
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5734–5749

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

BEMEAE: Moving Beyond Exact Span Match
for Event Argument Extraction

Enfa Fane* Md Nayem Uddin† Oghenevovwe Ikumariegbe* Daniyal Kashif*

Eduardo Blanco* Steven R. Corman†

*University of Arizona †Arizona State University
*{enfageorge, oaikumariegbe, dkashif, eduardoblanco}@arizona.edu

†{muddin11, steve.corman}@asu.edu

Abstract

Event Argument Extraction (EAE) is a key task
in natural language processing, focusing on
identifying and classifying event arguments in
text. However, the widely adopted exact span
match (ESM) evaluation metric has notable lim-
itations due to its rigid span constraints, often
misidentifying valid predictions as errors and
underestimating system performance. In this
paper, we evaluate nine state-of-the-art EAE
models on the RAMS and GENEVA datasets,
highlighting ESM’s limitations. To address
these issues, we introduce BEMEAE (Beyond
Exact span Match for Event Argument Extrac-
tion), a novel evaluation metric that recognizes
predictions that are semantically equivalent to
or improve upon the reference. BEMEAE in-
tegrates deterministic components with a se-
mantic matching component for more accu-
rate assessment. Our experiments demonstrate
that BEMEAE aligns more closely with human
judgments. We show that BEMEAE not only
leads to higher F1 scores compared to ESM
but also results in significant changes in model
rankings, underscoring ESM’s inadequacy for
comprehensive evaluation of EAE.

1 Introduction

Event Argument Extraction (EAE) is a complex
task in natural language understanding that requires
deep comprehension of text to accurately identify
and classify event arguments (Huang et al., 2024).
As a core component of event extraction—the pro-
cess of transforming unstructured text into struc-
tured event representations—EAE plays a critical
role in enabling various downstream applications
such as narrative event prediction (Wang et al.,
2021) and news summarization (Li et al., 2016).
Given its broad applicability and significance, the
precise evaluation and meaningful comparison of
EAE systems is crucial for advancing research.

The most commonly used evaluation metric
for EAE, Exact Span Match (ESM), assesses

There are no craters, while [the vehicles]reference have their
chassis intact and they have not been severely damaged,
which would have been the case from an [airstrike]event_trigger,
Konashenkov said. On Tuesday, the UN also retreated from
its claims that the [convoy]candidate was hit by military planes.

Event type: conflict.attack.selfdirectedbattle
Role: target

Figure 1: An example from RAMS where airstrike
is the event trigger and the vehicles is the reference
argument for the role target . The standard metric, exact
span match (ESM) is suboptimal. Seven models we
work with correctly predict convoy as the target of the
airstrike, yet ESM classifies it as an error. Furthermore,
vehicles, chassis, their chassis, or the convoy would
also receive no credit with ESM despite being correct,
as none are an exact span match to the vehicles.

model predictions by requiring an exact match be-
tween the predicted argument spans (candidates)
and human-annotated argument spans (references).
While this approach offers a clear and objective
measure of performance, it suffers from several no-
table limitations. Zhang et al. (2020b) and Uddin
et al. (2024) analyzed candidate arguments flagged
as errors and found that many were not genuine
mistakes; humans would often consider these ar-
guments valid for the assigned role, even if they
did not exactly align with the reference span. For
example, as illustrated in Figure 1, although “con-
voy” is a valid argument for the role “target” of
event “airstrike,” ESM would incorrectly classify
it as an error because it does not exactly match the
reference argument, “the vehicles.”

Motivated by these observations and the need for
a more comprehensive evaluation framework, we
introduce BEMEAE (Beyond Exact span Match for
Event Argument Extraction).1 BEMEAE addresses
key shortcomings of ESM by combining determin-
istic components to handle textual variations with a

1BEMEAE is available at https://github.com/
beingenfa/bemeae.
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semantic matcher that evaluates the meaning of can-
didate arguments relative to reference arguments.
Our experiments, conducted on nine models across
two datasets, show that BEMEAE provides a more
accurate assessment of system performance and
leads to significant changes in system rankings.

The main contributions of this paper are:
1. BEMEAE: We introduce a novel evaluation

metric that addresses the limitations of ESM
by incorporating deterministic components
and a semantic matcher.

2. Comprehensive Evaluation: Through ex-
tensive experiments on nine EAE models
across RAMS and GENEVA datasets, we
demonstrate that (a) BEMEAE aligns more
closely with human judgments than ESM, and
(b) F1 scores under BEMEAE reveal uneven
improvements across models, providing new
insights into model performance and leading
to significant changes in system rankings.

3. Automatic Semantic Matching: We evaluate
various semantic matching methods, includ-
ing GPT-4. They obtain a fair agreement with
human judgments, enabling scalable evalua-
tions without the need for costly manual an-
notations.

A key advantage of our approach is its adaptabil-
ity to any event argument extraction framework,
without the need for additional costly human as-
sessments or extensive retraining. This flexibility
allows it to be seamlessly integrated into existing
systems, providing a more accurate evaluation of
model performance with minimal overhead.

2 Background

Event extraction (EE) is a key task in information
extraction that focuses on converting unstructured
text into structured representations of events, which
are defined by an event ontology. An event on-
tology provides a shared framework to categorize
events and their argument roles, ensuring consis-
tency in how events, triggers, and arguments are
identified across systems. To ensure robustness, we
use datasets with different ontologies.

EE typically consists of two sub-tasks: event
detection (ED) and event argument extraction
(EAE). Event detection identifies event trig-
gers which are keywords or phrases that in-
dicate an event (e.g., “airstrike” in Figure 1)
and classifies them into event types (e.g., "con-
flict.attack.selfdirectedbattle" in Figure 1). Event

argument extraction (EAE) focuses on identifying
arguments associated with the event and assigning
specific roles to them. For instance, EAE would
identify “convoy” as an argument for the “target”
role (in Figure 1).

In this paper, we focus specifically on evalu-
ating EAE. Evaluation involves comparing the
human-annotated argument with the model’s pre-
diction. We adopt the terminology of Bulian et al.
(2022) and refer to human-annotated arguments
as reference arguments and the model-predicted
arguments as candidate arguments.

