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Abstract

Recent studies have augmented large language
models (LLMs) with speech capabilities, lead-
ing to the development of speech language mod-
els (SpeechLMs). Earlier SpeechLMs focused
on single-turn speech-based question answer-
ing (QA), where user input comprised a speech
context and a text question. More recent studies
have extended this to multi-turn conversations,
though they often require complex, multi-stage
supervised fine-tuning (SFT) with diverse data.
Another critical challenge with SpeechLMs
is catastrophic forgetting, where models opti-
mized for speech tasks suffer significant degra-
dation in text-only performance. To mitigate
these issues, we propose a novel single-stage
joint speech-text SFT approach on the low-
rank adaptation (LoRA) of the LLM backbone.
Our joint SFT combines text-only SFT data
with three types of speech-related data: speech
recognition and translation, speech-based QA,
and mixed-modal SFT. Compared to previous
SpeechLMs with 7B or 13B parameters, our
3B model demonstrates superior performance
across various speech benchmarks while pre-
serving the original capabilities on text-only
tasks. Furthermore, our model shows emergent
abilities of effectively handling previously un-
seen prompts and tasks, including multi-turn,
mixed-modal inputs.1

1 Introduction

Large language models (LLMs) have demonstrated
impressive success in natural language process-
ing (OpenAI, 2023; Reid et al., 2024; Dubey et al.,
2024), sparking a surge of research into multi-
modal foundation models that extend beyond text.
Recent studies in speech processing have focused

*Equal contribution. Work done while Yifan was an intern
at NVIDIA.

1We will publicly release our data generation
scripts, training code, and pre-trained model weights:
https://github.com/pyf98/NeMo_VoiceTextBlender

on augmenting pre-trained LLMs with speech capa-
bilities, giving rise to a new class of models known
as speech language models (SpeechLMs) (Gong
et al., 2024; Tang et al., 2024; Rubenstein et al.,
2023; Wang et al., 2023b; Maiti et al., 2024; Chen
et al., 2024; Das et al., 2024; Chu et al., 2024;
Dubey et al., 2024).

Initially, SpeechLMs were primarily designed
for single-turn speech-based question answering
(SQA) tasks (Gong et al., 2024; Tang et al., 2024;
Wang et al., 2023b; Chen et al., 2024), where the
input consists of an audio clip and a text question,
with the model expected to generate a text answer.
While these models perform well on training tasks
such as automatic speech recognition (ASR), au-
tomatic speech translation (AST), and SQA, they
often struggle with general-purpose textual or spo-
ken instructions and are not capable of handling
multi-turn mixed-modal conversations.

Recent SpeechLMs aim to support multi-turn
conversations where user input can be entirely au-
dio (Chu et al., 2024; Dubey et al., 2024). Develop-
ing these models requires aligning speech features
with text embeddings using large amounts of care-
fully curated data. However, no well-established
public methodology—including data generation
scripts, data specifications, or model training de-
tails—currently exists for building such models. In
this work, we present VoiceTextBlender (or VT-
Blender in short), a voice-text language model that
supports multi-turn, mixed-modal conversations,
where user turns may contain both speech and text
(see Figure 1 for example). We will publicly release
our data generation scripts, provide comprehensive
details about our training data and process, and
make our pre-trained model weights available.

Another challenge in building SpeechLMs is
maintaining the original text-only performance
while enhancing speech capabilities, which is cru-
cial for creating a truly multi-modal model. Some
approaches, such as Llama 3.1 (Dubey et al., 2024),
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Give me three suggestions. [audio]

(I don’t feel well since last night, I had headache and I took a pill of Ibuprofen. I went to bed early.)

I understand you're not feeling well. It's important to rest and seek medical attention. Here are a few 
things you can do:
1. Call your doctor or go to the emergency room immediately. They can assess your symptoms 

and recommend the best course of action.
2. Take a pain reliever. Over-the-counter pain relievers like ibuprofen or acetaminophen can help 

with headaches.
3. Stay hydrated. Drink plenty of fluids to prevent dehydration.
Please remember to prioritize your health and seek professional help.

Give one more suggestion.

Here's another suggestion:
4. Rest and get enough sleep. Your body needs time to recover from illness.
Remember, it's always better to be safe than sorry. If you're unsure about your symptoms or need 
further assistance, don't hesitate to reach out to a healthcare professional.

[audio]

(Where can I find doctors near Santa Clara?)

I can't provide medical advice, and finding a doctor is crucial.
Here are some resources to help you find doctors near Santa Clara:
• Your primary care doctor: They can refer you to a specialist if needed.
• The Santa Clara County Health Department website: https://www.santaclaracounty.org/
• The American Medical Association (AMA): https://www.ama.org/
• The National Institutes of Health (NIH): https://www.nih.gov/
You can also use online search engines like Google to find doctors in your area.

Figure 1: Our VTBlender 3B with joint SFT enables multi-turn, mixed-modal conversations, allowing user input in
the form of pure speech, pure text, or a combination of both. It’s worth noting that our speech-related SFT data
consists of only single-turn interactions, while our text SFT data has multiple turns.

freeze the LLM to preserve text capabilities, but
this can lead to degraded speech performance,
as shown in Section 4.3 and prior work (Wang
et al., 2023b). Alternatively, models like GPT-4o
mix speech and text data during pre-training to
create a natively multi-modal model, but this re-
quires access to extensive pre-training data and
infrastructure, making it computationally expen-
sive and requiring significant tuning. In this work,
we propose single-stage joint speech-text super-
vised fine-tuning (SFT) with low-rank adaptation
(LoRA) (Hu et al., 2022), which preserves text-
only performance while achieving excellent speech
understanding capabilities.

