Zhuang et al., 2024c), decision-making (Wang et al., 2023; Li et al., 2024), and
action execution through interactions with diverse environments (Sun et al., 2024a; Shi et al., 2024b).

C.1 Black-box LLLM Agents

Existing methods for enhancing commercial closed-source LLM-based agents primarily focus on designing
task-specific prompts. These prompts often incorporate tool function documentation (Hsieh et al., 2023),
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few-shot demonstrations (Lu et al., 2024), environmental feedback (Yao et al., 2023; Sun et al., 2024a;
Wang et al., 2023), and tree-like reasoning procedures (Yao et al., 2024; Zhuang et al., 2024a). While these
approaches have yielded improved results and increased flexibility, they come with significant drawbacks.
The use of closed-source LLMs incurs substantial financial costs and raises safety concerns (Li et al.,
2023a; Zhuang et al., 2024b; Yuan et al., 2024b; Sun et al., 2024b; Shi et al., 2024a), limiting their wider
deployment. Moreover, these prompting techniques do not fundamentally enhance the inherent agent
abilities of the LLMs. Instead, they rely heavily on the function-calling capabilities of closed-source
LLMs, which may lack stability across different updates or versions®.

C.2 White-box LLM Agents

Open-source LLMs have recently emerged as promising alternatives, demonstrating effectiveness in
various applications (Touvron et al., 2023; Jiang et al., 2024; Tang et al., 2024). While these models excel
in natural language processing tasks, they still underperform when serving as the core of LLM agents
(Zeng et al., 2023; Liu et al., 2024d). This limitation is primarily due to insufficient training samples
and smaller model scales compared to their closed-source counterparts. Researchers have attempted to
address these shortcomings through various approaches. Some have fine-tuned LLMs with specific API
documentation and function call sequences (Qin et al., 2024; Gou et al., 2024). Others have leveraged
domain-specific data to learn tool embeddings or modify the decoding process (Schick et al., 2024; Hao
et al., 2024; Zhang et al., 2023). However, this focus on specialized capabilities often comes at the
expense of the LLMs’ general abilities and compromises their generalizability. A recent approach by
Chen et al. (2024b) attempts to mitigate this issue by composing API function sequential data from
diverse sources and reorganizing the training corpus. Yet, compared to the breadth of data included in the
pre-training stage, the collected data from five to six different sources represents only a small fraction
of real-world decision-making scenarios, limiting generalization to new tasks. Moreover, the superficial
alignment hypothesis (Zhou et al., 2024) suggests that a model’s fundamental knowledge and capabilities
are acquired almost entirely during pre-training. Post-training techniques merely guide the model in
selecting which subdistribution of formats to use when interacting with users. Consequently, core abilities
cannot be significantly improved through prompting and post-training techniques alone.

C.3 Finetuning-based LLM Agents

Table 1 summarizes existing instruction fine-tuning-based LLM agents and their training samples. For
example, Gorilla (Patil et al., 2023) fine-tuned a LLaMA-based model using API documentation and
demonstrations from Huggingface, TorchHub, and TensorFlowHub. Toolformer (Schick et al., 2024)
introduced special tokens around API function calls to teach the model when and how to leverage tools
during fine-tuning. ToolkenGPT (Hao et al., 2024) incorporated tools as special tokens into the model’s
vocabulary, while ToolLLaMA (Qin et al., 2024) built datasets rich in various tools. However, these
methods often rely on APIs and datasets from similar domains, potentially limiting their effectiveness
to tasks within those domains. To address this limitation, recent instruction tuning methods (Achiam
et al., 2023; Srinivasan et al., 2023; Zeng et al., 2023; Chen et al., 2024b) have expanded to include a
diverse range of API function call data and tasks, aiming to equip models with broader generalization
capabilities across different planning tasks. Nevertheless, the superficial alignment hypothesis (Zhou
et al., 2024) suggests that a model’s fundamental knowledge and capabilities are predominantly acquired
during pre-training. According to this hypothesis, post-training techniques such as instruction tuning
and alignment primarily teach the model which sub-distributions of formats to utilize when interacting
with users, rather than fundamentally expanding its capabilities. Moreover, heavy fine-tuning prevents
generalization and degrades performance in general use cases, potentially suppressing the original base
model capabilities (Ghosh et al., 2024).

C.4 Pretraining-based LLM Agents

To overcome the limitations of prompting and tuning-based methods, recent initiatives have focused
on pre-training or continual pre-training of language models to bolster their fundamental capabilities.