3 Related Work

Evaluating models in tasks like text generation,
question answering, and event argument extrac-
tion remains a significant challenge. Traditional
methods, often based on exact span or text match
metrics, tend to overlook the variability of possible
correct candidates. In this work, we focus specifi-
cally on evaluating event argument extraction. We
begin by reviewing prior research on event extrac-
tion evaluation, followed by a discussion of the
challenges in directly comparing models for EE
and EAE. Finally, we conclude by examining pro-
posed metrics that address the limitations of exact
span matching in other NLP tasks.

Evaluation of End-to-End Event Extraction
End-to-end event extraction (EE) typically uses
role-averaged evaluation. However, Zheng et al.
(2021) argues this can mislead downstream tasks,
as a single incorrect argument can change the mean-
ing of the event instance. They propose metrics
that treat the event as a whole, explicitly penalizing
wrongly identified event arguments. In contrast,
our focus is not on how event argument evaluation
should integrate into overall event evaluation. In-
stead, we focus on accurately determining what
constitutes a correct event argument prediction, en-
suring precise assessment at the role level.

Direct Comparison is Challenging Recent stud-
ies highlight several challenges in evaluating event
extraction models and propose solutions. Peng
et al. (2023b) show that models are not directly
comparable due to inconsistencies in data process-
ing, differing output spaces, and the absence of an
evaluation pipeline. Omnievent (Peng et al., 2023a)
released a toolkit addressing these issues. Echoing
this work, Huang et al. (2024) identified additional
challenges, such as divergent data assumptions and
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split bias. They addressed these challenges by re-
leasing the TextEE framework, which incorporates
more diverse datasets as well as recent methods. In
our study, while we adopt TextEE to compare mod-
els, our primary focus is on defining correctness
at the event argument level. By evaluating several
models on two different datasets, we demonstrate
that using the exact span match metric to assess
model performance differs substantially from hu-
man judgments of correctness.

Alternatives to Exact Span Match To overcome
the limitations of exact span match evaluation, sev-
eral alternative metrics have been proposed, partic-
ularly in text generation tasks.
First, word-level evaluation metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and NIST (Doddington, 2002) assess similarity be-
tween generated and reference texts using n-gram
matching. Second, string distance-based methods,
as detailed in Cohen et al. (2003), calculate string
similarity measures like edit distance to evaluate
the closeness of texts. Third, entity-based eval-
uation methods, such as CEAF-REE (Du et al.,
2021) in the role-filler entity extraction task, as
well as Coref F1 (Li et al., 2021) in EAE task
assess candidates at the entity level, considering
all coreferent mentions of an entity as equivalent.
Fourth, learned metrics such as BLEURT (Sel-
lam et al., 2020), COMET (Rei et al., 2020), and
BERTScore (Zhang et al., 2020a) have moved
beyond surface-level overlap by utilizing word
embeddings, contextual embeddings, and learned
models to evaluate semantic similarity. Fifth, ap-
proaches that incorporate additional human anno-
tations and require training models for evaluation
have been proposed (Risch et al., 2021; Chen et al.,
2020; Bulian et al., 2022).

In contrast to these alternatives to ESM,
BEMEAE does not require additional human an-
notations. Our deterministic components employ
simple rules to handle textual variations that do not
impact correctness. The semantic component uses
either human judgments or off-the-shelf methods,
enabling effective evaluation without the need for
extensive additional resources.

4 Datasets, Framework, and Models

Datasets We use two datasets in this study:
RAMS (Ebner et al., 2020) and GENEVA (Parekh
et al., 2023). RAMS, based on the AIDA-1 ontol-

RAMS GENEVA

Domain News General
Event Ontology AIDA Geneva

# Event Types 139 115
# Roles 65 220

# Documents 9,107 3,684
# Events 9,107 7,505
# Arguments 21,206 12,269

Avg # per document
Sentences 4.70 1.04
Events 1.00 2.04
Arguments 2.33 3.33

Table 1: Basic statistics of RAMS and GENEVA as
seen in TextEE standardized data. RAMS uses news
as source texts and annotates one event per document
(length: 4.7 sentences). In contrast, GENEVA uses
text from several domains and annotates two events per
document (length: one sentence). GENEVA considers
less event types but over three times the amount of
argument types (65 vs. 220); documents in GENEVA
have on average one more argument.

ogy2, consists of documents from news articles and
includes 139 event types and 65 argument types.
It annotates event-argument structures within a
5-sentence window, allowing arguments to appear
either in the same sentence as the trigger or in
neighboring sentences. GENEVA, in contrast, is
a general-domain dataset with its own ontology.
Although it includes fewer event types (115) than
RAMS, it captures a broader range of argument
types (220). GENEVA annotates event-argument
structures within a sentence, focusing on more lo-
calized contexts. Refer to Table 1 for comparison.

Framework and Models In our study, we adopt
TextEE (Huang et al., 2024), a standardized and re-
producible framework for event extraction. It offers
uniform data preprocessing scripts, five standard-
ized splits across multiple datasets, and implemen-
tations of recent event extraction methods. This
uniformity ensures fair comparisons and removes
biases related to datasets or splits, leading to a more
accurate assessment of model performance.

By using TextEE, we evaluate the top nine
models based on their average F1 scores with
the RAMS and GENEVA datasets. This in-
cludes four classification-based models and five
generation-based models. The classification mod-
els, which frame EAE as token classification, se-
quential labeling, or question answering, include

2https://www.darpa.mil/program/active-interpretation-of
-disparate-alternatives
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System RAMS (F1, rank)

5 Splits Split 1

PAIE (Ma et al., 2022) 50.5 (1) 52.7 (1)
TagPrime-CR (Hsu et al., 2023a) 49.7 (2) 51.4 (2)
TagPrime-C (Hsu et al., 2023a) 48.3 (3) 48.3 (3)
X-Gear (Huang et al., 2022) 46.2 (5) 47.0 (4)
AMPERE (Hsu et al., 2023b) 46.8 (4) 46.5 (5)
DEGREE (Hsu et al., 2022) 45.5 (6) 46.5 (6)
BART-Gen (Li et al., 2021) 45.4 (7) 46.0 (7)
CRF Tagging (Huang et al., 2024) 43.5 (9) 43.8 (8)
EEQA (Du and Cardie, 2020) 44.7 (8) 43.4 (9)

Table 2: Results (F1 and rank) obtained with RAMS,
(a) average score of the 5 data splits and (b) training and
testing with Split 1. There are only minimal differences
in F1 and only two changes in rank (4 and 5; 8 and 9).
Therefore, we use the latter setting in our analyses as
it decreases the computational demands by 80%. We
observe the same trend with GENEVA (Appendix A).

two variants of TagPrime (Hsu et al., 2023a)
(TagPrime-C and TagPrime-CR referred to as T-C
and T-CR) , EEQA (Du and Cardie, 2020) and
CRF-Tagging (CRF-T). The generation-based mod-
els frame the task as conditional generation and
include PAIE (Ma et al., 2022), X-Gear (Huang
et al., 2022), AMPERE (Hsu et al., 2023b),
DEGREE (Hsu et al., 2022), and BART-Gen (Li
et al., 2021). All classification models use
RoBERTa-large (Liu et al., 2019), while all
generation-based models use BART-large (Lewis
et al., 2020).