Our contributions are summarized below.

• We propose a single-stage joint speech-text
SFT strategy for training SpeechLMs, which
simplifies the training process, preserves the
LM’s original text-only performance, and de-
livers strong results on speech tasks.2 Our
3B model outperforms previous 7B or 13B

2The current work mainly focuses on the linguistic content
of human speech. In the future, we will expand to diverse
attributes such as speaker identity (Wu et al., 2024).

SpeechLMs on most evaluated benchmarks.

• We incorporate multiple methods for generat-
ing speech-related SFT data, including a novel
approach that can construct mixed-modal in-
terleaving speech-text SFT data by applying
text-to-speech (TTS) to randomly selected
sentences from text SFT data. These diverse
training data enable our model to handle multi-
turn, mixed-modal conversations and general-
ize to previously unseen prompts and tasks.

• We will publicly release the pre-trained model
weights, along with the code for data gener-
ation and training, to support and advance
research on SpeechLMs.

2 Related Work

SpeechLM overview. SpeechLMs integrate lan-
guage modeling with speech foundation models,
and can be broadly categorized into two types.
The first category of SpeechLMs directly mod-
els the distribution of speech features to facilitate
speech generation (Lakhotia et al., 2021; Borsos
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et al., 2023). In this case, speech signals are typi-
cally represented as discrete tokens, which are ex-
tracted using self-supervised speech encoders (Hsu
et al., 2021; Chen et al., 2022). The second cate-
gory of SpeechLMs aims to augment LLMs with
speech understanding capabilities. To preserve as
much information from the speech input as possi-
ble, these models commonly employ continuous
features extracted by supervised pre-trained speech
encoders (Radford et al., 2023; Zhang et al., 2023;
Peng et al., 2023; Puvvada et al., 2024). Earlier
works in this area primarily focused on single-turn
speech-based QA tasks (Gong et al., 2024; Tang
et al., 2024), where the input consists of a speech
segment and a text-based question. More recent
research extends this approach to multi-turn inter-
actions, allowing user input to be entirely speech-
based (Chu et al., 2024; Dubey et al., 2024). Our
work falls within the second category, aiming to
support multi-turn mixed-modal interactions in
which user input can be pure text, pure speech,
or a combination of both.
SpeechLM training. SpeechLMs are typically
trained in multiple stages with supervised data.
Gong et al. find that an appropriate curriculum
is crucial to train their LTU models. Specifically,
they propose a four-stage training procedure that
gradually increases the number of learnable pa-
rameters and the complexity of the training tasks.
Tang et al. adopt a three-stage training pipeline for
their SALMONN models: pre-training, instruction
tuning, and activation tuning. SpeechVerse (Das
et al., 2024) observes that training all learnable
parameters from scratch on diverse speech tasks
often leads to divergence. Hence, they propose two-
stage training with gradually increased learnable
modules and speech tasks. While multi-stage cur-
riculum learning methods are intuitive and enhance
training stability, they significantly increase the
complexity of design choices. These approaches
require extensive tuning and heuristics to determine
the appropriate order for updating modules and as-
signing tasks. In this work, we adopt a single-stage
training strategy that combines text-only SFT data
with various mixed-modal SFT data. Our approach
streamlines the training pipeline while achieving
strong performance across diverse benchmarks.3

3A recent work, AudioChatLlama (Fathullah et al., 2024),
also conducts single-stage training. However, it is not explic-
itly trained on diverse speech tasks. Instead, it uses ASR data
and relies on the modal-invariance trick, which differs greatly
from our training objective.

Language Model

Speech Encoder

Modality Adapter

Embedding

LoRA

Learnable

Frozen

Figure 2: Model architecture. Only a pair of speech and
text are depicted for simplicity, but the input can contain
multiple segments of speech and text in any order.

Catastrophic forgetting in SpeechLM. Most
SpeechLMs are optimized for speech tasks, of-
ten at the expense of their original text capabil-
ities, a phenomenon known as catastrophic for-
getting. To preserve the text-only performance
of instruction-tuned LMs, some studies freeze the
backbone LM (Wang et al., 2023a; Fathullah et al.,
2024; Dubey et al., 2024). However, as discussed in
Section 4.3 and by Wang et al., this approach may
degrade performance on speech tasks. Many other
works use parameter-efficient fine-tuning methods,
such as LoRA adapters (Hu et al., 2022), to miti-
gate catastrophic forgetting (Gong et al., 2024; Das
et al., 2024). However, our experiments in Sec-
tion 4.3 reveal that merging the LoRA parameters
into the original model parameters significantly
degrades performance on text-only benchmarks,
demonstrating that LoRA alone does not ensure
preservation of the model’s original capabilities. A
recent study in vision language models, VILA (Lin
et al., 2024), finds that incorporating text SFT data
in their multi-stage training paradigm mitigates
catastrophic forgetting. However, it only considers
the vision modality, not speech. Inspired by this
line of work, we propose a joint speech-text SFT
approach, which integrates text-only SFT data with
speech-related SFT data. Our method preserves
text-only performance while achieving strong re-
sults on newly added speech tasks.

3 Proposed Method

3.1 Model Architecture
Figure 2 shows the overall architecture of our VT-
Blender, consisting of three components: a speech
encoder to extract continuous features from raw
speech input, a modality adapter to map speech fea-
tures into a shared embedding space with text, and
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LLM

Prompt: 
Generate a 
question and 
answer based 
on the context.

Q: What should be opened?
A: The lid.

Transcript:
Now, it's time 
to open the lid.