Shttps://openai.com/index/function-calling-and-other-api-updates/
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Several notable examples have emerged in this domain: CodeGen (Nijkamp et al., 2023) and CodeLLaMA
(Roziere et al., 2023) enhance the coding skills of LLLMs. Building on the success of these code LLMs,
LEMUR (Xu et al., 2024) further instruction tunes a code LLM with additional assistant and tool-related
data. Pandora (Xiang et al., 2024) represents a pre-trained world model that incorporates visual encoders
to process a wide array of multi-modal data, including videos and textual actions. The most closely related
work to our proposed model is OpenFunctions-v2 (Patil et al., 2023). This model is pre-trained on a vast
collection of data sources, including 19,353 Python packages, 16,586 Java repositories, 4,285 JavaScript
repositories, 6,009 public APIs, and 19,090 command line tools. However, while OpenFunctions-v2
primarily focuses on making correct API function calls, it lacks emphasis on the intrinsic reasoning abilities
required for managing multiple API function calls, as well as adapting to environmental feedback.

D Dataset Construction Details

To scale and diversify the pre-training corpus for LLM agents, we introduce a three-stage construction
process (Figure 7) for Hephaestus-Forge in § 4. We then include additional data collection details as

follows.
: @ AN, i AR Filtered
Yo © ’ ’ ‘g: Web Data

v HuggmgFace °
Q GitHub — | &
Q Public APIS °

Seed Data Retriever URL Check Extended Data Filter Agent-Relevant Data

Figure 7: Overview of the data collection workflow in Hephaestus-Forge.

D.1 Seed Data Collection Details

We begin by assembling a set of high-quality initial data samples to establish a robust foundation. Specifi-
cally, we systematically explore publicly accessible resources to gather high-quality API documentation
and associated action trajectories. This includes compiling a diverse dataset of agent behavior from public
repositories, official API documentation sources, and data synthesized through LLMs. Given that the
volume of tool-related data remains significantly smaller than that of plain text or code data, we employ
data augmentation and generation techniques to expand the tool-related dataset.

D.1.1 Public APIs.

First, we collect data from over 1,400 public API documentations® and integrate additional data from
official websites, including Huggingface’, TorchHub®, and Python Modules’, among others. This
compilation includes detailed API definitions and parameter descriptions, enabling the model to gain
a better understanding of API functions. As the depth and location of the documentation vary across
different API websites, we apply a three-level scraping strategy: (1) Level 1: the collected 1,400 URLs;
(2) Level 2: 37,753 URLs appearing on the Level 1 web pages; (3) Level 3: 83,468 URLs appearing in the
Level 2 web pages. We then apply URL checks to verify validity and filter for documentation-relevant
data by searching for keywords (e.g., “doc”, “guide”, “reference”, etc.).

LR N3

D.1.2 Public Repositories.

To strengthen the model’s intrinsic reasoning and planning abilities, we integrate publicly available action
trajectories from over 60 public repositories of related papers and datasets. These action trajectories span
multiple domains, including programming code, natural language reasoning steps, embodied Al action
sequences, grounded multi-modal data, web interactions, and function call sequences. This diverse range
of trajectories, incorporated during the pre-training phase, enhances the model’s reasoning capabilities
and improves its generalization to various scenarios.

https://github.com/public-apis/public-apis
7https ://huggingface.co/docs

ghttps ://pytorch.org/docs/stable/index.html
https://docs.python.org/3/index. html
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D.1.3 Code-to-Text Synthesis.

Given the limited quantity and API coverage of curated data from public APIs and repositories, we
exploit the strong generative abilities of LLMs to synthesize additional API documentation and use cases.
To produce high-quality synthetic agent data, we utilize StarCoder-API'? as a knowledge base, which
includes code snippets involving third-party APIs. Based on these code snippets and the API function
calls within them, we generate corresponding API documentation and associated use cases. For efficiency,
we utilize multiple LLMs from Amazon Bedrock!! for data synthesis, including Claude-3-Sonnet,
Claude-3-Haiku (Anthropic, 2024), Mistral-Large (Mistral, 2024), LLaMA-3-70B-Instruct (Dubey
et al., 2024), and Command-R-Plus (Cohere, 2024).

D.1.4 Simulated Agent Data.

To improve the model’s ability to adapt based on environmental feedback, we collect ac-
tion sequences paired with observational data from various environments, represented as
{00, a1, 01,a2,09,- - , AT, ng}. This representation encodes the model’s responses to environmen-
tal observations within its parameters. We execute official codes from agent frameworks (Yao et al.,
2023; Sun et al., 2024a; Wang et al., 2024a; Shinn et al., 2024) in multi-step reasoning tasks (e.g., Hot-
potQA (Yang et al., 2018)) and sequential decision-making tasks (e.g., ALFWorld (Shridhar et al., 2021))
to collect action trajectories that involve interaction with and feedback from the environment.