In Table 2, we compare the performance of these
models in two settings: (a) the average F1 score
across five data splits and (b) training and testing
using only Split 1. Since we observe minimal dif-
ferences in F1 scores between the two settings, we
choose Split 1 for our analyses. This choice sig-
nificantly reduces computational demands without
sacrificing accuracy. We observe the same trend
with the GENEVA dataset, as shown in Table 9.

5 Limitations of Exact Span Match

The most commonly used definition of correctness
in event argument extraction is Exact Span Match
(ESM), where a candidate argument is considered
correct only if both the offsets and role exactly
match the reference argument. Unless specified
otherwise, in this paper, “F1 score” refers to the
ESM F1 Score. Despite being a de facto standard,
as shown in Table 3 and discussed below, we ob-
serve several limitations with ESM.

One limitation arises when identical tokens ap-
pear multiple times in a document, as in the “Mar-

seille” example (Limitation 1), where both men-
tions refer to the same entity and should be treated
as correct. However, exact span matching fails
to account for this. Similarly, candidate argu-
ments with slight token variations — such as arti-
cles, determiners, or punctuation (Limitation 2a)
or non-informative tokens (Limitation 2b)—are un-
fairly penalized for these minor differences.

More significant limitations arise with informa-
tive variations (Limitation 3), where additional de-
tails, such as “South Korean” in “South Korean ve-
hicles,” provide correct information without chang-
ing the core meaning, yet are penalized for includ-
ing additional information. In both datasets, we
observed that coreferent mentions (e.g., pronouns)
were sometimes annotated as reference arguments,
even when more informative alternatives, such as
names, were available. Yet, exact span match fails
to account for equivalence between mentions like
“Clinton” and “she” (Limitation 4a), which should
be considered interchangeable in context.

Similarly, non-coreferent mentions, such as the
metonymic use of “U.S.” (Limitation 4b), may also
be valid, but exact span match lacks the flexibil-
ity to capture these nuances. Finally, exact span
match struggles with lists (Limitation 5), where
combining elements or listing them individually
conveys the same meaning even though ESM fails
to indicate so.

6 BEMEAE: Beyond Exact Match for
Event-Argument Extraction

To address some of the limitations outlined in
Section 5 and assess their impact on model perfor-
mance and rankings, we propose a novel evaluation
metric for event argument extraction: BEMEAE.
This metric introduces (1) a series of determinis-
tic components to account for textual variations
that do not affect the correctness of an argument
and (2) a semantic matching component to iden-
tify additional correct candidate arguments. While
BEMEAE does not resolve all the limitations ob-
served with ESM, we demonstrate that by effec-
tively addressing some of the significant limitations,
it provides a more accurate assessment of system
performance and leads to significant changes in
system rankings.

6.1 Deterministic Components

Same text, not just spans As shown in Limita-
tion 1 of Table 3, exact span match incorrectly
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Limitation Example (and role of the argument)

1. Identical texts
↪→ The same tokens may occur twice in
the document; both should be counted
correct as they are indistinguishable.

[. . . ] [Marseille]candidate anti - semitic [stabbing]event_trigger Last week , a Jewish
teacher in the French city of [Marseille]reference was the target of an anti - Semitic
machete attack. (PLACE)

2. Uninformative variations
2a. Articles, determiners, punctuation.
↪→ These tokens barely change meaning;
including or missing them is harmless.

[. . . ] Iran eventually did come to the [negotiating]event_trigger table and
[the [Obama administration]reference]candidate was able to work out its historic Iran Deal
in a case where diplomacy proved to be the correct course of action. (PARTICIPANT)

2b. Other
↪→ Additional tokens are sometimes en-
tailed; including them is harmless.

It was [[Bush’s administration]reference, not Obama’s]candidate, that negotiated event
trigger the 2009 agreement that called for the withdrawal of all U.S. forces from Iraq
by Dec. 31, 2011. (PARTICIPANT)

3. Informative variations
↪→Additional tokens providing details
are valid (e.g., ownership, origin).

[. . . ] [South Korean [vehicles]reference]candidate [transporting]event_trigger employees
working at the Kaesong Industrial Complex (KIC) arrive at the South’s CIQ (Cus-
toms, Immigration and Quarantine) [. . . ] (TRANSPORTER)

4. Alternative mentions
4a. Coreferent
↪→ Coreferent mentions refer to the same
entity; all of them should get credit as
they are interchangeable in context.

[. . . ] Dr. Lisa Bardack adds that [Clinton]reference is “recovering well with antibiotics
and rest” after she became overheated, [dehydrated]event_trigger and felt dizzy at a
9/11 memorial ceremony on Sunday. Clinton’s aides say [she]candidate’ll return to the
campaign trail on Thursday. (VICTIM)

4b. Non-coreferent
↪→ Mentions to other entities may be cor-
rect, especially when using metonymy.

Assange has characterized the investigation as part of a broader conspiracy on the
part of the [[U.S.]candidate government]reference to [incarcerate]event_trigger him, extradite
him, and have him killed in prison—“Jack Ruby style,” as he put it [. . . ] (JAILER)

5. Aggregated Lists
↪→ One argument with all the elements
of a list and several arguments with the
individual elements are equivalent.