(a) Generate speech-based QA data by prompting LLM.

User: This is so cool! I'm learning about the 
future of AI. Can you tell me more?
System: Sure! Here is my response […]

User: This is so cool! I'm learning about the 
future of AI. Can you tell me more?
System: Sure! Here is my response […]

User: This is so cool! [Audio] Can you tell me 
more?
System: Sure! Here is my response […]

Select a random sentence in user turn

Replace it with the synthesized audio

(b) Generate mixed-modal SFT data with TTS.

Figure 3: Different types of SFT data are generated for training.

a language model to generate text responses condi-
tioned on the input. Similar architectures have been
commonly used in prior works (Chen et al., 2024;
Das et al., 2024). The speech encoder is initialized
from a pre-trained Canary encoder (Puvvada et al.,
2024). The LM has undergone text SFT to improve
instruction-following capabilities (see Section 4.1
for more details). The modality adapter consists
of randomly initialized Conformer layers (Gulati
et al., 2020). During training, both the speech en-
coder and modality adapter are fully fine-tuned,
whereas the LM is partially fine-tuned with LoRA
adapters (Hu et al., 2022).

Let S and X be the input speech waveform and
text tokens, respectively. They are mapped into a
shared embedding space as follows:

Senc = Enc(S) ∈ RT×D, (1)

Sadp = Adp(Senc) ∈ RT ′×D′
, (2)

Xemb = Emb(X) ∈ RL×D′
, (3)

where Senc is the output of the speech encoder with
length T and feature size D. Sadp is the speech
feature sequence after the modality adapter with
length T ′ and size D′. Xemb is the text feature
sequence after the LM embedding layer with length
L and feature size D′. Then, the speech and text
features are concatenated and fed into the LM to
generate the output text Y :

Xinp = Cat(Sadp,Xemb) ∈ R(T ′+L)×D′
, (4)

Y = LM(Xinp), (5)

where Xinp combines both speech and text features
and follows the chat template of the pre-trained
LM. While only a pair of speech and text are de-
picted for simplicity, our framework is designed to
accommodate any combination of speech and text

inputs. For each user turn, the input may consist of
speech alone, text alone, or a combination of both.

During training, we minimize the following loss:

L = − logP (Y | S,X; Θ), (6)

where Θ is the set of learnable parameters, in-
cluding the speech encoder, modality adapter, and
LoRA adapter.

3.2 Joint Speech-Text SFT

To preserve the original text capabilities while
adding new capabilities of speech understanding,
we propose joint speech-text SFT, which mixes text-
only SFT data with three types of speech-related
SFT data during training. Our training process is
single-stage, with different data types sampled at
specific probabilities when creating mini-batches.

Specifically, the text-only SFT data consists of
multi-turn conversations, commonly used to en-
hance the instruction-following abilities of LLMs
in the “post-training” stage. For speech-related
SFT, we employ three types of data to address vari-
ous use cases and improve the model’s performance
with mixed-modal inputs, which will be discussed
in the following three sections. Note that the text-
only SFT dataset has multiple turns, whereas all
the speech-related SFT datasets have only one turn.
Through joint SFT, our model can generalize to
multi-turn mixed-modal conversations (see Sec-
tion 4.4 and Figure 1).

3.2.1 Multilingual ASR and AST
ASR and AST are foundational tasks that enable the
model to understand speech, where each input in-
cludes speech and a text instruction describing the
task. During training, the same instruction is used
for all samples within a specific task and language.
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However, we observe that our model is capable of
understanding and following unseen instructions
for ASR and AST tasks (see Section 4.4.2).

3.2.2 Speech-based QA from ASR Data

To enable general QA capabilities about speech, we
create speech-based QA data from English ASR
data by prompting a pre-trained LLM. As shown
in Figure 3a, we provide the transcript to an LLM4

and prompt it to generate a question-answer pair
based on the provided context. During training,
the text question and corresponding speech context
are given as input, while the model is trained to
predict the text answer. This approach has been
used in prior studies (Tang et al., 2024; Gong et al.,
2024; Noroozi et al., 2024), but we scale it up to
20k hours of audio.

The SQA data includes large volumes of real
audio from diverse acoustic environments, help-
ing mitigate overfitting. However, its limitation
lies in the restricted diversity of generated ques-
tions, which are less varied than general-purpose
instructions, and the answers tend to be short and
simple. Additionally, the input always consists
of a speech context and a text question, so the
model often struggles with spoken instructions
or interleaving speech-text inputs. For example,
SALMONN (Tang et al., 2024) is trained on SQA-
style data. When we input a pure spoken instruction
into the model, it tends to disregard the instruction
and performs ASR instead.

3.2.3 Mixed-Modal SFT Data with TTS

To overcome the limitations of SQA data and en-
able more flexible mixed-modal input, we create
another type of data containing mixed-modal inter-
leaving speech-text inputs. Specifically, our mixed-
modal SFT data is generated by applying TTS to
existing single-turn text SFT data, as illustrated in
Figure 3b. For each text SFT sample, we randomly
select a subset of consecutive sentences from the
user turn and replace them with synthesized audio.
This mixed-modal input is then used for training,
resulting in each user input containing one speech
segment that may appear at the beginning, middle,
or end. If all sentences are replaced by audio, the
user input is pure speech without text.