D.2 Data Quality Control Details

We ensure the integrity and relevance of the collected data through continuous quality monitoring and
validation procedures. After retrieving semantically relevant data from the web corpus, we obtain a
collection of noisy agent-related data. To preserve the integrity and relevance of our dataset, it is critical
to continuously monitor data quality and filter out content that resembles general text rather than agent-
specific data. First, we employ Claude-3-Sonnet (Anthropic, 2024) as the data annotator to identify
whether the sample belongs to agent data or a general web corpus. Specifically, we annotate a total
of 71,473 samples from the retrieved data, identifying 37, 714 as agent-relevant and 33, 767 as general
text paragraphs. Using the annotated samples, we train a fastText (Joulin, 2016) model to effectively
recall additional agent-relevant web data. We utilize the open-source fastText library'? for training,
configuring the vector dimension to 256, learning rate to 0.1, the maximum length of word n-gram to 3,
the minimum number of word occurrences to 3, and the number of training epochs to 3. After training, the
fastText model is used to recall agent-relevant data from the remaining retrieved samples. To filter out
low-quality content, we rank the collected pages based on their predicted scores from the fastText model
and retain only the top-ranking entries. This filtering process reduces the dataset from approximately
200 billion to 80 billion tokens, ensuring that the preserved data remains highly relevant and of sufficient
quality for training LLLM agents.

E Implementation Details

We use LLaMA-3-8B (Dubey et al., 2024) as the backbone for our main experiments. Our training process
consists of two stages. In the two-stage pre-training, we set the batch size to 512 and train the model for
55, 000 steps in each stage, with a learning rate of 2e — 4 and weight decay of 0.01. For the instruction
fine-tuning stage, we reduce the batch size to 16 and train the model for 24, 000 steps, using a learning
rate of 1le — 6 while maintaining the same weight decay of 0.01. For parallel pre-training, we apply
a tensor model parallel size of 8 and a pipeline model parallel size of 2. These values are adjusted
to 4 and 2, respectively, for instruction fine-tuning. We use the Adam optimizer (Kingma, 2014) with
B1 = 0.9 and B2 = 0.98 for all stages. During inference, we maintain a temperature of 7" = 0. Training
Hephaestus-8B-Base requires 128 NVIDIA A100 (40G) GPUs for 11.1 days (7.7 days for Stage 1
pre-training and 3.4 days for Stage II pre-training). Training Hephaestus-8B-IFT uses 16 NVIDIA A100
(40G) GPUs for 11.6 hours.

10https ://huggingface.co/datasets/luna-code/starcoderdata-apis
llhttps ://aws.amazon.com/bedrock/
Zhttps://fasttext.cc
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F Additional Experimental Results and Analysis

F.1 Evaluation of the fastText Filter

To evaluate the precision of the fastText classifier in filtering general text from web retrieval data, we
leverage Claude-3-Sonnet to annotate 20K samples. We then compare the predictions from the fastText
filter against these annotated ground-truth labels. The evaluation results are presented in Table 6. The
results indicate that the fastText filter achieves an accuracy of approximately 88%, suggesting that the
filtering outcomes are reliable and trustworthy. Moreover, the higher recall score indicates that the filtered
data encompasses most agent-relevant information from the retrieval.

Model (}) Accuracy F-1 Precision Recall

fastText 87.46 8720 8342 9133

Table 6: Classification results of the fastText filter.

F.2 Evaluation of Base Models

As base models often struggle to follow instructions to solve problems, existing works evaluate these
models using few-shot prompting (Wei et al., 2022; Shao et al., 2024) or by assessing the negative
log-likelihood of the final answer (Dubey et al., 2024) (e.g., selecting the correct choice). However,
these evaluation methods are not suitable for agent environments for the following reasons: (1) Task
Complexity. Agent environment tasks are significantly more complex than multiple-choice questions,
requiring the generation of long sequences of actions rather than selecting a single answer. (2) Contextual
Task Requirements. Task requirements are often intricately embedded within the context, leaving
insufficient space for few-shot exemplars. To this end, we evaluate Hephaestus-Base on three agent
benchmarks (Nexus (Srinivasan et al., 2023), API-Bank (Li et al., 2023b), and API-Bench (Patil et al.,
2023)) and one general benchmark (MMLU) (Hendrycks et al., 2020), reporting the benchmark loss in
Figure S.