The statement, citing GCC Secretary General Rashid al-Zayani, accused Hezbol-
lah of recruitment to carry out terrorist attacks, and of [smuggling]event_trigger

[[weapons]candidate and [explosives]candidate]reference, “in flagrant violation of GCC
members”’ sovereignty, security and stability.” (ARTIFACT)

Table 3: Limitations and examples of Exact Span Match F1 as an evaluation metric for event argument extraction
(with respect to the reference annotation). All the candidates are real predictions by the systems we analyze in this
paper. Note that all differences between the candidate and reference arguments are harmless (i.e., all candidates are
correct), even though some candidates include additional details (e.g., informative variations). Exact Span Match
F1, the standard metric, considers all the candidates wrong despite being correct according to human assessments.

classifies identical text that refer to the same en-
tity appearing in different positions as incorrect.
To address this issue, we compare candidate and
reference arguments (excluding pronouns) based
on their uncased textual content rather than their
offsets.
Uninformative Variations In Limitation 2a of
Table 3, we highlight how exact span match fails to
account for uninformative variations. To partially
address this limitation, we identify and remove un-
informative tokens that do not alter the meaning
of the span. Specifically, we remove articles, de-
terminers, punctuation, and the Saxon genitive (’s).
We then check for a textual match between the
cleaned reference and candidate arguments.
Breaking Down (and Aggregating) Arguments
Exact span match struggles with granularity, as
shown in Limitation 5 of Table 3. In the exam-
ple, the reference argument is “weapons and ex-
plosives” but the model predicts “weapons” and

“explosives” separately. ESM penalizes the model

despite the functional equivalence. To address this,
we process candidate arguments for a given role by
handling conjunctions such as “and”. Specifically,
we either break them into separate arguments or ag-
gregate separate arguments using “and” as needed
to check for a match with the reference.
Informative Variations In Limitation 3 of Table 3,
exact span match overlooks candidate arguments
that contain informative modifiers that add context
without altering correctness. To partially address
this limitation, we incorporate modifiers when eval-
uating candidate arguments.

Specifically, we generate modified versions of
single-token reference arguments3 by adding rele-
vant modifiers identified via dependency parsing
using the spaCy toolkit (Honnibal et al., 2020). To
prevent spurious content, we restrict modifiers to
the following dependency labels: adjectival modi-

3We restrict this process to single-token references to main-
tain precision, acknowledging that modifiers may be crucial
to correctness in multi-token references.
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(1) Also , he has argued unsuccessfully in British courts that
the investigation has been a ruse to extradite him to Sweden
so he could then be extradited to the [United States]reference to
face reported but still-secret [U.S.]candidate [charges]event_trigger.

(2) [. . . ] anthrax-tainted letters have made policymakers and
the general public concerned that terrorists could [use]event_trigger

[[chemical or biological weapons]candidate (CBW)]reference to in-
flict mass casualties.

(3) [. . . ] with experts saying [extradition]event_trigger of a
[Romanian hacker]reference who revealed her unsecured email
server could spell deep trouble for Clinton’s presidential cam-
paign. Last week , U.S. officials moved to extradite the hacker
known as [‘Guccifer’]candidate , who is accused of [. . . ]

(4) [. . . ] Christina Grimmie, 22, who was an American
singer and songwriter, known for her participation in the NBC
singing competition The Voice, was signing autographs at a
[concert venue in [Orlando]reference]candidate on 10 June when an
assailant [shot]event_trigger her.

Table 4: Examples of event triggers, reference arguments, and candidate arguments for the roles of PROSECUTOR,
INSTRUMENT, DEFENDANT, and PLACE. Neither Exact Span Match nor the four deterministic components of
BEMEAE consider these candidates correct, but human annotators do (i.e., via the semantic matching component).
These examples underscore the critical role of the semantic matcher in BEMEAE.

fiers (amod), appositional modifiers (appos), nomi-
nal modifiers (nmod), noun modifiers (nounmod),
numeric modifiers (nummod), possessives (poss),
and possessive markers (possessive). We then com-
pare these more informative version of reference
arguments to the candidate arguments. To validate
this deterministic component, we manually ana-
lyzed 100 candidate arguments initially flagged as
errors by exact span matching but deemed correct
by this step. Our analysis showed 100% accuracy.

6.2 Semantic Matching Component

Human Assessments We sampled 500 candidate
arguments from RAMS and GENEVA that were
still identified as errors after applying our deter-
ministic steps. To select these samples, we chose
the top 500 erroneous predictions made by mod-
els. Each candidate argument was reviewed by two
human annotators, who were provided with the rel-
evant document and asked to answer three specific
questions. Details about the annotators and the
annotation interface are provided in Appendix B.

Based on their responses to the questions, each
candidate argument was assigned one of the fol-
lowing three labels: Correct: The candidate argu-
ment is the correct argument role of the event trig-
ger. Partial: The candidate argument is the correct
argument role of the event trigger but is missing
important information. Incorrect: The candidate ar-
gument is not the argument role of the event trigger
or adds spurious information. The inter-annotator
reliability, measured by Cohen’s kappa (κ), was
0.84 for RAMS and 0.95 for GENEVA, indicating
almost perfect agreement.

Although our deterministic components improve
upon ESM, they cannot capture all semantically
equivalent reference-candidate pairs that ESM

misidentified as errors. Table 4 presents examples
of candidate arguments that human annotators de-
termined to be correct but were classified as errors
by both ESM and our deterministic components.

In the first example, the candidate argument is
an abbreviation of the reference. In the second, the
candidate omits the acronym included in the refer-
ence. The third example presents the candidate as
an alternate name for the reference, and in the final
example, the candidate provides additional detail
compared to the reference. These examples high-
light the importance of incorporating a semantic
matching component to ensure accurate evaluation.

Automatic Assessments While human judgment
is the most reliable, it is impractical to apply it to
every prediction due to time and cost constraints.
Therefore, we assessed the following methods to
approximate human assessments and analyzed their
agreement with human annotators.
(a) Cosine Similarity: First, we calculate the cosine
similarity between the average word embeddings
of the reference and candidate arguments. Then,
we train a logistic regression classifier4 on this co-
sine similarity as the only feature (labels: Correct,
Partial, or Incorrect). We evaluated this approach
using word2vec (Mikolov et al., 2013), GloVe (Pen-
nington et al., 2014)5 and sentence-BERT embed-
dings (Reimers and Gurevych, 2019)6.
(b) BERTScore: Following the same setup
as above, we replace cosine similarity with
BERTScore (Zhang et al., 2020a) with DeBERTa
embeddings (He et al., 2021).7

4Using Scikit-learn(Buitinck et al., 2013)
5Using Gensim (Řehůřek and Sojka, 2010)
6Using HuggingFace (Wolf, 2019)
7DeBERTa was chosen for its high Pearson correlation

with human annotations in WMT16.
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κ3 κ2