This data has more flexible input formats than
SQA, making speech and text inputs interchange-
able. Instructions can now be conveyed through

4https://huggingface.co/google/gemma-2-27b-it

Task Dataset #Samples #Hours Sampling Ratio

Text-only SFT Nemotron 94.0k N/A 0.1500
ASR, AST Canary 32.8M 85k 0.7556

Speech-based QA Canary Subset 4.1M 20k 0.0378

Mixed-modal SFT
Alpaca 55.3k 85 0.0189
Magpie 254.5k 461 0.0378

Table 1: Statistics of our training data mixture. When
creating mini-batches, different types of data are sam-
pled according to the ratio shown in the last column.

Task Dataset Languages Metric

ASR CommonVoice En, De, Es, Fr WER

AST FLEURS
En-De, En-Es, En-Fr
De-En, Es-En, Fr-En

BLEU

SQA
SPGI

En GPT ScoreSQuAD2
AIR-Bench

Speech-only IFEval En
Prompt-level

Strict Accuracy

Text-only

GSM8K

En

5-shot Exact Match
(flexible extract)

IFEval
Prompt-level

Strict Accuracy
BBH 3-shot CoT Accuracy

MMLU 5-shot Accuracy

Table 2: Summary of our evaluation datasets.

speech rather than being limited to text. Addition-
ally, text SFT data typically covers more diverse in-
structions, and the responses maintain high-quality
language and style. This contributes to the overall
quality of our generated mixed-modal data. How-
ever, a potential limitation of this data type is that
the audio is synthetic, reflecting only the limited
acoustic conditions provided by the TTS model.5

4 Experiments

4.1 Experimental Setups
Training data. Table 1 shows the statistics of our
training data mixture. Our text-only SFT data is
from Nemotron’s training data (Adler et al., 2024),
which consists of multi-turn conversations. Dur-
ing training, the loss is computed only on model
turns but not on user turns. The ASR and AST
datasets are the same as the training data of Ca-
nary (Puvvada et al., 2024). ASR has four lan-
guages: En, De, Es, and Fr. AST has six language
pairs: X-En and En-X, where X is any of De, Es, or
Fr. For ASR, the text instruction is: “Transcribe the
content to [language], with punctuations and capi-
talizations.” For AST, the instruction is: “Translate

5For simplicity, this work uses a single TTS model. Future
work can explore multiple TTS models with diverse speakers
and emotions to enhance robustness.
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Model
ASR WER ↓ En-X BLEU ↑ X-En BLEU ↑ Speech-based QA ↑ Speech ↑ Text ↑

En De Es Fr De Es Fr De Es Fr SPGI SQuAD2 AIR. IFEval GSM8K IFEval BBH MMLU

Prior studies
Whisper-v3 1.5B 9.92 6.17 4.94 11.18 N/A 33.4 22.7 33.7 N/A
SALMONN 7B 20.84 40.83 37.47 36.78 18.0 17.1 27.8 5.1 7.1 3.3 0.778 0.597 - 0.147 - - - -
SALMONN 13B 17.07 44.08 28.47 38.52 19.0 18.5 29.1 6.5 3.6 3.8 0.778 0.604 6.16 0.113 - - - -
Qwen2-Audio 7B† 8.78 7.67 5.65 9.49 24.8 18.9 27.7 30.7 22.2 29.6 0.810 0.656 7.24 0.140 - - - -

Text-only baseline
Gemma 2.5B N/A 0.2479 0.2089 0.3324 0.3554

Ours
VTBlender 3B 7.90 5.53 4.52 7.09 29.6 22.5 38.6 36.3 25.6 33.8 0.828 0.684 6.31 0.191 0.2358 0.2237 0.3003 0.3484

Table 3: Comparison of our method against prior studies. †Qwen2-Audio has two versions: base and instruct models.
The instruct model often generates additional text for ASR and AST, leading to much worse performance. Hence,
we follow their official evaluation script to use the base model for ASR and AST, and the instruct model for others.

the [source language] content to [target language],
with punctuations and capitalizations.” The SQA
data is synthesized using a subset of ASR data (20k
hours in total) by prompting gemma-2-27b-it (see
Section 3.2.2). The prompt template is provided
in Appendix A. Lastly, we use a TTS model6 to
synthesize mixed-modal SFT data on two public
single-turn text SFT datasets, Alpaca (Taori et al.,
2023) and Magpie (Xu et al., 2024)7.
Model configs. Our speech encoder is the pre-
trained Canary encoder8 with 609M parameters.
The modality adapter has 52M parameters and con-
sists of two Conformer layers with hidden size
1024. No subsampling is applied after the speech
encoder, resulting in a time resolution of 80 ms
for the speech features. For LLM, we use Gemma
with 2.5B parameters (Mesnard et al., 2024). We
begin with the base LLM and perform text-only
SFT using our dataset, following Gemma’s chat
template (see Appendix D). This instruction-tuned
LM is then used to initialize our VTBlender.9 The
LoRA adapter of the LM has a rank of 32 and 36M
parameters. It is applied to the linear layers in
self-attention and feed-forward networks.
Training configs. Our model is implemented us-
ing the NeMo toolkit (Kuchaiev et al., 2019) based
on PyTorch (Paszke et al., 2019). The multimodal
data loading is based on Lhotse (Zelasko et al.,
2021; Żelasko et al., 2024). We use the Adam opti-
mizer (Kingma and Ba, 2015) with a peak learning
rate of 1e−4 and a cosine-annealing schedule. The

6https://catalog.ngc.nvidia.com/orgs/
nvidia/teams/nemo/models/tts_en_multispeaker_
fastpitchhifigan

7https://huggingface.co/datasets/Magpie-Align/
Magpie-Gemma2-Pro-200K-Filtered

8https://huggingface.co/nvidia/canary-1b
9We do not use the official chat models, as we lack access

to their SFT data, which makes it challenging to compare
performance after applying joint SFT.

