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Abstract
Consistency in the output of language mod-
els is critical for their reliability and practical
utility. Due to their training objective, lan-
guage models learn to model the full space
of possible continuations, leading to outputs
that can vary significantly in style and con-
tent, even for similar or repeated inputs. To
address this, we propose a novel decoding al-
gorithm that enhances response consistency
across different prompts with no degradation
in response quality. By incorporating a latent
variable into the next-token sampling process
based on the Gumbel reparametrisation trick,
our method outperforms standard sampling by
up to 10% across semantic and stylistic consis-
tency benchmarks. Additionally, our approach
integrates seamlessly with existing sampling
methods with negligible computational over-
head, providing a practical solution for im-
proving the reliability of language model out-
puts.

1 Introduction

In recent years, state-of-the-art language mod-
els (LMs) have demonstrated remarkable perfor-
mance across a wide range of benchmarks, often
rivaling human capabilities in tasks such as trans-
lation, summarization, and question-answering
(Brown et al., 2020; Dubey et al., 2024). How-
ever, these advancements have not always trans-
lated into practical usefulness for real-world appli-
cations, where reliability and consistency are cru-
cial (Kaddour et al., 2023).

One of the primary challenges is the inconsis-
tency of these models’ responses, which can vary
significantly in style, factual accuracy, and tone
(Bommasani et al., 2021). This inconsistency, a
byproduct of the probabilistic nature of language
model training, can lead to a range of issues, in-
cluding reduced trust in outputs, exposure to more

*Definition: If you use resources wisely and avoid waste,
you’ll never suffer from a shortage

diverse failure modes, and less reliable behaviour
(Ye et al., 2023).

Although traditional methods (e.g the use of
random seeds) can be applied to introduce deter-
minism in natural language generation, ensuring
identical responses for identical inputs, they do not
help ensure similar responses when inputs are sim-
ilar. In practice, due to the richness of language,
input queries can often be reworded in many ways
while retaining their meaning. To achieve greater
consistency, it is desirable for the model to gen-
erate similar responses across all these variations
(Ribeiro et al., 2018).

In this paper, we investigate whether next-token
sampling procedures can be modified to enhance
consistency across different prompts. Our main
contributions include:

1. We propose a simple, computationally inex-
pensive sampling procedure that (i) can be
applied to any model, (ii) does not require
any additional training, and (iii) has negligi-
ble impact on inference costs. We also en-
sure that the probability of any individual re-
sponse is unchanged and so does not compro-
mise response quality.

2. We also leverage an auxiliary approach to
further improve consistency between model
responses using distributional ensembling,
which can be applied in conjunction with our
aforementioned sampling procedure.

3. We investigate the performance of our ap-
proach against standard sampling across a
number of benchmarks covering semantic
and stylistic similarity, across a number of
different models.

In particular, we highlight that our combined
sampler outperforms standard sampling across all
benchmark suites and models tested, by up to 10%
in some cases.
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2 Related works

Decoding approaches Language model decod-
ing strategies can be broadly classified into
two categories: optimization and sampling-based
approaches (Ji et al., 2024). Optimization-
based approaches, such as greedy decoding and
beam search (Lowerre, 1976; Jurafsky and Mar-
tin, 2009), frame text generation as an opti-
mization problem, searching for sequences that
maximize a specific metric such as probabil-
ity, whereas sampling-based approach incorporate
stochasticity into the next-token selection process.
Optimization-based approaches are typically per-
ceived as yielding less engaging but more accurate
responses and so are often favoured for closed-
ended tasks expecting a fixed answer (Holtzman
et al., 2020). However, recent work has put into
question the greater accuracy of their responses
(Renze and Guven, 2024).

In contrast, sampling-based approaches are usu-
ally preferred for open-ended tasks, as they typ-
ically yield more engaging answers (Basu et al.,
2021; Ji et al., 2024). Our proposed method falls
within this category. Many existing methods in
the literature, such as nucleus sampling and miro-
stat (Holtzman et al., 2020; Basu et al., 2021; Fan
et al., 2018), aim to improve text generation qual-
ity by directly modifying the probability distribu-
tion from which tokens are sampled. We con-
sider these methods, which directly alter the next-
token distribution, as complementary to our ap-
proach, which maintains the next-token distribu-
tion and instead modifies the joint distribution over
responses.

Our approach is methodologically most closely
related to methods (Vilnis et al., 2023; Kool
et al., 2019) which also adjust the joint distri-
bution of sampled responses. However, while
these methods aim to maximize response diver-
sity—an advantage when ensembling multiple re-
sponses as done in self-consistency voting (Wang
et al., 2023)—our approach is distinct in its focus
on minimizing response diversity to achieve more
consistent outputs.

Self-Consistency Language models lack robust-
ness to prompt variations (Huang et al., 2024;
Elazar et al., 2021) and give contradictory re-
sponses in such cases, motivating the need for en-
hanced self-consistency. Self-consistency in lan-
guage models has been studied from many dif-
ferent angles, but usually with a focus on factual

rather than stylistic consistency. Prior work has
proposed a number of fine-tuning approaches for
increasing self-consistency, including fine-tuning
approaches for increasing the ability of language
models to respond consistently to paraphrases of
questions (Elazar et al., 2021; Yan et al., 2024),
and approaches for correcting model contradic-
tions using a factor graph over beliefs (Mitchell
et al., 2022).

Our approach is methodologically orthogo-
nal to previous approaches for enhancing self-
consistency. Previous work has relied on fine-
tuning which not only is more cumbersome to im-
plement but also modifies the raw next-token prob-
abilities, potentially affecting responses in unfore-
seen ways or contributing to catastrophic forget-
ting.

Since our approach only modifies the joint dis-
tribution over responses without modifying the
next-token probability distribution, it does not suf-
fer from the same issues, and comes with princi-
pled guarantees around maintaining the model’s
original response style and quality. Additionally,
it enhances all aspects of self-consistency, not just
factual consistency of responses.

3 Problem statement

Let X be a language model prompt composed of
a sequence of tokens drawn from a vocabulary of
size Nv, and let πθ be a language model trained on
the task of next-token-prediction. For the remain-
der of the paper we denote a forward pass through
the language model by ht = πθ(X,Y1:t−1) where
ht ∈ ∆Nv−1 represents a probability distribu-
tion over the token vocabulary, with ∆Nv−1 denot-
ing the (Nv−1)-dimensional probability simplex.
The sequence Y1:T represents the full response ob-
tained by auto-regressively applying the language
model with the next token at each step sampled
from the categorical distribution parameterized by
the model, Yt ∼ Cat(ht). In what follows, we use
a subscript to represent position in a sequence, and
a superscript to represent the token index. So for
example, hit represents the probability of sampling
token i at position t.

Suppose that U is a different prompt that is se-
mantically similar to X for which we generate a
response V = V1:M . Motivated by the incon-
sistency of LM responses, our goal is to mod-
ify the LM sampling procedure in a way that in-
creases the similarity between responses Y and
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Figure 1: Motivating toy example highlighting the aim of our approach. Even when language models yield similar
probability distributions over responses (top), responses sampled independently (bottom left) can be inconsistent or
contradictory due to the inherent stochasticity of sampling. By generating responses in a correlated manner (bottom
right) it is possible to alleviate inconsistencies across responses while still respecting the marginal probabilities of
each response. In this paper we propose, Gumbel Consistent Sampling, an approach for increasing response
consistency through drawing correlated responses, by conditioning all responses on a shared latent variable, that is
robust to differences between probability distributions over responses.