Human Semantic Matcher 0.84 0.88

Automatic Semantic Matchers
Cosine similarity

word2vec 0.05 0.02
GloVe 0.05 0.03
SentenceBERT 0.20 0.20

BERTScore 0.02 0.01

Prompting GPT-4o-mini
wording: intuitive, reference: yes 0.10 0.03
wording: intuitive, reference: no 0.19 0.16
wording: expert, reference: yes 0.30 0.16
wording: expert, reference: no 0.26 0.24

Prompting GPT-4o
wording: intuitive, reference: yes 0.20 0.15
wording: intuitive, reference: no 0.17 0.09
wording: expert, reference: yes 0.43 0.43
wording: expert, reference: no 0.34 0.38

Table 5: Cohen’s κ scores for 500 candidate arguments
from the RAMS dataset. First row shows agreement
between human annotators. Other rows show agree-
ments between automatic methods and humans. κ3 uses
three labels (Correct, Partial, Incorrect), and κ2 merges
Partial and Incorrect. GPT-4o with expert instructions
and explicit references achieves the highest agreement
among automatic methods. However, it remains far
from reliable human annotation (κ = 0.43) and obtains
much lower agreement than humans (κ = 0.84, 0.88).
A similar trend is observed with the GENEVA dataset
(Appendix C).

(c) GPT Models: We utilized GPT-4o and GPT-4o
mini (OpenAI, 2023), experimenting with four dif-
ferent configurations: (1) with expert or intuitive
instructions, and (2) with and without the reference
in the prompt. Further details on these configura-
tions, including the prompts are in Appendix D.

We evaluated Cohen’s kappa (κ) between the
automated methods and human judgments under
two settings: first, using the original three labels
(Correct, Partial, and Incorrect); and second, under
a stricter definition where Partial is merged with
Incorrect. The results for RAMS are presented in
Table 5. We observed the highest agreement with
GPT-4o when expert instructions were provided
and the reference was shared.

7 Insights from BEMEAE

In this section, we present the results from evalu-
ating nine EAE models using BEMEAE and com-
pare them to the baseline ESM. The incremental
F1 improvements from each BEMEAE component
are presented in Table 6 for RAMS, and Table 7
for GENEVA. We also examine two versions of

the semantic matcher: one based on human judg-
ments (BEMEAE Human) and the other on the best
automated method (BEMEAE Best Automated). Key
insights from the evaluation are summarized below.

BEMEAE indicates higher F1, but gains are
uneven. A consistent trend in our evaluation is
that for most BEMEAE components, the F1 score
increases with each successive step across all mod-
els. As BEMEAE moves from addressing harmless
tokens to accounting for modifiers and semantic
variations, it consistently captures more valid can-
didate predictions than ESM. However, the mag-
nitude of these improvements varies significantly
across models.

One of the starkest differences appears in the
“Breaking & Aggregating” component, which
leads to no gains for most models. However,
for AMPERE, DEGREE, and BART-Gen, it re-
sults in an average 2-point F1 increase with
RAMS (Table 6), and an average 6.6-point F1 in-
crease with GENEVA (Table 7). This suggests that
exact span match disproportionately penalizes cer-
tain models for failing to conform to strict span
boundaries.

BEMEAE substantially improves overall F1, but
uneven gains lead to rank changes. The uneven
gains across BEMEAE components accumulate,
leading to significant shifts in model rankings, as
seen in Table 8. While all models experience F1
score increases under BEMEAE, the magnitude of
these gains vary considerably.

For example, when comparing model ranking
based on ESM and BEMEAE Human, BART-Gen’s
F1 score increases by 15 percentage points with
RAMS (46% to 61%) and 12 percentage points
with GENEVA (64.5% to 76.5%), boosting its rank
from 7th to 2nd in RAMS and from 9th to 6th in
GENEVA. In contrast, EEQA shows a smaller im-
provement, gaining 6.1 points with RAMS and 6.2
points with GENEVA, maintaining its low position
in RAMS while dropping two ranks in GENEVA.

Exact Span Match Does Not Correlate Well with
Human Judgments. If F1 improvements had
been consistent across models, ESM might still
serve as a reasonable evaluation metric for rank-
ing models. However, a comparison of model
rankings from ESM and BEMEAE Human show
only moderate correlation (Kendall’s τ = 0.44 for
RAMS, 0.67 for GENEVA; Table 8). In con-
trast, BEMEAE Best Automated closely aligns with
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Metric PAIE T-CR T-C X-Gear AMPERE DEGREE BART-Gen CRF-T EEQA

Exact Span Match 52.7 51.3 48.3 47.0 46.5 46.5 46.0 43.8 43.4

BEMEAE (Ours)
Deterministic comp

same text 53.8 (1.1) 52.2 (0.9) 49.4 (1.1) 48.4 (1.4) 47.7 (1.2) 47.9 (1.4) 47.8 (1.8) 44.7 (0.9) 44.1 (0.7)
+ harmless tokens 56.6 (2.8) 55.0 (2.8) 52.7 (3.3) 51.7 (3.3) 50.6 (2.9) 51.0 (3.1) 50.9 (3.1) 47.8 (3.1) 45.3 (1.2)
+ breaking & aggreg. 56.6 (0.0) 55.0 (0.0) 52.8 (0.1) 51.7 (0.0) 52.5 (1.9) 52.9 (1.9) 53.1 (2.2) 47.8 (0.0) 45.3 (0.0)
+ modifiers 58.1 (1.5) 56.6 (1.6) 54.1 (1.3) 53.0 (1.3) 54.0 (1.5) 54.0 (1.1) 54.5 (1.4) 49.6 (1.8) 46.0 (0.7)

+ Semantic Matcher
human 62.9 (4.8) 60.0 (3.4) 58.4 (4.3) 57.6 (4.6) 58.7 (4.7) 59.4 (5.4) 61.0 (6.5) 53.5 (3.9) 49.5 (3.5)
best automatic 61.5 (3.4) 59.1 (2.5) 57.0 (2.9) 56.4 (3.4) 57.4 (3.4) 57.6 (3.6) 58.5 (4) 52.3 (2.7) 48.4 (2.4)

Table 6: Evaluation of several systems on RAMS using Exact Span Match (F1) and several versions of our metric (F1
and ∆ with respect to the previous step). Results are presented incrementally, adding the deterministic components
one at a time (Section 6). Two versions of the semantic matcher are also compared: human judgments (tedious but
reliable) and GPT-4o with expert instructions and reference shared (automatic but less reliable). Notably, BEMEAE,
our metric, reveals significant differences in system improvements, which ultimately lead to changes in system
rankings (Table 8). We observe a similar trend with GENEVA (Table 7).