weight decay is 1e − 3. The model is trained for
100k steps; the first 2500 steps are the warmup
stage. The final checkpoint is used for evaluation.
We use 64 NVIDIA A100 GPUs (80GB) for train-
ing. The batch size per device is 4 for speech-
related SFT data and 1 for text-only SFT data. The
total training time is 20 hours.
Evaluation setups. Greedy decoding is performed
for inference. Table 2 summarizes the five types
of evaluation tasks and their metrics. For ASR
and AST, we use standard multilingual bench-
marks, namely Common Voice (Ardila et al., 2020)
and FLEURS (Conneau et al., 2022). We nor-
malize the text using Whisper’s normalizers (Rad-
ford et al., 2023) before computing the Word Er-
ror Rate (WER). For SQA, we create data from
three sources and evaluate the quality of responses
with OpenAI’s GPT-4 API (see Appendix B). The
first SQA test set consists of real audio recordings
from SPGISpeech ASR data (O’Neill et al., 2021)
and synthetic text questions and answers from
Nemotron-4 340B (Adler et al., 2024). The second
SQA test set is a spoken version of a widely used
text QA benchmark, SQuAD 2.0 (Rajpurkar et al.,
2018), synthesized by NeMo FastPitch TTS10. The
third test set is the “Speech Chat” subset from a
public benchmark, AIR-Bench (Yang et al., 2024).
These three SQA test sets span diverse acoustic
conditions across various domains, offering a com-
prehensive evaluation of our models. To assess
spoken instruction-following capabilities, we syn-
thesize a spoken IFEval dataset from the original
text-based IFEval (Zhou et al., 2023) using the
aforementioned NeMo FastPitch model. Unlike
SQA tasks, where the input consists of both an

10https://catalog.ngc.nvidia.com/orgs/
nvidia/teams/nemo/models/tts_en_multispeaker_
fastpitchhifigan
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Model
ASR WER ↓ En-X BLEU ↑ X-En BLEU ↑ Speech-based QA ↑ Speech ↑ Text ↑

En De Es Fr De Es Fr De Es Fr SPGI SQuAD2 AIR. IFEval GSM8K IFEval BBH MMLU

Text-only baseline
Gemma 2.5B N/A 0.2479 0.2089 0.3324 0.3554

Ours
VTBlender 3B 7.90 5.53 4.52 7.09 29.6 22.5 38.6 36.3 25.6 33.8 0.828 0.684 6.31 0.191 0.2358 0.2237 0.3003 0.3484
B1 7.83 5.50 4.36 7.11 30.6 22.6 38.9 36.3 24.9 33.7 0.828 0.687 6.26 0.181 0.0243 0.1294 0.0023 0.2457
B2 9.96 8.77 7.03 9.49 21.5 18.3 29.3 31.3 21.9 29.3 0.028 0.121 3.22 0.150 0.2479 0.2089 0.3324 0.3554
B3 8.92 6.67 5.39 7.97 26.3 20.5 34.4 34.5 23.2 31.4 0.666 0.529 5.29 0.135 0.0675 0.1867 0.2622 0.2586

Table 4: Ablation studies. Our VTBlender uses single-stage joint SFT where the LM is partially updated with LoRA.
“B1” is trained with speech-only SFT. “B2” uses a frozen LM with speech-only SFT. “B3” is trained in two stages
with speech-only SFT, where the first stage freezes the LM and the second stage updates the LM with LoRA.

audio context and a text question, this task fea-
tures speech-only user input. Finally, we select
four text-only benchmarks to evaluate text-based
performance: GSM8K for mathematical reason-
ing (Cobbe et al., 2021), IFEval for instruction
following (Zhou et al., 2023), BBH for complex
reasoning (Suzgun et al., 2023), and MMLU for
multi-task knowledge assessment (Hendrycks et al.,
2021). We use lm-evaluation-harness for text-
only evaluation.11

4.2 Main Results
Table 3 compares our VTBlender 3B against previ-
ous models that are publicly available:

• Whisper-large-v3 (Radford et al., 2023) is
trained on 5 million hours of speech data for
ASR and X-En AST.

• SALMONN (Tang et al., 2024) is trained on
a few thousand hours of audio SFT data cov-
ering diverse audio tasks.

• Qwen2-Audio (Chu et al., 2024) is pre-
trained on 520k hours of general audio data
(including 370k hours of speech) and then
post-trained with SFT and reinforcement
learning. It is one of the state-of-the-art
SpeechLMs, but the details of its training data
have not been publicly released.

For ASR and AST, our VTBlender 3B achieves
the best results among the evaluated models. In
speech-based QA, our model outperforms oth-
ers on SPGI and SQuAD 2.0, demonstrating its
strong ability to recognize and comprehend speech.
AIR-Bench, however, contains questions about
speech attributes beyond linguistic content, such
as emotion, speaker identity, and gender. While

11https://github.com/EleutherAI/
lm-evaluation-harness

SALMONN and Qwen2-Audio explicitly incorpo-
rate such data in their training, our VTBlender does
not utilize specialized data for these attributes.
Consequently, VTBlender 3B falls behind Qwen2-
Audio 7B in this domain, although it still outper-
forms SALMONN 13B.

Our VTBlender 3B also outperforms other 7B
or 13B models on Spoken IFEval, showing that it
better follows spoken instructions.

Compared to the Gemma LM from which our
model is initialized, our model shows comparable
results on text-only benchmarks, indicating that it
successfully preserves the original text capabilities.