F.3 Main Experimental Results on BFCL-v2

Datasets (—) AST Exec BFCL-v2
Models (]) OA Simple Python Java JS MF PF PM OA Simple Python REST MF PF PM OA
Base LLMs

LLaMA-3-8B (Dubey et al., 2024) 094 13 1.0 20 15 05 05 05 040 20 1.0 1.0 0.0 0.0 00 17.77
LLaMA-3.1-8B (Dubey et al., 2024) 6.05 10.2 120 50 6.0 40 75 25 043 1.7 2.0 1.4 00 00 0.0 21.10
Hephaestus-8B-Base 154 122 150 4.0 6.0 25.0 11.5 13.0 224 29 2.0 43 60 00 0.0 2518

Open-Source Instruction Fine-Tuned LLMs (Small)

LLaMA-3-8B-Instruct (Dubey et al., 2024)  60.47 58.3 65.5 38.0 42.0 76.5 58.0 49.0 68.88 44.5 89.0 557 86.0 78.0 55.0 59.57
LLaMA-3.1-8B-Instruct (Dubey et al., 2024) 58.38  60.0 68.8 32.0 46.0 66.5 65.0 42.0 72.60 83.7 87.0 77.1 83.0 76.0 525 61.39
LLaMA-3-8B-IFT 4743  66.7 755 37.0 56.0 455 54.0 23.5 63.41 87.7 93.0 80.0 68.0 58.0 40.0 62.12
Hephaestus-8B-IFT 66.39 725 81.8 45.0 54.0 79.5 70.5 43.0 69.82 85.3 95,0 714 88.0 66.0 400 70.78

For Reference: Open-Source Instruction Fine-Tuned LLMs (Medium to Large) and API-based Commercial LLMs

Gemini-1.5-Flash (Reid et al., 2024) 77.44 673 92.8 550 54.0 940 71.5 77.0 73.23 579 93.0 229 86.0 74.0 750 70.75
Mixtral-8x22B (Jiang et al., 2024) 5792 672 87.5 54.0 60.0 82.0 50.5 32.0 63.59 719 88.0 557 740 56.0 52.5 63.26
gpt-3.5-turbo-0125 (OpenAl, 2022) 66.31 63.8 753 50.0 66.0 78.0 68.0 55.5 65.88 44.5 89.0 0.0 86.0 78.0 550 66.53
Claude-3-Haiku (Anthropic, 2024) 62.52 776 958 63.0 74.0 93.0 47.5 32.0 60.73 89.4 96.0 829 94.0 32.0 27.5 5547
Command-R-Plus-FC (Cohere, 2024) 7765 69.6 858 61.0 62.0 88.0 82.5 70.5 7741 89.1 940 843 86.0 82.0 525 76.29
LLaMA-3-70B-Instruct (Dubey et al., 2024) 87.90 75.6 948 60.0 72.0 94.0 93.0 89.0 88.04 94.1 94.0 943 94.0 84.0 80.0 84.95
gpt-4-0613 (Achiam et al., 2023) 9192 81.2 955 68.0 80.0 96.0 96.0 94.5 87.57 98.3 98.0 98.6 96.0 86.0 70.0 89.26

Table 7: Main experiment results on BFCL-v2.

Table 7 displays detailed experimental results on BFCL-v2, covering AST and Execution, two aspects
in evaluation of function calling capabilities. Aside from the notations across the other tables, “JS”

LE T3 LE T3

indicates “JavaScript”; “MF”, “PF”, and “PM” refer to “multiple functions”, “parallel functions”, “parallel
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multiple functions”. The superior performance of Hephaestus-3-8B in AST evaluations indicates that
the pre-training stage successfully introduced syntax knowledge of function calling into the model, which
also contributes to improvements in the Execution aspect. However, the performance gain in Execution
evaluations is less pronounced. This is because, lacking access to the instruction fine-tuning data used for
LLaMA-3-8B, our Hephaestus-8B-IFT demonstrates limited instruction-following capabilities compared
to LLaMA-3-8B-Instruct and LLaMA-3.1-8B-Instruct. Consequently, it is more challenging to follow
instructions to generate executable functions.