Metric T-CR T-C X-Gear CRF-T PAIE DEGREE EEQA AMPERE BART-Gen

Exact Span Match 80.3 78.3 73.9 70.7 70.5 66.2 66.0 65.7 64.5

BEMEAE (Ours)
Deterministic comp

same text 80.6 (0.3) 78.6 (0.3) 74.8 (0.9) 71.2 (0.5) 70.7 (0.2) 67.2 (1.0) 66.4 (0.4) 66.6 (0.9) 65.3 (0.8)
+ harmless tokens 82.4 (1.8) 80.5 (1.9) 77.0 (2.2) 73.1 (1.9) 72.3 (1.6) 69.0 (1.8) 67.9 (1.5) 68.2 (1.6) 66.9 (1.6)
+ breaking & aggreg. 82.4 (0.0) 80.5 (0.0) 77.0 (0.0) 73.1 (0.0) 72.3 (0.0) 75.7 (6.7) 67.9 (0.0) 74.9 (6.7) 73.3 (6.4)
+ modifiers 82.4 (0.0) 80.6 (0.2) 77.2 (0.2) 73.2 (0.1) 72.4 (0.1) 75.8 (0.1) 68.0 (0.1) 75.0 (0.1) 73.4 (0.1)

+ Semantic Matcher
human 85.7 (3.3) 84.5 (3.9) 80.7 (3.5) 77.8 (4.6) 76.0 (3.6) 78.1 (2.3) 72.2 (4.2) 77.0 (2.0) 76.5 (3.1)
best automatic 83.6 (1.2) 81.8 (1.2) 78.1 (0.9) 74.5 (1.3) 73.1 (0.7) 76.4 (0.6) 69.8 (1.8) 75.6 (0.6) 74.3 (0)

Table 7: Evaluation of several systems on GENEVA using Exact Span Match (F1) and several versions of our metric
(F1 and ∆ with respect to the previous row). The deterministic components are always correct (Section 6); we
present results incrementally adding components. We also present results with two versions of the semantic matcher:
humans (tedious but reliable) and the best model (automatic but less reliable). Crucially, BEMEAE, our metric,
reveals substantially different improvements across systems, resulting in ranking changes (Table 8). This table
complements Table 6 by providing detailed F1 scores with GENEVA instead of RAMS.

BEMEAE Human, achieving a high Kendall’s τ of
0.94 for both datasets.

This highlights that ESM is limited in its effec-
tiveness to approximate human judgment. By rec-
ognizing more candidate arguments semantically
equivalent to the reference, BEMEAE offers a more
accurate evaluation that is more reflective of human
judgment, which ultimately changes model rank-
ings and provides a better understanding of how
models perform against each other.

Automated Methods for Semantic Matcher are
reliable for ranking, but not for estimating abso-
lute F1. The best automated semantic matcher in
our study demonstrated only fair agreement with
human judgment, achieving a Cohen’s kappa (κ) of
0.43 with RAMS (Table 5) and 0.31 for GENEVA
(Table 10). Furthermore, model rankings produced
by BEMEAE Best Automated showed close alignment

with those from BEMEAE Human, as indicated by a
high Kendall’s τ score of 0.94 for both RAMS and
GENEVA (Table 8), demonstrating that automated
semantic matchers are reliable for ranking.

However, automated matchers fall short when
estimating absolute F1 scores. The gap between
BEMEAE Human and BEMEAE Best Automated is sig-
nificant, with models like BART-Gen showing F1
differences of 2.5 points in RAMS and 2.2 points in
GENEVA. This highlights that even the best auto-
mated matchers in our study, despite their ranking
reliability, fail to capture all valid candidate argu-
ments that a human would recognize as correct.
As a result, our best automated matcher cannot
provide absolute F1 scores, as a "true" F1 would
require either a perfect semantic matcher—which
does not yet exist—or human evaluation, such as
BEMEAE Human.
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System
Exact
Span
Match
F1

BEMEAE (Our metric)

Human automatic

F1 (∆) Rank F1 (∆) Rank

PAIE 52.7 62.9 (10.2) 1 61.5 (8.8) 1
T-CR 51.3 60.0 (8.7) 3 ↓1 59.1 (7.8) 2
T-C 48.3 58.4 (10.1) 6 ↓3 57.0 (8.7) 6 ↓3
X-Gear 47.0 57.6 (10.6) 7 ↓3 56.4 (9.4) 7 ↓3
AMPERE 46.5 58.7 (12.2) 5 57.4 (10.9) 5
DEGREE 46.5 59.4 (12.9) 4 ↑2 57.6 (11.1) 4 ↑2
BART-Gen 46.0 61.0 (15.0) 2 ↑5 58.5 (12.5) 3 ↑4
CRF-T 43.8 53.5 (9.7) 8 52.3 (8.5) 8
EEQA 43.4 49.5 (6.1) 9 48.4 (5.0) 9

System
Exact
Span
Match
F1

BEMEAE (Our metric)

Human Automatic

F1 (∆) Rank F1 (∆) Rank

T-CR 80.3 85.7 (5.4) 1 83.6 (3.3) 1
T-C 78.3 84.5 (6.2) 2 81.8 (3.5) 2
X-Gear 73.9 80.7 (6.8) 3 78.1 (4.2) 3
CRF-T 70.7 77.8 (7.1) 5 ↓1 74.5 (3.8) 6 ↓2
PAIE 70.5 76.0 (5.5) 8 ↓3 73.1 (2.6) 8 ↓3
DEGREE 66.2 78.1 (11.9) 4 ↑2 76.4 (10.2) 4 ↑2
EEQA 66.0 72.2 (6.2) 9 ↓2 69.8 (3.8) 9 ↓2
AMPERE 65.7 77.0 (11.3) 6 ↑2 75.6 (9.9) 5 ↑3
BART-Gen 64.5 76.5 (12.0) 7 ↑2 74.3 (9.8) 7 ↑2

Table 8: Evaluation of systems on RAMS (left) and GENEVA (right) using ESM and BEMEAE. We present results
with the deterministic components and two semantic matchers: humans (BEMEAE Human) and the best automatic
matcher (BEMEAE Best Automated). ESM rankings do not correlate well with BEMEAE Human (Kendall’s τ = 0.44
with RAMS and 0.67 with GENEVA), indicating that the rank changes between ESM and BEMEAE are substantial.
However, the similarity of the rankings obtained with BEMEAE Human and BEMEAE Best Automated (Kendall’s τ =
0.94) suggests a scalable and reliable alternative.