4.3 Ablation Studies

Our VTBlender is trained with single-stage joint
speech-text SFT in which the LM is updated with
LoRA adapters. To investigate the impact of these
strategies, we conduct three ablation studies and
present our results in Table 4.
Joint SFT vs. speech-only SFT. B1 is the same
model trained exclusively on speech-related SFT
data, without incorporating text-only data. When
compared to our VTBlender 3B, B1 achieves simi-
lar performance on speech tasks but performs sig-
nificantly worse on text-only benchmarks. On
GSM8K and BBH, B1’s performance is nearly
zero, and on MMLU, it approaches random chance
(25%) given the four-choice format of the questions.
This highlights that using LoRA alone does not pre-
vent catastrophic forgetting of the model’s original
text capabilities. By incorporating both text and
speech SFT data, our model preserves its original
text performance while excelling on speech tasks.
LoRA vs. frozen LM. Our VTBlender 3B updates
the LM using LoRA adapters. As discussed in Sec-
tion 2, a common strategy for preserving text-only
performance is to freeze the LM. To compare, we
froze the LM backbone and trained another model,
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Write down the exact content in English. [audio]

(The price of the pen is 10 dollars.)

The price of the pen is $10.

(a) ASR with unseen prompt.

Translate the Spanish content to French. [audio]

(Los modelos de lenguaje grandes son sofisticados
sistemas de inteligencia artificial diseñados para 
comprender y generar texto similar al humano basado
en grandes cantidades de datos.)

Les modèles de langage grand sont des systèmes
sophistiqués d'intelligence artificielle conçus pour 
comprendre et générer du texte similaire à l'humain
basé sur de grandes quantités de données.

(b) AST between unseen language pairs.

Figure 4: Generalization to unseen instructions.

B2, on all speech-related SFT data—excluding text-
only data, since the LM remains unchanged. B2 per-
forms significantly worse than our VTBlender in
all speech benchmarks, indicating that the model
struggles to understand speech inputs unless the
LM itself is also adapted to speech.

Two-stage vs. single-stage training. Previous re-
sults of B1 and B2 indicate that freezing the LM
negatively impacts speech performance, while up-
dating the LM with LoRA from the beginning leads
to a loss of text performance. Then, a natural alter-
native is to use a two-stage training process with
speech SFT data. In the first stage, the LM is frozen,
and the remaining components are trained for 100k
steps. In the second stage, the LM is updated with
LoRA for an additional 15k steps. This model is
referred to as B3. Compared to B2 (with a frozen
LM), B3 shows much better performance on most
speech tasks. However, B3 still experiences sig-
nificant degradation on text-only evaluations. On
GSM8K, its performance is nearly zero, and on
MMLU, it approaches random chance. These re-
sults demonstrate that LoRA alone is insufficient
to preserve text-only performance, even when the
model is updated for a limited number of steps.

Our ablation studies demonstrate that the pro-
posed joint speech-text SFT is essential for preserv-
ing text-only performance while delivering strong
results on speech tasks.

4.4 Demonstrations

This section provides examples to demonstrate the
various capabilities of our proposed VTBlender 3B.

Transcribe the English content. [audio] Use English 
words instead of numerals to describe numbers.

(The price of the pen is 10 dollars.)

The price of the pen is ten dollars.

(a) ASR with text normalization.

Transcribe the English content. [audio] Write your 
output in json format with the key "transcript".

(The price of the pen is 10 dollars.)

{
"transcript": "The price of the pen is $10."
}

(b) ASR in json format.

[audio] Extract the destination and date from the 
previous content. Write the output in json format.

(I will travel from San Jose to New York on April 
1st. What are the options?)

{
"destination": "New York",
"date": "2023-04-01"
}

(c) Slot filling in json format.

Figure 5: Output style and format can be controlled.

4.4.1 Standard Speech Tasks
Figure 6 in Appendix E.1 shows that our model
performs well for ASR, AST, and SQA tasks.

4.4.2 Generalization to Unseen Conditions
Multi-turn mixed-modal chat. As introduced in
Section 3.2, our text-only SFT data has multiple
turns, whereas the speech-related data has only one
turn. Through joint SFT, our model can generalize
to multi-turn mixed-modal chat (see Figure 1).
ASR w/ unseen prompt. As described in Sec-
tion 3.2.1 and Section 4.1, the ASR instruction is
fixed during training using the verb “transcribe”. In
Figure 4a, our model understands a different verb
phrase “write down” and performs ASR correctly.
AST in unseen direction. Our AST training data
consists of X-En and En-X directions where X is
one of De, Es, and Fr, but the model can also per-
form other directions like Es-Fr as shown in Fig-
ure 4b.
Controlling output format. Figure 5 shows three
examples where we can specify the output text style
or format, which can benefit downstream tasks. It
works for different speech tasks like ASR or SQA.
This demonstrates that our VTBlender achieves
good instruction-following capabilities based on
mixed-modal input.

Appendix E.2 presents examples of other tasks,

5794



including contextual biasing ASR, math/coding
based on information provided in both speech and
text inputs, and SQA based on multi-speaker audio
despite being trained on single-speaker data only.

5 Conclusion

We propose a novel single-stage joint speech-text
SFT approach for training SpeechLMs using LoRA
adapters. This method simplifies the training pro-
cess, preserves the text-only performance of the
LLM backbone, and achieves excellent speech un-
derstanding capabilities. Specifically, we com-
bine multi-turn text-only SFT data with single-
turn speech-related SFT data during training. To
extend beyond speech-based QA tasks, we pro-
pose a novel data generation method that can
create mixed-modal interleaving speech-text in-
puts. Our model achieves excellent performance
across various speech benchmarks while retain-
ing performance on text-only benchmarks. Our
3B model even outperforms previous 7B or 13B
SpeechLMs on most evaluated benchmarks. Fur-
thermore, our model exhibits emergent capabili-
ties in handling previously unseen instructions and
multi-turn mixed-modal conversations. We will
publicly release our codebase and pre-trained mod-
els to advance research in SpeechLMs.