F.4 Effect of Backbone LLMs

Datasets (—) AgentBench

Models () OA OS DB HH KG WB WS
Mistral-7B-v0.3-Base (Jiang et al., 2023) 040 76 0.7 00 89 110 14
Hephaestus-7B-Base (Mistral) 146 183 21.0 24.0 12.7 14.0 46.2
Mistral-7B-v0.3-Instruct (Jiang et al., 2023) 1.10 18.1 15.0 4.0 89 18.0 39.6
Mistral-7B-v0.3-IFT 1.32 174 18.0 8.0 159 20.0 45.1
Hephaestus-7B-IFT (Mistral) 1.72 174 11.7 30.0 20.1 25.0 554

Table 8: Experimental results of Hephaestus-7B (Mistral) with Mistral-7B-v@. 3 as backbone LLLM on Agent-
Bench.

Table 8 reports the performance of Hephaestus and the baselines using Mistral-7B-v@. 3 as backbone
LLM on AgentBench. Notably, there exist consistent gains in terms of the average performance on both
base model and instruction-tuned model (1.06 on base model and 0.4 on IFT model), justifying the
advantage of pre-training on Hephaestus-Forge across different LLM types and architectures.

G Case Studies
G.1 Code-to-Text Synthesis Example

We present an example of synthesized API documentation as follows:

‘<Code_to_Text> Example‘
**%API: “easyai.model.base_block.utility.utility_block.ConvBNActivationBlock™ x*

The ~ConvBNActivationBlock™ is a utility class that combines a convolutional layer, a batch
normalization layer, and an activation layer into a single block. This block is commonly used as a
building block in various neural network architectures, including the PNASNet architecture
demonstrated in the provided code.

**Parameters: x*

- “in_channels™ (int): The number of input channels for the convolutional layer.

- “out_channels™ (int): The number of output channels for the convolutional layer.

“kernel_size™ (int or tuple): The size of the convolutional kernel.

“stride™ (int or tuple, optional): The stride of the convolutional operation. Default is 1.

- “padding™ (int or tuple, optional): The padding added to the input tensor before applying
the convolution. Default is @.

“bias™ (bool, optional): Whether to include a bias term in the convolutional layer. Default is
“False™.

“bnName™ (str or “easyai.base_name.block_name.NormalizationType™, optional): The normalization
type to be used. Default is “NormalizationType.BatchNormalize2d-.

- TactivationName™ (str or “easyai.base_name.block_name.ActivationType~, optional): The activation

function to be used. Default is “ActivationType.RelLU".

**Attributes:**

- “conv™: The convolutional layer.

- “bn~: The batch normalization layer.
- Tactivation™: The activation layer.

**Methods: x*
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- “forward(x): Defines the forward pass of the block. It takes an input tensor “x~ and applies the
convolutional, batch normalization, and activation operations sequentially.

- “get_name(): Returns the name of the block, which is a combination of the class name and a uniqud
index.

**Example Usage:**
T “python

import torch

from easyai.model.base_block.utility.utility_block import ConvBNActivationBlock

# Create a ConvBNActivationBlock with input channels 3, output channels 64, kernel size 3x3, and
stride 1
block = ConvBNActivationBlock(in_channels=3, out_channels=64, kernel_size=3, stride=1)

# Generate a random input tensor
x = torch.randn(1, 3, 32, 32)

# Pass the input tensor through the block
output = block(x)

In the provided code, the “ConvBNActivationBlock™ is used as the first layer of the PNASNet
architecture, where it takes the input image data and applies a convolutional operation followed by
batch normalization and activation.

G.2 Retrieved Data Examples

We present two examples of high-quality retrieved data as follows:

<Retrieval> Example-1

The Cardboard Kitchen : 6 Steps

By nicholasniski@1 in Craft Cardboard

Introduction: The Cardboard Kitchen

In this instructable I will show you how to make a Cardboard Kitchen. The Cardboard Kitchen Is
almost entirely made out of Cardboard. This Kitchen includes a Stove, Oven, Sink, Dishwasher,
Fridge and Microwave.

lots of small boxes

and a medium size box

Step 1: How to Make a Fridge
you need to disassemble the medium size box(Get rid of ALL the tape)...

Step 2: How to Make a Microwave
First get a small box, make a rectangular hole in the box...

Step 3: How to Make a Sink
First get a small box, cut off the top of the box...

Step 4: How to Make a Dishwasher
Cut out a square of cardboard for the size of the dishwasher then you color the cardboard black,
silver or any other color you would want for the dishwasher...

Step 5: How to Make a Stove
To make the stove you make a black circle with for lines going out of the circle on an unused
section of your big box or \"counter\"”...

Step 6: How to Make an Oven
Get a square the size you want your oven to be...

<Retrieval> Example-2

manual Prestigio MultiReader 5574

You can create your event and make a plan on your calendar. On the home screen or list menu,
tap Calendar. View the calendar On the home screen or list menu, tap Calendar to check the
calendar. Tap to change your calendar to Day, Week,Month or Agenda view. Create an event

Go to Calendar, select a date.