V according to some yet-to-be-specified notion
of similarity. Furthermore, we focus on sam-
pling approaches that modify the joint probabil-
ity of responses p(Y, V ) without affecting the
marginal probability of individual responses, p(Y )
and p(V ), to guarantee that quality of the original
responses is maintained.

4 Approach

Our proposed sampling approach, motivated in
Figure 1, modifies the joint probability distribu-
tion over responses by introducing a latent variable
g to the sampling process. Conditioning the gen-
eration of distinct responses on a common realisa-
tion of this latent variable introduces a statistical
dependency between them. Generating responses
with greater similarity can then be straightfor-
wardly done by conditioning the generation of all
responses on a common realisation of the latent
variable, that is to say to sample Y ∼ p(Y |X, g)
and V ∼ p(V |U, g).

To ensure the efficacy of the approach, we de-
sign the latent variable in such a way that condi-
tioning responses on a common value of the la-
tent variable makes responses as similar as possi-
ble. To ensure the preservation of the probability
distribution parameterized by the language model,

we sample the latent variable from a probability
distribution g ∼ p(g) such that marginalising over
the latent variable recovers the original distribu-
tion over responses, Eg[p(Y |g)] = p(Y ).

To construct a latent variable with the above
properties, we employ the reparametrization trick
for categorical distributions. Introduced for nor-
mal distributions in (Kingma and Welling, 2014)
and extended to categorical distributions in (Mad-
dison et al., 2014, 2017; Jang et al., 2017), the
reparametrization trick is a procedure that refac-
tors the sampling from a distribution into a de-
terministic function of the parameters and a draw
from some independent noise with a fixed distri-
bution. For a categorical distribution with param-
eters p1, ..., pNv , this can be cast as first drawing
random noise g = (g1, ..., gNv) where each gi ∼
G(0, 1) is independently drawn from the Gumbel
distribution (Gumbel, 1954) and selecting a cate-
gory k according to k = argmaxi(log p

i + gi).
Theorem 4.1. Suppose we have two different cat-
egorical distributions parametrized by p1, ..., pNv

and q1, ..., qNv . Define a joint distribution over
pairs of categories (Y, V ) by defining

Y = argmax
i

(log pi + gi),

V = argmax
i

(log qi + gi),
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where g1, ..., gNv ∼ G(0, 1) are independent. We
have that

P (Y = k, V = k) = pkqk

pkqk+
∑

i ̸=k max{piqk,qipk} .

Theorem 4.1 (proved in Appendix A) shows
that interpreting the Gumbel noise as a latent
variable and conditioning sampling events on the
same realisation of this latent variable increases
the probability of selecting the same category with
both distributions compared to sampling from
each categorical distribution independently, with
identical sampling outcomes in the limit where p
and q become identical.

Since generating a response using a LM consists
of successive draws from categorical distributions,
the above idea can be applied to language mod-
elling in order to increase the token overlap across
distinct responses. Indeed, we can generate ahead
of time a sequence of independent Gumbel latent
vectors, g1:t, one for each position in the sequence
up to the maximum sequence length, and sam-
ple each token using the Gumbel latent vector as-
signed to that position in the sequence when gen-
erating a response. That is to say, drawing Yt ∼
p(Yt|hy,t, gt) and Vt ∼ p(Vt|hv,t, gt), where here
we denote by hy,t and hv,t, the next-token proba-
bilities obtained by running the language model on
the context-up-to-now (i.e. hy,t = πθ(X,Y1:t−1),
hv,t = πθ(U, V1:t−1) ). We refer to the above ap-
proach as Gumbel Consistency Sampling, GCS.

This sequential Gumbel sampling approach in-
creases similarity of responses by increasing the
rate at which identical tokens are generated at
fixed positions in the sequence p(Yi = k, Vi =
k) but has the limitation of not increasing the
co-occurrence across sequence positions p(Yj =
k, Vi = k). We expect that two similar responses
are likely to contain some of the same tokens, but
likely in different positions, so it would be advan-
tageous for our final sampling approach to reflect
this.

Introducing such an inter-position correlation
in sampling outcomes across sequences is made
challenging by the requirement of conditional in-
dependence between sampling steps. Indeed, to
respect the LM’s probability distribution, it is nec-
essary for sequential sampling steps to be inde-
pendent of each other, i.e. for p(Yt+1|X,Y1:t) =
p(Yt+1|ht+1) = Cat(Yt+1;ht+1) which prevents
the direct reuse of Gumbel samples across se-
quence positions.

Theorem 4.2. Consider a sequence of tokens Y1:T
generated auto-regressively according to the fol-
lowing update rule, where k := argmaxj(g

j
t +

log hjt ), Q(·) is the quantile function for the
G(0, 1) distribution and πθ(·) is a language
model:

g1 ∼ G(0, 1)

ht+1 = πθ(X,Y1:t)

gkt+1 | gt, ht ∼ G(0, 1)

git+1 | gt, ht = Q
(

Q−1(git)

Q−1(gkt +log hk
t−log hi

t)

)
,

for i ̸= k

Yt+1 = argmax
j

(
log hjt+1 + gjt+1

)

With this update procedure, the probability dis-
tribution over a given token conditioned on pre-
ceding tokens is

p(Yt+1 | X,Y1:t) = Cat(Yt+1;ht+1)

In Theorem 4.2 we introduce a procedure for re-
cycling a Gumbel vector after applying the Gum-
bel reparameterization trick. We prove in Ap-
pendix B.1 that this procedure is functionally
equivalent to independently sampling each token
from the true model probability distribution. This
means that repeated application of the Gumbel
reparametrization trick with this recycling proce-
dure yields sequences that are indistinguishable
from those obtained by independent sampling at
each step from the model’s categorical distribu-
tion.

This property enables the generation of highly
correlated responses while preserving adherence
to the model’s probability distribution. By sam-
pling a single Gumbel vector and reusing it
across all generated responses, each response re-
mains faithful to the model’s predicted probabil-
ities while also being inherently correlated due
to the shared Gumbel noise. Moreover, because
the Gumbel noise remains highly similar before
and after recycling, responses exhibit strong inter-
position correlations across different sequence po-
sitions.

We explicitly present the overall procedure in
Algorithm 1 as well as an illustrative Python im-
plementation in Appendix I. We refer to this gen-
eration approach as Gumbel Consistency Sam-
pling with Recycling, (GCSwR). At each se-
quence position, the algorithm resamples a new
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Algorithm 1 Gumbel Consistency Sampling with
Recycling (GCSwR)

Input: Context X , sequence length T , language
model parameters θ

Output: Generated token sequence Y1:T
1: Initialize g ∼ G(0, 1) ∈ RNvocab×T and c =

[0, 0, . . . , 0] ∈ RNvocab

2: for t = 1 to T do
3: ht ← πθ(X,Y1:t−1)

4: k ← argmaxj

(
gjcj + log hjt

)

5: Yt ← k
6: ck ← ck + 1
7: for each i ̸= k do

8: gici ← Q

(
Q−1(gici )

Q−1
(
gkck

+log hk
t−log hi

t

)

)

{Q(·): Gumbel quantile function}
9: end for

10: end for
11: return Y1:T

Gumbel noise value for the position corresponding
to the chosen token while recycling a rescaled ver-
sion of the existing Gumbel values for all other po-
sitions. To prevent divergences among responses
due to resampling, we precompute and store Gum-
bel noise resamplings for each token in the vo-
cabulary. This allows the same noise values to
be reused across different responses. In the algo-
rithm, this process is managed using the counter
variable c.