Limitations

We primarily employ small-sized LMs with a few
billion parameters. While our model demonstrates
strong performance across various benchmarks, its
overall capacity may be constrained compared to
larger models, particularly in terms of world knowl-
edge and complex reasoning abilities.

Our training data and tasks are also limited. The
training data focuses on linguistic content and does
not encompass specialized speech tasks, such as
spoken language understanding, speaker recogni-
tion or verification, multi-speaker ASR, or speech
enhancement. This restricts the applicability of the
current model to certain use cases. Furthermore,
our efforts are concentrated on human speech, with-
out addressing general audio processing.

The text pre-training data of Gemma is not pub-
licly released, which might raise concerns. Due
to license issues, some of the speech training data
cannot be directly released. Instead, we provide
statistics about those data and describe the details
about our training procedure. For SQA and mixed-
modal SFT, we plan to release the data generation

scripts.
We introduce speech capabilities at the SFT

stage without involving pre-training. Additionally,
we do not utilize reinforcement learning from hu-
man feedback (RLHF), which may result in hal-
lucinations or unexpected behavior in the model’s
output. Therefore, it is important to exercise cau-
tion and thoroughly verify the output when using
this model.

Broader Impacts and Ethics

We adhere to the ACL ethics policy and there is no
violation of privacy in the experiments. We plan to
publicly release the data generation scripts, train-
ing code, and pre-trained model weights, which
can benefit a broader audience within the research
community.
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A Prompt Template for SQA Data
Generation

As introduced in Section 3.2, we generate
speech-based QA training data from ASR data by
prompting an LLM. The prompt template is:

I will provide you with several sentences. Please
generate **one** question that is closely related
to the content of these sentences, along with a cor-
responding answer. Ensure that your answer is
**accurate** and clearly stated. Write your output
in a single line in json format:

{"question": "xxx", "answer": "xxx"}
If the question and answer contain a double

quote, insert backslash before it to ensure the out-
put can be loaded by python library ‘json.loads()‘.
Do not add unnecessary backslash for symbols like
dollar $, ampersand &, etc. However, if the sen-
tences are meaningless, please return **none** in
those fields.

Here are the sentences:
PROVIDE THE TRANSCRIPT HERE.

B Prompt Template for GPT Scoring

As described in Section 4.1, we use OpenAI’s
GPT APIs to evaluate SQA tasks. For the pub-
lic benchmark AIR-Bench (Yang et al., 2024),
we follow the standard evaluation script with
gpt-4-0125-preview. For the other two test sets,
APGI and SQuAD2, we use a more recent API,
gpt-4o-2024-08-06, with the following prompt
template.

The system message is:

You are an expert evaluator of question-
answering performance.

Your task is to evaluate the "correctness" and
"redundancy" of an AI assistant’s response to a
user question based on the provided context.

Provide your output following the schema pro-
vided.

Here is a description of the required fields:
- correctness_score: either 0 or 1
- Score 0: The AI assistant’s answer is incorrect

based on the provided context, or the AI assistant’s
answer simply copies the context.

- Score 1: The AI assistant’s answer is correct
based on the provided context, and it does not sim-
ply copy the context.

- correctness_explanation: explanation of your
score for "correctness".

- redundancy_score: an integer score between 1
and 10, where a higher score indicates that the AI
assistant’s answer copies more redundant informa-
tion from the context.

- redundancy_explanation: explanation of your
score for "redundancy".

The input is:

[Question]
QUESTION HERE
[Context]
CONTEXT HERE
[Start of Reference Answer]
REFERENCE ANSWER HERE
[End of Reference Answer]
[Start of Assistant’s Answer]
MODEL RESPONSE HERE
[End of Assistant’s Answer]

Finally, we report the average correctness score
for all test samples.

C Training Data and Licenses

Our use of various data is consistent with their in-
tended use. The data has been commonly used in
this area, which does not contain personally identi-
fying information or offensive content. The Canary
training data (Puvvada et al., 2024) consists of the
following subsets:

• LibriSpeech (Panayotov et al., 2015): CC BY
4.0

• Fisher Corpus (Cieri et al., 2004): LDC

• Switchboard (Godfrey et al., 1992): LDC

• WSJ (Paul and Baker, 1992): LDC

• National Speech Corpus12: Singapore Open
Data Licence

12https://www.imda.gov.sg/how-we-can-help/
national-speech-corpus
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• VCTK13: CC BY 4.0

• VoxPopuli (Wang et al., 2021): Attribution-
NonCommercial 4.0 International

• Europarl-ASR (Díaz-Munío et al.,
2021): License is described here:
https://www.mllp.upv.es/git-pub/
ggarces/Europarl-ASR/#licence

• Multilingual LibriSpeech (Pratap et al., 2020):
CC BY 4.0

• Mozilla Common Voice14: CC0-1.0

• People’s Speech (Galvez et al., 2021): CC-
BY-SA and CC-BY 4.0

• Other in-house data

D Chat Template for SFT

We use the chat template of Gemma (Mesnard et al.,
2024), as shown below:

<start_of_turn>user
[USER1]<end_of_turn>
<start_of_turn>model
[MODEL1]<end_of_turn>
<start_of_turn>user
[USER2]<end_of_turn>
<start_of_turn>model
[MODEL2]<end_of_turn>
...