Tap to create a new event.

Edit reminder settings.

Tap Done to save the event.

A wN =

G.3 Data Quality Filtering Failure Cases

We present a failure case of the fastText filter below:
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<fastText_Filter> Failure Case

[TEXT]

We're making it even easier for you to stay connected to 99ROCK wherever you go! Besides tuning
in on your radio, you can also stream your favorite station through your computer, smartphone,
tablet, and your smart speaker.

If you are in or near the Fort Walton Beach-Destin broadcast area, tune your radio to: 99.5 FM

Stream 99ROCK at work or home from your computer on one of these web players: Triton Player iHeart
Radio Tuneln

Listen to 99ROCK on-the-go thru one of these popular streaming apps or thru the 99ROCK mobile
app: i0S App Google Play iHeart Radio Tuneln

First you need to enable the 99ROCK skill:

Say, "~ “Alexa, enable the ninety-nine rock Skill''

After you have enabled the Skill, listen to our station just by saying "Alexa, open ninety nine
rock”

Just say, ~“Hey Google, play ninety-nine rock''

[CATEGORY]

Agent

In this case, the fastText model incorrectly categorized the text as agent-relevant data. This misclassifi-
cation likely occurred because fastText relies on gram frequency analysis, and the presence of multiple
high-tech terms (e.g., i0S, App, Google Play) in the paragraph may have misled the model.

H Prompt Templates
H.1 Prompt Template for Code-to-Text Synthesis

‘<Code_to_Text> Prompt

Please use your knowledge to write an API documentation for the given APIs and consider the given
code as the example usage.

API:
{api}

Code:
{code}

API Documentation:

H.2 Prompt Template for LLM Annotator in Data Quality Control

<LLM_Annotation> Prompt‘

Please categorize the given text belong to agent-relevant data or other general text. The
definitions are as follows:

1. Agent: Tool documentation text that describes the usage of a tool, software, or API; and action
trajectory text that describes a sequence of actions or steps to achieve a goal.

2. General: Other general text that does not belong to the above two categories.

Below are some examples:

[TEXT]

**%API: ~easyai.model.base_block.utility.utility_block.ConvBNActivationBlock™ x*

The ~ConvBNActivationBlock™ is a utility class that combines a convolutional layer, a batch

normalization layer, and an activation layer into a single block. This block is commonly used as a

building block in various neural network architectures, including the PNASNet architecture

demonstrated in the provided code. **Parameters:*x - “in_channels”™ (int): The number of input

channels for the convolutional layer.

- “out_channels™ (int): The number of output channels for the convolutional layer.

- “kernel_size™ (int or tuple): The size of the convolutional kernel.

- “stride” (int or tuple, optional): The stride of the convolutional operation. Default is 1.

- “padding™ (int or tuple, optional): The padding added to the input tensor before applying the
convolution. Default is 0.

- “bias™ (bool, optional): Whether to include a bias term in the convolutional layer. Default is
“False™.

- “bnName®™ (str or “easyai.base_name.block_name.NormalizationType™, optional): The normalization
type to be used. Default is “NormalizationType.BatchNormalize2d-.

- “activationName™ (str or "“easyai.base_name.block_name.ActivationType™, optional): The activation
function to be used. Default is “ActivationType.RelLU".

[CATEGORY]

Agent
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[TEXT]

I want to deliver a Birthday Gift to my friend in London, UK. Then, I need to book a flight from
New York, USA to London, UK on August 1st, 2023 for myself. After arriving in London, I would like
to see Dr. Smith for my Migraine. Once my health is in check, I'd like to apply for a Software
Engineer job in London.

Step 1: Call deliver_package API with package: 'Birthday Gift' and destination: 'London, UK'
deliver_package(package=Birthday Gift, destination=London, UK)

Step 2: Call book_flight API with date: '2023-08-01', from: 'New York, USA' and to: 'London, UK'
book_flight(date=2023-08-01, from=New York, USA, to=London, UK)

Step 3: Call see_doctor_online API with disease: 'Migraine' and doctor: 'Dr. Smith'
see_doctor_online(disease=Migraine, doctor=Dr. Smith)

Step 4: Call apply_for_job API with job: 'Software Engineer' apply_for_job(job=Software Engineer)”
[CATEGORY]

Agent

[TEXT]

My New Crock Pot -- Creuzer Leave a comment on My New Crock Pot I went out and got myself a new
crock pot. I rather like this one. It has 3 settings, High, Low, and Warm. It is designed to

be hauled around even! There are latches on each side of the lid to clip the lid in place. It
even came with it's own spoon that clips into the lid! A really neat feature is that the lid has
little tabs so you can set the lid on one of the handles and it won't go all sliding all over
the place. I think this is a winner, I plan on using it a lot for the cooking club I am in.
[CATEGORY]

General

Please categorize the following text into agent-relevant data (Agent) or general text (General).