The standard procedure for autoregressive to-
ken sampling, which is equivalent to independent
sampling of a new Gumbel latent vector for ev-
ery sequence position and every sequence, acts as
a baseline for subsequent experiments, and is de-
noted as Independent Sampling, (IS).

5 Ensembling semantically similar
responses

A complementary approach to enhance consis-
tency between responses given semantically sim-
ilar prompts is to reduce the impact of semanti-
cally irrelevant prompt attributes on the next-token
probability distributions, which can be achieved
by increasing the similarity between the sampling
distributions.

In our experiments, we explore sampling to-
kens from an ensembled probability distribution
over semantically equivalent prompts as a means
of minimising impact of semantically irrelevant

prompt variations on responses. Specifically, we
generate semantically equivalent variations of the
user prompt by asking a separate LM (gpt-4o
mini) to rephrase the prompt. We then run the tar-
get LM separately on all of the prompts, producing
a set {Pi} of next-token probability distributions.
We then sample from an ensembled distribution,
ensembled using the following formula:

Qj =
1

Z

n∏

i=1

(P j
i )

1
n (1)

where Z is the normalisation constant that ensures
Q defines a valid probability distribution function:

Z =
∑

j

n∏

i=1

(P j
i )

1
n

This formula corresponds to selecting the cat-
egorical distribution that minimizes the average
forward-KL divergence over all next-token prob-
ability distributions (see Appendix D). We found
that direct averaging (which can equivalently be
shown to minimize the reverse-KL distribution)
tended to generate worse-quality responses due
to at times sampling tokens that were only high-
probability for a subset of question rewordings.

Note that, contrary to our proposed Gumbel
sampling approach, ensembling comes at a cost of
additional inference-time compute and also modi-
fies the language model probability distributions.
We highlight that ensembling can be applied in
conjunction with any of the three samplers dis-
cussed in section 4, and we investigate the perfor-
mance of each sampler with and without ensem-
bling in our experiments.

6 Experiments

In our experiments, we empirically demonstrate
the utility and limitations of GCS and GCSwR. We
begin by quantifying the utility of the procedure
for enhancing semantic similarity of responses,
and highlight a number of stylistic dimensions of
text along which Gumbel sampling improves con-
sistency. Details for reproducing experiments are
shown in Appendix E.

6.1 Semantic similarity
We start by quantifying the improvement in the se-
mantic similarity between responses for semanti-
cally equivalent queries by using our Gumbel sam-
pling variants (GCS and GCSwR). To measure se-
mantic similarity, we use E5mistral-7b, a specialised
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state-of-the-art model trained specifically on the
task of semantic similarity (Wang et al., 2024).

We create semantically equivalent pairs of
questions for evaluation by randomly sam-
pling 300 questions from the Alpaca dataset
(Taori et al., 2023) — a popular human-
preference dataset - and rephrasing them using
gpt-4o mini. We then generate responses
to the original and rephrased version of each
question using Meta-Llama-3-8B-Instruct,
Meta-Llama-3-8B, Mistral-7B-v0.1,
Llama-2-7b-chat-hf (AI@Meta, 2024; Touvron
et al., 2023; Jiang et al., 2023). In all cases we
sample from the raw unmodified next-token prob-
abilities predicted by the language models (i.e.
temperature of 1) and for Gumbel sampling, we
resample the Gumbel latent vector for each pair
of questions such that responses are correlated
within but not between pairs.

The aggregated results, shown in Table 1,
demonstrate that the most performant sampling
scheme tested (GCSwR with ensembling) signif-
icantly increases response similarity to semanti-
cally equivalent questions across all models con-
sidered, by more than 10% when compared to
the baseline in some cases. We note more pro-
nounced enhancements from Gumbel sampling for
unaligned models like Mistral and Llama3 Base,
which we hypothesise is caused by their lower
base semantic similarity compared to their instruc-
tion fine-tuned counterparts.

The above trends appear to be consistent
across different choices of semantic similar-
ity metric which we show in Appendix H,
where we reproduce results using the Jac-
card similarity, a simple token overlap met-
ric, and using all-mpnet-base-v2, the seman-
tic similarity model recommended by the popular
sentencetransformer repository (Reimers and
Gurevych, 2019). In both cases, we find relative
performances between approaches to be consistent
with those quoted in the main paper body.

6.2 Semantic similarity as a function of
temperature

Next, we investigate how the effectiveness of GC-
SwR varies with sampling temperature. We com-
pare the semantic similarity metric on the Alpaca
dataset as a function of temperature in Figure 2
with IS as a baseline, without using ensembling in
both cases. GCSwR improves the semantic con-
sistency of responses across all temperatures, ex-

cept temperature 0, where the model probabilities
with and without GWSwR become identical due to
the fully deterministic nature of model outputs at
this temperature1 Example responses for Llama3
models at temperature 0.8 can be found in Ap-
pendix G.

It is also interesting to note that although
GCSwR improves self-consistency at all non-
zero temperatures, the highest self-consistency
achieved is with greedy decoding (i.e. tempera-
ture 0) which is where both approaches behave
identically. However, we caution that this result
does not imply that greedy decoding will always
be preferable to higher-temperature Gumbel sam-
pling. Using greedy decoding is widely consid-
ered to decrease the quality of responses across
a number of important dimensions and so model
providers typically use non-zero default tempera-
tures (Basu et al., 2021; Ji et al., 2024; Zhang et al.,
2021). Gumbel sampling offers a way of increas-
ing the consistency of responses without the neg-
ative side-effects associated with excessively low-
ering the sampling temperature. We also note that
using Gumbel sampling is much more effective at
increasing self-consistency of responses than de-
creasing temperature, with temperatures needing
to be roughly halved in order to match the benefits
of using Gumbel consistency sampling.

6.3 Stylistic similarity

In this section, we study Gumbel consistency
sampling’s ability to enhance stylistic consis-
tency across several distinct stylistic dimensions,
evaluating GCSwR without ensembling using
Mistral-7B-v0.1 (Jiang et al., 2023).

We conduct our experiments on two datasets:
Code-Alpaca and Aleatoric-List. The Code-
Alpaca dataset (Chaudhary, 2023) consists of
coding-related questions, from which we select a
subset of 20 random questions that are agnostic
to programming languages. For this dataset, we
assess stylistic consistency based on several fac-
tors: whether the response contains a code snip-
pet, whether the response starts directly with the
code snippet or begins with freeform text, whether
the code snippet includes comments, and the pro-
gramming language used in the response (such as
Python, JavaScript, or C++).

1We note that responses can still differ under greedy de-
coding if several tokens are tied for maximum probability. In
experiments this occurred a non-negligible amount of times
due to the limited numerical precision of bfloat16.
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Model Sampler Without Ensembling With Ensembling

Llama2 Chat
IS 86.34±0.07 87.56±0.29
GCS 88.28±0.10 90.26±0.27
GCSwR 88.61±0.15 90.38±0.25

Mistral
IS 72.00±0.27 72.34±0.93
GCS 78.55±0.22 81.17±0.77
GCSwR 80.94±1.05 82.74±0.81

Llama3 Instruct
IS 85.61±0.18 86.90±0.16
GCS 86.81±0.46 89.01±0.35
GCSwR 87.37±0.27 89.68±0.08

Llama3 Base
IS 71.23±0.41 71.46±0.70
GCS 76.68±0.80 78.71±0.82
GCSwR 80.10±0.80 82.04±0.81

Table 1: Average semantic similarity results by sampler type with and without our en-
sembling approach as measured by E5mistral-7b. Scores shown as mean±std.err with std.err
obtained from 3 independent runs. Bold indicates highest scores for each model in both
ensembling categories.