As demonstrated in our analysis, BEMEAE is
a significant improvement over ESM, providing
an evaluation that aligns much more closely with
human judgments. By moving beyond exact span
matching and recognizing a broader range of candi-
date arguments that humans would consider seman-
tically equivalent to the reference and thus correct,
BEMEAE offers a more realistic and faithful as-
sessment of model performance.

8 Conclusion

We evaluated nine EAE models on the RAMS and
GENEVA datasets, highlighting the limitations of
the traditional exact span match (ESM) evalua-
tion metric. To address these shortcomings, we
introduced BEMEAE, a novel metric that com-
bines deterministic components with both human
and automated semantic matching. Our results
show that BEMEAE provides a far more accurate
and fair evaluation since it accounts for a broader
range of argument representations resulting in sig-
nificantly shifted model ranks. When compared,
ranks based on ESM show poor correlation with
BEMEAE Human, whereas BEMEAE Best Automated
achieves strong correlation, presenting a scalable
and reliable alternative.

Limitations

While BEMEAE improves evaluation over ESM,
it cannot capture all correct candidate arguments,
as even the best automated semantic matcher
showed only fair agreement with human judgments,
highlighting a gap in modeling semantic equiva-

lence. We report results using GPT-4o, as tested
open-source alternatives struggled with prompt ad-
herence and produced verbose responses. Addition-
ally, larger models like GPT demand substantial
computational resources. Our evaluation remains
limited to general and news-based English datasets,
leaving its effectiveness in specialized domains like
cybersecurity untested.
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A Train and Test Splits with GENEVA

System GENEVA (F1, rank)

5 Splits Split 1

TagPrime-CR (Hsu et al., 2023a) 80.1 (1) 80.3 (1)
TagPrime-C (Hsu et al., 2023a) 79.0 (2) 78.3 (2)
X-Gear (Huang et al., 2022) 74.9 (3) 73.9 (3)
CRF Tagging (Huang et al., 2024) 74.3 (4) 70.7 (4)
PAIE (Ma et al., 2022) 70.3 (5) 70.5 (5)
DEGREE (Hsu et al., 2022) 63.9 (9) 66.2 (6)
EEQA (Du and Cardie, 2020) 67.0 (6) 66.0 (7)
AMPERE (Hsu et al., 2023b) 64.8 (7) 65.7 (8)
BART-Gen (Li et al., 2021) 64.3 (8) 64.5 (9)

Table 9: Results (F1 and rank) obtained with GENEVA
(a) average score of the 5 data splits and (b) training and
testing with Split 1. There are only minimal differences
in F1. Therefore, we use the latter setting in our analyses
as it decreases the compute demands by 80%. This
complements the RAMS analysis presented in Table 2,
where similarly minimal changes were observed.

As discussed in the main paper (Section 4), the anal-
yses presented here leverage the TextEE framework
with two datasets: RAMS and GENEVA. While
TextEE recommends running experiments using
five different train-test splits and reporting the aver-
age performance, we found that using a single split
yields only minor changes in results, as shown in
Table 2 for RAMS and Table 9 for GENEVA. This
approach reduces computational requirements by
80% with minimal impact on outcomes.
We acknowledge that using five splits provides
more robust results; however, it is important to note
that (a) our primary focus is on evaluating metrics
rather than optimizing model performance, and (b)
using a single test split allows for more in-depth
and manageable analyses across all models.

B Annotation Task Details

The annotation process involved evaluating the can-
didate arguments produced by the models with re-
spect to human-annotated reference arguments for
both RAMS and GENEVA datasets.

The Annotation Task

Each candidate argument was evaluated with a se-
ries of three questions.

1. Validity Check: Annotators first determined
whether any part of the candidate argument
was valid for the specific role within the event.
This step addressed whether the candidate ar-
gument was, or included, a correct answer for

the role, including cases where there may be
spurious content or coreferent mentions. If
the candidate argument was entirely incorrect,
the annotators proceeded to the next task, oth-
erwise they are asked the next question.

2. Similarity Check: If the candidate argument
was deemed valid, the annotators then as-
sessed whether it conveyed the same mean-
ing as any of the reference arguments. The
task required choosing whether the candidate
argument was semantically equivalent to any
reference argument. To account for possible
annotation errors, we offered a none option as
well.

3. Relationship Determination: Finally, anno-
tators identified the relationship between the
candidate argument and the chosen reference
argument. Several options were provided to
describe this relationship:

• Conveys at least the needed information:
The candidate argument includes all rele-
vant information present in the reference.

• Entirely different from the reference, but
correct: The candidate argument text is
not the same as any part of the reference
argument but still correct for the assigned
role. This accounts for annotation errors,
metonyms etc.

• Removes important details: The candi-
date argument is a more general version,
missing important specifics compared to
the reference such as predicting the name
of the city instead of the specific venue
of an event.

• Adds spurious content: The candidate
argument contains unnecessary informa-
tion not relevant to the role.

We used Label Studio (Tkachenko et al.,
2020-2024) as our annotation platform. A screen-
shot with a real example is shared in Figure 2.

Processing Annotations
We processed the annotator’s choices as follows:
If the annotator selected “No” to Question 1 or
marked the relationship as “Adds Spurious Con-
tent,” the annotation was labeled as ‘Incorrect’. If
the annotator selected “Yes” to Question 1 and
marked either “Conveys at least the needed infor-
mation” or “Entirely different from reference, but
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Figure 2: Our annotation interface for evaluating event argument extraction. In this example the annotator assesses
whether the candidate argument “Lazar” is a valid answer to the role “defendant” in the event “extradited”. The
annotator follows three steps: (1) validity check to determine if “Lazar” is a valid argument for the event role, (2)
similarity check to compare “Lazar” with reference argument “he,” and (3) relationship determination to assess if
the candidate conveys the needed information, removes important details, or adds spurious content.
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correct,” the annotation was labeled as ‘Correct’.
Lastly, if the annotator selected “Yes” to Question
1 and marked “Removes important details” in re-
sponse to Question 3, the annotation was labeled
as ‘Partial’. The response to Question 2 was used
to determine which reference argument was cor-
rectly matched. This step was particularly valuable
when the candidate was an aggregation of two or
more reference arguments, ensuring that multiple
references were appropriately evaluated in the final
assessment.