E Additional Demonstrations

E.1 Standard Speech Tasks

Figure 6 presents examples of ASR, AST, and SQA
tasks. Our VTBlender performs well on those stan-
dard tasks.

E.2 Generalization to Unseen Conditions

Figure 7, Figure 8, Figure 9, and Figure 10 are
examples of contextual biasing ASR, math, coding,
and SQA with multiple speakers.
Contextual biasing. Figure 7 shows that the model
can utilize additional contextual information when
performing ASR. This can enhance ASR perfor-
mance in specific domains without updating model
parameters.

13https://huggingface.co/datasets/
CSTR-Edinburgh/vctk

14https://commonvoice.mozilla.org/en/datasets

Transcribe the content to Spanish. [audio]

(Los modelos de lenguaje grandes son sofisticados
sistemas de inteligencia artificial diseñados para 
comprender y generar texto similar al humano basado
en grandes cantidades de datos.)

los modelos de lenguaje grandes son sofisticados
sistemas de inteligencia artificial dise ados para 
comprender y generar texto similar al humano
basado en grandes cantidades de datos

(a) ASR

[audio] Translate the content from Spanish to English.

(Los modelos de lenguaje grandes son sofisticados
sistemas de inteligencia artificial diseñados para 
comprender y generar texto similar al humano basado
en grandes cantidades de datos.)

Large language models are sophisticated artificial 
intelligence systems designed to understand and 
generate text similar to human based on large 
amounts of data.

(b) AST

[audio] What medicine is mentioned? Briefly 
introduce that medicine.

(I don’t feel well since last night, I had headache and I 
took a pill of Ibuprofen. I went to bed early.)

The medicine mentioned is ibuprofen.
Ibuprofen is a pain reliever that helps reduce pain 
and inflammation.

(c) SQA

Figure 6: Examples of standard tasks.

Math w/ mixed-modal input. Figure 8 is an ex-
ample of solving a math question using the infor-
mation from both speech and text. The answer is
correct and well formated, demonstrating that our
VTBlender well preserves LLM’s original capabili-
ties.
Coding. Figure 9 is a coding example, where
the model generates a correct response to the spo-
ken instruction. Again, this shows that our VT-
Blender maintains the original LLM’s capabilities
in different domains.
SQA w/ multi-speaker input. The training data
has only one speaker, but our model can also un-
derstand some multi-speaker conversations. In Fig-
ure 10, the audio contains two speakers with over-
lap. Our model can answer some questions related
to different speakers correctly.
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Transcribe the English content. [audio]

(Order the Margherita Pizza from Pizzeria Mozza.)

Order the margarita pizza from Pizzeria Maza.

(a) ASR without contextual biasing.

Transcribe the English content. [audio] You might 
need these words: Kozza, Mozza, Margherita, 
Zargherita

(Order the Margherita Pizza from Pizzeria Mozza.)

Order the Margherita pizza from Pizzeria Mozza.

(b) ASR with contextual biasing.

Figure 7: Additional contexts improve ASR results on
entity names.

I bought 3 such pens. [audio] I also bought a book with 5 
dollars. How much did I spend in total?

(The price of the pen is 10 dollars.)

Here's how to figure that out:
• Total cost of pens: 3 pens * 10/pen=30
• Total cost of book: $5
Total cost: 30(pens)+5 (book) = $35
Let me know if you have any other questions!

Figure 8: Example of solving a math question based on
mixed-modal input.

[audio] No need to provide an example. Just write out your code.
(Write a function that takes a list of integers and returns the sum of all 
even numbers in the list.)

def sum_even_numbers(numbers):
"""
This function takes a list of integers and returns the 

sum of all even numbers in the list.

Args:
numbers (list): A list of integers.

Returns:
int: The sum of all even numbers in the list.

"""
even_numbers = [num for num in numbers if num % 2 == 0]
return sum(even_numbers)

Figure 9: Example of coding.
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Which animals does the first speaker specifically mention getting along with?
[audio]

00.00-14.85 (spk1): or you know you know h- or some kind of safety for them and have the government you 
know help you take care of these animals and stuff and i get along with animals more than i do people i think 
so you know [laughter] and i'm not so sure about wild but i mean even cats and dogs
08.82-10.41 (spk2): [laughter]
14.21-16.51 (spk2): oh cats yeah [laughter]
15.27-17.25 (spk1): oh i'd love to you a cat lover
16.90-17.79 (spk2): yes
17.29-24.53 (spk1): oh me too and i'm sitting at this place right now we we pay six hundred dollars rent and 
they won't let us have any animals
23.83-25.17 (spk2): oh

The first speaker mentions getting along with animals like cats and dogs.

(a) Example 1

Which animal does the second speaker mention?
[audio]

00.00-14.85 (spk1): or you know you know h- or some kind of safety for them and have the government you 
know help you take care of these animals and stuff and i get along with animals more than i do people i think 
so you know [laughter] and i'm not so sure about wild but i mean even cats and dogs
08.82-10.41 (spk2): [laughter]
14.21-16.51 (spk2): oh cats yeah [laughter]
15.27-17.25 (spk1): oh i'd love to you a cat lover
16.90-17.79 (spk2): yes
17.29-24.53 (spk1): oh me too and i'm sitting at this place right now we we pay six hundred dollars rent and 
they won't let us have any animals
23.83-25.17 (spk2): oh

Cats

(b) Example 2

Figure 10: Our VTBlender can understand some multi-speaker dialog, despite being trained on single-speaker data
only.
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