Dataset Stylistic Dimension Sampler

IS GCSwR

Code-Alpaca Is Python 0.67 0.73
Is JavaScript 0.78 0.84

Is C++ 0.92 0.94
Contains Code Snippet 0.71 0.81

Answers Directly 0.50 0.73
Contains Comments 0.71 0.80

Aleatoric-List Does Not Use Bullets 0.75 0.82
Uses Numerical Bullets 0.82 0.87

Terseness 0.50 0.64

Table 2: Comparison of Gumbel consistency sampling with recycling (GCSwR) vs. independent sam-
pling (IS) on Stylistic Consistency

The second dataset, Aleatoric-List, is a syn-
thetic dataset we created containing 20 questions
that ask for five different items fitting a spe-
cific category. An illustrative example question is
"Give me the names of five capital cities in Eu-
rope." For this dataset, we evaluate stylistic con-
sistency based on whether the answer is terse,
whether it contains bullet points, and whether
these bullet points are numerical.

To evaluate stylistic consistency along each di-
mension, we begin by generating 100 Gumbel la-
tent vectors. Then, for each Gumbel vector, we
generate a response to all questions in the dataset
which we classify along each of the stylistic di-
mensions through prompting gpt-4o mini (with

prompts shown in Appendix F). For each fac-
tor, we then define the stylistic consistency as
the probability that responses to two randomly se-
lected questions share the same label, denoted as
prepeat. We then compare this probability with
the equivalent probability when the responses are
generated with our independent sampling baseline
(IS).

Let Z be a Bernoulli random variable that de-
notes whether a randomly sampled response is la-
belled with a given stylistic dimension, p(Z =
1) = p. For IS, prepeat = p2+(1− p)2. However,
for GCS and GCSwR, prepeat = Eg[p

2
g+(1−pg)2]

where pg denotes the probability of a randomly
sampled response generated using Gumbel latent
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Figure 2: Mean semantic consistency between responses to paraphrased questions as a
function of temperature, comparing independent sampling (IS) against Gumbel Consistency
Sampling with Recycling (GCSwR).

vector g taking value Z = 1. These expres-
sions follow directly from the conditional indepen-
dence of responses generated with a common ini-
tial Gumbel latent vector g and generated indepen-
dently, and additionally from marginalisation over
initial Gumbel latent vectors g.

Although the estimator p̂ = 1
n

∑n
i=1 Zi is an

unbiased estimator of p, p̂2 + (1 − p̂)2 yields a
biased estimator of p2 + (1 − p)2. To correct for
this bias, we use the following estimator N

N−1(p̂
2+

(1 − p̂)2) − 1
N−1 which we show in Appendix C

to be unbiased.
We show, in Table 2, the results of this ex-

periment, using Mistral-7B to generate responses.
Across all stylistic dimensions considered, using
GCSwR increases the frequency with which gen-
erated responses follow a common style. For
many factors, the increase is significant (>10%),
showing that Gumbel consistency sampling can
have an appreciable impact on style consistency.

7 Conclusion

We have introduced Gumbel consistency sam-
pling, a straightforward and computationally in-
expensive sampling approach for increasing con-
sistency amongst model responses. The method

requires no additional fine-tuning, additional lan-
guage model calls or apriori knowledge of what
prompts will be used, and guarantees responses
indistinguishable to those obtained using standard
sampling at the level of individual responses. The
approach enhances consistency by sampling re-
sponses in a correlated manner through the intro-
duction of a latent variable, in a way that increases
the token overlap across responses. In our experi-
ments, we find that this approach is not only able
to enhance semantic similarity between responses
but also stylistic similarity. These results show-
case how Gumbel consistency sampling offers a
principled quick and easy way of enhancing lan-
guage model consistency.

Future work could extend the Gumbel con-
sistency sampling to imposing local rather than
global correlation to responses. Currently, all re-
sponses are globally coupled due to dependence
on the same global latent variable, which makes
localised adjustments to model behaviour impos-
sible. However, the framework could easily en-
able for latent variables to be varied locally de-
pending on question specifics, which would enable
finer-grain control of model behaviour and could
increase the overall response diversity. Another,
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promising direction for extending the work could
be to treat the Gumbel noise as a learnable task-
specific parameter. Such an approach may be es-
pecially useful for building stronger model safe-
guards while preserving general utility.

8 Limitations

Increasing the consistency amongst a set of re-
sponses necessarily decreases their diversity mak-
ing our proposed sampling approach unsuitable
for use cases requiring high response diversity. In
particular, using the proposed sampling approach,
leads to fully deterministic sampling where re-
sponses will always be identical for identical input
prompts.

More generally, use of the sampling approach is
likely to lead to responses favoring specific topics
and figures of speech over others. This arises due
to the specific Gumbel noise value utilised during
text generation encoding relative preferences be-
tween tokens and is not inherently a weakness of
the approach. Indeed, analogously every members
of the human population also exhibit their own in-
dividual preferences and mannerisms.

Finally, it is important to emphasize that while
Gumbel consistency sampling enhances consis-
tency amongst responses it does not guarantee it.
Responses, generated using the approach, may
still lack self-consistency making the approach on
its own inadequate for use cases requiring perfect
consistency.
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A Proof for Theorem 4.1

Theorem. Suppose we have two different categorical distributions parametrised by p1, ..., pNv and
q1, ..., qNv . Define a joint distribution over pairs of categories (Y, V ) by defining

Y = argmax
i

(log pi + gi), V = argmax
i

(log qi + gi), (2)

where g1, ..., gNv ∼ G(0, 1) are independent. We have that

P (Y = k, V = k) =
pkqk

pkqk +
∑

i ̸=k max{piqk, qipk} .

Proof. If
k = argmax

i
{log pi + gi} = argmax

i
{log qi + gi},

then we must have that for all i ̸= k,

gi < log pk + gk − log pi and gi < log qk + gk − log qi,

i.e.,
gi < gk +min{log(pk/pi), log(qk/qi)} ∀i ̸= k.

Denoting by F the CDF of the Gumbel distribution, we can write

P (Y = k, V = k|gk) =
∏

i ̸=k

F (gk +min{log pk/pi, log qk/qi}).

Denoting the PDF of the Gumbel distribution by f and marginalising we deduce that

P (Y = k, V = k) =

∫ ∞

−∞

∏

i ̸=k

F (g +min{log pk/pi, log qk/qi})f(g)dg.

Expanding, we can write this as

P (Y = k, V = k) =

∫ ∏

i ̸=k

exp{− exp{−g −min{log pk/pi, log qk/qi}}} exp{−g − exp(−g)}dg

=

∫
exp{−g − exp(−g)−

∑

i ̸=k

exp{−g −min{log pk/pi, log qk/qi}}}dg

=

∫
exp{−g − exp(−g)(1 +

∑

i ̸=k

exp{−min{log pk/pi, log qk/qi}}}dg.