ONLY respond the category name (Agent/General) for each text. If you are unsure, please respond with
'General'.

[TEXT]

{text}

[CATEGORY]
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Data Source Type Format Tokens (B) URL Link

ToolBench (Qin et al., 2024) Traj.  Dialog 0.530 https://github.com/OpenBMB/ToolBench

Agentlnstruct (Zeng et al., 2023) Traj. ReAct 0.002 https://huggingface.co/datasets/THUDM/
AgentInstruct

Alexa-Arena (Gao et al., 2024) Traj. NL Plan 0.035 https://github.com/amazon-science/
alexa-arena/tree/main

chat_ego_4d (Mu et al., 2024) Traj. API Seq 0.025 https://github.com/EmbodiedGPT/EgoCOT_Dataset

FireAct (Chen et al., 2023) Traj. ReAct 0.002 https://fireact-agent.github.io/

NAT (Wang et al., 2024c) Traj.  ReAct 0.003 https://github.com/Reason-Wang/NAT

ToolAlpaca (Tang et al., 2023) Traj. Plain Text 0.004 https://github.com/tangqiaoyu/ToolAlpaca/
tree/main

Lumos (Yin et al., 2024) Traj.  Dialog 0.109 https://huggingface.co/datasets/ai2lumos/
lumos_complex_qga_ground_iterative?row=0

STE (Wang et al., 2024a) Traj. Plain Text 0.025 https://github.com/microsoft/
simulated-trial-and-error

toolbench (Xu et al., 2023) Traj. API Seq 0.010 https://github.com/sambanova/toolbench

Gorilla (Patil et al., 2023) Doc. API Seq 0.009 https://gorilla.cs.berkeley.edu/

PublicAPIs Doc. Plain Text 0.008 https://github.com/public-apis/public-apis?
tab=readme-ov-file

TaskBench (Shen et al., 2023) Traj. NL Plan 0.020 https://github.com/microsoft/JARVIS/tree/
main/taskbench

RestBench (Song et al., 2023) Traj. API Seq 0.001 https://github.com/Yifan-Song793/RestGPT/
tree/main/datasets

SayCanPay (Hazra et al., 2024) Traj. NL Plan 0.001 https://github.com/RishiHazra/saycanpay

AgentFlan (Chen et al., 2024b) Traj.  Dialog 0.020 https://github.com/InternLM/Agent-FLAN

PlanBench (Valmeekam et al., 2024) Traj. NL Plan 0.001 https://github.com/karthikv792/LLMs-Planning

SwftSage (Lin et al., 2024a) Traj. NL Plan 0.022 https://github.com/yuchenlin/SwiftSage

T-Eval (Chen et al., 2024a) Traj.  Dialog 0.040 https://github.com/open-compass/T-Eval

API-Bank (Li et al., 2023b) Traj. API Seq 0.001 https://github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/api-bank

JeirchoWorld (Ammanabrolu and Riedl, 2021) Traj. NL Plan 0.001 https://github.com/JerichoWorld/JerichoWorld

API-Pack (Guo et al., 2024b) Traj. API Seq 0.800 https://huggingface.co/datasets/zguo0525/
API-Pack/tree/main

CodeAct (Lv et al., 2024) Traj.  Dialog 0.009 https://huggingface.co/datasets/xingyaoww/
code-act

UltraTool (Huang et al., 2024) Traj. NL Plan 0.002 https://github.com/JoeYing1019/UltraTool/
tree/main

Tooleyes (Ye et al., 2024) Doc. JSON 0.001 https://github.com/Junjie-Ye/ToolEyes/tree/
main

OpenMathlnstruct (Toshniwal et al., 2024) Traj. API Seq 0.335 https://huggingface.co/datasets/nvidia/
OpenMathInstruct-1

NexasRaven (Srinivasan et al., 2023) Traj. JSON 0.001 https://huggingface.co/Nexusflow

Seal-Tools (Wu et al., 2024) Traj. API Seq 0.002 https://github.com/fairyshine/Seal-Tools/
tree/master