Annotators and Agreement

The annotators for this study were a mix of gradu-
ate and undergraduate computer science students.
To ensure consistency, all annotators received de-
tailed instructions and were trained using a set of
50 tasks to develop a shared understanding of the
annotation process. For each task, two annotators
independently labeled the candidate arguments. In
cases where disagreements occurred, the labeling
provided by the more experienced annotator was
used in the final analysis. The inter-annotator re-
liability, calculated using Cohen’s kappa (κ), was
0.84 for the RAMS dataset and 0.95 for GENEVA,
demonstrating substantial agreement between an-
notators.

C Cohen’s Kappa for Semantic Matchers
for GENEVA

We evaluated Cohen’s kappa (κ) between the au-
tomatic methods and human labels under two set-
tings: first, using the original three labels (Cor-
rect, Partial, and Incorrect); and second, under a
stricter definition where Partial is merged with In-
correct. The results for GENEVA are presented
in Table 10. We observed the highest agreement
with GPT-4o-mini when expert instructions were
provided and the reference was explicitly shared.
A similar trend is observed with the RAMS dataset
in Table 5.

D GPT Prompts for Semantic Matcher

We used GPT-4o and GPT-4o mini (OpenAI, 2023),
experimenting with four combinations of two con-
ditions: (1) with or without expert instructions, and
(2) with or without the explicit inclusion of the
reference argument in the prompt.

System instructions refer to a broader set of
guidelines provided to the model before it pro-
cesses the specific user prompt which is the spe-

κ3 κ2

Human Semantic Matcher 0.95 0.95

Automatic Semantic Matchers
Cosine similarity

word2vec 0.25 0.21
GloVe 0.16 0.12
SentenceBERT 0.28 0.24

BERTScore 0.23 0.20

Prompting GPT-4o-mini
wording: intuitive, reference: yes 0.13 0.03
wording: intuitive, reference: no 0.16 0.17
wording: expert, reference: yes 0.31 0.30
wording: expert, reference: no 0.28 0.27

Prompting GPT-4o
wording: intuitive, reference: yes 0.14 0.10
wording: intuitive, reference: no 0.18 0.08
wording: expert, reference: yes 0.29 0.32
wording: expert, reference: no 0.28 0.34

Table 10: Cohen’s κ scores for 500 candidate arguments
from the GENEVA dataset. First row shows agreement
between human annotators. Other rows show agree-
ments between automatic methods and humans. κ3 uses
three labels (Correct, Partial, Incorrect), and κ2 merges
Partial and Incorrect. For GENEVA GPT-4o-mini with
expert instructions and references shared achieves the
highest agreement among automatic methods. How-
ever, it remains far from reliable human annotation
(κ = 0.31, 0.30); and obtains much lower agreement
than humans (κ = 0.94, 0.95). Observations with the
RAMS dataset are shared in Table 5.

cific request task request. System instructions offer
general context to the model, influencing how it
interprets and responds to the user prompt. We give
expert instructions in the system prompt.

In our study, we experimented with expert and in-
tuitive instructions, and with and without reference
in the prompt. Including the reference provides
additional context for the model to compare candi-
date arguments against, while excluding it forces
the model to make a judgment without explicit ref-
erence to the expected argument.

Table 11 presents the detailed prompts used in
each setting. All other hyperparameters were kept
at their default settings.
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Prompts with experiment setting

Intutive instructions, Reference shared

User Instructions
Read the following paragraph: <document>. We know that <reference> is the <role> of <event trigger>. Is it true that
<candidate> and <reference> have the same meaning? Answer only one of these options: ’Yes’, ’Yes, but it is not exactly the
same meaning; the first text is missing important information’, or ’No’.

Intutive instructions, Reference not shared

User Instructions
Read the following paragraph:<document>. Based on the paragraph, is it true that <candidate> is the <role> of <event
trigger>? Answer only one of these options: ’Yes’, ’Yes, but it is missing important information’, or ’No’

Expert instructions, Reference shared

System Instruction
You are provided with a document, event type, event trigger, argument role, reference argument (i.e., the correct argument for
the argument role of the event trigger), and a candidate argument (i.e., a candidate argument for the argument type of the event
trigger that needs to be verified). Task: Classify whether the candidate argument is correct based on the reference argument.
"Correct": The candidate argument matches the reference argument fully or is the correct argument for the argument role of
the event trigger. "Partial": The candidate argument partially matches the reference argument or is a partially correct argument
for the argument role of the event trigger. "Incorrect": The candidate argument does not match the reference argument fully
and it not the correct argument for the argument role of the event trigger. Output: Return a JSON object with the following
structure: "label": “Correct”, "Partial" or “Incorrect”. "explanation": 1-2 sentences explaining the classification decision.

User Instructions
Document : <document>
Event Type: <event type>
Event Trigger: <event trigger>
Argument Role : <role>
Reference argument: <reference>
Candidate argument: <candidate>

Expert instructions, Reference not shared

System Instruction
You are provided with a document, event type, event trigger, argument role, and candidate argument (i.e., a candidate argument
for the argument type of the event trigger that needs to be verified). Task: Classify whether the candidate argument is correct
"Correct": The candidate argument is the argument role of the event trigger.
"Partial": The candidate argument is the argument role of the event trigger, but it is missing important information.
"Incorrect: The candidate argument is not the argument role of the event trigger or is adding spurious information.
Output: Return a JSON object with the following structure:
"label": “Correct”,"Partial" or “Incorrect”.
"explanation": 1-2 sentences explaining the classification decision.

User Instructions
Document : <document>
Event Type: <event type>
Event Trigger: <event trigger>
Argument Role : <role>
Candidate argument: <candidate>

Table 11: Prompts used for evaluating event argument extraction. We explore variations with and without expert
instructions, as well as with and without the explicit inclusion of the reference argument. The <item> placeholders
indicate where the actual content is inserted (e.g., document, event type, or argument role).
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