Recall that
d

dx
ee

x
= exee

x
= ex+ex ,

and so for any A independent of x we have that

d

dx
e−Ae−x

= Ae−xe−Ae−x
= Ae−x−Ae−x

.

Therefore, we may deduce that

P (Y = k, V = k) =

[
1

1 +
∑

i ̸=k exp{−min{log pk/pi, log qk/qi}}e
−Ae−g

]∞

−∞

=
1

1 +
∑

i ̸=k exp{−min{log pk/pi, log qk/qi}} .

5674



Since

exp{−min{log pk/pi, log qk/qi}} = max{exp{− log pk/pi}, exp{− log qk/qi}}
= max{pi/pk, qi/qk},

we deduce

P (Y = k, V = k) =
1

1 +
∑

i ̸=k max{pi/pk, qi/qk} .

as claimed.

B Proofs relating to Gumbel recycling procedure

Note that in the following proofs, we denote for notational simplicity that for a random vector x, where
each element of x is independently sampled according to a Gumbel distribution, xk ∼ G(0, 1), p(x) =∏

k G(xk; 0, 1) = G(x; 0, 1).

B.1 Proof for Theorem 4.2

Theorem. Consider a sequence of tokens Y1:T generated auto-regressively according to the following
update rule, where k := argmaxj(g

j
t +log hjt ), Q(·) is the quantile function for the G(0, 1) distribution

and πθ(·) is a language model:

g1 ∼ G(0, 1)

ht+1 = πθ(X,Y1:t)

gkt+1 | gt, ht ∼ G(0, 1)

git+1 | gt, ht = Q

(
Q−1(git)

Q−1(gkt + log hkt − log hit)

)
, for i ̸= k

Yt+1 = argmax
j

(
log hjt+1 + gjt+1

)

With this update procedure, the probability distribution over a given token conditioned on preceding
tokens is

p(Yt+1 | X,Y1:t) = Cat(Yt+1;ht+1)

Proof. We proceed through proof by induction. We make two assumptions that following expressions
hold for t, then prove that the expressions hold for t+ 1 under those assumptions (and that they hold for
the base case). The assumptions are that:

Assumption 1.
p(Yt | X,Y1:t−1) = Cat(Yt;ht+1)

Assumption 2.
p(gt | X,Y1:t−1) = G(gt; 0, 1)

N.B that in the base cases (p(Y1 | X) and p(g1 | X)), the expressions are trivially valid by the Gumbel
reparameterization trick and by construction of g1 respectively.

Now, let’s prove that the expressions hold for t+ 1. We will first prove the following:

p(gt+1 | X,Y1:t) = G(gt+1; 0, 1)
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by first considering the probability p(git+1 < a | X,Y1:t):

p(git+1 < a | X,Y1:t) =

∫
p(git+1 < a, gt | X,Y1:t) dgt

=

∫
p(git+1 < a | X,Y1:t, gt)p(gt | X,Y1:t−1, Yt) dgt

=

∫
p(git+1 < a | X,Y1:t, gt)

p(Yt | X,Y1:t−1, gt)p(gt | X,Y1:t−1)

p(Yt | X,Y1:t−1)
dgt

=
1

p(Yt | X,Y1:t−1)

∫
p(git+1 < a | ht, Yt, gt)p(Yt | ht, gt)G(gt; 0, 1) dgt

Firstly, consider the case where Yt = i. In this case, we know that git+1 is newly sampled from G(0, 1).
Therefore, using the Gumbel reparameterization trick for the last step, we have that:

p(git+1 < a | X,Y1:t) =
1

hit

∫
p(git+1 < a | ht, Yt, gt)p(Yt | ht, gt)G(gt; 0, 1) dgt

=
1

hit

∫
Q−1(a)p(Yt | ht, gt)G(gt; 0, 1) dgt

=
hit
hit

Q−1(a) = Q−1(a)

Turning our attention to the case where Yt = j ̸= i

p(git+1 < a | X,Y1:t) =
1

p(Yt = j | X,Y1:t−1)

∫
p(git+1 < a | ht, Yt = j, gt)p(Yt = j | ht, gt)G(gt; 0, 1) dgt

=
1

hj
t

∫
p(git+1 < a | ht, Yt = j, gt)p(Yt = j | ht, gt)G(gt; 0, 1) dgt

We simplify notation by denoting the following events:

E′ =

{
Q

(
Q−1(git)

Q−1(gjt + log hjt − log hit)

)
< a

}

Ep =
{
gpt + log hpt < gjt + log hjt

}

Now, we can rewrite the following probabilities using these definitions:

p(git+1 < a | ht, Yt = j, gt) = 1E′(gt)

p(Yt = j | ht, gt) =


∏

p̸=j

1Ep(gt)




p(git+1 < a | X,Y1:t) =
1

hjt

∫
1E′(gt)


∏

p ̸=j

1Ep(gt)


G(gt; 0, 1) dgt

Since Q−1(x) is a monotonic function, Ei is equivalently defined as:

Ei =
{
Q−1

(
git
)
< Q−1

(
gjt + log hjt − log hit

)}

Additionally, E′ can be rewritten as

E′ =
{
Q−1

(
git
)
< Q−1(a)Q−1

(
gjt + log hjt − log hit

)}
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Since Q−1(a) ∈ [0, 1], the occurrence of E′ is a sufficient condition for the occurrence of Ei. Therefore,
we can simplify the integral to:

p(git+1 < a | X,Y1:t) =
1

hjt

∫
1E′(gt)


∏

p̸=i,j

1Ep(gt)


G(gt; 0, 1) dgt

The CDF of the Gumbel distribution can be written Q−1(x) = e−e−x
, so Q−1(x + c) =

(
Q−1(x)

)e−c

.
With this fact and application of the monotonic transformation Q(·), we can rewrite the events :

E′ =



Q−1

(
git
)
Q−1

(
gjt

)− hit

h
j
t < Q−1(a)





Ep =

{
Q−1 (gpt ) < Q−1

(
gjt

)h
p
t

h
j
t

}

We now use the fact that Q−1(git) := U i
t ∼ U [0, 1] ∀i to rewrite the events like so:

E′ =



U i

t

(
U j
t

)− hit

h
j
t < Q−1(a)





Ep =

{
Up
t <

(
U j
t

)h
p
t

h
j
t

}

In conjunction with lemma B.1, this gives us the desired cumulative density function:

p(git+1 < a | X,Y1:t) =
1

hjt
(hjt )Q

−1(a) = Q−1(a)

Since the cumulative density function in both cases (Yt = i and Yt ̸= i) is Q−1(a), we have that, under
our initial assumptions, p(gt+1 | X,Y1:t) = G(gt+1; 0, 1).

Finally, we then introduce and marginalise over the Gumbel noise vector at the previous timestep for
the distribution over Yt+1, where the final step follows from the Gumbel reparameterization trick:

p(Yt+1 | X,Y1:t) =

∫
p(Yt+1, gt+1 | X,Y1:t) dgt+1

=

∫
p(Yt+1 | X,Y1:t, gt+1)p(gt+1 | X,Y1:t) dgt+1

=

∫
p(Yt+1 | ht+1, gt+1)G(gt+1; 0, 1) dgt+1

= Cat(Yt+1;ht+1)

Therefore, since the expressions are valid for the base case of t = 1, and we have shown them to be valid
for t+ 1 if assumptions 1 and 2 hold, they must be true for all t, by induction.