Ultralnteract (Yuan et al., 2024a) Traj. QA 0.16 https://huggingface.co/datasets/openbmb/
Ultralnteract_sft?row=0

Python Module Doc. Plain Text 0.001 https://docs.python.org/3.12/

AgentTraj-L (Xi et al., 2024) Traj.  Dialog 0.020 https://huggingface.co/datasets/AgentGym/
AgentTraj-L

MNMs (Ma et al., 2024) Traj. API Seq 0.001 https://huggingface.co/datasets/zixianma/mnms

PythonQA-API-Usage Doc. QA 0.003 https://huggingface.co/datasets/RazinAleks/
SO-Python_QA-API_USAGE_class

APIText Traj. API Seq 0.001 https://huggingface.co/datasets/havens2/
apitext

StarCoder-APIs (Lozhkov et al., 2024) Traj. Code 6.147 https://huggingface.co/datasets/luna-code/
starcoderdata-apis

APIs_v2 Traj. API Seq 0.003 https://huggingface.co/datasets/vinilazzari/
apis_v2

Ultimate Traj. QA 0.002 https://huggingface.co/datasets/Kris8an/
ultimate_apicalls_and_topbot

xLAM (Zhang et al., 2024b) Doc. QA 0.022 https://huggingface.co/datasets/Salesforce/

xlam-function-calling-60k

Table 9: Data sources of the seed data in Hephaestus-Forge.
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Data Source Type Format Tokens (B) URL Link

API_doc Doc. Plain Text 0.001 https://huggingface.co/datasets/Prakhar1000/API_
Documentation_dataset_alpaanco?row=0

ChatsBug Traj. NL Plan 0.009 https://huggingface.co/datasets/chats-bug/agent_
action_plan?row=0

sample_scripts Traj. API Seq 0.002 https://huggingface.co/datasets/prantadi/tokenized_
dataset_1024_SampleScripts_deduped_API-ref?row=1

Agent-Trajectories Traj. API Seq 0.001 https://huggingface.co/datasets/Agent-Eval-Refine/
Agent-Trajectories/tree/main

Agent-Instruct Traj.  Dialog 0.056 https://huggingface.co/datasets/sam-mosaic/
agent-instruct

Agent007 Traj. API Seq 0.001 https://huggingface.co/datasets/DepositorOP/
agentoo7

AgentCode Traj. API Seq 0.010 https://huggingface.co/datasets/AlignmentLab-AI/
agentcode

syn-web-agent Traj. JSON 0.001 https://huggingface.co/datasets/allyson-ai/
synthetic-web-agent

syn-llama Traj.  Dialog 0.004 https://huggingface.co/datasets/Cyleux/
agent-machine-convo-1lama-nicholas-2k-gpt4-verified

seq-Mind2Web Traj. JSON 1.243 https://huggingface.co/datasets/Izazk/
Sequence-of-action-prediction-mind2web

syn-gemma Traj.  Dialog 0.047 https://huggingface.co/datasets/NickyNicky/
function-calling-sharegpt_chatml_gemma_agent

LLM Robot Traj. API Seq 0.001 https://huggingface.co/datasets/Aryaduta/llm_robot

Verifiers for Code  Traj. Plain Text 0.05 https://huggingface.co/datasets/verifiers-for-code/
CodeNet-Planner

isotonic planner Traj. NL Plan 0.005 https://huggingface.co/datasets/Isotonic/planner_
dataset

Turing Solutions Traj. NL Plab 0.001 https://huggingface.co/datasets/TuringsSolutions/
GlobalFunctionCallingTrainingSetLarge

G-PlanET Traj. NL Plan 0.003 https://huggingface.co/datasets/TuringsSolutions/
GlobalFunctionCallingTrainingSetLarge

Pandas Doc Doc. Plain Text 0.004 https://pandas.pydata.org/

Sugarcrm Doc. Plain Text 0.001 https://huggingface.co/datasets/kaahila/sugarcrm_
130_documentation

AWS Doc. Plain Text 0.033 https://huggingface.co/datasets/sauravjoshi23/
aws-documentation-chunked

LangChain Doc. Plain Text 0.005 https://huggingface.co/datasets/jamescalam/
langchain-docs-23-06-27

Code Library Doc. Plain Text 0.013 https://huggingface.co/datasets/code-rag-bench/
library-documentation

PublicAPIs-extend Doc. Plain Text 0.718 https://github.com/public-apis/public-apis?tab=
readme-ov-file

Torch Doc. Plain Text 0.005 https://pytorch.org/docs/stable/index.html

Table 10: Data sources of the seed data in Hephaestus-Forge (Cont’d).
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