B.2 Statement and Proof of lemma B.1
Lemma B.1. X , Y and Z1:N are random variables each independently drawn from U [0, 1]. A, B,
C1:N and D are positive constants between 0 and 1, and A + B +

∑
nCn = 1. Defining the events

E∗ =
{
XY −A

B < D
}

and En =
{
Zn < Y

Cn
B

}
, the probability of the intersection of events is given

by:

P

(
E∗ ∩

N⋂

n=1

En

)
= BD
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Proof. We can write down the following probabilities that are conditional on Y :

P (E∗|Y ) = P
(
X ≤ DY

A
B

)
= DY

A
B

P (En|Y ) = P
(
Zn ≤ Y

Cn
B

)
= Y

Cn
B

Therefore, the probability of the complement is given by integrating the product of these quantities
over p(y):

P

(
E∗ ∩

N⋂

n=1

En

)
=

∫ 1

0
P (E∗|Y )

N∏

n=1

P (En|Y )dY

=

∫ 1

0

(
DY

A
B

) N∏

n=1

(
Y

Cn
B

)
dY

=

∫ 1

0

(
DY

A+
∑

n Cn
B

)
dY

= D
1

A+
∑

n Cn

B + 1

= D
1(

A+
∑

n Cn+B
B

) = BD

C Proof of unbiased estimator for prepeat

Claim. Let p denote the probability of some Bernoulli event. an unbiased estimator of p given by a finite
set N of samples Z1:N from the distribution is given by:

p̂ =
1

N

N∑

i=1

Zi

An unbiased estimator of prepeat = p2 + (1− p)2 is:

N

N − 1
(p̂2 + (1− p̂)2)− 1

N − 1

Proof. Calculate the expectation of p̂2:

E(p̂2) = E



(

1

N

N∑

i=1

Zi

)2



Expand the square inside the expectation:

E(p̂2) =
1

N2
E




N∑

i=1

Z2
i +

∑

i ̸=j

ZiZj




Since Z2
i = Zi, and by linearity of expectation:

E(p̂2) =
1

N2

(
Np+N(N − 1)p2

)

Simplify the expression:

E(p̂2) =
Np+N2p2 −Np2

N2
=

p+ (N − 1)p2

N
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Using this result, we have the following:

E(p̂2 + (1− p̂)2) = E
(
2p̂2 − 2p̂+ 1

)

= 2E(p̂2)− 2E(p̂) + 1

= 2

(
1

N
p+

N − 1

N
p2
)
− 2p+ 1

=
1

N

(
(N − 1)(2p2 − 2p+ 1) + 1

)

=
N − 1

N

(
(2p2 − 2p+ 1) +

1

N − 1

)

=
N − 1

N
prepeat +

1

N

Therefore, we can debias the naive estimator using the following expression:

N

N − 1
(p̂2 + (1− p̂)2)− 1

N − 1

D Justification for ensembling procedure

Theorem. Suppose we have a set of categorical distributions {Pi}ni=1, define Q∗ as the distribution
minimizing the average forward Kullback-Leibler divergence to each {Pi}ni=1:

Q∗ = argmin
Q

1

n

n∑

i=1

DKL(Q∥Pi) (3)

then Q∗(x) can be expressed as

Q∗(x) =
1

Z

n∏

i=1

Pi(x)
1
n (4)

where Z is the normalisation constant to ensure Q∗ defines a valid probability distribution function

Z =
∑

x

n∏

i=1

Pi(x)
1
n

Proof. Expanding the KL divergence

1

n

n∑

i=1

DKL(Q∥Pi) =
1

n

n∑

i=1

∑

x

Q(x) log
Q(x)

Pi(x)

Changing the order of sums, this can be re-expressed as

1

n

n∑

i=1

DKL(Q∥Pi) =
1

n

∑

x

Q(x) log
Q(x)n∏n
i=1 Pi(x)

=
∑

x

Q(x) log
Q(x)

∏n
i=1 Pi(x)

1
n

Introducing the normalisation constant Z

1

n

n∑

i=1

DKL(Q∥Pi) =
∑

x

Q(x) log
1
ZQ(x)

1
Z

∏n
i=1 Pi(x)

1
n

=
1

n

n∑

i=1

DKL(Q∥Pi)
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separating the Z in the numerator

1

n

n∑

i=1

DKL(Q∥Pi) =
∑

x

Q(x) log
Q(x)

1
Z

∏n
i=1 Pi(x)

1
n

+ log
1

Z

thus
1

n

n∑

i=1

DKL(Q∥Pi) = DKL(Q∥
1

Z

n∏

i=1

P
1
n
i ) + log

1

Z

this will be minimised when the right-hand side KL is equal to zero which occurs at Q∗(x) =
1
Z

∏n
i=1 Pi(x)

1
n

E Experimental details

For all experiments, answer generation is done using language models quantised to bfloat16 (Dean et al.,
2012). Chat and instruction-tuned models are prompted using default templates whereas base models
(mistral, llama3-base) are prompted with a template consisting of a single in-context example to help
steer away from off-topic answers. The addition of this in-context example was found to not materially
impact the efficacity of Gumbel sampling but impact the quality of responses.

To avoid excessive experiment run-times, we restrict generated responses to a maximum length after
which we interrupt text generation. This limit was set to 50 new tokens for semantic similarity ex-
periments and to 200 new tokens for stylistic similarity experiments. We ran small-scale experiments
with larger maximum response length and did not find material evidence of experimental findings being
impacted by this response truncation.

When measuring semantic similarity between responses we measure consistency between responses
rather than response-question pairs with any follow-up questions or answers hallucinated by the language
model removed programmatically.

F Stylistic consistency prompts

F.1 Aleatoric-list

Listing 1: Zero-shot classification prompt for whether model-generated response contains bulletpoints. Placehold-
ers for question-specific content are shown in red.
Does t h e f o l l o w i n g r e s p o n s e s e p a r a t e i t e m s i n t h e answer u s i n g b u l l e t p o i n t s ( * / − ) ,

l e t t e r s ( a / b / c . . . ) , n u m e r i c s ( 1 , 2 , 3 ) o r i f i t e m s a r e n o t s e p a r a t e d r e s p o n d wi th ‘
doesn ’ t s e p a r a t e ‘ ?

Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
To make your answer e asy t o e x t r a c t r e s p o n d wi th on ly one of t h e f o l l o w i n g o p t i o n s ‘

u s e s b u l l e t s ‘ / ‘ u s e s l e t t e r s ‘ / ‘ u s e s numer ics ‘ / ‘ doesn ’ t s e p a r a t e ‘

Listing 2: Zero-shot classification prompt for whether model-generated response is terse. Placeholders for
question-specific content are shown in red.
I s t h e r e s p o n s e t e r s e o r n o t ?
Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
To make your answer e asy t o e x t r a c t r e s p o n d wi th on ly one of t h e f o l l o w i n g o p t i o n s ‘

t e r s e ‘ / ‘ n o t t e r s e ‘ .

F.2 Code-Alpaca

Listing 3: Zero-shot classification prompt for determining programming language of model-generated response.
Placeholders for question-specific content are shown in red.
What i s t h e programming l a n g u a g e used i n t h e p r o v i d e d r e s p o n s e . I f no programming

l a n g u a g e i s used r e t u r n None
Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
Your r e s p o n s e s h o u l d on l y c o n t a i n t h e answer and n o t h i n g e l s e .
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Listing 4: Zero-shot classification prompt for determining if model-generated response contains comments. Place-
holders for question-specific content are shown in red.
Does t h e code s n i p p e t i n t h e f o l l o w i n g r e s p o n s e c o n t a i n comments .
Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
Answer e i t h e r w i t h yes / no . Your r e s p o n s e s h o u l d on ly c o n t a i n t h e answer and n o t h i n g

e l s e .

Listing 5: Zero-shot classification prompt for determining if model-generated response contains code snippet.
Placeholders for question-specific content are shown in red.
Does t h e f o l l o w i n g r e s p o n s e c o n t a i n a code s n i p p e t .
Response : ‘ ‘ ‘ {response} ‘ ‘ ‘ .
Answer e i t h e r w i t h yes / no . Your r e s p o n s e s h o u l d on ly c o n t a i n t h e answer and n o t h i n g

e l s e .

G Example responses and semantic similarity

G.1 Llama3-base-7B without gumbel consistency sampling at T=0.8

Table 3: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application of
word embeddings in Natural
Language Processing / Illumi-
nate the use of word embed-
dings in Natural Language Pro-
cessing

Natural Language Process-
ing(NLP) is a branch of Artificial
Intelligence (AI) which deals with
the interaction between computers
and human languages. Word2vec
is the most popular class of word
embeddin...

It is used to represent words and
their context with numerical values.

68.0

Expound on the function of a
computer motherboard. / Illus-
trate the function of a computer
motherboard.

The motherboard is the framework
of the computer. It houses the CPU,
RAM, and other components.

The computer’s motherboard serves
a number of functions. It directs
information from the CPU to the
memory, makes sure the proper
voltage levels are reached, and di-
rects the data flow in and out of th...

80.5

Decode the abbreviation DNA.
/ Share the meaning behind
DNA.

DNA is an abbreviation for de-
oxyribonucleic acid.

DNA is also known as Deoxyri-
bonucleic Acid. It is found in ev-
ery single cell in the body and each
cell contains the complete set of ge-
netic information. It is the genetic
blueprint that determines the...

78.0

5681



G.2 Llama3-base-7B with gumbel consistency sampling (recycling) at T=0.8

Table 4: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application of
word embeddings in Natural
Language Processing / Illumi-
nate the use of word embed-
dings in Natural Language Pro-
cessing

Embedding is the encoding of
words in the context with a real-
valued vector of a certain dimen-
sion. The low dimension helps to
reduce the computational complex-
ity of the models. Embedding can
be learn...

Embedding is the encoding of
words in the context of a sentence
with a real-valued vector. The use
of word embeddings helps to solve
the problem of ‘Word sense disam-
biguation’.

85.0

Expound on the function of a
computer motherboard. / Illus-
trate the function of a computer
motherboard.

The motherboard of a computer
is responsible for providing a
workspace where all the hardware
components can be connected. The
motherboard also controls the com-
munication between the various
component...

The motherboard of a computer
is responsible for providing com-
munication between all the various
components. The motherboard also
controls basic functions such as the
timing of the hardware, start-up ...

90.0

Decode the abbreviation DNA.
/ Share the meaning behind
DNA.

DNA stands for deoxyribonucleic
acid

DNA means Deoxyribonucleic acid 98.0

G.3 Llama3-instruct-7B without gumbel consistency sampling at T=0.8

Table 5: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application of
word embeddings in Natural
Language Processing / Illumi-
nate the use of word embed-
dings in Natural Language Pro-
cessing

Word embeddings are a fundamen-
tal component in Natural Language
Processing (NLP) that allow ma-
chines to understand the nuances of
language by mapping words to vec-
tors in a high-dimen...

The wonders of word embeddings!
Word embeddings are a fundamen-
tal concept in Natural Language
Processing (NLP) that revolution-
ized the way we represent words as
vect...

91.0

Expound on the function of a
computer motherboard. / Illus-
trate the function of a computer
motherboard.

The motherboard is the main cir-
cuit board of a computer, connect-
ing and supporting all the hardware
components of the system. It serves
as a communication highway, al-
lowing different...

The computer motherboard is the
main circuit board of a computer
that connects all the hardware com-
ponents together. It is responsible
for facilitating communication and
data transfe...

91.0

Decode the abbreviation DNA.
/ Share the meaning behind
DNA.

A classic one! The abbreviation
DNA stands for: D - Deoxy N -
Nucleic A - Acid. In other words,
DNA is Deoxyribose N...

What an fascinating topic! DNA
(Deoxyribonucleic acid) is a
molecule that contains the genetic
instructions used in the develop-
ment and function of all living
organisms. It’s often r...

78.0
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G.4 Llama3-instruct-7B with gumbel consistency sampling (recycling) at T=0.8

Table 6: Examples of semantic similarity between responses for various questions

Question Response 1 Response 2 Similarity
(%)

Break down the application of
word embeddings in Natural
Language Processing / Illumi-
nate the use of word embed-
dings in Natural Language Pro-
cessing

Embedding is the encoding of
words in the context with a real-
valued vector of a certain dimen-
sion. The low dimension helps to
reduce the computational complex-
ity of the models. Embedding can
be learn...

Embedding is the encoding of
words in the context of a sentence
with a real-valued vector. The use
of word embeddings helps to solve
the problem of ‘Word sense disam-
biguation’.

85.0

Expound on the function of a
computer motherboard. / Illus-
trate the function of a computer
motherboard.

The motherboard of a computer
is responsible for providing a
workspace where all the hardware
components can be connected. The
motherboard also controls the com-
munication between the various
component...

The motherboard of a computer
is responsible for providing com-
munication between all the various
components. The motherboard also
controls basic functions such as the
timing of the hardware, start-up ...

90.0

Decode the abbreviation DNA.
/ Share the meaning behind
DNA.

DNA stands for deoxyribonucleic
acid

DNA means Deoxyribonucleic acid 98.0

H Evaluation of semantic similarity using different metric choices

H.1 Jaccard similarity

In Table 7, we reproduce mean semantic similarity results quoted in Section 6.1 using Jaccard similarity
where we measure Jaccard similarity on the set of tokens produced by each model’s own associated
tokenizer.

Model Sampler Without Ensembling With Ensembling

Llama2 Chat
IS 0.351±0.002 0.385±0.011
GCS 0.420±0.006 0.495±0.005
GCSwR 0.444±0.005 0.521±0.007

Mistral
IS 0.115±0.004 0.119±0.005
GCS 0.266±0.010 0.340±0.020
GCSwR 0.335±0.013 0.393±0.008

Llama3 Instruct
IS 0.320±0.011 0.346±0.000
GCS 0.365±0.017 0.442±0.004
GCSwR 0.410±0.003 0.479±0.008

Llama3 Base
IS 0.086±0.001 0.096±0.009
GCS 0.224±0.015 0.281±0.009
GCSwR 0.314±0.012 0.371±0.010

Table 7: Model results by sampler type, for the Jaccard similarity, with and without our ensembling
approach. Scores shown as mean±std.err with std.err obtained from 3 independent runs. Bold indicates
highest scores for each model in both ensembling categories.

H.2 Sentencebert

In Table 8, we reproduce mean semantic similarity results quoted in Section 6.1 using the
all-mpnet-base-v2 model recommended by the popular popular sentencetransformer repository
(Reimers and Gurevych, 2019).
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Model Sampler Without Ensembling With Ensembling

Llama2 Chat
IS 0.758±0.006 0.772±0.002
GCS 0.799±0.001 0.827±0.003
GCSwR 0.801±0.005 0.834±0.005

Mistral
IS 0.463±0.006 0.461±0.025
GCS 0.600±0.006 0.647±0.022
GCSwR 0.630±0.017 0.664±0.016

Llama3 Instruct
IS 0.778±0.002 0.794±0.001
GCS 0.795±0.008 0.827±0.005
GCSwR 0.800±0.004 0.832±0.003

Llama3 Base
IS 0.429±0.019 0.443±0.014
GCS 0.558±0.013 0.593±0.012
GCSwR 0.597±0.009 0.641±0.009

Table 8: Model results by sampler type, for the all-mpnet-base-v2 model, with and without our
ensembling approach. Scores shown as mean±std.err with std.err obtained from 3 independent runs.
Bold indicates highest scores for each model in both ensembling categories.

I Python implementation

We provide below a self-contained reference Python implementation of our GCSwR algorithm.

from t y p i n g import O p t i o n a l , Union

import numpy as np
import numpy . t y p i n g as n p t
import t o r c h

def u n i f o r m _ t o _ g u m b l e _ f n ( z , mu=0 , b e t a =1) :
s ample s = mu − b e t a * t o r c h . l o g ( − t o r c h . l o g ( z ) )
re turn sample s

def g u m b e l _ t o _ u n i f o r m _ f n ( z , mu=0 , b e t a =1) :
u n i f o r m _ s a m p l e s = t o r c h . exp ( − t o r c h . exp ( −( z − mu) / b e t a ) )
re turn u n i f o r m _ s a m p l e s

c l a s s GumbelSampler :
def _ _ i n i t _ _ (

s e l f ,
r n g _ s e e d : i n t ,
memory_size : i n t = 100 ,
r e c y c l e _ s t r a t e g y : Union [ s t r , i n t ] = " a lways " ,

) −> None :
s e l f . r n g _ s e e d = r n g _ s e e d
s e l f . i s _ i n i t i a l i s e d = F a l s e
s e l f . memory_size = memory_size
s e l f . r e c y c l e _ s t r a t e g y = r e c y c l e _ s t r a t e g y

def sample ( s e l f , l o g p r o b s : t o r c h . Tensor ) −> i n t :
gumbe l_no i se = s e l f . g e t _ c u r r e n t _ g u m b e l ( num_cats= l e n ( l o g p r o b s ) )
s amp led _ idx = t o r c h . argmax ( gumbe l_no i se . s q u e e z e ( ) + l o g p r o b s . s q u e e z e ( ) ) . i t em

( )
s e l f . r e c y c l e _ g u m b e l ( gumbel_noise , l o g p r o b s , s amp led_ idx )
re turn samp le d_ idx

def g e t _ c u r r e n t _ g u m b e l ( s e l f , num_cats : i n t = None ) −> t o r c h . Tensor :
" " " Get t h e c u r r e n t gumbel n o i s e v e c t o r and i n i t i a l i z e gumbel n o i s e i f i t has

n o t y e t been i n i t i a l i z e d . " " "
i f not s e l f . i s _ i n i t i a l i s e d :
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s e l f . rng = np . random . d e f a u l t _ r n g ( s e l f . r n g _ s e e d )
s e l f . gumbel_mem = s e l f . make_gumbel_noise (

num_cats =num_cats , num_samples= s e l f . memory_size , rng = s e l f . rng
)
s e l f . mem_loc = t o r c h . z e r o s ( num_cats , d t y p e = t o r c h . i n t 6 4 )
s e l f . i s _ i n i t i a l i s e d = True

gumbe l_no i se = t o r c h . g a t h e r ( s e l f . gumbel_mem , 1 , s e l f . mem_loc [ : , None ] )
re turn gumbe l_no i se

def s e t _ c u r r e n t _ g u m b e l ( s e l f , gumbe l_no i se : t o r c h . Tensor ) −> None :
s e l f . gumbel_mem . s c a t t e r _ ( 1 , s e l f . mem_loc [ : , None ] , gumbe l_no i se [ : , None ] )

def r e c y c l e _ g u m b e l (
s e l f ,
gumbe l_no i se : t o r c h . Tensor ,
l o g p r o b s : t o r c h . Tensor ,
s amp led _ idx : i n t ,

) −> None :
i f s e l f . r e c y c l e _ s t r a t e g y == " n e v e r " :

s e l f . mem_loc += 1
e l s e :

u n i f o r m _ n o i s e = g u m b e l _ t o _ u n i f o r m _ f n ( gumbe l_no i se )
s c a l e r = g u m b e l _ t o _ u n i f o r m _ f n (

l o g p r o b s [ samp led_ idx ] + gumbe l_no i se [ s amp led_ idx ] − l o g p r o b s
)
upda ted_gumbel = u n i f o r m _ t o _ g u m b l e _ f n ( u n i f o r m _ n o i s e . s q u e e z e ( ) / s c a l e r )
s e l f . s e t _ c u r r e n t _ g u m b e l ( upda ted_gumbel )
s e l f . mem_loc [ sampled_ idx ] += 1

@ s t a t i c m e t h o d
def make_gumbel_noise (

num_cats : i n t ,
num_samples : i n t ,
rng : O p t i o n a l [ np . random . _ g e n e r a t o r . G e n e r a t o r ] = None ,

) −> np . a r r a y :
i f rng :

re turn t o r c h . Tensor ( rng . gumbel ( 0 , 1 , s i z e =( num_cats , num_samples ) ) )
e l s e :

re turn t o r c h . Tensor ( np . random . gumbel ( 0 , 1 , s i z e =( num_cats , num_samples ) )
)

def r e s e t ( s e l f ) :
s e l f . i s _ i n i t i a l i s e d = F a l s e

def sample_n_new (
n : i n t ,
N_vocab : i n t ,
r n g _ s e e d : O p t i o n a l [ i n t ] = 0 ,
l o g p r o b s : O p t i o n a l [ n p t . NDArray ] = None ,

) −> l i s t [ i n t ] :
i f l o g p r o b s i s None :

norm_probs = np . random . d i r i c h l e t ( np . ones ( N_vocab ) )
l o g p r o b s = np . l o g ( norm_probs )

s a m p l e r = GumbelSampler ( r n g _ s e e d = r n g _ s e e d )
s e q u e n c e = [ ]
f o r _ in range ( n ) :

s e q u e n c e . append ( s a m p l e r . sample ( t o r c h . Tensor ( l o g p r o b s ) ) )
re turn s e q u e n c e

i f __name__ == " __main__ " :
n = 2
N_vocab = 2
num_samples = 10000
l o g p r o b s = np . l o g ( np . a r r a y ( [ 0 . 4 , 0 . 6 ] ) )

r e s u l t s = [ ]
f o r s ee d in range ( num_samples ) :

r e s u l t s . append (
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sample_n_new (
n ,
N_vocab ,
seed ,
l o g p r o b s ,

)
)

p r i n t ( f " IS : P r o b a b i l i t y o f s a m p l i n g 1 i n bo th p o s i t i o n s : { np . exp ( l o g p r o b s ) [ 1 ] } " )
p r i n t (

f "GCSwR: E m p i r i c a l p r o b a b i l i t y o f s a m p l i n g 1 i n p o s i t i o n s 1 & 2 : { np . a r r a y (
r e s u l t s ) . mean ( a x i s =0) } "

)
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